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Abstract: A fractional model of the Hopfield neural network is considered in the case of the appli-
cation of the generalized proportional Caputo fractional derivative. The stability analysis of this
model is used to show the reliability of the processed information. An equilibrium is defined, which
is generally not a constant (different than the case of ordinary derivatives and Caputo-type fractional
derivatives). We define the exponential stability and the Mittag–Leffler stability of the equilibrium.
For this, we extend the second method of Lyapunov in the fractional-order case and establish a useful
inequality for the generalized proportional Caputo fractional derivative of the quadratic Lyapunov
function. Several sufficient conditions are presented to guarantee these types of stability. Finally, two
numerical examples are presented to illustrate the effectiveness of our theoretical results.

Keywords: generalized Caputo proportional fractional derivative; stability; exponential stability;
Mittag–Leffler stability; quadratic Lyapunov functions; Hopfield neural networks

1. Introduction

In [1], Jarad, Abdeljawad, and Alzabut introduced a new type of fractional deriva-
tive, the so-called generalized proportional fractional derivative. This type of derivative
preserves the semigroup property, possesses a nonlocal character, and converges to the
original function and its derivative upon limiting cases [2]. Some stability properties of the
Ulam type for generalized proportional fractional differential equations were studied in [3]
and in [4]. We emphasize that the regular stability has not been investigated yet. In this
paper, we develop some necessary tools for the generalized Caputo proportional fractional
derivatives, starting with an important inequality concerning an estimate of that derivative
of quadratic functions. We derive some inequalities for quadratic Lyapunov functions and
some connections between the solutions and the Lyapunov functions. These results are
applied to study the stability properties of the Hopfield neural network with time-variable
coefficients and Lipschitz activation functions. Due to its long-term memory, nonlocality,
and weak singularity characteristics, fractional calculus has been successfully applied to
various models of neural networks. For instance, Boroomand constructed the Hopfield
neural networks based on fractional calculus [5], Kaslik analyzed the stability of Hopfield
neural networks [6], Wang applied the fractional steepest descent algorithm to train BP
neural networks and proved the monotonicity and convergence of a three-layer example [7].
The three features for the generalized proportional fractional derivative—the kernel of
the fractional operator, the semi-group property of the generated fractional integrals, and
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obtaining the Riemann–Liouville and Caputo fractional derivatives as a special case—offers
a possibility for more adequate modeling of some properties of the neural network.

The equilibrium of the studied model as well as its exponential stability and the
Mittag–Leffler stability are defined and investigated.

The paper is organized as follows. In Section 2, some basic definitions and results
are given. In Section 3, we present several auxiliary results for the generalized Caputo
proportional fractional derivatives of the quadratic Lyapunov function. Section 4 contains
the main results. The Hopfield neural model with time-variable coefficients and the gener-
alized proportional fractional derivatives of the Caputo type are set up. The equilibrium
is defined in an appropriate way. Exponential stability and Mittag–Leffler stability are
defined, and several sufficient conditions are obtained. The paper concludes with Section 5,
in which some detailed examples of neural networks are presented and simulated.

2. Preliminary Results

We recall that the generalized proportional fractional operators of a function
u ∈ C1([a, b],R), (a < b ≤ ∞ are real numbers, and in the case of b = ∞, the interval is
open) are defined respectively by (see [2]):

- the generalized proportional fractional integral

(aI
α,ρu)(t) =

1
ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1u(s) ds, for t ∈ (a, b], α > 0;

- the generalized proportional Caputo fractional derivative

(C
a Dα,ρu)(t) = (aI

1−α,ρ(D1,ρu))(t)

=
1

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−α(D1,ρu)(s) ds, for t ∈ (a, b], α ∈ (0, 1), ρ ∈ (0, 1],
(1)

where (D1,ρu)(t) = (Dρu)(t) = (1− ρ)u(t) + ρu′(t) and ρ ∈ (0, 1] are fixed parameters.

Remark 1. The generalized proportional Caputo fractional derivative defined by (1) is a generaliza-
tion of the Caputo fractional derivative (with ρ = 1).

Remark 2. Note that, in some works (for example, see [8–10]), the so-called tempered fractional
integral and tempered fractional derivative are applied and defined by the following:

a Iα,λ
t x(t) =

1
Γ(α)

∫ t

a
e−λ(t−s)(t− s)α−1x(s)ds, for α > 0

and
C
a Dα,λ

t x(t) =
e−λt

Γ(1− α)

∫ t

a

eλs

(t− s)α
(λx(s) + x′(s))ds, for α ∈ (0, 1),

where λ ≥ 0 is a fixed parameter. Tempered fractional integrals and tempered fractional derivatives
are similar to the generalized proportional fractional integrals and derivatives (if λ = (1− ρ)/

ρ, ρ ∈ (0, 1], then a I
α, 1−ρ

ρ

t u(t) = ρα(aI α,ρu)(t) and ραC
a D

α, 1−ρ
ρ

t u(t) = (C
a Dα,ρu)(t)).

Proposition 1 (Proposition 5.2, [1]). Let α ∈ (0, 1) and ρ ∈ (0, 1]. Then,

(C
a Dα,ρu)(t) = 0, t > a with u(s) = e

ρ−1
ρ s, s > a.

