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1 Introduction

Many evolution processes are characterized by abrupt state changes and these are modeled

by impulsive differential equations. In the literature there are two popular types of impulses:

instantaneous impulses (whose duration is short compared to the overall duration of the whole

process) and non-instantaneous impulses (here the action starts at some points and remain

active on a finite time interval). Additionally, when fractional derivatives with their memory

property are involved in the equations, the impulses cause some problems connected with the

lower limit of the fractional derivative. There are mainly two types of fractional differential

equations with impulses in the literature: ones with fixed lower limit at the initial time and the

second with a changeable lower limit at each each time of impulse. Caputo fractional differential

equations with changeable lower limit at the impulsive time are studied in [16] and the explicit

formulas for the solutions are given. Also, the non-instantaneous impulsive differential equations

are natural generalizations of impulsive differential equations (see, for example, [3, 6, 7, 12]).

An overview of the main properties of the presence of non-instantaneous impulses to differential

equations with ordinary derivatives as well as Caputo fractional derivatives is given in the book

[2].

An important qualitative problem for differential equations is stability. Often Lyapunov

functions and different modifications of the Lyapunov direct method are applied to study sta-

bility properties of solutions ([4, 5]). The application of Lyapunov functions to fractional

differential equations requires appropriate definition of their derivatives among the solutions

of the studied fractional equations. Note there many different types of stability defined and

used to various kinds of differential equations. In [14, 15] the stability properties of fractional

difference equations are investigated. One type of stability useful in real world problems is the

so called practical stability problem, introduced by LaSalle and Lefschetz [11], and it considers

the question of whether the system state evolves within certain subsets of the state-space. For

example, an equilibrium point may not be stable in the sense of Lyapunov and yet the system

response may be acceptable in the vicinity of this equilibrium.

In this paper we study nonlinear delay Caputo fractional differential equations with non-

instantaneous impulses and we consider delays depending on both the time and the state vari-

able. Some applications of state dependent delays are given in [8, 13]. We study two cases,

one when the lower limit of the Caputo fractional derivative is fixed at the initial time, and the

other when the lower limit of the fractional derivative is changed at the end of each interval

of action of the impulse. Practical stability of the solutions is investigated and our arguments

are based on the application of Lyapunov like functions and the modified Razumikhin method.

We will need appropriate definitions of the derivative of Lyapunov functions among the stud-

ied fractional equations. In our paper we use three different types of fractional derivatives of

Lyapunov functions. Comparison results for nonlinear non-instantaneous impulsive fractional

differential equations without any delay are used. Some sufficient conditions for practical sta-

bility and quasi practical stability are obtained. Also several examples are given to illustrate

our results.

The main contributions in this paper could be summarized:

- non-linear Caputo fractional differential equations with non-instantaneous impulses and
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general delay depending on both the time and the state variable are set up in both cases: the

case of a fractional derivative with fixed lower limit at the initial time and the case of a fractional

derivative with changed lower limit at the end of each interval of acting of the impulse;

- practical and quasi practical stability for studied equations are defined ;

- both the initial conditions and the impulsive conditions are set up in appropriate way;

- three types of the derivatives of the applied Lyapunov functions among the solutions of the

studied equation are used: Caputo fractional derivative; Dini fractional derivative and Caputo

fractional Dini derivative;

- fractional modification of Razumikhin method is suggested and applied in the case of any

of the mentioned above three types of derivatives of Lyapunov functions;

- several sufficient conditions for practical stability are obtained for both types of the

fractional derivatives- fixed lower limit as well as changeable one.

2 Preliminaries

Let two increasing sequences of points {ti}
∞
i=1 and {si}

∞
i=0 be given such that s0 = 0,

0 < si < ti < si+1, i = 1, 2, · · · , and lim
k→∞

tk = ∞.

Let t0 ∈ [0, s1)
⋃

∞
⋃

k=1

[tk, sk+1) be a given arbitrary point. Without loss of generality we will

assume that t0 ∈ [0, s1).

