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Abstract: In this work, we demonstrate for the first time the capability to inscribe long-period
gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a
consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period and 38 mm
length presented good quality, showing sharp resonances (i.e., 3 dB bandwidth < 3 nm), low out-of-
band loss (~0.2 dB), and dip losses up to 18 dB. Furthermore, the capability to select the resonance
wavelength has been demonstrated using different amplitude mask periods. The customization of
the masks makes it possible to fabricate gratings with complex structures. Additionally, the simplicity
in 3D printing an amplitude mask solves the problem of the lack of amplitude masks on the market
and avoids the use of high resolution motorized stages, as is the case of the point-by-point technique.
Finally, the 3D printed masks were also used to induce LPGs using the mechanical pressing method.
Due to the better resolution of these masks compared to ones described on the state of the art, we
were able to induce gratings with higher quality, such as low out-of-band loss (0.6 dB), reduced
spectral ripples, and narrow bandwidths (~3 nm).

Keywords: long-period grating; additive manufacturing; UV long-period grating; pressure induced
long-period grating

1. Introduction

The capability of manipulating the properties of light propagation inside an optical
fiber can be achieved using different fiber optic technologies. Fiber gratings are intrinsic
elements able to provide this in an elegant way, by inducing a periodic refractive index
modulation along the length of an optical fiber. Long-period fiber gratings (LPGs) are
one type of grating that are created by modulating the refractive index of the fiber core
with periods higher than 100 µm, promoting the coupling between the propagating core
mode and the co-propagating cladding modes. Their spectral response reveals attenuation
bands at discrete wavelengths, each corresponding to the coupling of the core mode to
a different cladding mode. The properties of LPGs have attracted considerable interest
along the years, and a myriad of applications have been developed. Among them are their
use as band rejection filters [1], gain flattening in erbium doped fiber amplifiers [2], to
flatten, smooth, and shape the spectra of broadband sources [3,4], and in several sensor
applications, including bend, strain, temperature, refractive index, etc. [5]. LPGs have been
fabricated with a variety of techniques, such as irradiation through: UV laser [1], CO2
laser [6], and femtosecond laser [7]; electric arc discharge [8,9]; mechanically induced by
pressing a periodically grooved plate on a fiber [10–12] using machined metallic or silica
plates [10], v-grooves on a tube [13]; coil spring [14], and recently, pilling of blades [15],
and 3D printing of amplitude masks [11,12]; ion implantation [16]; and periodical etching
of the fiber cladding to produce a corrugated structure [17]. Among those, the CO2 and
the UV laser inscription have been one of the most used. CO2 lasers are cheaper than
UV lasers, and this is one of the main motivations for its use. However, deep UV lasers
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(e.g., krypton fluoride (KrF) at 248 nm wavelength and the argon fluoride laser (ArF)
at 193 nm wavelength), are wide spread due to their wide use in optical lithography.
Furthermore, through the UV inscription, it is possible to modulate the core refractive
index homogeneously, contrary to side irradiation through CO2 laser, where additional
methodologies such as fiber rotation, use of mirrors, etc., are needed [6,18–20]. Additionally,
the widespread use of Bragg grating inscription systems using UV lasers makes its use an
opportunity for the fabrication of LPGs, even considering the requirement of photosensitive
fibers [5]. The fabrication of these gratings has been made by irradiating the fiber through
an amplitude mask [1,7,21,22], or point-by-point (PbP) along its length [23]. While the latter
technique offers flexibility to control the grating period and length, allowing us to produce
different kinds of LPG profiles, it requires the use of a high resolution motorized stage,
electronic shutter, and longer inscription time. Yet, the use of an amplitude mask allows for
a simpler setup and operation, requiring low resolution motorized stages for scanning the
beam along the fiber [7], i.e., to control the grating length, or just using the beam dimension
for this effect [1,21,22]. While the first offers more control on the grating properties, both
technologies are suited for mass production of multiple LPGs. Literature review on the
types of amplitude masks reported so far shows the existence of four types, namely:
Chrome-on-silica masks [1], patterned mirror (dielectric masks) [22], metal masks [4,5,23],
e.g., Cu vapor laser milling of a copper foil [5], and microlens array [24]. Among those
described above, the ones based on chrome-on-silica masks have been the most used by
the research community. However, this type of mask has power limitations due to its
low damage threshold. Therefore, long writing times are needed. The same also applies
for dielectric masks. Furthermore, the production of these masks involves high costs.
The fabrication of a microlens array-based amplitude mask is cost effective, simple, and
at the same time provides high efficiency due to its superior transmission compared to
conventional amplitude masks. However, the periodicity of the grating requires precision
on the focal distance between the microlens array and the fiber, which can compromise
the repeatability of the inscription process. Additionally, the period range is limited.
Finally, metal masks have been pointed as the preferred choice for the fabrication of LPGs
through the amplitude mask method, thanks to its high intensity damage threshold, making
them suitable for fast inscription of LPGs, while keeping its robustness. Nonetheless, the
fabrication process of such masks requires precision laser milling systems capable to drill
patterns of holes in thin metallic sheets [24]. Such an approach is very optimistic, but the
cost of making multiple metal masks with specific grating periods could be prohibitive.
Moreover, metal masks are easy to oxidize and deform.

