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Abstract: Long period gratings (LPGs) inscribed in single mode fibers (SMFs) using CO2 laser
irradiation were modelled numerically using the coupled mode method. The model considers the
specifications of the inscription technique, such as the shape of the refractive index modulation
that mimics the circularly symmetric point-to-point laser irradiation profile. A simple expression
for predicting the resonant wavelength was obtained assuming a two-mode coupling model.
However, to explain the spectra of the experimental LPGs, it was necessary to assume a reasonably
high refractive index change and a multimode coupling model. Furthermore, using the developed
model and a genetic algorithm to fit experimental resonances to simulated ones, we were able to
estimate the maximum refractive index change, obtaining a value of 2.2 × 10−3, confirming the
high refractive index change. The proposed model also predicts a second order resonance for this
high value of refractive index change that was confirmed experimentally. Hence, with this model,
we found some significant differences in the LPGs behavior when compared with conventional ones,
namely, the emergence of coupling between different cladding modes and the competition of first
and second order resonances which change the LPG transmission spectrum.
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1. Introduction

Long period gratings (LPGs) inscribed in single mode fibers (SMF), with periods longer than 10 µm,
promote the light coupling from the core guided mode to a specific cladding mode at the resonant
wavelength [1], leading to attenuation dips in the transmission spectrum. These attenuation dips
depend on the grating period and on the refractive index modulation. LPGs have many applications
in both optical communications [2–4] and sensing [5–8] fields. In the sensing field, LPGs can be used
as temperature, strain or refractive index sensors, furthermore, they can be made sensitive to chemical
and biochemical parameters by coating with appropriate materials [9,10].

CO2 laser irradiation techniques have been used for fabrication of LPGs with good results.
This technique does not require photosensitivity and can be used to fabricate LPGs in almost all types
of fibers, including pure-silica core fibers and photonic crystal fibers (PCFs). Hence, compared to
the UV irradiation technique, CO2 laser irradiation techniques are more flexible and have lower cost,
maintaining the stability provided by the laser inscription techniques.

CO2 laser inscribed LPGs are typically written using the point-by-point method. Segments of
the fiber are periodically exposed to 10.6 µm wavelength radiation from a CO2 laser, producing a
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localized fiber heating and a consequent refractive index change [11]. Several CO2 laser irradiation
techniques to inscribe LPGs with antisymmetric and symmetric irradiation have been demonstrated
and improved [2,11–13]. At the same time, studies on the physical mechanism involved in the refractive
index change have been performed. The refractive index changes have been attributed to residual
stress relaxation and/or glass densification [2,14,15], nevertheless, the process was not clearly explained
yet. Furthermore, some methods were already used to measure the produced refractive index change
but reported results are not in agreement with each other [15–17]. In fact, the refractive index change is
an important parameter that defines LPG characteristics, which means accurate knowledge of this
parameter is fundamental for LPGs modelling. Furthermore, LPG sensitivity to the surrounding
medium is highly dependent on the coupled cladding mode [5–7]. By choosing the right coupling
mode and the right period it is possible to design LPG-based sensors that are highly sensitive or even
insensitive to a certain parameter [18]. In this way, LPGs modelling is fundamental for both sensor
design and LPGs inscription planning.

Here, we report a detailed theoretical model, based on coupled mode theory, for CO2 laser
symmetrically irradiated LPGs in SMFs that permit the estimation of the refractive index change from
the LPG transmission spectrum. We use an automated LPG inscribing technique recently proposed
in [13] that has the advantage of producing highly reproducible LPGs with a circularly symmetric
refractive index change. The theoretical model takes into consideration the specifications of this
inscription technique. The estimation of the refractive index change was done by fitting the simulation
results to the wavelength resonances of the fabricated LPGs using a genetic algorithm (GA).