There is an explicit formula for the solution in the scalar linear case provided in
Example 5.7 [1], which is (with an appropriate correction):
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Proposition 2. The solution of the linear Caputo proportional fractional initial value problem

C
a Dα,ρx(t) = ραλx(t) + f (t), x(a) = x0, (2)

is given by

x(t) = x0e
ρ−1

ρ (t−a)Eα(λ(t− a)α) + ρ−α
∫ t

a
e

ρ−1
ρ (s−a)

(s− a)α−1Eα,α(λ(s− a)α) f (s)ds, (3)

where

Eα(Az) =
∞

∑
k=0

(Az)k

Γ(1 + kα)
and Eα,β(Az) =

∞

∑
k=0

(Az)k

Γ(β + kα)

are Mittag–Leffler functions with one parameter and two parameters, respectively.

3. Quadratic Lyapunov Functions and Their Generalized Proportional Derivatives

Initially, we will prove the following results for scalar functions:

Lemma 1. Let the function u ∈ C1([a, b],R) with a, b ∈ R, b ≤ ∞ (if b = ∞, then the interval
is half open) and α ∈ (0, 1), ρ ∈ (0, 1] be two reals. Then,

(C
a Dα,ρu2)(t) ≤ 2u(t)(C

a Dα,ρu)(t), t ∈ (a, b]. (4)

Proof. From definition (1), we have that for any t ∈ (a, b],

(C
a Dα,ρu2)(t)− 2u(t)(C

a Dα,ρu)(t)

=
1

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−α
{
(1− ρ)[(u(s))2 − 2u(t)u(s) + u2(t)− u2(t)]

+ 2ρ
[
(u(s))′(u(s))− (u(s))′u(t)

]}
ds

=
1

ρ1−αΓ(1− α)

∫ t

a
(t− s)−α

{
(1− ρ)e−

1−ρ
ρ te

1−ρ
ρ s

[(u(s)− u(t))2 − u2(t)]

+ 2ρe−
1−ρ

ρ te
1−ρ

ρ su(s)′[u(s)− u(t)]
}

ds

≤ e−
1−ρ

ρ t

ρ1−αΓ(1− α)

∫ t

a
(t− s)−α

{
(1− ρ)e

1−ρ
ρ s

[u(s)− u(t)]2 + 2ρe
1−ρ

ρ su(s)′[u(s)− u(t)]
}

ds.

(5)

Use integration by parts and obtain the following:

(C
a Dα,ρ(u)2)(t)− 2u(t)(C

a Dα,ρu)(t)

≤ e−
1−ρ

ρ t

ρ1−αΓ(1− α)

{
ρ
∫ t

a
(t− s)−α[u(s)− u(t)]2de

1−ρ
ρ s

+ 2ρ
∫ t

a
(t− s)−αe

1−ρ
ρ su(s)′[u(s)− u(t)]ds

}
=

e−
1−ρ

ρ t

ρ1−αΓ(1− α)

{
ρ

 [u(s)− u(t)]2e
1−ρ

ρ s

(t− s)α

∣∣∣s=t

s=a
− ρ

∫ t

a
e

1−ρ
ρ sd

(
(t− s)−α[u(s)− u(t)]2

)
+ 2ρ

∫ t

a
(t− s)−αe

1−ρ
ρ su(s)′[u(s)− u(t)]ds

}
=

e−
1−ρ

ρ t

ρ1−αΓ(1− α)

{
ρ

 [u(s)− u(t)]2e
1−ρ

ρ s

(t− s)α

∣∣∣s=t

s=a
− ρα

∫ t

a
e

1−ρ
ρ s

(t− s)1−α[u(s)− u(t)]2ds

− 2ρ
∫ t

a
e

1−ρ
ρ s

(t− s)−αu′(s)[u(s)− u(t)]ds + 2ρ
∫ t

a
(t− s)−αe

1−ρ
ρ su(s)′[u(s)− u(t)]ds

}
=

e−
1−ρ

ρ t

ρ1−αΓ(1− α)

{
ρ

 [u(s)− u(t)]2e
1−ρ

ρ s

(t− s)α

∣∣∣s=t

s=a
− ρα

∫ t

a
e

1−ρ
ρ s

(t− s)−1−α[u(s)− u(t)]2ds.

(6)
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The integral ∫ t

a
e

1−ρ
ρ s

(t− s)−1−α[u(s)− u(t)]2ds

has a singularity at the upper limit t, but it is a removable singularity because by the
L’Hopital rule, we obtain the following:

lim
s→t−

[u(s)− u(t)]2

(t− s)1+α
= lim

s→t−
2u′(s)(u(s)− u(t))
−(1 + α)(t− s)α = lim

s→t−
2(u′(s)(u(s)− u(t)))′

(1 + α)α
(t− s)1−α = 0.

Thus,

(C
a Dα,ρ(u)2)(t)− 2u(t)(C

a Dα,ρu)(t) ≤ ραe−
1−ρ

ρ t

Γ(1− α)

 [u(s)− u(t)]2e
1−ρ

ρ s

(t− s)α

∣∣∣s=t

s=a

=
ραe−

1−ρ
ρ t

Γ(1− α)

lim
s→t

[u(s)− u(t)]2e
1−ρ

ρ s

(t− s)α − [u(a)− u(t)]2e
1−ρ

ρ a

(t− a)α

.