The intervals (ti, si+1), i = 0, 1, 2, · · · , k, will be the domain of the fractional differential

equations, while in the intervals (si, ti), i = 1, 2, · · · , k, the impulsive conditions are given.

In the paper we will use the Caputo fractional derivative of order q ∈ (0, 1) for a function

m ∈ C1([t0, t0 + T ],R), and is given by

c
t0
Dqm(t) =

1

Γ (1 − q)

∫ t

t0

(t− s)
−q
m′(s)ds, t ∈ (t0, t0 + T ],

and Riemann - Liouville fractional derivative of order q ∈ (0, 1)

RL
t0
Dq
tm(t) =

d

dt

(

t0I
1−q
t m(t)

)

=
1

Γ (1 − q)

d

dt

∫ t

t0

(t− s)−qm(s)ds, t ∈ (t0, t0 + T ],

and Grünwald−Letnikov fractional derivative

GL
t0
Dqm(t) = lim

h→0

1

hq

[
t−t0
h

]
∑

r=0

(−1)r qCrm(t− rh), t ∈ (t0, t0 + T ],

where qCr = q(q−1)···(q−r+1)
r! , r ≥ 0 is an integer and [ t−t0

h
] denotes the integer part of the

fraction t−t0
h

and T ≤ ∞.

The point t0 is the lower limit of the fractional derivative. Note that, for vector valued

functions, the Caputo fractional derivative is taken component-wise.

Consider the space PC0 of all piecewise continuous functions φ : [−r, 0] → R
n with finite

number of points of discontinuity τ ∈ (−r, 0) at which

φ(τ) = lim
t→τ−0

φ(t),

endowed with the norm

‖φ‖0 = sup
t∈[−r,0]

{‖φ(t)‖ : φ ∈ PC0},
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where ‖.‖ is a norm in R
n.

In the case of the presence of any kind of impulses to the fractional differential equations,

the memory of the fractional derivative leads to considering two different types of equations:

- fractional derivative with fixed lower limit at the initial time (NIFrDDE):

c
t0
Dqx(t) = f(t, x(t), xρ(t,xt)), for t ∈

∞
⋃

k=0

(tk, sk+1],

x(t) = Φk(t, x(sk − 0)), for t ∈ (sk, tk], k = 1, 2, · · · ,

x(t0 + t) = φ(t), t ∈ [−r, 0],

(2.1)

where the function f : R+ × R
n × PC0 → R

n;

- fractional derivative with changed lower limit at the end of each interval of acting of the

impulse (NIFrDDE):

c
tk
Dqx(t) = f(t, x(t), xρ(t,xt)), for t ∈ (tk, sk+1], k = 0, 1, 2, · · · ,

x(t) = Φk(t, x(sk − 0)), for t ∈ (sk, tk], k = 1, 2, · · · ,

x(t0 + t) = φ(t), t ∈ [−r, 0],

(2.2)

where the function f : [0, s1]
⋃

∞
⋃

i=1

[ti, si+1] × R
n × PC0 → R

n.

In both cases, Φk : [sk, tk] × R
n → R

n (k = 1, 2, 3, · · · ), ρ : [0, s1]
⋃

∞
⋃

i=1

[ti, si+1] × PC0 →

[0,∞), φ ∈ PC0, r > 0 is a given number and the notation xt(s) = x(t+ s), s ∈ [−r, 0] is used,

i.e., xt ∈ PC0 represents the history of the state x from time t − r up to the present time t.

Also, for any t ≥ 0, we let xρ(t,xt)(s) = x(ρ(t, x(t + s))), s ∈ [−r, 0].

Remark 2.1 The functions Φk are called impulsive functions and the intervals (sk, tk],

k = 1, 2, · · · are called intervals of non-instantaneous impulses.

We introduce the following assumptions:

A1.1 The function f ∈ C([0,∞) × R
n × PC0,R

n) and f(t, 0, 0) = 0, for t ≥ 0.

