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We present new equilibrium solutions of stationary models of magnetized thick disks (or tori) around
Kerr black holes with synchronized scalar hair. The models reported here largely extend our previous
results based on constant radial distributions of the specific angular momentum along the equatorial plane.
We introduce a new way to prescribe the distribution of the disk’s angular momentum based on a
combination of two previous proposals and compute the angular momentum distribution outside the
equatorial plane by resorting to the construction of von Zeipel cylinders. We find that the effect of the scalar
hair on the black hole spacetime can yield significant differences in the disk morphology and properties
compared to what is found if the spacetime is purely Kerr. Some of the tori built within the most extreme,
background hairy black hole spacetime of our sample exhibit the appearance of two maxima in the
gravitational energy density which impacts the radial profile distributions of the disk’s thermodynamical
quantities. The models reported in this paper can be used as initial data for numerical evolutions with
general relativistic magnetohydrodynamic codes to study their stability properties. Moreover, they can be
employed as illuminating sources to build shadows of Kerr black holes with scalar hair which might help
further constrain the no-hair hypothesis as new observational data are collected.
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I. INTRODUCTION

The Event Horizon Telescope (EHT) Collaboration has
recently resolved the shadow of the supermassive dark
compact object at the center of the giant elliptical galaxy
M87 [1]. The image shows a remarkable similarity with the
shadow a Kerr black hole from general relativity would
produce. The observational capabilities offered by the EHT,
thus allowing to measure strong-field lensing patterns from
accretion disks which can be used to test the validity of the
black hole hypothesis. Further evidence in support of such
hypothesis is provided by the Advanced Laser Interferometer
Gravitational Wave Observatory (LIGO) and Advanced
Virgo observations of gravitational waves from compact
binary coalescences [2,3] and by the study of orbital motions
of stars near SgrA* at the center of the Milky Way [4–6].
While the black hole hypothesis is thus far supported by

current data, the available experimental efforts also place
within observational reach the exploration of additional

proposals that are collectively known as exotic compact
objects (ECOs; see Ref. [7] and references therein). Indeed,
recent examples have shown the intrinsic degeneracy
between the prevailing Kerr black hole solutions of general
relativity and bosonic star solutions, a class of horizonless,
dynamically robust ECOs, using both actual gravitational-
wave data [8] and electromagnetic data [9] (see also [10]).
Likewise, testing the very nature of gravity in the strong-
field regime is becoming increasingly possible using
gravitational-wave observations [11,12]. Moreover, proofs
of concept of the feasibility of testing general relativity, or
even the existence of new particles via EHT observations
have been reported in, e.g. [13–19].
Those observational advances highly motivate the devel-

opment of theoretical models to explain the available data.
In particular, and in connection with the EHT observations,
the establishing of sound theoretical descriptions of dark
compact objects surrounded by accretion disks is much
required. Disks act as illuminating sources leading through
gravity to potentially observable strong-field lensing pat-
terns and shadows. Indeed, a few proposals have recently
discussed the observational appearance of the shadows of
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black holes and boson stars by analyzing the lensing
patterns produced by a light source—an accretion disk—
with identical morphology [10,20–22]. While boson star
spacetimes lack an innermost stable circular orbit for
timelike geodesics (which would prevent the occurrence
of the shadow as the disk can only terminate in the center of
the dark star) the general relativistic magnetohydrodynamic
(MHD) simulations of [10] have shown the existence of an
effective shadow at a given areal radius at which the angular
velocity of the orbits attains a maximum. The intrinsic
unstable nature of the spherical boson star model employed
in Ref. [10] has been discussed in Ref. [9], which found that
a degenerate (effective) shadow comparable to that of a
Schwarzschild black hole can exist for spherical vector
(also known as Proca) boson stars.
Despite the significance of the accretion disk model for

the computation of lensing patterns as realistically as
possible, existing studies are based on rigidly rotating
(geometrically thick) disks, assuming as an initial condition
for the dynamical evolutions a constant radial profile of the
specific angular momentum of the plasma. In this paper we
present stationary solutions of magnetized thick disks (or
tori) whose angular momentum distribution deviates from a
simplistic constant angular momentum law. We introduce a
new way to prescribe the distribution of the disk’s angular
momentum based on a combination of two previous
proposals [23–25] and compute the angular momentum
distribution employing the so-called von Zeipel cylinders,
i.e. the surfaces of constant specific angular momentum and
constant angular velocity, which coincide for a barotropic
equation of state. A major simplification of our approach is
that the self-gravity of the disk is neglected and the models
are built within the background spacetime provided by a
particular class of ECO, namely the spacetime of a Kerr
black hole with synchronized scalar hair. (We note in
passing that building such disks around bosonic stars,
extending the models of [10,22] would be straightforward
in our approach.) Kerr black holes with synchronized scalar
hair (KBHsSH) result from minimally coupling Einstein’s
gravity to bosonic matter fields [26,27] and provide a
sound counterexample to the no-hair conjecture [28].1 Such
hairy black holes have been shown to form dynamically
(in the vector case) as the end product of the superradiant
instability [41] (but see also [42] for an alternative
formation channel through the postmerger dynamics of
bosonic star binaries) and to be effectively stable against
superradiance in regions of the parameter space [43]. As we
show below, the effect of the scalar hair on the black hole
spacetime can introduce significant differences in the
properties and morphology of the disks compared to what

is found in a purely Kerr spacetime. The models discussed
in this paper can be used as initial data for general-
relativistic MHD codes and employed as illuminating
sources to compute shadows of KBHsSH that might be
confronted with prospective new observational data.
The organization of this paper is as follows: Section II

briefly describes the spacetime properties of KBHsSH, the
combined approaches we employ to prescribe the angular
momentum distribution in the disk, along with the way the
magnetic field is incorporated in the models. The numerical
procedure to build the tori andour choice of parameter space is
discussed inSec. III.Theequilibriummodelsarepresentedand
analyzed in Sec. IV. This section also contains the discussion
of themorphological features of the disks alongwith potential
astrophysical implications of our models. Finally, our con-
clusions are summarized in Sec. V. Geometrized units
(G ¼ c ¼ 1) are used throughout the paper.

II. FRAMEWORK

A. Spacetime metric and KBHsSH models

As in Ref. [44] (hereafter Paper I) we use the KBHsSH
models built using the procedure described in Ref. [45],
where the interested reader is referred for further details. In
the following we briefly review their basic properties.
KBHsSH are asymptotically flat, stationary and axisym-

metric solutions of the Einstein-(complex)Klein-Gordon
(EKG) field equations

Rab −
1

2
Rgab ¼ 8πðTSFÞab; ð1Þ

describing a massive, complex scalar field Ψ minimally
coupled to Einstein gravity. The metric and the scalar field
can be written using the ansatz (see Ref. [26])

ds2 ¼ e2F1

�
dr2

N
þ r2dθ2

�
þ e2F2r2sin2θðdϕ −WdtÞ2

− e2F0Ndt2; ð2Þ

Ψ ¼ φðr; θÞeiðmϕ−ωtÞ; ð3Þ

where W, F1, F2, F0 are functions of r and θ, ω is the
scalar field frequency, and m is the azimuthal harmonic
index. The latter two are related through ω=m ¼ ΩH, where
ΩH is the angular velocity of the event horizon. Moreover
N ¼ 1 − rH=r, where rH is the radius of the event horizon
of the black hole. The energy-momentum tensor acting as a
source of the EKG equations can be written as

ðTSFÞab ¼ ∂aΨ�∂bΨþ ∂bΨ�∂aΨ

− gab

�
1

2
gcdð∂cΨ�∂dΨþ ∂dΨ�∂cΨÞ þ μ2Ψ�Ψ

�
;

ð4Þ

1The solutions studied here are the fundamental states of the
minimal Einstein-Klein-Gordon model without self-interactions.
Different generalizations can be obtained, including charged [29]
and excited states in the same model [30,31], as well as cousin
solutions in different scalar [32–38] or Proca models [39,40].
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where μ is the mass of the scalar field and superscript ð�Þ
denotes complex conjugation.
Table I reports the properties of the three KBHsSH

models we use in this work. The corresponding models
are plotted in Fig. 1 within the domain of existence of
KBHsSH in an Arnowitt-Deser-Misner (ADM) mass ver-
sus scalar field frequency diagram. As we consider a subset
of the models we used in Paper I we keep the same labels so
that the comparison with the previous results for constant
angular momentum disks is easier to do. In particular,
model I corresponds to a Kerr-like model, with almost all
the mass and angular momentum stored in the black hole
(BH) (namely, 94.7% of the total mass and 87.2% of the
total angular momentum of the spacetime are stored in the
BH), while model VII corresponds to a hairy Kerr BH
with almost all the mass (98.15%) and angular momentum
(99.76%) stored in the scalar field. Moreover, it is worth
noting that even though KBHsSH can violate the Kerr
bound in terms of the horizon quantities (i.e. the normal-
ized spin of the BH aH can be greater than 1), this fact
does not have the same implications as in Kerr spacetime.
In particular, the linear velocity of the horizon, vH, never
exceeds the speed of light [46].