2. CO2 Laser Irradiation Inscription Method

The LPGs were inscribed using the technique proposed in [13], which uses a commercial CO2

laser fiber processing system (LZM-100 LAZERMaster from AFL Fujikura, Chessington, Surrey, UK).
This point-by-point technique allows for constant rotation of the fiber during irradiation, leading to
a uniform exposure around the fiber that results in a circularly symmetric refractive index change.
This system produces LPGs with highly reproducible characteristics; however, the period must be higher
than 800 µm to avoid overlapping the irradiated areas. The laser induced heating profile—which is
produced in the fiber by the LZM system—is displayed in Figure 1. This profile was approximated by
a super-Gaussian function of order N = 6 and a full width at half maximum (FWHM) of 467 µm.
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Figure 1. Beam heating profile in the fiber obtained with the LZM cameras (a) and correspondent 
super- Gaussian fit (b). The dots represent the collected data points and the red line represents a 
super-Gaussian fit. 

Figure 1. Beam heating profile in the fiber obtained with the LZM cameras (a) and correspondent
super- Gaussian fit (b). The dots represent the collected data points and the red line represents a
super-Gaussian fit.
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We have inscribed LPGs in step index SMFs with different periods (1000, 1050 and 1100 µm).
The point-by-point technique allowed us to monitor the LPG spectrum after each irradiation pulse,
in such a way that the optimum length of the LPG was easily determined, i.e., the length that provides
the maximum attenuation dip, which corresponds to the maximum coupling. Hence, the LPGs were
produced with an optimized LPG length. For each period, three LPGs were produced to confirm
the reproducibility of this technique. The LPGs transmission spectra were measured with an optical
spectrum analyzer (OSA) (Q8384 from Advantest, Tokyo, Japan) in combination with a broadband
source (WL-SC400-2, Fianium, Southampton, UK). The spectra of the LPGs produced are displayed
in Figure 2.
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Figure 2. Transmission spectra of the produced long period gratings (LPGs) with periods (a) 1000,
(b) 1050 and (c) 1100 µm.

All spectra have attenuation dips with heights higher than 20 dB. The dips are similar in each set,
having a maximum difference of 6 nm (Λ = 1000 µm) for the resonant wavelength and a maximum
difference of 5.95 dB (Λ = 1100 µm) for the height of the dip. Furthermore, LPGs with larger period
present higher resonant wavelengths.

3. Theoretical Model

In the case of a SMF, the refractive index perturbation of the LPG promotes the coupling between
the fundamental core mode (HE11 or LP01) and the cladding modes of the fiber. The coupling interaction
between these forward propagating modes can be described by the coupled mode theory. The general
coupled-mode equations that describe the evolution of the mode amplitudes along the LPG (z) are
written as [1,19]:

dAp

dz
= i

∑
p

AqKqp exp(i∆βqpz), (1)

where Ap and Aq are the amplitudes of the mode field p and q, respectively. ∆βqp is the difference of the
propagation constants of the modes, z is the propagation direction and Kqp is the coupling coefficient
between the modes q and p.

We assumed that the induced refractive index change has the same form as the fiber heating
profile, i.e., the form of a super-Gaussian of degree N as displayed in Figure 1, and given by:

δn(z) = δn Y(z) = δn
∑

j

y
(
z− b j

)
, (2)

with δn being the maximum value of the refractive index change, bj the position of the super-Gaussian
peaks separated by the LPG period, Λ, and:

y(z− b j) = exp

− (z− b j)
N

2cN
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FWHM

2
N√

2 ln 2
. (3)
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The coupling coefficients can be defined as:

Kqp = σqpY(z). (4)

Since the CO2 laser irradiation can induce refractive index changes in both the cladding and the core,
σqp is given by:

σqp =
ωε0ncoδnco

2

x

core
EqE∗pdxdy +

ωε0nclδncl
2

x

cladding

EqE∗pdxdy, (5)

where ε0 is the vacuum permittivity, ω the angular frequency, nco and ncl are the refractive indexes of
the core and cladding, respectively, δnco and δncl are their maximum changes and Eq and Ep are the
electric field of the modes q and p.