Additive manufacturing technologies, which consist on printing successive layers of
material on top of each other to create a 3D object, hold the potential to efficiently aid and
also produce devices at an economy scale. Since its emergence in 1986 [25], the technology
has grown in popularity due to its opportunities and due to the efforts taken for the
development of new materials and techniques. Nowadays, different materials, including
polymers, metals, and ceramics could be 3D printed in a variety of ways. Among the
different 3D printing technologies, the ones capable of processing polymer materials have
been the preferred choice due to its low cost. Filament extrusion or melt-type techniques,
such as fused deposition modelling (FDM) of thermoplastic materials, are the most popular.
Its use has already been shown for the fabrication of optical components, such as fibers [26],
lenses [27], photonic bridges [28], etc. Furthermore, its use has also been reported for the
fabrication of a loss-tunable LPG, by mechanically pressing a periodically grooved 3D
printed plate onto an optical fiber [11]. This study opened another route for inducing LPGs
simply and inexpensively. However, the transmission spectra induced by such structures
revealed that the process was still in the early days and needed improvements to enhance
its quality. Some of those aspects may point to the existence of spectral ripples, high
out-of-band loss, and low finesse. One of the drawbacks associated to FDM techniques
is the intrinsic low resolution (for the work reported in [11], it was about 200 µm). As
the authors agree, the coarse resolution of the 3D printer had a detrimental effect on the
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quality of the induced spectrum. Moreover, the FDM technology has other weaknesses,
such as weak layer adhesion and long printing times, that are proportional to the printing
volume and resolution of the object. Alternatively, light-based technologies, which include
the stereolithography (SLA) and the digital light processing (DLP), are more attractive.
In these techniques the 3D object is printed layer by layer in a building platform that
moves upwards. For each layer, the liquid resin contained in a tank is polymerized with
the desired shape, either through an ultraviolet laser assisted technology or by an LED
screen, respectively.

Compared to the FDM technology, these light based techniques have the ability to
radically improve the printing resolution (~50 µm for DLP and 1 µm for the SLA), the speed
of processing and the layer to layer adhesion (making the 3D printed object mechanically
more robust). While the SLA technology offers better resolution, 3D printers using the DLP
technique are faster and much cheaper, with prices on the market starting from 100$ for
standard DLP printers [29], which is twenty times lower than an SLA 3D printer.

In this work, amplitude masks will be fabricated using a DLP consumer grade 3D
printer. These masks will be used for the first time, to inscribe permanent LPGs by the UV
inscription through the amplitude mask technique. The grating growth behavior and the
associated mode coupling will be analyzed, and the capability to select the location of the
resonance bands will be easily accomplished through the use of different amplitude mask
periods. Furthermore, the higher quality of the 3D printed amplitude masks produced in
this work, compared to the ones found on state of the art for the pressure induced LPG
fabrication method, will reveal gratings with better spectral characteristics, presenting low
out-of-band loss, low finesse and reduced spectral ripples.