(7)

By the L’Hopital rule we get the following:

(C
a Dα,ρ(u)2)(t)− 2u(t)(C

a Dα,ρu)(t) ≤ ραe−
1−ρ

ρ t

Γ(1− α)
lim
s→t

[u(s)− u(t)]2e
1−ρ

ρ s

(t− s)α

= − ραe−
1−ρ

ρ t

Γ(1− α)
lim
s→t

2u′(s)[u(s)− u(t)]e
1−ρ

ρ s
+ 1−ρ

ρ [u(s)− u(t)]2e
1−ρ

ρ s

α(t− s)α−1

= − ραe−
1−ρ

ρ t

Γ(1− α)α
lim
s→t

(
2u′(s)[u(s)− u(t)]e

1−ρ
ρ s

+
1− ρ

ρ
[u(s)− u(t)]2e

1−ρ
ρ s
)
(t− s)1−α = 0.

(8)

Inequality (8) proves the claim of Lemma 1.

Inequality (4) is true in the vector case:

Corollary 1. Let the function u ∈ C1([a, b],Rn
) with a, b ∈ R, b ≤ ∞ (if b = ∞, then the

interval is half open) and α ∈ (0, 1), ρ ∈ (0, 1]. Then,

(C
a Dα,ρuT(t)u(t)) ≤ 2uT(t)(C

a Dα,ρu)(t), t ∈ (a, b]. (9)

The proof follows from the decomposition of the scalar product uT(t)u(t) into a sum
of products and the application of Lemma 1.

Remark 3. In the case of the Caputo fractional derivative, i.e., ρ = 1, the results of Lemma 1 and
Corollary 1 are reduced to Lemma 1 [11] and Remark 1 [11].

Consider the following system of nonlinear fractional differential equations with the
generalized proportional Caputo fractional derivative:

(C
t0
Dα,ρu)(t) = F(t, u(t)), for t > t0,

u(t0) = u0,
(10)

where t0 ≥ 0, (C
t0
Dα,ρu)(t) is the generalized proportional Caputo fractional derivative of

the function u ∈ C1([t0, ∞),Rn
), ρ ∈ (0, 1], α ∈ (0, 1) are two reals, and F : [t0, ∞)×Rn →

Rn is a function.

Remark 4. We will assume that for any initial value u0, the initial value problem (10) has a
solution u(t; t0, u0) defined for t ≥ t0.
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Next, we will obtain two types of bounds for the solutions of (10).

Lemma 2. Assume that:

1. The function u(·) = u(·; t0, u0) ∈ C1([t0, ∞),Rn
) is a solution of the IVP for the nonlinear

system of generalized proportional Caputo fractional differential equations (10);
2. For any point t ≥ t0, the inequality

C
t0
Dα,ρ(‖u(t)‖2) ≤ 0 (11)

holds.

Then,

‖u(t)‖ ≤ ‖u0‖e
ρ−1
2ρ (t−t0), for t ≥ t0. (12)

Proof. Define the function m(t) = uT(t)u(t) = ‖u(t)‖2 : [t0, ∞) → R+. Let ε > 0 be an
arbitrary number. We will prove that

m(t) < (‖u0‖2 + ε)e
ρ−1

ρ (t−t0), t ≥ t0. (13)

For t = t0, we get

m(t0) = ‖u0‖2 < (‖u0‖2 + ε) = (‖u0‖2 + ε)e
ρ−1

ρ (t0−t0),

i.e., inequality (13) is true for t = t0.
Now, assume that (13) is not true. Then there exist t∗ ∈ (t0, ∞), such that

m(t) < (‖u0‖2 + ε)e
ρ−1

ρ (t−t0), t ∈ [t0, t∗), m(t∗) = (‖u0‖2 + ε)e
ρ−1

ρ (t∗−t0). (14)

Denote η(t) = ‖u(t)‖2 − (‖u0‖2 + ε)e
ρ−1

ρ (t−t0) : [t0, t∗] → (−∞, 0]. From (14), it
follows that η(t∗) = 0, η(t) < 0 for t ∈ [t0, t∗). Therefore,

(C
t0

Dα,ρη)(t)
∣∣∣
t=t∗

=
1

ρ1−αΓ(1− α)

∫ t∗

t0
e

ρ−1
ρ (t∗−s)

(t∗ − s)−α
(
(1− ρ)η(s) + ρη′(s)

)
ds

=
1

ρ1−αΓ(1− α)

[
ρ
∫ t∗

t0
(t∗ − s)−αη(s)de

ρ−1
ρ (t−s)

+ ρ
∫ t∗

t0
e

ρ−1
ρ (t∗−s)

(t∗ − s)−αη′(s)ds,

=
1

ρ1−αΓ(1− α)

[
ρ(t∗ − s)−αη(s)e

ρ−1
ρ (t∗−s)|s=t∗

s=t0
− ρ

∫ t∗

t0
e

ρ−1
ρ (t∗−s)d((t∗ − s)−αη(s))

+ ρ
∫ t∗

t0
e

ρ−1
ρ (t∗−s)

(t∗ − s)−αη′(s)ds.