B. Angular momentum distributions in the disk

As in Paper I equilibrium solutions of thick accretion
disks are built assuming stationarity and axisymmetry in
both the spacetime and in the matter fields [i.e. ∂tfðr; θÞ ¼
∂ϕfðr; θÞ ¼ 0 when fðr; θÞ is a fluid quantity]. We use the
standard definitions of the specific angular momentum
l ¼ −uϕ=ut and of the angular velocity Ω ¼ uϕ=ut, where
we further assume circular motion, i.e. the 4-velocity of the
fluid is given by uμ ¼ ðut; 0; 0; uϕÞ. It is straightforward to
obtain the relationship between l and Ω,

l ¼ −
Ωgϕϕ þ gtϕ
Ωgtϕ þ gtt

; Ω ¼ −
lgtt þ gtϕ
lgtϕ þ gϕϕ

: ð5Þ

In this work, we depart from Paper I by introducing a
nonconstant distribution of specific angular momentum
in the disk. This new prescription is the result of combining
two different approaches: one to formulate the angular
momentum distribution in the equatorial plane, and another
one to do so outside the equatorial plane. The reason for
this split will be explained below.

1. Angular momentum distribution
in the equatorial plane

To obtain the specific angular momentum distribution in
the equatorial plane, θ ¼ π=2, we consider the following
procedure:

l

�
r;
π

2

�
¼

8<
: l0

�
lKðrÞ
lKðrmsÞ

�
α

for r ≥ rms

l0 for r < rms

; ð6Þ

where l0 is a constant, lKðrÞ is the Keplerian specific
angular momentum, rms is the radius of the innermost
stable circular orbit (ISCO) and the exponent α (where
0 ≤ α < 1) is a parameter which controls how Keplerian
the angular momentum profile on the equatorial plane is.
The value α ¼ 0 would produce a constant profile and
α ¼ 1would produce a Keplerian profile. This prescription,
extended outside the equatorial plane, was first introduced
for so-called Polish doughnuts in [24]. We also used this

FIG. 1. Domain of existence for KBHsSH (shaded blue area) in
an ADM mass versus scalar field frequency diagram. The three
solutions to be studied herein are highlighted in this diagram.

TABLE I. List of models of KBHsSH used in this work. From left to right the columns report the name of the model, the ADM mass,
MADM, the ADM angular momentum, JADM, the horizon mass, MH, the horizon angular momentum, JH, the mass of the scalar field,
MSF, the angular momentum of the scalar field, JSF, the radius of the event horizon, rH, the values of the normalized spin parameter for
the ADM quantities, aADM, and for the BH horizon quantities, aH, the horizon linear velocity, vH, the spin parameter corresponding to a
Kerr BH with a linear velocity equal to vH, aHeq

, and the sphericity of the horizon as defined in Ref. [47], s. Here μ ¼ 1.

Model MADM JADM MH JH MSF JSF rH aADM aH vH aHeq
s

I 0.415 0.172 0.393 0.150 0.022 0.022 0.200 0.9987 0.971 0.7685 0.9663 1.404
IV 0.933 0.739 0.234 0.114 0.699 0.625 0.100 0.8489 2.082 0.5635 0.8554 1.425
VII 0.975 0.850 0.018 0.002 0.957 0.848 0.040 0.8941 6.173 0.0973 0.1928 1.039
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recipe in the context of magnetized accretion disks around
Kerr black holes in Ref. [25].
In contrast with the Kerr case, for KBHsSH spacetimes

we do not have a simple expression for the Keplerian
angular momentum distribution lKðrÞ or for the radius of
the ISCO rms. However, it can be shown (see, for instance
[48]) that in a stationary and axisymmetric spacetime, the
Keplerian angular momentum (for prograde motion) takes
the general form

lKðrÞ ¼ −
Bgϕϕ þ ∂rgϕϕgtϕ
Bgtϕ þ ∂rgϕϕgtt

; ð7Þ

where B is defined as

B ¼ −∂rgtϕ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rgtϕÞ2 − ∂rgtt∂rgϕϕ

q
: ð8Þ

It can also be seen that for most BH spacetimes lKðrÞ only
has one minimum outside the event horizon and this
minimum coincides with the location of the ISCO.
Examples where this condition is not fulfilled are discussed
in Refs. [48,49] in the context of self-gravitating accre-
tion disks.
Our ansatz for the angular momentum law brings

some advantages when compared to a simpler choice.
For instance, one could consider a power-law radial
dependence like the one discussed in Ref. [23]:

lðrÞ ¼ krα: ð9Þ

Due to the explicit dependence on the radial coordinate in
Eq. (9) it is apparent that this functional form is not
coordinate independent. This fact should be no more than
a minor inconvenience when dealing with solutions of the
Kerr family where algebraic coordinate transformations
exist. However, this becomes an insurmountable problem in
our case, as there is no way of translating a specific choice
of angular momentum distribution to a different spacetime
in such a way that the physical meaning of Eq. (9) is
preserved (e.g. from KBHsSH in our coordinate ansatz to a
Kerr BH in Boyer-Lindquist coordinates). The angular
momentum ansatz used in this work, Eq. (6), could be seen
as a power law in the same way as Eq. (9) (for r ≥ rms) if
we consider that k ¼ l0=lKðrmsÞα and lKðrÞ plays the role of
the radial coordinate. This choice is particularly good as
lKðrÞ captures the relevant physical information about
circular orbits and it is strictly increasing with r, as a
well-chosen radial coordinate should be. Furthermore, if l0
is expressed in terms of quantities determined by the
kinematics of the disk, one specific choice of angular
momentum will have the same physical meaning irrespec-
tive of the particular spacetime we considered.

2. Angular momentum distribution outside the
equatorial plane—von Zeipel’s cylinders

To obtain the specific angular momentum outside the
equatorial plane (θ ≠ π=2) we take the same approach
as in Ref. [23]. This approach considers that l is constant
along curves of constant angular velocity Ω that cross
the equatorial plane at a particular point ðr0; π=2Þ. The
specific angular momentum distribution outside the equa-
torial plane lðr; θÞ is hence obtained by considering
Ωðr; θÞ ¼ Ωðr0; π=2Þ. By replacing this condition in
Eq. (5) we arrive at

½gttðr; θÞg̃tϕðr0Þ − g̃ttðr0Þgtϕðr; θÞ�l2eqðr0Þ
þ ½gttðr; θÞg̃ϕϕðr0Þ − g̃ttðr0Þgϕϕðr; θÞ�leqðr0Þ
þ ½gtϕðr; θÞg̃ϕϕðr0Þ − g̃tϕðr0Þgϕϕðr; θÞ� ¼ 0; ð10Þ

where leqðr0Þ is the specific angular momentum at the
point ðr0; π=2Þ and the metric components g̃αβðr0Þ refer to
quantities evaluated at the equatorial plane. Solving
Eq. (10) for different values r0 yields the equation of
the curves along which lðr; θÞ ¼ leqðr0Þ, i.e. the so-called
von Zeipel cylinders.
It is worth remarking that this approach to compute the

angular momentum distribution outside the equatorial
plane is a better choice for our case than the approach
considered in Ref. [25], where a set of equipotential
surfaces were computed to map the disk. On the one
hand, this approach is computationally cheaper when
compared to the one followed in Ref. [25], where a large
number of equipotential surfaces and a very small
integration step were required to compute the physical
quantities in the disk with an acceptable accuracy. On the
other hand, one could argue that this approach can be seen
as a more natural way of building the angular momentum
distribution, as it is built from the integrability conditions
of Eq. (18) instead of an ad hoc assumption about the
form of the angular momentum distribution outside the
equatorial plane.

C. Magnetized disks

As in Paper I we consider that the matter in the disk is
described within the framework of ideal, general relativistic
MHD. Starting from the conservation laws ∇μTμν ¼ 0,
∇μ

�Fμν ¼ 0 and ∇μðρuμÞ ¼ 0, where ∇μ is the covariant
derivative, �Fμν ¼ bμuν − bνuμ is the (dual of the) Faraday
tensor, bμ is the magnetic field 4-vector and

Tμν ¼ ðρhþ 2pmÞuμuν þ ðpþ pmÞgμν − bμbν ð11Þ

is the energy-momentum tensor of a magnetized perfect
fluid. In the latter h, ρ, p, and pm ¼ bμbμ=2 are the fluid
specific enthalpy, density, fluid pressure, and magnetic
pressure, respectively. It is also convenient to define the
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magnetization parameter, that is the ratio of fluid pressure
to magnetic pressure:

βm ¼ p=pm: ð12Þ

Assuming that the magnetic field is purely azimuthal i.e.
br ¼ bθ ¼ 0 and stationarity and axisymmetry of the flow,
it immediately follows that the conservation equations of
the current density and of the Faraday tensor are trivially
satisfied. Contracting the divergence of Eq. (11) with the
projection tensor hαβ ¼ δαβ þ uαuβ and rewriting the result
in terms of the specific angular momentum l and of the
angular velocity Ω, we arrive at