2. Materials and Methods
2.1. 3D Printed Amplitude Mask Fabrication

The fabrication of the amplitude masks started by drawing them through the help of a
computer aided design (CAD) software. The masks were designed to contain 100 rectangu-
lar periods, where the duty cycle was set to 50%. Both parameters can be easily changed by
the designer. However, the values presented in this work are just used as proof of concept.
The mask thickness was set to 5 mm, and the height was 16 mm. The length of the mask
was given by the number of periods times the grating period, plus an additional length
(5 mm) at both ends of the mask, to provide robustness. To show the coupling efficiency
for a wide range of wavelengths, nine amplitude masks with periods ranging from 690 to
950 µm were drawn. The corresponding CAD image of one of those amplitude masks is
shown in Figure 1.
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The 3D files were imported to a low cost, consumer grade, DLP 3D printer (Photon 3D
printer from Anycubic, Shenzhen, China), in which the resin vat had been filled with a low
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cost standard colored UV resin from Anycubic (~$30 per liter) [29]. This photosensitive
resin provides high-speed solidification (5 to 15 s per layer). Additionally, it provides high
success rate of printing and precision. The printed materials show to be rigid and tough,
presenting hardness (D) and tensile strength values of 79 and 23.4 MPa, respectively. All
these parameters make this resin well suited for the purpose of this work. The 3D printer
has an LCD with a resolution of 47 µm in both X and Y directions and 1 µm resolution
in the Z direction. It is based on the LCD shallow masking using a 405 nm LED. The
masks were printed in layers of 10 µm using an exposure time of 5 s per layer, which is
sufficient to print the model with enough details. An additional exposure time of 120 s is
used to print two bottom layers needed to firmly attach the model to the building platform.
Ideally the amplitude mask should be printed on its longitudinal direction and with layer
thickness set to 1 µm, allowing to reproduce the amplitude masks with good resolution.
Unfortunately, in such configuration the liquid resin that fills the hollow regions of the mask
is easily hardened by the background UV illumination, making it unsuited for the proposed
application. Taking into consideration this limitation, we decided to print the masks with
the printing direction indicated by the arrow shown in Figure 1. For the above parameters
and taking into account the printing direction, the fabrication time was approximately
2 h. Shorter times can be achieved by reducing the exposure and/or increasing the layer
thickness, however, a lower definition on the final 3D printed object will be attained. The
printed masks were washed during 30 s with isopropyl alcohol in an ultrasound bath to
remove the unpolymerized resin clogged into the patterned holes. They were then dried by
blowing air and post-cured for 5 min using a 365 nm hand-held UV light source (Opticure
LED200 from Norland Products Inc., NJ, USA), with a power density of 2.5 W/cm2. Finally,
to increase the strength of the masks, they were thermally cured in an oven at 60 ◦C and
70 ◦C, 12 h each. The printing volume of each mask is less than 8 mL, which translates in a
cost of a few cents per printed mask. Furthermore, multiple masks may be printed at the
same time, allowing mass production.

2.2. UV Inscription of LPGs through 3D Printed Amplitude Masks

The LPG inscription through UV radiation is made with a KrF Bragg Star TM Industrial-
LN excimer laser (from Coherent®, San Jose, CA, USA), operating at 248 nm. The laser
beam exit has 6 mm in width and 1.5 mm in height, a pulse duration of 15 ns and peak
power of 270 kW. The fiber is a single mode germanium doped core fiber (GF1, from
Nufern®, Thorlabs, NJ, USA). It has a cutoff wavelength of 1260 ± 75 nm, a diameter of
9 µm for the core and 125 µm for the cladding, presenting refractive indices at the 1550 nm
region of 1.4485 and 1.4440, respectively.

The inscription is made through the amplitude mask technique, where the laser beam
scans the 3D printed amplitude mask, creating a periodical pattern of illuminated-shadow
regions in the core of the photosensitive fiber placed right after the amplitude mask. The
efficiency of the process is further enhanced by focusing the UV beam onto the length of the
fiber using a plano-convex lens. The experimental setup used for the UV LPG inscription
is shown in Figure 2.

The LPGs were inscribed at a repetition rate (R) of 500 Hz and with pulse energy (E)
of 3.9 mJ. A mirror placed on top of a motorized linear stage is used to scan the laser beam
along the mask/fiber length, being its velocity set to 125 µm/s. The experiments were
conducted by online recording the transmission spectra, where the radiation of a super-
continuum broadband optical source (Fianium Whitelase model SC-400-2, Southampton,
UK) is injected into the optical fiber, and an optical spectrum analyzer (OSA) (Q8384 from
Advantest, Tokyo, Japan) is used to collect the spectra. For a larger wavelength span, it
was used another OSA (AQ6375 from Yokogawa, Tokyo, Japan).
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Figure 2. Picture of the setup used for the UV inscription of long-period gratings (LPGs) through the
amplitude mask technique. The laser beam is guided through mirrors, focused by a cylindrical lens,
passing through the 3D printed amplitude mask and hitting the optical fiber behind. The weight on
the fiber is used to keep the same fiber strain between experiments.