A1.2 The function f ∈ C([0, s1]
⋃

∞
⋃

k=1

[tk, sk+1] × R
n × PC0,R

n) and f(t, 0, 0) = 0 for

t ∈ [0, s1]
∞
⋃

k=1

[tk, sk+1].

A2.1 The function ρ ∈ C([0,∞) × PC0,R) and t − r ≤ ρ(t, u) ≤ t, for u ∈ PC0 and

t ∈ [0,∞).

A2.2 The function ρ ∈ C([0, s1]
⋃

∞
⋃

k=1

[tk, sk+1] × PC0,R) and t − r ≤ ρ(t, u) ≤ t, for

u ∈ PC0 and t ∈ [0, s1]
∞
⋃

i=1

[ti, si+1].

A3.1 The functions Φk ∈ C1([sk, tk] × R
n,Rn), (k = 1, 2, 3, · · · ) and Φk(t, 0) = 0, for

t ∈ [sk, tk].

A3.2 The functions Φk ∈ C([sk, tk] × R
n,Rn), (k = 1, 2, 3, · · · ) and Φk(t, 0) = 0, for

t ∈ [sk, tk].

A4 The function φ ∈ PC0.

Remark 2.2 Any of the assumptions A2.1 or A2.2 guarantee the delay in the argument

of the unknown function in (2.2), i.e., the function ρ determines the state-dependent delay.
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Example 2.3 The function ρ(t, u) = t− cos2(u) satisfies the assumptions A2.1 and A2.2

with r = 1, i.e., t− 1 ≤ t− cos2(u) ≤ t.

Remark 2.4 Let x(t), with t ≥ t0, be a solution of (2.2) and t ∈
∞
⋃

k=0

[tk, sk+1] be a fixed

number. Define the function ψ(s) = x(t+ s), s ∈ [−r, 0]. Then, ψ0 = xt ∈ PC0 and

xρ(t,xt) = x(ρ(t, x(t + s))) = x(t+ (ρ(t, x(t+ s)) − t)) = ψ((ρ(t, ψ(s)) − t)) = ψ(ρ(t,ψ0)−t).

If any of the assumptions A2.1 or A2.1 is satisfied, then ψ ∈ PC0 and ρ(t, ψ0) − t ∈ [−r, 0].

Remark 2.5 Note that, for the NIFrDDE (2.1), the functions f and ρ have to be defined

for all t ≥ 0, in spite of the fact they only appear in the fractional differential equation (see

assumptions A1.1 and A2.1. With respect to the NIFrDDE (2.2), both functions are defined

only on the intervals of fractional differential equations (see assumptions A1.2 and A2.2).

Let J ⊂ R
+ be a given interval. We will use the following classes of functions

PC(J) = {u : J → R
n : u ∈ C(J \

∞
⋃

k=1

{sk},R
n) :

u(sk) = u(sk − 0) = lim
t↑sk

u(t) <∞, u(sk + 0) = lim
t↓sk

u(t) <∞, k : sk ∈ J},

NPC1(J) = {u : J → R
n : u ∈ PC(J), u ∈ C1(J ∩

(

[0, s1]
⋃

∪∞
k=1[tk, sk+1]

)

,Rn) :

u′(sk) = u′(sk − 0) = lim
t↑sk

u′(t) <∞, k : sk ∈ J}.

Define the sets:

K = {σ ∈ C(R+,R+) : strictly increasing and σ(0) = 0},

SA = {x ∈ R
n : ‖x‖ ≤ A}, where A > 0.

3 Definition of Practical Stability and Lyapunov Functions

We will consider the cases of fractional differential equations with non-instantaneous im-

pulses (2.1) and (2.2). Following the classical concept of the idea of practical stability (see [10]),

we will give a definition for various types of practical stability of the zero solution of NIFrDDE

(2.1) (respectively (2.2)). In the definition below, we denote by x(t; t0, φ) any solution of the

IVP for NIFrDDE (2.1) (respectively (2.2)).