∂iðln jutjÞ −
Ω∂il
1 − lΩ

þ ∂ip
ρh

þ ∂iðLb2Þ
2Lρh

¼ 0; ð13Þ

where i ¼ r, θ and L ¼ g2tϕ − gttgϕϕ. To integrate Eq. (13)
we need to assume an equation of state (EOS). As in Paper I
we assume a polytropic EOS of the form

p ¼ KρΓ; ð14Þ

with K and Γ constants. For the magnetic part, we can write
an EOS equivalent to Eq. (14), but for p̃m ¼ Lpm∶

p̃m ¼ Kmw̃q; ð15Þ

where Km and q are constants and w ¼ ρh. Thus, we can
express the magnetic pressure pm as

pm ¼ KmLq−1ðρhÞq: ð16Þ

Now, we can integrate Eq. (13) to arrive at

W −Win þ ln

�
1þ ΓK

Γ− 1
ρΓ−1

�
þ q
q− 1

KmðLρhÞq−1 ¼ 0;

ð17Þ

where W stands for the (gravitational plus centrifugal)
potential and is defined as

Wðr; θÞ −Win ¼ ln jutj − ln jut;inj −
Z

l

lin

Ωdl
1 − lΩ

; ð18Þ

where subscript “in” denotes that the corresponding quan-
tity is evaluated at the inner edge of the disk, i.e. ðrin; π=2Þ.
We also need to introduce the total gravitational energy
density for the disk, ρT ¼ −Tt

t þ Ti
i, and for the scalar field,

ρSF ¼ −ðTSFÞtt þ ðTSFÞii. These are given by

ρT ¼ ρhðgϕϕ − gttl2Þ
gϕϕ þ 2gtϕlþ gttl2

þ 2ðpþ pmÞ; ð19Þ

ρSF ¼ 2

�
2e−2F0ωðω −mWÞ

N
− μ2

�
φ2: ð20Þ

Using these expressions we can compute the total gravi-
tational mass of the torus and of the scalar field as the
following integral:

M ¼
Z

ρ
ffiffiffiffiffiffi
−g

p
d3x; ð21Þ

where g is the determinant of the metric tensor and
ρ≡ ρT; ρSF.

III. METHODOLOGY

In this section we briefly discuss the space of parameters
of the models and our various choices of specific angular
momentum distribution. Technical details regarding the
computations and other issues are reported in the Appendix.
In this work, as mentioned before, we only consider a

subset of the KBHsSH spacetimes considered in Paper I
(namely, spacetimes I, IV, and VII). This choice is made to
keep the number of free parameters of our models reason-
ably tractable. Likewise, as in Paper I we fix the mass of
the scalar field to μ ¼ 1, the exponents of the polytropic
EOS to q ¼ Γ ¼ 4=3, and the density at the center of the
disk to ρc ¼ 1. We also consider only three representative
values for the magnetization parameter at the center of the
disk βm;c, namely 1010 (which effectively corresponds
to a nonmagnetized disk), 1 (mildly magnetized) and
10−10 (strongly magnetized).
From Eq. (6) it is apparent that the parameter space in the

angular momentum sector can be fairly large, i.e. both the
constant part of the angular momentum distribution l0 and
the exponent α are continuous parameters. To reduce this
part of the parameter space, first we restrict ourselves to
four values of the exponent α, namely 0, 0.25, 0.5, and
0.75. To obtain the constant part of the angular momentum
distribution, l0, we consider three different criteria that
yield three values of l0 for each value of α:

(i) l0 is such that Wcusp ¼ 0 and rin is chosen such
that ΔWc ¼ 0.5Wc;l

(ii) l0 is such that Wcusp < 0 and ΔWc ¼ 0.5Wc;1
(iii) l0 is such that Wcusp > 0 and ΔWc ¼ 0.5Wc;l,

In the previous expressions Wcusp is the value of the
potential at the point where the isopotential surfaces cross
(forming a cusp). That point corresponds to a maximum of
the potential. In addition ΔWc is defined as

ΔWc ¼
�
Wc −Win if Win < 0

Wc if Win ≥ 0;
ð22Þ

where Wc is the potential at the center of the disk and Wc;1

is the value of the potential at the center when Wcusp ¼ 0.
This value also corresponds to the maximum possible value
of jΔWcj for a specific choice of α.
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IV. RESULTS

Taking into account the different parameters that char-
acterize our problem setup, we build a total of 108 models
of thick disks around KBHsSH, 36 for each of the three
hairy BH spacetimes we consider. The main thermody-
namical and geometrical characteristics of the models are

reported in Tables II, III and IV, for spacetimes I, IV,
and VII, respectively. For all models the various physical
quantities listed in the tables follow qualitatively similar
trends when compared to the results in Paper I for constant
angular momentum tori. In particular, for increasing mag-
netization the maximum of the rest-mass density increases,

TABLE II. Values of the relevant physical magnitudes of our results for model I. From left to right, the columns correspond to: the
constant part of the specific angular momentum distribution l0, the exponent of the angular momentum distribution α, the depth of
the potential well at the center ΔWc, the values of the perimeteral radial coordinate at the inner edge of the disk Rin, at the outer edge of
the disk Rout and at the center of the disk Rc, the value of the magnetization parameter at the center of the disk βm;c, the maximum values
of the rest-mass density ρmax, specific enthalpy hmax, fluid pressure pmax and magnetic pressure pm;max, the location of the maximum of
the fluid pressure and the magnetic pressure Rmax, Rm;max.

l0 α ΔWc Rin Rout Rc βm;c ρmax hmax pmax pm;max Rmax Rm;max

0.934 0 −9.37 × 10−2 0.858 3.56 1.14 1010 1.00 1.10 2.46 × 10−2 2.54 × 10−12 1.14 1.20
1 1.09 1.05 1.37 × 10−2 1.25 × 10−2 1.06 1.09

10−10 1.43 1.00 3.76 × 10−12 3.09 × 10−2 1.00 1.03

0.922 0 −9.37 × 10−2 0.818 3.08 1.08 1010 1.00 1.10 2.46 × 10−2 2.55 × 10−12 1.08 1.13
1 1.10 1.05 1.38 × 10−2 1.26 × 10−2 1.01 1.04

10−10 1.48 1.00 3.93 × 10−12 3.17 × 10−2 0.953 0.975

1.14 0 −9.37 × 10−2 1.24 ∞ 2.17 1010 1.00 1.10 2.46 × 10−2 2.56 × 10−12 2.17 2.40
1 1.10 1.05 1.38 × 10−2 1.26 × 10−2 1.89 2.01

10−10 1.44 1.00 3.81 × 10−12 3.14 × 10−2 1.72 1.79

0.930 0.25 −7.57 × 10−2 0.864 3.94 1.17 1010 1.00 1.08 1.97 × 10−2 2.04 × 10−12 1.17 1.24
1 1.10 1.04 1.10 × 10−2 1.01 × 10−2 1.08 1.12

10−10 1.45 1.00 3.10 × 10−12 2.53 × 10−2 1.02 1.05

0.918 0.25 −7.57 × 10−2 0.821 3.32 1.10 1010 1.00 1.08 1.97 × 10−2 2.04 × 10−12 1.10 1.16
1 1.11 1.04 1.11 × 10−2 1.01 × 10−2 1.02 1.05

10−10 1.50 1.00 3.25 × 10−2 2.60 × 10−2 0.963 0.986

1.09 0.25 −7.57 × 10−2 1.24 ∞ 2.27 1010 1.00 1.08 1.97 × 10−2 2.06 × 10−12 2.27 2.56
1 1.11 1.04 1.12 × 10−2 1.01 × 10−2 1.95 2.08

10−10 1.49 1.00 3.22 × 10−12 2.61 × 10−2 1.75 1.83

0.923 0.5 −5.46 × 10−2 0.874 4.52 1.23 1010 1.00 1.06 1.40 × 10−2 1.46 × 10−12 1.23 1.31
1 1.11 1.03 7.97 × 10−3 7.22 × 10−3 1.12 1.16

10−10 1.48 1.00 2.30 × 10−12 1.86 × 10−2 1.05 1.08

0.913 0.5 −5.46 × 10−2 0.826 3.65 1.13 1010 1.00 1.06 1.40 × 10−2 1.46 × 10−12 1.13 1.46
1 1.11 1.03 8.03 × 10−3 7.24 × 10−3 1.04 1.08

10−10 1.53 1.00 2.40 × 10−12 1.90 × 10−2 0.977 1.00

1.03 0.5 −5.46 × 10−2 1.24 ∞ 2.42 1010 1.00 1.06 1.40 × 10−2 1.48 × 10−12 2.42 2.79
1 1.13 1.03 8.17 × 10−3 7.28 × 10−3 2.03 2.19

10−10 1.56 1.00 2.47 × 10−12 1.95 × 10−2 1.81 1.89

0.913 0.75 −2.96 × 10−2 0.892 5.51 1.31 1010 1.00 1.03 7.50 × 10−3 7.83 × 10−13 1.31 1.41
1 1.11 1.02 4.31 × 10−3 3.88 × 10−3 1.18 1.24

10−10 1.51 1.00 1.29 × 10−12 1.03 × 10−3 1.09 1.13

0.906 0.75 −2.96 × 10−2 0.836 4.14 1.18 1010 1.00 1.03 7.50 × 10−3 7.84 × 10−13 1.18 1.26
1 1.12 1.02 4.33 × 10−3 3.88 × 10−3 1.07 1.12

10−10 1.55 1.00 1.32 × 10−12 1.04 × 10−2 1.00 1.03

0.967 0.75 −2.96 × 10−2 1.26 ∞ 2.65 1010 1.00 1.03 7.50 × 10−3 8.00 × 10−13 2.65 3.15
1 1.15 1.02 4.48 × 10−3 3.93 × 10−3 2.17 2.36

10−10 1.66 1.00 1.45 × 10−12 1.11 × 10−2 1.89 2.00

GIMENO-SOLER, FONT, HERDEIRO, and RADU PHYS. REV. D 104, 103008 (2021)

103008-6



and the location of the fluid and magnetic pressure
maximum shifts towards the black hole. This is accom-
panied by a global reduction in the size of the disks, only
visible for the finite-size disks corresponding to the l0; 1
and l0; 2 cases. Moreover, since the value of ΔWc is the
same for the three values of l0, for each spacetime and value
of the exponent α the maximum specific enthalpy hmax and
the fluid pressure maximum pmax are equal when the disk is
unmagnetized (βm;c ¼ 1010). When the magnetization
increases, hmax → 1 but at a different rate for each value
of l0 (although the differences can be very small depending
on the spacetime and the value of α). We also observe that

increasing the magnetization also increases the value of
ρmax in a different way depending on the value of l0. We
conclude that the specific value of ρmax achieved when
βm;c → 0 does not depend on the value of ΔWc, but
depends only on the disk model and on the spacetime.
Quantitative features and differences between the models
are discussed below.