2.3. Pressure Induced LPGs through 3D Printed Amplitude Masks

The mechanical pressing method is a classical method used to induce LPGs by pressing
a grooved mask against an optical fiber. In this type of grating, the refractive index
modulation is mechanically induced when a load is applied and disappears right after its
removal. In order to show the utility of the 3D printed amplitude masks for the fabrication
of LPGs using this method, they were used as the mechanical grooved plate by pressing
them against a standard uncoated single mode optical fiber. The pressure was induced
through a micrometer stage, which adjusts the force applied from the mask to the optical
fiber. The setup used for the pressure induced method may be seen in Figure 3.
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By applying displacements in the micrometer stage, it will promote the modulation of
the refractive index of the fiber through the strain optic effect, which induces attenuation
bands in the transmission spectra.

3. Experimental Results

The 3D printed amplitude masks (see Figure 4) were observed under a microscope
(see the images shown on Figure 5a–c) to qualitatively analyze their surface roughness and
to verify if the dimensions matched the ones drawn on the CAD files.
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Figure 4. Picture of the 3D printed amplitude mask.

From the inset shown in the microscope image presented in Figure 5a, it is possible to
see that the edges of the grating are formed with a 10 µm periodic pattern, associated to
the printing layer thickness. To achieve a smoother surface, one can adjust the 3D printer
layer thickness to 1 µm, at a cost of increasing printing time. Furthermore, we tested some
of those detailed masks during grating inscription and their spectral profile didn’t achieve
better results compared to the ones presented in this work.

Measurements taken on the microscope images, revealed that grating period repro-
duces the ones predicted by the CAD files, which were ~680, 819, and 950 µm for the masks
drawn with periods of 690, 820, and 950 µm, respectively. These differences are associated
with the X and Y resolution and the parameters selected on the 3D printer, such as layer
thickness and exposure time. Additionally, scattering effects during the UV exposure,
polymer shrinkage during polymerization, resin type, and the thermal annealing could
also contribute to these discrepancies. To compensate for such deviations, it is possible to
adjust the printer parameters or resize the 3D model on the regions were the discrepancies
are more noticeable. Yet, this was not the focus of the work, and the printed masks still
reproduce the main features of the designed ones.

3.1. UV Inscription of LPGs with 3D Printed Amplitude Masks

We started by analyzing the UV pattern that will be imprinted in the photosensitive
fiber core. To do that, a thermal paper was placed right after the amplitude mask and
the laser beam was scanned along its length. The results obtained for the burnt pattern
for the 690, 820 and 950 µm amplitude masks periods are displayed in Figure 5d–f. As
can be observed, the transversal dimension of the focused laser beam is about 127 µm,
which guaranties the full coverage of the fiber diameter. Furthermore, the periodicities
of the masks are well reproduced, compared to the ones measured on the 3D printed
amplitude masks shown in Figure 5a–c. The slight discrepancies were mainly regarded to
the non-perpendicular orientation of the amplitude mask related to the incident UV laser
beam, creating illuminated UV regions smaller than the ones presented by the mask.
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By scanning the laser beam through the 690 µm period amplitude mask and replacing
the thermal paper by the photosensitive fiber, it was possible to obtain the results shown in
Figure 6, regarding the grating transmission spectra as function of its length. The associated
modes for each attenuation band were also experimentally measured and are shown as
insets in Figure 6a.
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It is worth mentioning that higher scanning velocities would be more appropriate for
the reduction of the inscription time. However, the cumulative energy for each grating
period is lower, and in our optimization process, we found that gratings produced with
higher scanning velocities didn’t reach maximum coupling strength along the total
grating length. The dip power and dip wavelength shift of each resonance band that
appears in Figure 6 were measured and plotted as function of the grating length as is
shown in Figure 7a,b, respectively.
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Figure 7. (a) Dip attenuation and (b) dip wavelength shift as function of the grating length, obtained for the LPG grating
spectra shown in Figure 6.