(15)

Thus, by the L’Hopital rule, we get the following:

(t∗ − s)−αη(s)e
ρ−1

ρ (t∗−s)
∣∣∣
s=t∗

= lim
s→t∗−0

η(s)e
ρ−1

ρ (t∗−s)

(t∗ − s)α = lim
s→t∗−0

η′(s)e
ρ−1

ρ (t∗−s) − ρ−1
ρ η(s)e

ρ−1
ρ (t∗−s)

α
(t∗ − s)1−α = 0. (16)

From (15) and (16), we obtain the following:

(C
t0

Dα,ρη)(t)
∣∣∣
t=t∗

=
1

ρ1−αΓ(1− α)

[
− ρ(t∗ − t0)

−αη(t0)e
ρ−1

ρ (t−t0) − ρα
∫ t∗

t0
e

ρ−1
ρ (t∗−s) η(s)

(t∗ − s)1+α
ds

− ρ
∫ t∗

t0
e

ρ−1
ρ (t∗−s)

(t∗ − s)−αη′(s)ds + ρ
∫ t∗

t0
e

ρ−1
ρ (t−s)

(t∗ − s)−αη′(s)ds

]

=
1

ρ1−αΓ(1− α)

[
− ρη(t0)

e
ρ−1

ρ (t∗−t0)

(t∗ − t0)
α − ρα

∫ t∗

t0

e
ρ−1

ρ (t∗−s)

(t∗ − s)1+α
η(s)ds

]
> 0.

(17)
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From Proposition 1, inequality (17), and condition 2 for t = t∗ , we obtain the
equation below:

0 <(C
t0
Dα,ρη)(t)

∣∣∣
t=t∗

= C
t0
Dα,ρ(‖u(t)‖2 − (‖u0‖2 + ε)e

ρ−1
ρ (t−t0))

∣∣∣
t=t∗

= C
t0
Dα,ρ‖u(t)‖2

∣∣∣
t=t∗
− (‖u0‖2 + ε)e

1−ρ
ρ t0 C

t0
Dα,ρe

ρ−1
ρ t
∣∣∣
t=t∗

= C
t0
Dα,ρ‖u(t)‖2

∣∣∣
t=t∗
≤ 0.

(18)

The obtained contradiction proves the validity of (13) for any ε > 0. Therefore,

‖u(t)‖2 < ‖u0‖2e
ρ−1

ρ (t−t0),

i.e., the claim of Lemma 2 is true.

Corollary 2. Assume that the conditions of Lemma 2 are satisfied. Then, ‖x(t)‖ ≤ ‖u0‖ for all
t ≥ t0.

The proof follows from inequality (12), ρ ∈ (0, 1], and the inequality e
ρ−1
2ρ (t−t0) ≤ 1.

Lemma 3. Assume that:

1. The function u(·) = u(·; t0, u0) ∈ C1([t0, ∞),Rn
) is a solution of the IVP for the nonlinear

system of generalized proportional Caputo fractional differential equations (10);
2. There exists a positive constant K > 0, such that at any point t ≥ t0, the inequality

C
t0
Dα,ρ

(
‖u(t)‖2

)
≤ −K‖u(t)‖2 (19)

holds.

Then,

‖u(t)‖ ≤ ‖u0‖e
ρ−1
2ρ (t−t0)

√
Eα

(
−K
ρα

tα

)
for t ≥ t0. (20)

Proof. Define the function m(t) = uT(t)u(t) = ‖u(t)‖2 : [t0, ∞) → R+. From inequal-
ity (19), it follows that there exists a function ξ : [t0, ∞)→ [0, ∞), such that

(C
t0
Dα,ρm)(t) ≤ −Km(t)− ξ(t), t ≥ t0. (21)

According to Proposition 2, with a = 0, λ = −K/ρα, f (t) = −ξ(t), and x0 = m(0), the
solution of the linear Caputo proportional fractional initial value problem (21) is given by

m(t) = m(0)e
ρ−1

ρ tEα

(
−K
ρα

tα

)
− ρ−α

∫ t

0
e

ρ−1
ρ ssα−1Eα,α

(
−K
ρα

sα

)
ξ(s)ds ≤ m(0)e

ρ−1
ρ tEα

(
−K
ρα

tα

)
. (22)

4. Stability of Neural Networks with a Generalized Proportional Caputo
Fractional Derivative

The fractional-order Hopfield neural networks with the generalized proportional
Caputo fractional derivative is described by the following equation:

(C
0 Dα,ρxi)(t) = −ai(t)xi(t) +

n

∑
k=1

bi,k(t) fk(xk(t)) + Ii(t), t > 0, i = 1, 2, . . . , n, (23)

where n is the number of units in a neural network, C
0 Dα,ρ denotes the generalized

proportional Caputo fractional derivative of order α ∈ (0, 1), ρ ∈ (0, 1], xi(t) is the
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state of the i-th unit at time t, fk(u) denotes the activation function of the k-th neuron,
bi,k(t) : [0, ∞)→ R denotes the connection weight of the k-th neuron on the i-th neuron at
time t, ai(t) : [0, ∞)→ (0, ∞) represents the rate at which the i-th neuron resets its potential
to the resting state when disconnected from the network at time t, and Ii(t) denotes the
external inputs at time t.