A. Morphology of the disks

The morphology of the disks in the ðR sin θ; R cos θÞ
plane is shown in Figs. 2, 3, and 4. Respectively, they

TABLE III. Same as in Table II but for model IV.

l0 α ΔWc Rin Rout Rc βm;c ρmax hmax pmax pm;max Rmax Rm;max

1.16 0 −0.273 0.725 3.85 1.06 1010 1.00 1.31 7.86 × 10−2 8.52 × 10−12 1.06 1.21
1 1.22 1.16 4.95 × 10−2 4.10 × 10−2 0.908 0.967

10−10 2.21 1.00 1.97 × 10−11 0.130 0.827 0.852

1.14 0 −0.273 0.701 3.70 1.01 1010 1.00 1.31 7.86 × 10−2 8.56 × 10−12 1.01 1.15
1 1.24 1.16 5.04 × 10−2 4.13 × 10−2 0.865 0.920

10−10 2.38 1.00 2.17 × 10−11 0.138 0.792 0.815

1.83 0 −0.273 1.42 ∞ 2.44 1010 1.00 1.31 7.86 × 10−2 8.13 × 10−12 2.44 2.61
1 1.09 1.16 4.29 × 10−2 3.94 × 10−2 2.17 2.29

10−10 1.43 1.00 1.10 × 10−11 9.08 × 10−2 1.98 2.06

1.16 0.25 −0.233 0.729 4.06 1.12 1010 1.00 1.26 6.57 × 10−2 7.17 × 10−12 1.12 1.29
1 1.24 1.14 4.23 × 10−2 3.46 × 10−2 0.935 1.01

10−10 2.33 1.00 1.80 × 10−11 0.116 0.842 0.870

1.14 0.25 −0.233 0.703 3.86 1.05 1010 1.00 1.26 6.57 × 10−2 7.22 × 10−12 1.05 1.22
1 1.26 1.14 4.33 × 10−2 3.49 × 10−2 0.881 0.944

10−10 2.52 1.00 2.00 × 10−11 0.124 0.800 0.825

1.61 0.25 −0.233 1.31 ∞ 2.44 1010 1.00 1.26 6.57 × 10−2 6.83 × 10−12 2.44 2.64
1 1.11 1.13 3.67 × 10−2 3.32 × 10−2 2.13 2.26

10−10 1.52 1.00 1.02 × 10−11 8.13 × 10−2 1.91 1.99

1.15 0.5 −0.179 0.736 4.35 1.21 1010 1.00 1.20 4.91 × 10−2 5.38 × 10−12 1.21 1.42
1 1.25 1.10 3.24 × 10−2 2.61 × 10−2 0.980 1.07

10−10 2.46 1.00 1.49 × 10−11 9.35 × 10−2 0.867 0.901

1.13 0.5 −0.179 0.705 4.07 1.11 1010 1.00 1.20 4.91 × 10−2 5.45 × 10−12 1.11 1.32
1 1.28 1.10 3.33 × 10−2 2.63 × 10−2 0.907 0.983

10−10 2.68 1.00 1.67 × 10−11 0.100 0.812 0.840

1.42 0.5 −0.179 1.20 ∞ 2.44 1010 1.00 1.20 4.91 × 10−2 5.14 × 10−12 2.44 2.68
1 1.13 1.10 2.83 × 10−2 2.51 × 10−2 2.08 2.24

10−10 1.64 1.00 8.71 × 10−12 6.65 × 10−2 1.82 1.92

1.14 0.75 −0.103 0.753 4.79 1.37 1010 1.00 1.11 2.72 × 10−2 2.98 × 10−12 1.37 1.62
1 1.26 1.06 1.83 × 10−2 1.46 × 10−2 1.07 1.19

10−10 2.55 1.00 9.03 × 10−12 5.53 × 10−2 0.922 0.968

1.12 0.75 −0.103 0.712 4.29 1.21 1010 1.00 1.11 2.72 × 10−2 3.03 × 10−12 1.21 1.47
1 1.30 1.06 1.90 × 10−2 1.48 × 10−2 0.956 1.05

10−10 2.84 1.00 1.04 × 10−11 6.06 × 10−2 0.839 0.873

1.25 0.75 −0.103 1.10 ∞ 2.48 1010 1.00 1.11 2.72 × 10−2 2.88 × 10−12 2.48 2.78
1 1.16 1.06 1.63 × 10−2 1.41 × 10−2 2.05 2.24

10−10 1.82 1.00 5.75 × 10−12 4.14 × 10−2 1.73 1.85
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correspond to spacetimes I, IV, and VII. These figures
depict the distribution of the rest-mass density ρ for our
three values of the central magnetization parameter βm;c

(one per column) and for our three values of the constant
part of the specific angular momentum l0 (one per row). In
all three figures the exponent α of the specific angular
momentum law is fixed to α ¼ 0.5, as an illustrative
example. The morphological trends observed in this case
also apply to the other values of α we scanned. Specific
information about the radial size of the disks for all α values
are reported in the tables.

The figures reveal that the size of the disks is similar for
the two cases l0;1 and l0;2 and it is remarkably different for
l0;3. In the latter, disks are significantly larger (in fact the
outermost isodensity contour closes at infinity, as shown in
the value of Rout in the tables). This trend applies to all
values of the magnetization parameter, to all three space-
times, and to all values of α, as can be determined from
the tables. The fact that the morphological differences
for l0;1 and l0;2 are minor is related to the fact that the
angular momentum profiles along the equatorial plane are
fairly similar for those two cases (as shown in Fig. 9).

TABLE IV. Same as in Table II but for model VII.

l0 α ΔWc Rin Rout Rc βm;c ρmax hmax pmax pm;max Rmax Rm;max

0.920 0 −0.618 0.227 2.51 1.10 1010 1.00 1.85 0.214 2.23 × 10−11 1.10 1.21
1 1.32 1.44 0.144 0.108 0.574 0.863

10−10 4.77 1.00 1.24 × 10−10 0.555 0.363 0.400

0.895 0 −0.618 0.189 2.50 1.08 1010 1.00 1.85 0.214 2.23 × 10−11 1.08 1.20
1 1.39 1.44 0.153 0.109 0.519 0.820

10−10 5.84 1.00 1.62 × 10−10 0.670 0.326 0.360

1.92 0 −0.618 1.01 ∞ 1.64 1010 1.00 1.85 0.214 2.18 × 10−11 1.64 1.71
1 1.08 1.41 0.109 0.102 1.52 1.57

10−10 1.34 1.00 2.29 × 10−11 0.196 1.41 1.45

0.916 0.25 −0.531 0.234 2.54 1.16 1010 1.00 1.70 0.175 1.82 × 10−11 1.16 1.27
1 1.30 1.36 0.116 8.85 × 10−2 0.629 0.931

10−10 4.57 1.00 1.01 × 10−10 0.453 0.383 0.425

0.887 0.25 −0.531 0.192 2.50 1.14 1010 1.00 1.70 0.175 1.82 × 10−11 1.14 1.25
1 1.37 1.36 0.125 8.96 × 10−2 0.552 0.876

10−10 5.75 1.00 1.37 × 10−10 0.561 0.339 0.375

1.44 0.25 −0.531 0.672 ∞ 1.63 1010 1.00 1.70 0.175 1.80 × 10−11 1.63 1.71
1 1.09 1.34 9.23 × 10−2 8.51 × 10−2 1.47 1.55

10−10 1.46 1.00 2.20 × 10−11 0.178 1.31 1.38

0.903 0.5 −0.374 0.253 2.59 1.29 1010 1.00 1.45 0.113 1.17 × 10−11 1.29 1.38
1 1.23 1.23 7.15 × 10−2 5.72 × 10−2 0.785 1.12

10−10 3.93 1.00 5.80 × 10−11 0.268 0.438 0.493

0.867 0.5 −0.374 0.198 2.48 1.24 1010 1.00 1.45 0.113 1.18 × 10−11 1.24 1.34
1 1.30 1.24 7.65 × 10−2 5.78 × 10−2 0.663 1.03