As can be seen in Figure 6, the attenuation bands started to appear at 1280.4, 1388.7,
and 1552.6 nm with negligible dip loss at the very beginning (see Figure 7a). Then, as the
grating length increases, the resonances become stronger. The attenuation dips are also
red shifted as the grating length increases (see Figure 6b). Looking to literature, both red-
and blue-wavelength shifts may be observed, depending on the slope of the matching
curve and more directly with the waveguide dispersion characteristics of the modes [30].
At around 38 mm (~55 periods), the deepest attenuation band (i.e., 3rd dip) reached its
maximum with about ~18 dB and 3 dB bandwidth of ~3 nm (see Figure 6b), and then
started to decrease (see Figure 7b). As the grating length continues to increase, the same
will also occur for the two other dip resonances due to the oscillatory behavior of the
LPGs, i.e., the power oscillates periodically between the fundamental core mode to the
cladding mode along the LPG length. However, we stopped the process when the grating
reached about 45 mm. For this length, the spectra had negligible out-of-band loss (~0.2 dB),
showing resonance wavelengths at 1318.9, 1404.7, and 1587.3 nm, with dip losses of 5.6,
15.8, and 14.3 dB, and 3 dB bandwidths of 10.1, 1.9, and 3.7 nm, associated to the 1st, 2nd,
and 3rd dip resonances, respectively. Taking into account that the laser scanning velocity
was 125 µm/s, it is possible to estimate a total time of 6 minutes to inscribe the LPG.

The estimated cumulative number of pulses per grating period, considering R = 500 Hz
and beam width of 8 mm (i.e., taking into account the beam divergence after 1 m), was
32,000 pulses. Considering the 3.9 mJ per pulse, this transduces to an estimated total
cumulative energy in the photosensitive core region (i.e., just 9 µm of the 127 µm transversal
focused beam width) of ~8.8 J. We also estimated the refractive index change by inscribing
a fiber Bragg grating in an unperturbed region of the fiber. This has been accomplished
by measuring the Bragg wavelength shift during UV inscription [31], achieving a value of
approximately 1 to 2 × 10−3.

In order to know the excited cladding modes, the near-field profile was measured
and is shown on the inset of Figure 6a. As can be seen, the fundamental core mode
(HE11) has coupled to circularly symmetric cladding modes, i.e., HE15, HE16, and HE17,
corresponding to the 1st, 2nd, and 3rd attenuation dips in the transmission spectra. The
result was expected, since the refractive index perturbation created by the UV irradiation is
evenly distributed in the fiber core, allowing us to preferentially excite circularly symmetric
cladding modes [32].

In order to show the reproducibility of the technique, the inscription of a new LPG (2nd
LPG) was performed, using the same amplitude mask period, fiber, and laser parameters.
The grating transmission spectra as function of its length for this new grating is shown in
Figure 8a. For comparison purposes, the spectrum reached for a total length of ~38 mm for
2nd LPG was plotted together with the one obtained in Figure 6 (1st LPG), for the same
grating length. The results may be seen in Figure 8b.
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Figure 8. (a) Transmission spectra acquired during the grating inscription, for an LPG written with the same conditions as
the one presented in Figure 6, (i.e., scanning the UV laser beam (E = 3.9 mJ, R = 500 Hz), with velocity of 125 µm/s along a
690 µm period amplitude mask). (b) Transmission spectra of two ~38 mm LPGs, either from the results collected in Figure 6
(1st LPG) and for a new grating with similar writing parameters (2nd LPG).

As is observed in Figure 8a, the new grating (2nd LPG) presents similar characteristics
as the one shown in Figure 6a, showing three dip resonances located in the same spectral
region, and presenting an increase of their coupling strength with increasing grating length.
From Figure 8b, it is possible to observe that the two gratings are superimposed to each
other, showing few discrepancies in between. To make a quantitative analysis, we measured
the spectral parameters obtained for each spectrum shown in Figure 8b. The results may
be seen in Table 1.

Table 1. Comparison of the grating spectral parameters for two 690 µm period LPGs written in the
same conditions and with ~38 mm length.

Grating Dip Resonance Wavelength (nm) Dip Loss (dB) 3 dB Bandwidth (nm)

1st LPG 1
1st 1317.8 4.5 15.0
2nd 1404.1 11.6 3.2
3rd 1586.2 17.7 2.8

2nd LPG 2
1st 1316.7 8.0 6.6
2nd 1402.5 11.9 2.8
3rd 1585.6 17.4 3.0

1 LPG shown in Figure 6. 2 LPG shown in Figure 8a.

From Table 1, we may observe that the location of the dip resonances for each of the
two gratings is similar, showing differences of about 1.1 nm, 1.6 nm, and 0.6 nm, for the 1st,
2nd, and 3rd dip resonances, respectively. The dip loss and bandwidths reached for the
2nd and 3rd dip resonances showed good agreement between the two LPGs, presenting
values of 0.3 dB and ≤0.4 nm difference, respectively. Finally, on what concerns the 1st dip
resonance, it was observed some discrepancies. Here, the 2nd LPG showed a dip loss with
twice the value of the 1st LPG. On the other hand, the bandwidth of the 2nd LPG was half
of that achieved for 1st LPG. This discrepancy was related to the fast growth of the 1st dip
resonance observed in the 2nd LPG. However, since the coupling strength is a function of
the grating length, it is possible to adjust this parameter in order to achieve the desired
coupling strength.