Considering the coupling between two modes, the coupled mode equations become:

dA1
dz = iσ11Y(z)A1 + iσ21Y(z)A2 exp(−i∆βz)
dA2
dz = iσ22Y(z)A2 + iσ12Y(z)A1 exp(i∆βz)

(6)

where ∆β = ∆β12 = β1 − β2 = −∆β21. The super-Gaussian series can be defined by a Fourier series:

Y(z) =
∞∑

n=−∞
αn exp

(
i
2πn
Λ

z
)
dz, (7)

where the coefficients αn are given by:

αn =
1
Λ

∫ Λ
2

−
Λ
2

y(z) exp
(
−i

2πn
Λ

z
)
dz. (8)

Considering only the terms of order −1, 0 and 1 of the Fourier series (7), and neglecting
the terms on the right-hand side of the differential Equations (6) that have rapid oscillations in z
(synchronous approximation), yields:

dA1
dz = iσ11α0A1 + iσ21α1 exp

(
i 2π

Λ z− i∆βz
)
A2

dA2
dz = iσ22α0A2 + iσ12α−1 exp

(
−i 2π

Λ z + i∆βz
)
A1

(9)

Since σkj = σ∗jk, α1 = α−1, and assuming the initial conditions A1(0) = 1 and A2(0) = 0, the solution
for the above system, written in terms of power, is

P1 = |A1|
2 = cos2(γ0z) +

(
δ
γ0

sin(γ0z)
)2

P2 = |A2|
2 =

(
α1
|σ12 |
γ0

sin(γ0z)
)2

with δ = α0(σ11 − σ22)/2 + ∆β/2−π/Λ and γ0 =
√
α2

1|σ12|
2 + δ2

(10)

With these solutions, we may estimate the resonant wavelength given by δ = 0, i.e.,

α0
(σ11 − σ22)

2
+
π∆ne f f

λmax,1
−
π
Λ

= 0 (11)

where ∆ne f f = ne f f ,1 − ne f f ,2.
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The above solutions correspond to first order coupling. However, our experimental results and
integration of (6) with Y(z) up to first order showed a reasonable coupling for a shorter wavelength,
which we attributed to second order coupling, given by:

α0
(σ11 − σ22)

2
+
π∆ne f f

λmax,2
−

2π
Λ

= 0 (12)

This coupling cannot be explained within the synchronous approximation and numerical tests
which revealed that for large δn it happens for reasonable LPG lengths, but for small δn, it occurs
for very large lengths which are experimentally unfeasible. Similar higher diffraction order has been
reported in previous works [20].

4. Results

We calculated the mode power evolution in the LPG for each wavelength and its full spectrum
through full integration of system (1) considering one and several cladding modes, as indicated in
each section, and the full super-Gaussians given in (2). To predict the relation between grating period
and resonant wavelength we have used the expressions (11) and (12). We assumed a bare standard
SMF on air composed by a cladding of pure silica with a radius of 62.5 µm and a core of GeO2 doped
silica with a concentration of 3% and a radius of r = 4.1 µm. The cladding and core refractive indexes
were calculated using the Sellmeier coefficients as in [21], which are 1.4440 and 1.4485 at 1550 nm.

The electric field distribution (E) and the effective refractive indexes (neff) were obtained using the
software package Comsol Multiphysics® with the Wave Optics module that solves the full vectorial
Helmholtz equation. We calculated the fundamental core mode (LP0,1) and 200 cladding modes,
the ones with the highest effective refractive indexes. Among those modes, we selected ten modes with
the same azimuthal symmetry of the core modes (HE1,m), the correspondent effective refractive indexes
at 1550 nm are in Table 1. Note that in gratings with symmetric index changes like the ones that are
being studied here, the coupling may only occur between modes with the same azimuthal symmetry [1].

Table 1. Effective refractive indexes of the core mode and the chosen 10 cladding modes at 1550 nm.

Mode neff

HE1,1 1.4457
HE1,2 1.4439
HE1,3 1.4438
HE1,4 1.4435
HE1,5 1.4430
HE1,6 1.4425
HE1,7 1.4418
HE1,8 1.4410
HE1,9 1.4402
HE1,10 1.4392
HE1,11 1.4380

We made preliminary numerical tests considering a uniform refractive index change in the core
or its symmetrical in the cladding. These tests yielded similar results in both cases. During all our
numerical calculations, we have opted to consider only a uniform refractive index change in the
cladding since, this should be closer to the actual change induced by our inscription method.