10−10 5.18 1.00 8.39 × 10−11 0.346 0.367 0.412

1.10 0.5 −0.374 0.460 ∞ 1.67 1010 1.00 1.45 0.113 1.17 × 10−11 1.67 1.75
1 1.11 1.22 6.22 × 10−2 5.64 × 10−2 1.48 1.57

10−10 1.66 1.00 1.84 × 10−11 0.134 0.973 1.34

0.829 0.75 −0.111 0.380 3.07 1.65 1010 1.00 1.12 2.95 × 10−2 3.02 × 10−12 1.65 1.71
1 1.07 1.06 1.60 × 10−2 1.49 × 10−2 1.53 1.59

10−10 1.37 1.00 4.24 × 10−12 3.50 × 10−2 1.34 1.44

0.795 0.75 −0.111 0.233 2.29 1.47 1010 1.00 1.12 2.95 × 10−2 3.01 × 10−12 1.47 1.52
1 1.08 1.06 1.60 × 10−2 1.49 × 10−2 1.31 1.40

10−10 1.92 1.00 6.62 × 10−12 3.85 × 10−2 0.594 0.843

0.861 0.75 −0.111 0.643 ∞ 1.95 1010 1.00 1.12 2.95 × 10−2 3.08 × 10−12 1.95 2.06
1 1.10 1.06 1.66 × 10−2 1.51 × 10−2 1.81 1.87

10−10 1.48 1.00 4.69 × 10−12 3.79 × 10−2 1.67 1.73
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Actually, the l0;2 models resemble a slightly smaller version
of the l0;1 disks, attaining larger values of ρmax and pmax

when the magnetization starts becoming relevant.
As in the constant angular momentum models of Paper I

the location of the center of the disk moves closer to the
black hole as the magnetization increases, and the upper
values of the isodensity contours also become larger.
Moreover, the inner radius of the disks also shift closer
to the black hole for l0;1 and l0;2 than for l0;3. Both of these
trends are observed for all three spacetimes. Specific values
of those radii are reported in the tables.

Figure 5 shows the gravitational energy density,
Eqs. (19) and (20), for both the fluid matter (top half
of each panel) and for the scalar field (bottom half). We
compare the distribution of the energy density in the three
KBHsSH spacetimes for the particular case α ¼ 0.75,
βm;c ¼ 10−10 as an illustrative example. The top panels
correspond to l0 ¼ l0;2 and the bottom panels to l0 ¼ l0;3.
We note that, in general, the location of the area where the
maximum values for the energy density for the fluid and for
the scalar field are attained do not coincide. The most
striking morphological difference appears in spacetime VII

FIG. 2. Distribution of the rest-mass density ρ in the ðx; yÞ ¼ ðR sin θ; R cos θÞ plane (in terms of the perimeteral coordinate R) for
spacetime I and α ¼ 0.5. From top to bottom the rows correspond to different values of the constant part of the specific angular
momentum l0, namely l0;1, l0;2 and l0;3. From left to right, the columns correspond to different values of the magnetization parameter at
the center βm;c, namely 1010, 1 and 10−10. The black quarter-circle in the bottom-left corner of each plot marks the position of the black
hole. The black curves represent rest-mass density isocontours, corresponding to the values ρ ¼ ρmax=x, where x ¼ f10; 5; 3; 2; 1.1g.
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where, in some cases, a second maximum in the gravita-
tional energy density distribution of the fluid appears (see
top-right plot of Fig. 5). The region of the parameter space
in which this situation occurs is discussed below.
In Fig. 6 we plot the radial profiles of the rest-mass

density at the equatorial plane in double-logarithmic scale.
Models built for spacetimes I and IV (top and central rows)
show very similar qualitative profiles in all cases (i.e.
different values of α and βm;c). Those profiles are also fairly
similar to those expected of a constant angular momentum
torus around a Kerr black hole (see Ref. [44]). Again, the
most prominent differences are apparent for spacetime VII
shown in the bottom row: for spacetime I and IV, the rest-
mass density maximum is close to the inner edge of the
disk while for spacetime VII and for unmagnetized disks

(solid lines), this maximum is significantly further away.
This is related to the fact that most of the mass and angular
momentum of spacetime VII are stored in the scalar field.
Moreover, compared to spacetimes I and IV, for spacetime
VII the location of the density maximum for models l0 ¼
l0;2 and l0 ¼ l0;3 in the unmagnetized case (βm;c ¼ 1010)
are very close to each other (see solid black and blue
curves).
Focusing on the unmagnetized case, the bottom row of

the figure shows that the rest-mass density is higher in the
region where the hair has most of its gravitational energy
density (log10 R ∼ 0.1; see vertical line), irrespective of l0.
The central and right panel reveal an interesting effect.
Compared to the left panel, the profile of the l0 ¼ l0;2 case
in the central panel is similar but that of the l0 ¼ l0;3 case

FIG. 3. Same as Fig. 2 but for spacetime IV.
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develops a low-density inner region (notice the change in
slope in the blue solid curves). When the magnetization
increases the maximum of the distribution shifts towards
the black hole (central panel, blue dotted curve) but the
profile flattens and a significant fraction of the mass is left
around Rc (signaled by the maximum of the solid lines).
If we now focus on the right panel, we observe that what

we have just discussed for the l0;3 case for α ¼ 0.5 (i.e. the
flattening of the profile) occurs for the l0;2 case in the
α ¼ 0.75 case. The flattening in the distribution implies
the appearance of a second maximum in the gravitational
energy density of the torus, ρT, which is roughly located in
the same region where the ρSF maximum is attained (see
top-right panel in Fig. 5). Correspondingly, for the l0;3 case
(blue dashed and dotted curves) we see that the location of

ρmax does not move all the way down to the inner edge of
the disk and a low-density region is left even in the highly
magnetized case.
We note that this trend is expected to happen also for the

l0 ¼ l0;2 (black curves) if we increase the value of α. We
have tested this by building models with α ¼ 0.8. It seems
that large enough values of α the gravitational well of the
hair can act as a barrier preventing the maximum of the
rest-mass density to reach the inner edge of the disk. This
effect seems to appear first (i.e. for smaller values of α) for
l0;3, then for l0;1 (radial profiles not shown in Fig. 6) and
lastly for l0;2.
We close this section by noting that some models for

spacetime VII bear some morphological resemblance with
the findings of [48,49] for self-gravitating massive tori.

FIG. 4. Same as Fig. 2 but for spacetime VII.
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In particular, this similarity is found for nonmagnetized
disks and when the maximum of the rest-mass density is
close to the maximum of gravitational energy density of the
field. Some of their massive models also present a second
ergoregion as in our spacetime VII (see Ref. [45]) but due
to the self-gravity of the disk. This resemblance can be
explained by the fact that in our case, the scalar field
distribution can mimic the self-gravity of the disk.

B. Effects of the magnetization

In Fig. 7 we discuss the effects of the magnetization on
the disk properties, for a subset of the models reported in
Tables II, III, and IV. The top row of Fig. 7 shows the
deviation in the location of the maximum of the magnetic
pressure Rm;c (reached at the equatorial plane) with respect
the location of the center of the disk Rc. This is a relevant
quantity to analyze because our previous results in Ref. [25]
and Paper I showed that Rm;c > Rc for weakly magnetized
disks and Rm;c < Rc for strongly magnetized disks. The
exact value of βm;c for which Rm;c ¼ Rc is related to the
exponent of the EOS Γ and to the value of the potential gap
at the center of the disk ΔWc (or to the maximum value of
the specific enthalpy hmax when βm;c → ∞). In particular,
in Ref. [25] it was shown that, if ΔWc is sufficiently small,
then h → 1 and the value of the magnetization parameter
such that Rm;c ¼ Rc is βm;c ¼ 1=ðΓ − 1Þ. In the rightmost
part of the top panels (which correspond to cases increas-
ingly less magnetized) we observe that most models can be
ordered by their value of ðRm;c − RcÞ=Rc irrespective of α,

the greatest deviation being observed for spacetime IV and
l0 ¼ l0;2 (blue solid curve) and the smallest for spacetime
VII and l0 ¼ l0;3 (red dashed curve). The only exception to
this trend is spacetime VII for l0 ¼ l0;2 where the value
of ðRm;c − RcÞ=Rc goes from the second highest for
α ¼ 0 (left column) to the smallest for α ¼ 0.75 (right
column). In the inset of all three plots in the top row we
display the region around Rm;c ¼ Rc and βm;c ¼ 3. In
particular, we find that, as expected, models with a smaller
value of ΔWc pass closer to the point ðlog1 03; 0Þ. This can
be seen both for each spacetime with constant α and for
each model when changing the value of α. Moreover, we
also observe that in general, the models with l0 ¼ l0;3 pass
closer to the point ðlog10 3; 0Þ when compared to their
counterparts with l0 ¼ l0;3, with the exceptions of model I
for α ¼ 0 where they almost coincide (see the black curves
in the top left panel) and of model I for α ¼ 0.75, where this
behavior is inverted (top right panel).
On the other hand, in the leftmost part of each plot in the

top row (which correspond to highly magnetized cases)
we find that for α ¼ 0 and 0.75 (left and central panels), the
value of ðRm;c − RcÞ=Rc also provides a neat ordering of
the models, from spacetime VII, l0 ¼ l0;2 (red solid line)
with the highest deviation, to spacetime I, l0 ¼ l0;2 (black
solid curve) with the smallest. However, for α ¼ 0.75 (top
left panel) we find that spacetime IV, l0;3 now has a slightly
larger deviation than spacetime I, l0;3, and for spacetime
VII it is found that l ¼ l0;3 has the smaller deviation and
that for l ¼ l0;2 the behavior of ðRm;c − RcÞ=Rc with respect