The use of different amplitude mask periods allows us to control the position of
the resonance wavelength. One approach to change the period imposed on the fiber is
by tilting the amplitude mask related to the fiber [10]. However, this technique could
lead to difficulties in selecting a specific angle and/or limiting the period length due the
dimensions of the mask. Due to the easiness on the fabrication of 3D amplitude masks, the
capability to mass produce a specific amplitude mask grating period is easily accomplished,
and this drove us to follow this path. The transmission spectra (with offset) of the LPGs
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produced for the different amplitude masks periods are found on Figure 9a, while the dip
wavelength associated to each attenuation band is shown as a function of the grating period
in Figure 9b. Note that the dip loss was optimized for the attenuation band associated to
the HE16 cladding mode. Thus, weak power couplings for the resonances associated to
the HE15 and HE17 were sometimes observed, but are still possible to track. Furthermore,
it is also possible to observe that other wavelength resonances start to appear at shorter
wavelengths. However, we just track the wavelength dips found for the HE15, HE16,
and HE17 modes. As shown in Figure 9b, the dip wavelength increases as the grating
length increases, showing the viability of the proposed technique for the production and
control of good quality LPGs. While the loss of the resonance bands produced in this work
achieved values up to 18 dB (98.4% loss), it is still possible to further improve the process
by enhancing the fiber photosensitivity through hydrogen loading.

In addition, we have calculated the resonance wavelengths versus grating periods, i.e.,
the phase matching curves, of the HE1n modes for the 1st and 2nd order diffractions. For
that, the coupled mode theory was used, being the values of the electric field distribution
and the effective refractive indices of the propagation modes calculated using the Wave
Optics Module from Comsol Multiphysics® (COMSOL, Stockholm, Sweden) software.
Furthermore, it was considered a refractive index modulation with a rectangular profile
and duty cycle of 40%. The value of the refractive index change was varied between the
range of values estimated experimentally, i.e., 1 to 2 × 10−3. By using the above parameters,
we found that the theoretical phase matching curves match the experimental ones for the 2nd
order diffraction, and the refractive index modulation value that best fits the phase matching
curves with the experimental data is 1.5 × 10−3. The results are shown in Figure 9b for both
1st and 2nd order diffractions.
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Figure 9. (a) Transmission spectra (with offset, tick spacing of 20 dB), acquired for the permanent LPGs inscribed through
UV radiation by the amplitude mask technique, using different periods. (b) Experimental (marker points) and calculated
(curve lines) resonance wavelengths as function of the grating period for the coupling of the fundamental core mode to the
first eight cladding modes. The dashed and solid lines correspond to the 1st and 2nd order diffractions, respectively. The
numbers in–between each line, define the subscript m, n of the HEmn modes.

During the UV inscription, it was observed that the amplitude mask irradiated region
changed its surface appearance to dark. The phenomenon is intrinsically related to the
strong absorption of polymer materials at the UV region, leading to degradation of the
polymer material as well as ablation. To avoid such phenomenon, one can reduce the
laser repetition rate or energy power, at the cost of longer inscription time. However, the
gratings inscribed in this work had never been compromised, even considering the tens of
tests made using the same mask in our earlier experiments.

The results shown in this work for the inscription of LPGs through a 3D printed
amplitude mask were performed for a commercial available germanium core doped fiber.
However, the technique can be used to any other optical fiber that shows photosensitivity
under UV exposure. It is then worth to mention that the spectral behavior is not only
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related to the laser parameters and amplitude mask parameters, but also related to the
type of fiber used. Thus, for each fiber type, it is necessary to do an optimization process,
in order to reach the desired spectral profile. Furthermore, the grating inscription through
the 3D printed amplitude mask has been performed for a specific UV laser (i.e., 248 nm).
However, taking into account that polymers show strong absorption at the UV region, we
don’t see any problem in using 3D printed masks to other UV laser sources, as long as the
laser parameters are properly adjusted.