We will now define the equilibrium of the neural network (23). Different than the
classical case of ordinary derivatives and the Caputo fractional derivatives, in the general
case, the equilibrium of (23) could not be a constant because the generalized proportional
derivative of a nonzero constant is not 0. Applying Proposition 1, we define the equilibrium
of (23):

Definition 1. The function x∗(t) = Ce
ρ−1

ρ t : C = (C1, C2, . . . , Cn) ∈ Rn, ci = const,
i = 1, 2, . . . , n, is called an equilibrium of (23) if

ai(t)Cie
ρ−1

ρ t
=

n

∑
k=1

bi,k(t) fk(Cke
ρ−1

ρ t
) + Ii(t), t ≥ 0, i = 1, 2 . . . , n.

Remark 5. The constant vector C ∈ Rn in Definition 1 could be a zero vector (zero equilibrium)
or a nonzero vector (nonzero equilibrium).

Remark 6. The zero vector is an equilibrium of (23) if fk(0) = 0 and Ik(t) ≡ 0 for all
k = 1, 2, . . . , n.

Let x∗(t) = Ce
ρ−1

ρ t be an equilibrium of (23). Consider the change in the variables
u(t) = x(t)− x∗(t), t ≥ 0, in system (23), use Proposition 1 and obtain the following:

(C
0 Dα,ρui)(t) = (C

0 Dα,ρxi)(t)− (C
0 Dα,ρx∗i )(t) = (C

0 Dα,ρxi)(t)

= −ai(t)(ui(t) + x∗i (t)) +
n

∑
k=1

bi,k(t) fk(uk(t) + x∗k (t)) + Ii(t)

= −ai(t)ui(t) +
n

∑
k=1

bi,k(t)[ fk(uk(t) + x∗k (t))− fk(x∗k (t))]− ai(t)x∗i (t) +
n

∑
k=1

bi,k(t) fk(x∗k (t)) + Ii(t)

= −ai(t)ui(t) +
n

∑
k=1

bi,k(t)Fk(t, uk(t)), t > 0, i = 1, 2, . . . , n,

(24)

where Fk(t, v) = fk(v + x∗k (t)) − fk(x∗k (t)), i.e., if x∗(t) is an equilibrium of (23), then
the system

(C
0 Dα,ρui)(t) = −ai(t)ui(t) +

n

∑
k=1

bi,k(t)Fk(t, uk(t)), t > 0, i = 1, 2, . . . , n, (25)

has a zero solution, and vice versa.

Definition 2. Let α ∈ (0, 1) and ρ ∈ (0, 1). The equilibrium x∗(·) of (23) is called exponentially
stable if, for any solution x(t) of (23), the inequality

‖x(t)− x∗(t)‖ ≤ m(‖x(0)− x∗(0)‖)eλ
ρ−1

ρ t, t ≥ 0,

holds, where λ > 0 is a constant, and m(s) ≥ 0, m(0) = 0, is a given locally Lipschitz function.

Remark 7. Note that the exponential stability is defined only for ρ ∈ (0, 1).

Remark 8. The exponential stability of the equilibrium x∗(·) implies that every solution x(·)
of (23) satisfies limt→∞ ‖x(t)− x∗(t)‖ = 0.
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Definition 3. Let α ∈ (0, 1) and ρ ∈ (0, 1]. The equilibrium x∗(·) of (23) is called generalized
Mittag–Leffler stable if there exist the positive constants λ, µ, and γ, such that for any solution x(·)
of (23), the inequality

‖x(t)− x∗(t)‖ ≤ m(‖x(0)− x∗(0)‖)eλ
ρ−1

ρ t
(

Eα(−µtα)
)γ

, t ≥ 0,

holds, where Eα(z) is the Mittag–Leffler function with one parameter, m(s) ≥ 0, m(0) = 0, is a
given locally Lipschitz function.

Remark 9. Note that the generalized Mittag–Leffler stability is defined for ρ ∈ (0, 1] and for ρ = 1,
and it generalizes the corresponding results for the Caputo fractional differential equations [6,12–15].

Remark 10. Note that the Mittag–Leffler stability for the Hopfield neural network with tempered
fractional derivatives is studied in [10,16], but only for zero equilibrium, zero internal perturbations,
and constant coefficients.

Remark 11. The generalized Mittag–Leffler stability of the equilibrium x∗(·) implies that every
solution x(·) of (23) satisfies limt→∞ ‖x(t)− x∗(t)‖ = 0.