FIG. 5. Distribution of the gravitational energy density of the matter ρT (top half of each panel) and of the scalar field ρSF (bottom half
of each panel) for α ¼ 0.75, βm;c ¼ 10−10, and l0 ¼ l0;2 (top row) and l0 ¼ l0;3 (bottom row). Spacetimes I, IV, and VII are shown in the
left, middle and right columns, respectively. Note that the spatial scale is not the same for all plots.
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log10βm;c is abnormal when compared to the other models.
The discrepancies observed for the highly magnetized
models for spacetime VII can be related to the peculiarities
we discussed in the radial profiles in Fig. 6.
In the central row of Fig. 7 we show the dependence of

the maximum of the specific enthalpy hmax on the mag-
netization of the disk. For each model the value of hmax

goes from eΔWc for unmagnetized disks (βm;c → ∞) to 1 for
extremely magnetized disks (βm;c → 0) (for a discussion on
this topic see, for instance [44,50]). It is apparent that, as
expected, the value of hmax is consistently higher for
models with a higher value of ΔWc up to small values
of βm;c. Moreover, we can see that models with l0 ¼ l0;2
(solid curves) have slightly higher values of hmax for
values of log10βm;c between 0 and −2. This difference
could be related to the fact that, even though the value of
ΔWc is the same for both l0;2 and l0;3 models, the

gravitational potential distribution that they feel is quite
different (see Fig. 9).
Finally, the bottom row of Fig. 7 depicts the dependence

of the maximum of the rest-mass density ρmax on the
magnetization of the disk. The observed behavior is related,
when the magnetization begins to be relevant in the disk, to
two factors, namely, the shift of the maximum of the rest-
mass density with respect to the center of the disk and the
radial extent of the high-density region of the disk. We find
that, in general, tori with a value of Rin (l0;2) closer to the
horizon of the black hole exhibit larger values of ρmax. This
is related to the fact that this kind of disks tend to have ρmax
closer to the inner edge of the disk and lesser radial extent
of the high-density region, as it can be noticed from the
central rows of Figs. 2, 3 and 4. When comparing between
KBHsSH spacetimes, we find that larger values of ρmax are
attained for larger values of ΔWc. However, there are

FIG. 6. Radial profiles of the logarithm of the rest-mass density at the equatorial plane. From top to bottom, the rows correspond to the
three different spacetimes we are considering, namely models, I, IV and VII. From left to right, the columns correspond to different
values of the exponent of the angular momentum distribution α, namely 0, 0.5, and 0.75. In each panel, black and blue curves correspond
to models with the constant part of the angular momentum distribution l0 computed following the criterion 2 and 3, respectively. The
solid, dashed and dotted lines correspond to different values of the magnetization parameter at the center of the disk βm;c, namely 1010, 1,
10−10. (See legend in the top-central panel.) The vertical black dotted lines denote the location of the maximum of the gravitational
energy density of the scalar field ρSF;max.
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particular models that do not obey this trend. In the case of
spacetime I, (black lines), the solid and dashed lines are
almost coincident for α ¼ 0 and α ¼ 0.5 (left and central
panels), and for α ¼ 0.75 (right panel) the value of ρmax is
larger for l0;3. This can be explained taking into account
that the size of the high-density region for spacetime I,
l0 ¼ l0;2 does not change much for increasing magnetiza-
tion. Other cases that behave in a different way are
spacetime VII, l0 ¼ l0;2 (red solid curve) for α ¼ 0.75
and l0 ¼ l0;3 (red dashed curve) for α ¼ 0.5. In the first
case, the value of ρmax is the smallest for βm;c ¼ 0.
However, when the magnetization increases, ρmax grows
faster and it ends up reaching the second highest value for
βm;c ¼ 103. A similar effect (but on a smaller scale) can be
observed for spacetime VII, l0 ¼ l0;3, α ¼ 0.5. In this case

the effect is due to the flattening of the rest-mass density
distribution that we described in the preceding section,
where a significant fraction of the mass is left around Rc,
thus reducing the value of ρmax=ρc (i.e. ρmax as ρc ¼ 1 by
construction). It is also worth remarking that with the
exception of spacetime VII, if we fix the spacetime and l0,
the value of ρmax in the extremely magnetized case is larger
for increasing α, in agreement with what was found for
purely Kerr black holes in [25].

C. Astrophysical implications

We turn next to discuss possible astrophysical implica-
tions of our models. To do so we compute the maximum
value of the rest-mass density and of the mass of the disk in
physical units. To this end, we recall (see Paper I) that the

FIG. 7. Effects of the magnetization on the values of the relative variation of the maximum of the magnetic pressure ðRm;max −
RcÞ=Rc (top panels), the maximum value of the specific enthalpy hmax (central panels) and the maximum value of the rest-mass
density (bottom panels). From left to right, the columns correspond to different values of the exponent of the angular momentum
distribution α, indicated in the plots. In all the panels, black, blue and red lines correspond to the three KBHsSH spacetimes we are
considering, namely I, IV, and VII. Solid and dashed lines correspond to either criterion 2 or 3 employed to compute l0, respectively.
(See legend in the central plot.) The top panels also display an inset of the region around βm;c ¼ 3. The horizontal and vertical dotted
lines correspond to Rm;max ¼ Rc and βm;c ¼ 3 respectively. Note that in this figure we include additional results for values of βm;c

that are not present in the tables, namely βm;c ¼ f103; 102; 10; 3; 10−1; 10−2; 10−3g.
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density in cgs units is related to the density in geometrized
units by

ρcgs ¼ 6.17714 × 1017
�
G
c2

��
M⊙

M

�
2

ρgeo: ð23Þ

We can rewrite this equation in a more convenient way
making the following considerations: The ADM mass
of the spacetime is expressed in solar-mass units
MADM¼nM⊙. The mass of the accretion disk is expressed
as a fraction of the ADM mass MT ¼ qMADM. Now, we
define the function ρ̄T such that we can rewrite Eq. (21) as

MT ¼ ρmax

Z
ρ̄T

ffiffiffiffiffiffi
−g

p
dx3; ð24Þ

where ρmax is the maximum value of the rest-mass density
in the disk. It is relevant to note that, as ρT in Eq. (19) does
not depend linearly in ρ, some dependence on ρmax is left in
ρ̄T, but the contribution of the nonlinear terms is very small
for all the cases we are considering [the deviation between
the exact formula and Eq. (24) is < 10−6 for all our cases].
Then, one can see that the ratio MT=ρmax is constant if all
the parameters but ρc are kept constant. This fact allows us
to write the value of the maximum rest-mass density in
geometrized units for an accretion torus of mass MT as

ρmax
geo ¼ MTρmax

MTðρc ¼ 1Þ ¼
qMgeo

ADMρmax

MTðρc ¼ 1Þ ; ð25Þ

where we have used that MT ¼ qMADM, MTðρc ¼ 1Þ and
ρmax are the mass and the maximum rest-mass of the torus

FIG. 8. Dependence of the logarithm of the maximum of the rest-mass density ρmax in cgs units as a function of the logarithm of the
mass of the accretion disk in units of the ADM mass of the spacetime MT=MADM. The top panels show cases with MADM ¼ 5 M⊙ and
for the bottom panels MADM ¼ 6.2 × 109 M⊙. The left column shows nonmagnetized disks (βm;c ¼ 103) and the right column shows
highly magnetized disks (βm;c ¼ 10−3). In the top panels, we show a subset of our parameter space. In particular we show, for our three
KBHsSH spacetimes I, IV, and VII (black, blue and brown lines, respectively), two values of the exponent α ¼ 0, 0.75 (solid and dashed
lines respectively) and two ways of prescribing l0, namely criteria 2 and 3 (circle and triangle markers, respectively). The shaded region
of each plot shows the region where our results are physically acceptable. The vertical and horizontal black dotted lines represent
MT=MADM ¼ 0.1 and ρmax ¼ 1015 g cm−3 respectively.