The periods covered in this work ranged from 690 µm up to 950 µm, allowing us to
shift the resonance wavelengths almost 300 nm. From the phase matching curves observed
in Figure 9, it is possible to analyze that the turning points, well known from its high
sensitivity [33], are located for wavelengths longer than 2000 nm, which isn’t practical due
to the low availability of sources and detectors for those regions. However, we stress out
that grating periods smaller than the ones used in this work are also possible to be 3D
printed with proper adjustment of the laser printer parameters. In fact, the resolution of the
3D printer is the only limitation. Thus, the inscription of 1st order gratings with turning
points in suitable wavelength regions could be possible. However, this was not the focus of
this work, being our main motivation the description of the possibility to inscribe gratings
through simple and low cost 3D printed amplitude masks.

3.2. Pressure Induced LPG through 3D Printed Amplitude Masks

The utility of the fabricated amplitude masks is not only restricted to the UV inscription
of LPGs, but can also be applied to create LPG through the pressure induced method. To
show this, the masks used for the UV inscription method were also used as the mechanical
grooved plate for the mechanical pressing method. To do that, the masks were pressed
against a standard uncoated optical fiber as shown in Figure 4. The transmission spectrum
obtained for a 690 µm period mask and the ones obtained for a wide range of amplitude
mask periods (i.e., 690–950 µm), may be seen in Figure 10a,b, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 14 
 

 

under UV exposure. It is then worth to mention that the spectral behavior is not only re-
lated to the laser parameters and amplitude mask parameters, but also related to the type 
of fiber used. Thus, for each fiber type, it is necessary to do an optimization process, in 
order to reach the desired spectral profile. Furthermore, the grating inscription through 
the 3D printed amplitude mask has been performed for a specific UV laser (i.e., 248 nm). 
However, taking into account that polymers show strong absorption at the UV region, we 
don’t see any problem in using 3D printed masks to other UV laser sources, as long as the 
laser parameters are properly adjusted. 

The periods covered in this work ranged from 690 µm up to 950 µm, allowing us to 
shift the resonance wavelengths almost 300 nm. From the phase matching curves ob-
served in Figure 9, it is possible to analyze that the turning points, well known from its 
high sensitivity [33], are located for wavelengths longer than 2000 nm, which isn’t practi-
cal due to the low availability of sources and detectors for those regions. However, we 
stress out that grating periods smaller than the ones used in this work are also possible to 
be 3D printed with proper adjustment of the laser printer parameters. In fact, the resolu-
tion of the 3D printer is the only limitation. Thus, the inscription of 1st order gratings with 
turning points in suitable wavelength regions could be possible. However, this was not 
the focus of this work, being our main motivation the description of the possibility to in-
scribe gratings through simple and low cost 3D printed amplitude masks. 

3.2. Pressure Induced LPG through 3D Printed Amplitude Masks 
The utility of the fabricated amplitude masks is not only restricted to the UV inscrip-

tion of LPGs, but can also be applied to create LPG through the pressure induced method. 
To show this, the masks used for the UV inscription method were also used as the me-
chanical grooved plate for the mechanical pressing method. To do that, the masks were 
pressed against a standard uncoated optical fiber as shown in Figure 4. The transmission 
spectrum obtained for a 690 µm period mask and the ones obtained for a wide range of 
amplitude mask periods (i.e., 690–950 µm), may be seen in Figure 10a,b, respectively. 

 
Figure 10. LPG transmission spectra acquired with the pressure induced method for a 3D printed amplitude mask with: 
(a) 690 µm period and (b) 690–950 µm periods. The insets shown in (a), are the experimental near-field profiles of the 1st 
and 2nd dip resonances. The screw displacement was set to induce the deepest mode losses. (c) Dip wavelength shift as 
function of the grating period for the different LPG resonances seen in (b). 

The spectrum shown in Figure 10a was obtained for a micrometer displacement of 
~100 µm, showing three sharp dip resonances (~3 nm bandwidth at 3 dB), with dip loss 
reaching ~16 dB for the strongest dip resonance (i.e., 2nd transmission dip), being the res-
onances located at ~1555 nm, 1603 nm, and 1716 nm. Due to the viscoelastic nature of 
polymers, as is the case of the material that composes the 3D printed amplitude mask, the 
dip resonances change their coupling strength during a few tens of seconds after applying 
the load. This occurs due the molecular rearrangement of the polymer chains that will 
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curs up to a saturation point, that is reached after some time. Because of this property, the 
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function of the grating period for the different LPG resonances seen in (b).