Theorem 1 (Exponential stability). Let the following assumptions hold:

1. α ∈ (0, 1) and ρ ∈ (0, 1);
2. The functions ai ∈ C(R+, (0, ∞)), bi,k, Ii ∈ C(R+,R), i, k = 1, 2, . . . , n;
3. There exist positive constants Mi, i = 1, 2, . . . , n, such that the activation functions

fi ∈ C(R,R) satisfy | fi(v)− fk(w)| ≤ Mi|v− w| for v, w ∈ R;
4. Equation (23) has an equilibrium x∗(·) = (x∗1(·), x∗2(·), . . . , x∗n(·));
5. The inequality

2ai(t) ≥
n

∑
k=1

(
|bi,k(t)|+ M2

i |bk,i(t)|
)

, t ≥ 0, i = 1, 2, . . . , n

holds.

Then, the equilibrium x∗(·) of (23) is exponentially stable.

Proof. Let x(·) be a solution of (23), and consider the system (25) with u(t) = x(t) −
x∗(t), t ≥ 0. From condition 3, we have the following equation:

|Fk(t, v)| = | fk(v + x∗k (t))− fk(0 + x∗k (t))| ≤ Mk|v|,

for v ∈ R, t ≥ 0. Then,

ui(t)(C
0 Dα,ρui)(t) = −ai(t)u2

i (t) +
n

∑
k=1

bi,k(t)(ui(t)Fk(t, uk(t)))

≤ −ai(t)u2
i (t) +

n

∑
k=1
|bi,k(t)|0.5(u2

i (t) + F2
k (t, uk(t))) ≤ 0.5

(
− 2ai(t) +

n

∑
k=1
|bi,k(t)|

)
u2

i (t) + 0.5
n

∑
k=1
|bi,k(t)M2

k u2
k(t),

(26)
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and by applying Condition 5, we get the following:

(C
0 Dα,ρ(uT(t)u(t)) ≤ 2uT(t)(C

0 Dα,ρu)(t) = 2
n

∑
i=1

ui(t)(C
0 Dα,ρui)(t)

≤ 0.5
n

∑
i=1

(
− 2ai(t) +

n

∑
k=1
|bi,k(t)|

)
u2

i (t) +
n

∑
i=1

n

∑
k=1
|bi,k(t)M2

k u2
k(t)

= 0.5
n

∑
i=1

(
− 2ai(t) +

n

∑
k=1
|bi,k(t)|

)
u2

i (t) + 0.5
n

∑
i=1

M2
i u2

i (t)
n

∑
k=1
|bk,i(t)|

= 0.5
n

∑
i=1

[
− 2ai(t) +

n

∑
k=1

(
|bi,k(t)|+ M2

i |bk,i(t)|
)]

u2
i (t) ≤ 0.

(27)

According to Lemma 2 applied to the system in (25), with t0 = 0, the inequality

‖u(t)‖ ≤ ‖u(0)‖e
ρ−1
2ρ t, t ≥ 0 (28)

holds. This proves the claim of the Theorem, with λ = 0.5 and m(s) = s.

From Corollary 2 we obtain the following (applied to (23) with t0 = 0):

Corollary 3 (Boundedness). Let α ∈ (0, 1) , ρ ∈ (0, 1], and conditions 2–5 of Theorem 1 are
satisfied. Then, any solution x(·) of (23) satisfies ‖x(t)− x∗(t)‖ ≤ ‖x(0)− x∗(0)‖ for all t ≥ 0.

Theorem 2 (Generalized Mittag–Leffler stability). Let the following assumptions hold:

1. Conditions 1–4 of Theorem 1 are satisfied;
2. There exists a positive constant L, such that inequality

2ai(t)−
n

∑
k=1

(
|bi,k(t)|+ Mi|bk,i(t)|

)
≥ L, t ≥ 0, i = 1, 2, . . . , n

holds.

Then, the equilibrium x∗(·) of (23) is Mittag–Leffler stable.

Proof. Let x(·) be a solution of (23) and consider the system in (25) with u(t) = x(t)− x∗(t).
Similar to the proof of Theorem 1, we prove the following inequality:

(C
0 Dα,ρ(uT(t)u(t)) ≤ 0.5

n

∑
i=1

[
− 2ai(t) +

n

∑
k=1

(
|bi,k(t)|+ M2

i |bk,i(t)|
)]

u2
i (t) ≤ −0.5L‖u(t)‖2. (29)

Denote m(t) = ‖u(t)‖2, and from (29) and Condition 2 of Theorem 2, it follows that
there exists a function g(t) : [0, ∞)→ (−∞, 0], such that

(C
0 Dα,ρm)(t) = −0.5Lm(t) + g(t), t > 0. (30)

According to Proposition 2, the solution of the linear Caputo proportional fractional
initial value problem (30) is given by the following equation:

m(t) = m(0)e
ρ−1

ρ tEα

(
− 0.5L

ρα
tα

)
+ ρ−α

∫ t

0
e

ρ−1
ρ (t−a)sα−1Eα,α

(
− 0.5L

ρα
sα

)
g(s)ds ≤ m(0)e

ρ−1
ρ tEα

(
− 0.5L

ρα
tα

)
. (31)

From inequality (31), it follows that

‖x(t)− x∗(t)‖ ≤ ‖x(0)− x∗(0)‖e
ρ−1
2ρ t
(

Eα

(
−0.5L

ρα
tα

))0.5
. (32)
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5. Applications

Example 1. Consider the following neural networks of n = 3 neurons with a ring structure [6]
with the following generalized proportional fractional derivatives:

(C
0 Dα,ρx1)(t) = −6x1(t) + 2 sin(x1(t)) + 2 sin(x2(t)) + sin(x3(t)) + I1(t),

(C
0 Dα,ρx2)(t) = −5x2(t)− 2 sin(x1(t))− 0.4 sin(x2(t)) + sin(x3(t)) + I2(t),

(C
0 Dα,ρx3)(t) = −8x3(t) + sin(x1(t))− 2.5 sin(x2(t)) + 3.5 sin(x3(t)) + I3(t), t > 0,

(33)

where the activation functions are fk(x) = sin(x), k = 1, 2, 3, i.e., condition 3 of Theorem 1 is
satisfied by Mi = 1, i = 1, 2, 3.