MAGNETIZED ACCRETION DISKS AROUND KERR BLACK … PHYS. REV. D 104, 103008 (2021)

103008-15



when ρc ¼ 1 andMgeo
ADM is the ADMmass of the spacetime

in geometrized units (i.e. the ADM mass as is reported in
Table I). Now, we can rewrite Eq. (23) as

ρmax
cgs ¼ 6.17714 × 1017

�
1

n

�
2 qMgeo

ADMρmax

MTðρc ¼ 1Þ : ð26Þ

This equation allows us to compute the maximum value
of the rest-mass density in cgs units in terms of the disk
mass fraction q provided that we know n, Mgeo

ADM (para-
meters of the model), ρmax, and MTðρc ¼ 1Þ (results of our
computations).
Figure 8 depicts double-logarithmic plots of Eq. (26)

showing the relation between the maximum value of the
rest-mass density and MT=MADM for a subset of our
parameter space and two different ADM masses for each
KBHsSH spacetime. One is in the stellar mass regime
(MADM ¼ 5 M⊙; top panels) and another one is in the
supermassive range (MADM ¼ 6.2 × 109 M⊙, i.e. the mass
of the central black hole in M87; bottom panels). In the top
panels we explore the limits of both our disk models and
our approach to build them. The shaded region corresponds
to the physically admissible solution space, and it is
bounded by a horizontal line that represents unrealistically
dense solutions (ρmax ¼ 1015 g cm−3) and by a vertical line
that represents the point when the test fluid approximation
for the disk begins to break down (MT ¼ 0.1MADM) and
our approach becomes unsuitable to construct accretion
tori. These top panels show interesting properties of our
models that we should highlight here: First, it can be seen
that, irrespective of the value of the magnetization param-
eter at the center βm;c, for a given value of q ¼ MT=MADM,
the models with l0 ¼ l0;3 (triangle markers) have smaller
values of ρmax when compared to the models with l0 ¼ l0;2
(circle markers). This is due to the fact that the models that
are constructed following criterion 3 are significantly more
radially extended than the ones built using criterion 2. It can
be seen as well that increasing the magnetization parameter
increases the value of ρmax for constant q. This is caused by
the change of morphology of the disk (the higher rest-mass
density region moves towards the black hole and then its
volume decreases), but this effect does not change the value
of ρmax in the same way for all the models. In particular, we
observe that, in general, models with α ¼ 0.75 suffer a
greater increase of ρmax. In some cases, the difference is
very small (e.g. models I and IV for l0 ¼ l0;2) but it can also
be considerably large (e.g. model VII for l0 ¼ l0;3). This is
due to the fact that models with α ¼ 0.75 have a greater
value of Rin than their counterparts with α ¼ 0, and
then, the decrease of volume of the high rest-mass density
region is bigger. However, the difference in magnitude of
these changes is caused by the particular features of each
spacetime. In particular, model VII for l0 ¼ l0;2 and α ¼
0.75 is the only case that deviates from the behavior
described above. The reason for this deviation is the

presence of a second maximum of the gravitational energy
density ρT (see top-right panel of Fig. 5). This second
maximum suppresses the increase of ρT that would be
present due to the high rest-mass density region moving
toward the black hole. We also note that the most dense
models should affect the hair distribution, in particular in
cases I and IV, where less mass and angular momentum are
stored in the field.
We conclude that, for a stellar-mass black hole, the values

spanned by ρmax are consistent with the maximum densities
found in disks formed in numerical-relativity simulations of
binary neutron star mergers (see Refs. [51–53]). This result,
which had already been found in the constant angular
momentum models of Paper I, is corroborated when using
the improved angular momentum distributions analyzed in
the present work.
In the bottom panels of Fig. 8 we consider the case of a

supermassive black hole and only show the two lines (the
top line and the bottom line for each case) that bound the
parameter space spanned by our results. We also expand
the horizontal axis to take into account the extremely low
rest-mass densities (between ∼10−17 and ∼10−19 g cm−3)
in the disk inferred by matching the results of general
relativistic magnetohydrodynamic (GRMHD) simulations
with observations (see [54] and also [55]). As we can see
in this figure these values of ρmax correspond to extremely
low values of q (from < 10−11 for βm;c ¼ 1010 to ≲10−13

for βm;c ¼ 10−10). However, it is important to note that the
disks in the aforementioned references are not stationary
solutions (unlike ours) but are evolved dynamically instead,
which means that they are subject to various processes
that cause matter redistribution, angular momentum trans-
port and magnetic field amplification—for low magnetized
disks—or suppression—for strongly magnetized disks.
(Some instances of these processes can be seen in
Ref. [50].) These effects would change the value of the
integral Eq. (24) in a nontrivial way, as the exact form that
the evolution affects the disk can depend on the character-
istics of the spacetime.
It is also relevant to recall the formula that relates the

maximum ADM mass of the KBHsSH with the mass
parameter of the scalar field μ (see [56] and references
therein),

Mmax
ADM ≃ αBS10

−19 M⊙

�
GeV
μ

�
; ð27Þ

with αBS ¼ 1.315 (corresponding to a value of the azimu-
thal harmonic index m ¼ 1). Using the previous defini-
tions, we can rewrite this formula as

μ½eV� ¼ 10−10
Mgeo

ADM

n
: ð28Þ

The values of μ for the two astrophysical scenarios we
have considered in this section are reported in Table V.
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These values of μ are within the mass range suggested by
the axiverse of string theory (see [57]) portraying a large
number of scalar fields in a mass range from 10−33

to 10−10 eV.

V. CONCLUSIONS

Recent observational data from the LIGO-Virgo-
KAGRA Collaboration and from the EHT Collaboration
are allowing the black hole hypothesis to be probed—black
holes apparently populate the Cosmos in large numbers and
are regarded as the canonical dark compact objects. While
this hypothesis is thus far supported by current data, the
ongoing efforts also place within observational reach the
exploration of additional proposals for alternative, and
exotic, compact objects. Indeed, possible model degener-
acies have been already pointed out in Refs. [8,9]. In this
paper we have considered a particular class of ECOs,
namely Kerr black holes with synchronized hair resulting
from minimally coupling Einstein’s gravity to bosonic
matter fields [26,39]. Such hairy black holes provide a
counterexample to the no-hair conjecture and they have
been shown to form dynamically (in the vector case) as
the end product of the superradiant instability [41] (but see
also [42] for an alternative formation channel through the
postmerger dynamics of bosonic star binaries) and to be
effectively stable themselves against superradiance [43]. In
this work we have presented new equilibrium solutions of
stationary models of magnetized thick disks (or tori) around
Kerr black holes with synchronized scalar hair. The models
reported are based on ideas put forward in our previous
work [44] which focused on models following a constant
radial distribution of the specific angular momentum along
the equatorial plane. The models reported in the present
paper, however, greatly extend those of [44] by accounting
for fairly general and astrophysically motivated distribu-
tions of the specific angular momentum. In particular, we
have introduced a new way to prescribe the distribution of
the disk’s angular momentum based on a combination of
two previous proposals discussed in Refs. [23,24]. Due to
the intrinsic higher complexity of the new models, the
methodology employed for their construction is markedly
different from that employed in [44]. Following [23], our

approach has been based on the use of the so-called von
Zeipel cylinders as a suitable (and computationally effi-
cient) means to compute the angular momentum distribu-
tion outside the equatorial plane. Within this framework,
we have chosen a fairly large parameter space (amounting
to a total of 108 models) that has allowed us to directly
compare among different spacetimes with the same choice
of specific angular momentum distribution, and to compare
between different rotation profiles in the same spacetime.
While our models show some similarities to the constant

angular momentum disks of Paper I (which we recover here
as a particular limiting case of our improved distributions)
important morphological differences also arise. We have
found that, due to the scalar hair effect on the spacetime,
the disk morphology and physical properties can be quite
different than expected if the spacetime was purely Kerr.
This has been revealed quite dramatically for KBHsSH
spacetime VII which most deviates from the Kerr spacetime
(as most of the mass and angular momentum of this
spacetime is actually stored in the scalar field). Some of
the tori built within this spacetime exhibit the appearance of
a secondary maximum in the gravitational energy density
with implications in the radial profile distributions of the
thermodynamical quantities of the disks. We have also
discussed possible astrophysical implications of our mod-
els, computing the maximum value of the rest-mass density
and of the mass of the disk in physical units for the case of a
stellar-mass black hole and a supermassive black hole.
Comparisons with the results from mergers of compact
binaries and GRMHD simulations performed by the EHT
collaboration yield values compatible with our numbers,
again pointing out possible model degeneracies. Finally,
our study has also allowed us to provide estimates for the
mass of the bosonic particle.
The two-parameter specific angular momentum prescrip-

tion we have discussed here could be particularly useful for
further studies, possibly including time-dependent evolu-
tions, as it allows to build disks with different morpho-
logical features (different degrees of thickness and radial
extent of the disk). Our models could be used as initial data
for numerical evolutions of GRMHD codes to study their
dynamics and stability properties. In addition, perhaps most
importantly, these disks could be used as illuminating
sources to build shadows of Kerr black holes with scalar
hair which might further constrain the no-hair hypothesis as
new observational data are collected, following up on
[14,20,21]. Those aspects are left for future research and
will be presented elsewhere.
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APPENDIX: TECHNICAL DETAILS
OF OUR METHODOLOGY