The spectrum shown in Figure 10a was obtained for a micrometer displacement of
~100 µm, showing three sharp dip resonances (~3 nm bandwidth at 3 dB), with dip loss
reaching ~16 dB for the strongest dip resonance (i.e., 2nd transmission dip), being the
resonances located at ~1555 nm, 1603 nm, and 1716 nm. Due to the viscoelastic nature of
polymers, as is the case of the material that composes the 3D printed amplitude mask, the
dip resonances change their coupling strength during a few tens of seconds after applying
the load. This occurs due the molecular rearrangement of the polymer chains that will
tend to dissipate part of the accumulated energy as plastic deformation. This process
occurs up to a saturation point, that is reached after some time. Because of this property,
the final spectrum was taken two minutes after applying the final load. Regarding the
case observed in Figure 10a, we used a micrometer displacement of ~100 µm, obtaining a
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well-defined grating with ~0.6 dB of background loss. Increasing the load applied to the
mask may induce stronger core to cladding couplings. However, this comes at a cost of
higher background loss. Furthermore, for higher loads it is possible to fall in the plastic
regime of the material, which becomes unsuited to reproduce the spectra of consecutive
mechanically induced gratings.

The near-field profile of the associated mode couplings was measured for the 1st
and 2nd wavelength resonances. The measurement of the 3rd dip resonance was not
possible due to the absence of a laser source at this wavelength region in our laboratory.
The near-field profiles may be seen in the insets of Figure 10a. Despite the symmetric
profile appearance, these modes were highly dependent on the changes of the incident
polarization light state, showing slight power variation on the cladding region. This is
a result of the non-symmetric periodic perturbations induced on the fiber cladding that
promote the coupling with antisymmetric cladding modes, leading to birefringence.

The results regarding the transmission spectra (with offset), acquired for a similar
micrometer displacement as the one used for the 690 µm amplitude mask (~100 µm), for
other grating periods, are shown in Figure 10b. From this figure, it may be seen that the
gratings revealed a similar spectral profile as the one observed in Figure 10a, presenting
dip losses reaching in some cases values up to 18 dB. Furthermore, the results showed a red-
wavelength shift of the spectra with increasing grating period. By tracking the dip wavelength
of the resonances, we were able to display the phase curves as shown in Figure 10c. These
curves show that for the wavelength region covered in this work, there is a monotonous
increase of the resonance wavelength as a function of the grating period (rate of 0.9 to
1.5 nm/µm). The results reveal that the amplitude masks are not only restricted to the
inscription of UV gratings, but are also able to be used as the mechanical grooved plate
in the classical pressure induced method. Regarding the latter, and taking into account
the higher resolution of the DLP 3D printer used in this work, compared to that of the
FDM used in [11], a smoother surface is obtained, giving more detail to the mask and
promoting an associated spectrum with better optical properties, namely, reduced ripples
at the background, low out-of-band loss (i.e., 0.6 dB compared to the 5 to 10 dB found
in [11]) and sharp dip resonances with linewidths up to ~3 nm, which were associated
to the large number of periods used (100 periods) [1]. Furthermore, the quality of the 3D
printed masks allowed to linearly adjust the resonant wavelengths by changing its grating
period, which is difficult to achieve through the use of low resolution printers.

In the overall, the capability to produce LPGs through simple, low cost and high
resolution 3D printed amplitude masks makes the possibility of producing LPGs in simpler
and effective means, promoting an opportunity for the use of this fiber optic filter more
intensively in the future.

4. Conclusions

In this work we have demonstrated the ability to easily and inexpensively fabricate
amplitude masks through a consumer grade 3D printer, allowing to create LPGs, through
the UV scanning method and also by the mechanical pressing method. The results showed
gratings with well-defined resonance dips, presenting negligible out-of-band loss (~0.2 dB),
small 3 dB bandwidths (i.e., ~3 nm), and with dip losses up to ~18 dB. However, we
stress that the control of specific grating parameters, such as bandwidth, dip loss, grating
profile, wavelength resonance, etc., are functions of the laser parameters (cumulative
energy per grating period) and grating parameters, such as grating profile, grating
period, number of periods, duty cycle, etc. One example of this type of control was
shown for the wavelength position of the resonance bands, where the flexibility in 3D
printing different amplitude mask periods was used to show the possibility to shift the
LPG attenuation bands. We believe that this work will pave the way for a simpler and
efficient way to fabricate LPGs through the UV method, allowing them to be used in sensor
or telecommunications applications.
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