Case 1. Let Ii(t) ≡ Ki 6= 0, i = 1, 2, 3 be constants. Then, for ρ ∈ (0, 1), the system in (33)
has no equilibrium because, for example, the following equality:

−6C1e
ρ−1

ρ t
= 2 sin

(
C1e

ρ−1
ρ t
)
+ sin

(
C2e

ρ−1
ρ t
)
− 3 sin

(
C3e

ρ−1
ρ t
)
+ K1, t ≥ 0

is not satisfied by any constant Ci, i = 1, 2, 3 (compare with the case of the Caputo fractional
derivative ρ = 1, [15]).

Case 2. Let Ii(t) ≡ 0, i = 1, 2, 3, t ≥ 0. Then, for any ai(t) > 0, the system in (33) has zero
equilibrium because sin(0) = 0 (see Remark 6).

Case 3. Consider the following neural network:

(C
0 Dα,ρx1)(t) = − sin

(
e

ρ−1
ρ t
)

x1(t) +
6

sin
(

e
ρ−1

ρ t
) sin(x1(t)) + e

ρ−1
ρ t sin(x3(t))− 6,

(C
0 Dα,ρx2)(t) = − sin

(
e

ρ−1
ρ t
)

x2(t) + 0.5e
ρ−1

ρ t sin(x1(t)) + 0.5e
ρ−1

ρ t sin(x2(t)),

(C
0 Dα,ρx3)(t) = − sin2

(
e

ρ−1
ρ t
)

x3(t) + sin
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t sin(x1(t))− 2 sin(x3(t)) + 2 sin
(

e
ρ−1

ρ t
)

.

(34)

Thus, the coefficients are as follows:

a1(t) = sin
(

e
ρ−1

ρ t
)
> 0, a2(t) = sin

(
e

ρ−1
ρ t
)
> 0, a3(t) = sin2

(
e

ρ−1
ρ t
)
> 0,

B = {bi,k(t)} =



6

sin

(
e

ρ−1
ρ t
) 0 e

ρ−1
ρ t

0.5e
ρ−1

ρ t 0.5e
ρ−1

ρ t 0

sin
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t 0 −2

,

and

I1(t) = −6, I2(t) = 0, I3(t) = 2 sin
(

e
ρ−1

ρ t
)

.

Then, for ρ ∈ (0, 1), the system in (33) has the equilibrium(
e

ρ−1
ρ t, e

ρ−1
ρ t, e

ρ−1
ρ t
)

,

because

a1x∗1(t) = sin
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t
=

6

sin
(

e
ρ−1

ρ t
) sin

(
e

ρ−1
ρ t
)
+ 0 + e

ρ−1
ρ t sin

(
e

ρ−1
ρ t
)
− 6

a2(t)x∗2(t) = sin
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t
= 0.5e

ρ−1
ρ t sin

(
e

ρ−1
ρ t
)
+ 0.5e

ρ−1
ρ t sin

(
e

ρ−1
ρ t
)
+ 0 + 0
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a3(t)x∗3(t) = sin2
(

e
ρ−1

ρ t
)

e
ρ−1

ρ t
= sin

(
e

ρ−1
ρ t
)

e
ρ−1

ρ t sin
(

e
ρ−1

ρ t
)
+ 0− 2 sin

(
e

ρ−1
ρ t
)
+ 2 sin

(
e

ρ−1
ρ t
)

hold.
Neither the conditions of Theorem 1 nor the conditions of Theorem 2 are satisfied. For example,

the following inequality:

2 sin
(

e
ρ−1

ρ t
)
≥ γ(ρ, t) := 2

6

sin
(

e
ρ−1

ρ t
) + 0.5e

ρ−1
ρ t

+ e
ρ−1

ρ t
(

1 + sin
(

e
ρ−1

ρ t
))

, t ≥ 0 (35)

is not satisfied (see Figure 1, top left). Therefore, we are not able to conclude the stability properties
of the equilibrium (see Figure 2).