The system of differential Equations (1) was solved using a Runge–Kutta method. In order to
calculate the spectral response of the LPGs, we repeated the integration for the same period but for
several wavelengths, and for each wavelength the power at z = Lmax was considered, where Lmax is the
length at which the power of the fundamental mode attains its minimum at the resonant wavelength.
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4.1. Coupling between Cladding Modes

In [1,22] it was demonstrated that coupling between the different cladding modes is usually
negligible, such that the transmission spectrum can be calculated by overlapping all the individually
calculated spectra for each cladding mode. However, in those works the gratings were weak,
i.e., the refractive index change was less than 1 × 10−4. In the case of CO2 laser inscribed LPGs,
the refractive index change can reach higher values, with a value of ~10−3 already having been
reported [16]. These high values increase the coupling coefficients to the point that the coupling
between different cladding modes is not negligible. An example of this different behavior for small
and large refractive index modulation is represented in Figure 3. There, we present the mode power
evolution at 1550 nm for δncl = 2× 10−4 (Figure 3a,b) and δncl = 2× 10−3 (Figure 3c,d), for LPGs whose
period is given by (11) when considering HE1,3. The results in Figure 3a,c, were obtained by considering
only one cladding mode, whereas the results in Figure 3b,d were obtained by including multiple
cladding modes, namely, the ten first azimuthally symmetrical cladding modes. Figure 3a,b are
identical, however, there is a clear difference between graphs in (c) and (d), showing coupling between
the different cladding modes and the appearance of a second order resonance for the same period and
same wavelength (associated with mode HE1,6).
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Figure 3. Power evolution in an LPG calculated with one (a,c) and ten (b,d) cladding modes
simultaneously. A δncl = 2× 10−4 with a period of 821 µm (a,b) and a δncl = 2× 10−3 with a period of
1117 µm (c,d) and a wavelength of 1550 nm were considered.

To verify the differences in the transmission spectra, we also determined them for δncl = 2× 10−3

in both situations (one and ten cladding modes). The results are displayed in Figure 4 and show
that the resonant wavelength changes with the number of modes are considered in the simulation.
Note that, in both cases, we have used LPG optimal lengths (7.8 mm which corresponds to 7 periods)
which is the number of periods closer to the length at which core mode power reaches a minimum on
the graphs in Figure 3. These results reveal that Equation (11) is not very accurate for determining the
resonant wavelength in cases of large refractive index changes, since we cannot consider only coupling
between two modes but instead, we need to consider several modes to accurately model the LPGs.
Nevertheless, it is good as a first approximation, as we show in sub Section 4.3. There are thousands of
modes supported by the cladding, thus it is not possible to consider all of them in the simulations.
However, in Figure 3d we can see that modes higher than the HE1,7 do not couple significantly. In this
way, hereafter we are considering the same 10 cladding modes simultaneously in all simulations.
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Another aspect of the power evolution that is observable in the graphs of Figure 3c,d is the
step-like curves, which are not visible for lower refractive index changes. Each step corresponds to a
period, the steady part corresponds to the region not irradiated, with zero refractive index change,
and the part where the mode power changes corresponds to the irradiated region where the refractive
index is changed.

4.2. Refractive Index Change Estimation

As mentioned above, accurate knowledge of the refractive index change enables the modelling of
LPGs characteristics which is important to guide the fabrication process.

Here, we estimate the maximum refractive index change in the cladding, considering uniform
refractive index change, using a genetic algorithm (GA) that fits the resonances of the fabricated LPGs
to the numerically determined resonances using the model presented in Section 3.

The GA was implemented in order to find the refractive index change for which the numerical
optimal LPG length better approximates the experimental optimal LPG length in the resonant
wavelength. For each LPG period, we have considered the averages of the resonant wavelengths and
of the lengths of the three produced LPGs (Figure 2). The algorithm flow chart is shown in Figure 5
where we also show some of the GA conditions that have been used and were chosen after some
preliminary tests. Within the GA routine, we solve the differential equations system (1) for the core
mode and the first ten azimuthally symmetrical cladding modes and the full series of super-Gaussians
given in (2), considering the experimental LPG periods and their resonant wavelengths. We then find
the LPG length that corresponds to the first minimum of the core mode power and compare it with the
experimental LPG length. We used a GA routine from Matlab and since the GA uses initial populations
and selection methods that rely on random distributions, each run may produce slightly different
results. For that reason, we ran it three times and the results are presented in Table 2. We obtained
similar refractive index changes for all three sets of experimental LPGs, and in all cases the coupling
was mainly with the mode HE1,3. Calculating the average of all the refractive index changes obtained
with GA (see Table 2), we estimate a value of 2.2 × 10−3. Although this value is high, it is within the
range of the reported values [16].
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Table 2. Estimated refractive index change obtained with the genetic algorithm (GA).