1. Angular momentum and potential
at the equatorial plane

Our choice for the three values of the constant part of the
angular momentum distribution l0 introduced in Sec. III is
particularly useful because it allows us to get rid of the
dependence on ΔWc of the physical quantities in the disk

computed with each criterion. As it can be seen when
inspecting Eq. (17), the rest-mass density ρ and the specific
enthalpy h (and the pressure p and the magnetic pressure
pm which are computed from them) are only dependent on
the potential distribution, the magnetization parameter βm;c

and the geometry of the spacetime (for fixed Γ and q).
Therefore, if we remove the dependence on ΔWc, the disk
morphology and the physical quantities in the disk only
depend on the angular momentum distribution, lðr; θÞ, the
magnetization parameter at the center of the disk βm;c and
the geometry of the spacetime. It is also worth to mention
that this way of prescribing the angular momentum dis-
tribution only depends on the metric parameters and their
derivatives (through the potential, the Keplerian angular
momentum and the definition of the von Zeipel cylinders).
Therefore, if we compare two solutions built in different
spacetimes, but following the same criterion to prescribe
the angular momentum distribution, we can be sure that the
differences between these two solutions are a consequence
of the fact that the two solutions correspond to different
spacetimes.
Figure 9 displays radial profiles of the angular momen-

tum along the equatorial plane, together with the corre-
sponding profiles of the potential, for our three choices of l0
and for α ¼ 0.5. From left to right each panel corresponds

FIG. 9. Radial distributions of the angular momentum and of the potential at the equatorial plane for α ¼ 0.5. Each column
corresponds to our three KBHsSH spacetimes (I, IV and VII from left to right). In the first row we show the distribution of angular
momentum at the equatorial plane for the three different criteria discussed in Sec. III (namely, a blue dashed line for criterion 1, a red
dash-dotted line for criterion 2 and a brown dotted line for criterion 3). The Keplerian angular momentum is also shown in a solid black
line. The location of rms is displayed with a vertical dotted black line. In the second row we show the potential profiles corresponding to
each angular momentum distribution displayed in the first row. They are shown by a solid black line, a blue dashed line and a brown
dotted line, for each of the three criteria. The vertical dotted lines indicate the location of rin for each case. Note that all the panels use the
perimeteral radius R.
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to one of the three different models of KBHsSHs we are
considering, namely models I, IV, and VII. The radial
coordinate used in these plots (and in all figures in the
paper) is the perimeteral radius R, related to the Boyer-
Lindquist radial coordinate r according to R ¼ eF2r (see
Paper I for details on the geometrical meaning of this
coordinate).
It can be seen that for the three spacetimes, the profiles of

leqðRÞ for criteria 1 and 2 are very similar. The deviations
from the Kerr black hole case can be observed in the
Keplerian angular momentum profile: in the first column,
lKðRÞ looks very similar to that of a rapidly rotating Kerr
BH; some small deviations are visible in the profile plotted
in the second column; finally, in the third column, a
significant deviation from what should be expected from
any Kerr BH is noticeable. The second row of Fig. 9 depicts
the potential distribution at the equatorial plane,WeqðRÞ. It
becomes apparent that a very small variation in the value of
l0 affects significantly the value of Wcusp (e.g. the bottom-
left panel shows that, when comparing the profiles from
criteria 1 and 2, a difference between the values of l0
of about ∼1%, yields a large difference in the value of
ΔWmax ¼ Wc −Wcusp such that ΔWmax;1 ¼ 2ΔWmax;2).
To compute the potential at the equatorial plane we

rewrite Eq. (18) as

WeqðrÞ ¼ −
Z þ∞

r

�∂ ln jut;injðrÞ
∂r −

Ωeq
dl
dr

1 − leqΩeq

�
dr; ðA1Þ

where we have used that WeqðrÞ → 0 when r → ∞ and ut
can be written as

ut ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gttgtϕ

gϕϕ þ 2gtϕlþ gttl2

s
: ðA2Þ

Then, to obtain the values of l0 we require, we choose
the following procedure. First, we start by considering a
constant distribution of angular momentum (i.e. α ¼ 0) and
l0 ¼ lmb, where lmb ¼ lKðrmbÞ and rmb is the radius of the
marginally bound orbit. Notice that this choice of the
parameters corresponds to the cases we considered in
Ref. [44] (and implies that Wcusp ¼ 0) and that we obtain
lmb and rmb computing the minimum of Eq. (8) in Paper I.
We also need to compute lms and rms as the minimum of
the Keplerian angular momentum [Eq. (7)]. In this way,
Eq. (18) amounts to evaluateW ¼ ln jutj and we only need
to obtain the minimum of Wðr; π=2Þ. The location of this
minimum corresponds to the center of the disk rc and the
value of the potential there is Wc;1 [rc also corresponds to
the largest solution of lKðrÞ ¼ l0]. Once we have the value
of Wc;1 for α ¼ 0, we can compute the required quantities
to build the three distributions of angular momentum we
need. For the first case we only need to find the value of rin
that fulfills the condition

Wðrin; π=2Þ ¼ 0.5Wc;1: ðA3Þ

For the second case, we iteratively solve the following
equation for l0∶

Wcuspðl0Þ −Wcðl0Þ ¼ 0.5Wc;1; ðA4Þ

taking into account that l0 must be in the interval lKðrmsÞ <
l0 < lKðrmbÞ so Wcusp < 0. And in the third case, we solve

Wcðl0Þ ¼ 0.5Wc;1; ðA5Þ

in the same way as in the second case, but taking into
account that l0 > lKðrmbÞ, so that Wcusp > 0.
To obtain the values of l0 for α ≠ 0 we only have to take

into account that the potential is defined by the integral
Eq. (A1). As we do not have an easy way to compute Wc;1

(i.e. to compute a value for l0 such that the condition
Wcusp ¼ 0 is guaranteed), we have to solve iteratively the
following equation for l0:

Weqðrin; l0Þ ¼ 0; ðA6Þ

where the left-hand side of the equation is an integral and
we know that, for α > 0, the value of l0 corresponding to
this case will always be between lKðrmsÞ < l0 < lKðrmbÞ.
With this, we can obtain the value ofWc;1 for any α ≠ 0 and
following the aforementioned three steps and taking into
account that now the potential is defined by the integral
(A1), we can compute all angular momentum and potential
distributions at the equatorial plane that we require. It is
worth to mention that the value of Wc;1 is very sensitive to
small changes in l0, due to the fact that the potential is
very steep around the maximum, so we solve Eqs. (A3),
(A4), (A5), and (A6) using the bisection method with a
tolerance that ensures that the computed values of l0 fulfill
jðΔWc − 0.5Wc;1Þ= − ð0.5Wc;1Þj < 10−8 for all the cases
we have considered. The integral (A1) is solved using the
trapezoidal rule with a radial grid 100 times denser than our
regular grid (see below), to ensure the correct finding of
rcusp, rin and rc.

2. Angular momentum and potential outside
the equatorial plane

To extend the angular momentum and the potential
distribution to the region outside the equatorial plane we
need to solve Eq. (10). As we use a numerical grid, it is
inconvenient to solve the curves starting from the equatorial
plane, as in general the von Zeipel cylinders will not pass
through the points in the grid. Instead, we run through all
the ðr; θÞ points in our grid and, for each point, we solve
Eq. (10) to obtain the crossing point of the corresponding
von Zeipel cylinder in the equatorial plane, ðr0; π=2Þ. To
improve the accuracy of the procedure, we interpolate the
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function leqðrÞ with a third-order spline and we solve
Eq. (10) with the bisection method and a tolerance of
∼10−8. A sample of the geometry of these cylinders is
shown in Fig. 10 for the first criterion for the angular
momentum at the equatorial plane and α ¼ 0.5. To obtain
the potential we follow [23] and use the fact that the
specific angular momentum is constant along the von
Zeipel cylinders to recast Eq. (18) as

Wðr; θÞ ¼ Weqðr0Þ þ ln

�
−utðr; θÞ

−utðr0; π=2Þ
	
; ðA7Þ

which yields the potential everywhere.

3. Building the magnetized disk

To build the disk we follow the same procedure as in
Paper I. First, we compute the polytropic constant K by
solving

W −Win þ ln

�
1þ ΓK

Γ − 1
ρΓ−1c

�

þ q
q − 1

KρΓc
βmc

ðρc þ KΓρΓc
Γ−1 Þ

¼ 0; ðA8Þ

which is Eq. (17) evaluated at the center of the disk rc.
Once K is computed we can obtain the remaining relevant

quantities at the center, namely pc, pm;c and hc along with
the polytropic constant of the magnetic EOS Km. Then, to
compute the distribution of the rest-mass density ρðr; θÞ,
we only have to solve

W −Win þ ln

�
1þ ΓK

Γ − 1
ρΓ−1

�

þ q
q − 1

Km

�
L
�
ρþ KΓρΓ

Γ − 1

��
q−1

¼ 0; ðA9Þ

if Wðr; θÞ < 0. For Wðr; θÞ > 0 we set ρ ¼ p ¼ pm ¼ 0.
Note that Eqs. (A8) and (A9) are both transcendental
equations, and must be solved numerically. As in [44] we
solve these equations using a nonuniform ðr; θÞ grid with a
typical domain given by ½rH; 199.2� × ½0; π=2� and a typical
number of points Nr × Nθ ¼ 2500 × 300. Those numbers
are only illustrative as the actual values depend on the
horizon radius rH and on the specific model. The spacetime
metric data on this grid are interpolated from the original
data obtained by [45]. The original grid in Ref. [45] is a
uniform (x, θ) grid (where x is a compactified radial
coordinate) with a domain ½0; 1� × ½0; π=2� and a number
of points of Nx × Nθ ¼ 251 × 30.2
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