0.2 0.4 0.6 0.8 1.0
t

10

20

30

40

50

60

y

2sin(e-t)

2 sin(e-(0.3-1)/0.3 t)

2 sin(e-(0.8-1)/0.8 t)

γ(0.5,t)

γ(0.3,t)

γ(0.8,t)

2 4 6 8 10
t

0.5

1.0

1.5

y

2/(1+e-e
-t

)

∑k=1
3 (||b1,k |+0.25

2|bk,1|)1/(1+e
-e-t)

2 4 6 8 10
t

0.5

1.0

1.5

y

2/(1+e-e
-t

)

∑k=1
3 (||b1,k |+0.25

2|bk,1})1/(1+e
-e-t)

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

2/(1+e-e
-t

)

∑k=1
3 (||b1,k |+0.25

2|bk,1})1/(1+e
-e-t)

Figure 1. Graph of inequality (35) for various ρ (1st plot). Graph of inequality (37) for ρ = 0.5 (2nd
plot), (38) for ρ = 0.5 (3rd plot), and (39) for ρ = 0.5 (4th plot).
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Figure 2. Graphs of functions |xi(t)− e
ρ−1

ρ t|, with i = 1, 2, 3 and α = 0.6. On the (left), ρ = 0.3, and
on the (right), ρ = 0.5.

Example 2. Consider the following neural networks of n = 3 neurons with the following general-
ized proportional fractional derivatives:

(C
0 Dα,ρx1)(t) = −

1

1 + e−e
ρ−1

ρ t
x1(t) +

0.1
1 + e−x1(t)

+ e
ρ−1

ρ t 1
1 + e−x3(t)

+
−0.1

1 + e−e
ρ−1

ρ t
,

(C
0 Dα,ρx2)(t) = −

1

1 + e−e
ρ−1

ρ t
x2(t) + e

ρ−1
ρ t 1

1 + e−x1(t)
,

(C
0 Dα,ρx3)(t) = −

1

1 + e−e
ρ−1

ρ t
x3(t) + e

ρ−1
ρ t 1

1 + e−x1(t)
+

1
1 + e−x3(t)

+
−1

1 + e−e
ρ−1

ρ t
,

(36)

with the coefficients

ak(t) =
1

1 + e−e
ρ−1

ρ t
> 0, k = 1, 2, 3,

the activation functions fk(x) = 1/(1 + e−x) > 0, k = 1, 2, 3 are equal to the sigmoid function,
with Mk = 0.25, the perturbations are thus given by

I1(t) =
−0.1

1 + e−e
ρ−1

ρ t
, I2(t) = 0, I3(t) =

−1

1 + e−e
ρ−1

ρ t
,

and

B = {bi,k(t)} =


0.1 0 e

ρ−1
ρ t

e
ρ−1

ρ t 0 0

e
ρ−1

ρ t 0 1

.

Then, for ρ ∈ (0, 1), the system in (36) has the following equilibrium:

x∗(t) =
(

e
ρ−1

ρ t, e
ρ−1

ρ t, e
ρ−1

ρ t
)
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because

a1x∗1(t) =
1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

= 0.1
1

1 + e−e
ρ−1

ρ t
+ 0 +

1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

+
−0.1

1 + e−e
ρ−1

ρ t
,

a2(t)x∗2(t) =
1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

=
1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

+ 0 + 0 + 0,

a3(t)x∗3(t) =
1

1 + e−e
ρ−1

ρ t
e

ρ−1
ρ t

= e
ρ−1

ρ t 1

1 + e−e
ρ−1

ρ t
+ 0 +

1

1 + e−e
ρ−1

ρ t
+

−1

1 + e−e
ρ−1

ρ t
.

Moreover, condition 5 of Theorem 1 is satisfied because of the following inequalities:

2
1

1 + e−e
ρ−1

ρ t
≥ 1 ≥ (1 + 0.252)0.1 + (0 + 0.5 ∗ 0.252) + (1 + 0.252)e

ρ−1
ρ t, (37)

2
1

1 + e−e
ρ−1

ρ t
≥ (1 + 0 ∗ 0.252) + (1 + 0.252) ∗ 0 + (1 + 0.252) ∗ 0, (38)

2
1

1 + e−e
ρ−1

ρ t
≥ (1 + 0.252)e

ρ−1
ρ t

+ 0 + (1 + 0.252), (39)

(see Figure 1, top right, bottom left, and bottom right, respectively).
From Theorem 1, the equilibrium is exponentially stable, i.e., (see Figure 3)

|xi(t)− e
ρ−1

ρ t| ≤ |xi(0)− 1|e0.5 ρ−1
ρ t, t ≥ 0, i = 1, 2, 3.

Figure 3. Graphs of the functions |xi(t) − e
ρ−1

ρ t|, with i = 1, 2, 3, α = 0.6, and ρ = 0.3 (left), ρ = 0.5 (center), and
ρ = 0.8 (right).

6. Conclusions

Initially, we proved an important inequality concerning an estimate of the generalized
proportional Caputo fractional derivative of quadratic functions. The result could be ap-
plied to the study of various types of stability for the solutions of various types of fractional
differential equations with the generalized proportional Caputo fractional derivative. In
our paper, we applied it to study the stability properties of the Hopfiel neural network
with the generalized proportional Caputo type fractional derivative. An equilibrium of the
studied model was then defined. This equilibrium is generally not a constant (different
than the case of ordinary derivatives and the Caputo type fractional derivatives). We
defined the exponential stability and the Mittag–Leffler stability of the equilibrium. Several
sufficient conditions were presented to guarantee these types of stability. The theoretical
results were illustrated, with two numerical examples.
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