LPGs Experimental Values
Estimated Refractive Index Change in the Cladding (

¯
δncl)

(×10−3)Λ

(µm)
λmax
(nm)

L
(mm)

1000 1456 10.7
2.37
2.35
2.40

1050 1498 10.2
2.29
2.25
2.25

1100 1555 11.4
2.02
2.05
1.93

4.3. First and Second Order Wavelength Resonances and Experimental Validation

Using the estimated refractive index change and the expressions (11) and (12), we were able to
estimate a relation between the LPG period and the first and second orders’ resonant wavelengths for a
series of azimuthally symmetrical cladding modes (Figure 6a). As expected, the resonant wavelengths
of the fabricated LPGs (Figure 2) are close to the HE1,3 mode line. We verified that, considering the first
order coupling, longer periods promote the coupling with lower-order modes while shorter periods
promote the coupling to higher-order modes. Furthermore, Figure 6a indicates that, assuming coupling
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with the same cladding mode, the resonant wavelength increases with increasing periods. The second
order presents the same behavior but for much longer periods. In the points where the curves of the
first order and second order resonances cross each order, coupling with the two modes that cross
should occur with one mode in first order and the order one in second order, as shown in Figure 3d.
However, the maximum coupling of each mode/order may occur for different LPG lengths.
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Figure 6. Resonant wavelengths as a function of the grating period (a) for the first (solid lines)
and second order (dash lines) coupling of azimuthally symmetrical cladding modes HE1,2 to HE1,7.
Markers represent the experimental resonant wavelengths of the produced LPGs that (o) correspond
to the attenuation dips of the spectra of Figure 2 and (+) to the attenuation dips of the transmission
spectra of LPGs produced with a periods of (b) 1000, (c) 1050 and (d) 1100 µm and a length of 14, 14
and 19 periods, respectively. The lengths of the LPGs were chosen in order to show more dips.

To validate the numerical analysis, we fabricated another set of LPGs and measured their
transmission spectra for a wavelength range from 1300–1600 nm (Figure 6b). The LPGs were fabricated
with periods of 1000, 1050 and 1100 µm, as well as lengths chosen in order to show more dips.
Besides the attenuation dips that correspond to the ones in Figure 2, the spectra present additional
dips. By comparing the transmission spectra of these LPGs with the expected resonant wavelengths of
Figure 6a, we identified the cladding modes that should be associated with each dip, verifying that
some dips should correspond to first order and others to second order resonances.

The small difference between the experimental resonant wavelengths and the calculate ones is
partly due to the use of (11) and (12), as explained in sub Section 4.1. Nevertheless, these results
show that our model together with the estimated refractive index change can provide a good first
approximation of the LPGs behavior.

5. Conclusions

The mode power transfer in LPGs inscribed in SMFs by the CO2 laser irradiation technique was
studied using a theoretical model, based on the coupled mode method. Taking into consideration
the specifications of the inscription technique, the model assumes azimuthally symmetric refractive
index changes, in the form of a train of super-Gaussian profiles with high maxima that mimics
the circularly symmetric point-to-point laser irradiation profile. We started by demonstrating that
for high refractive index changes the coupling between different cladding modes is not negligible.
To fully explain the spectra of the produced LPGs, several cladding modes needed to be considered
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simultaneously. Nevertheless, we have used a two-mode coupling model within the synchronous
approximation to obtain a simple relation that approximates the dependency of grating periods and
resonant wavelengths. Using a genetic algorithm, we then developed a method to estimate the
refractive index change. By fitting the wavelength resonances of several produced LPGs to numerically
obtained ones using a multi-mode coupling model, we were able to estimate the refractive index change
maximum to approximately 2.2 × 10−3. Using the estimated refractive index change, we predicted the
resonant wavelengths for several cladding modes in a range of LPG periods. The experimental results
were in good agreement with the predicted resonances. Furthermore, we numerically demonstrated the
existence of a second order resonance that, for the same grating period, occurs at shorter wavelengths.
These second order resonances were confirmed by the experimental results.
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