Definition 3.1 The zero solution of the system of NIFrDDE (2.1) (respectively (2.2)) is

said to be

(S1) practically stable with respect to (λ,A) if there exists t0 ∈ [0, s0)
⋃

∞
⋃

k=1

[tk, sk) such

that, for any φ ∈ PC0, inequality ‖φ‖0 < λ implies ‖x(t; t0, φ)‖ < A, for t ≥ t0, where the

positive constants λ,A (λ < A) are given;

(S2) practically quasi stable with respect to (λ,B, T ) if there exists an initial time t0 ∈

[0, s0)
⋃

∞
⋃

k=1

[tk, sk) such that, for any φ ∈ PC0, inequality ‖φ‖0 < λ implies ‖x(t; t0, φ)‖ < B,

for t ≥ t0 + T , where the positive constants λ,B (λ < B) and T are given.

In connection with our stability study, we will use Lyapunov type functions:

Definition 3.2 ([2]) Let α < β ≤ ∞ be given numbers and ∆ ⊂ R
n be a given set. We

say that the function V : [α− r, β] × ∆ → R+ belongs to the class Λ([α− r.β],∆) if
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- The function V is continuous on [α, β)/
∞
⋃

k=1

{sk}×∆ and it is locally Lipschitz with respect

to its second argument; - For each sk ∈ (α, β) and x ∈ ∆, there exist finite limits

V (sk, x) = V (sk − 0, x) = lim
t↑sk

V (t, x) and V (sk + 0, x) = lim
t↓sk

V (t, x).

In this paper we will use three main type derivatives of Lyapunov functions V ∈ Λ([t0 − r,

t0 + T ),∆), 0 < T ≤ ∞, among the solutions of NIFrDDE (2.1) (respectively (2.2)):

- Caputo fractional derivative given t ∈ (
∞
⋃

k=0

(tk, sk+1]) ∩ [t0, t0 + T ),

c
t0
DqV (t, x(t)) =

1

Γ (1 − q)

∫ t

t0

(t− s)−q
d

ds

(

V (s, x(s))
)

ds, (3.1)

where x(t) ∈ ∆, t ∈ [t0 − r, t0 + T ), is a solution of NIFrDDE (2.1).

- Dini fractional derivative given t ∈ (tk, sk+1] ∩ [t0, t0 + T ), k = 0, 1, 2, · · · ,

tkD
q

(2.2)V (t, ψ(0), ψ) = lim sup
h→0

1

hq

[

V (t, ψ(0)) −

[
t−tk
h

]
∑

r=1

(−1)r+1
qCrV (t− rh, ψ(0)

− hqf(t, ψ(0), ψ(ρ(t,ψ0)−t)))
]

,

(3.2)

where ψ ∈ PC([−r, 0],∆), ψ0(s) = ψ(s) and ψ(ρ(t,ψ0)−t) = ψ(ρ(t, ψ(s)) − t), for s ∈ [−r, 0].

Note that, if condition (A2.2) is satisfied, then ρ(t, ψ(s)) − t ∈ [−r, 0] and ψρ(t,ψ(s))−t is

well defined.

- Caputo fractional Dini derivative given t ∈ (tk, sk+1] ∩ [t0, t0 + T ), k = 0, 1, 2, · · · ,

c
tk
Dq

(2.2)V (t, ψ(0), ψ; tk, φ(0)) = lim sup
h→0+

1

hq

{

V (t, ψ(0)) − V (tk, φ(0))

−

[
t−tk
h

]
∑

r=1

(−1)r+1
qCr

(

V (t− rh, ψ(0) − hqf(t, ψ(0), ψρ(t,ψ0)−t)) − V (tk, φ(0))
)

}

,

(3.3)

where φ, ψ ∈ PC([−r, 0],∆).

Expression (3.3) is equivalent to

c
tk
Dq

(2.2)V (t, ψ(0), ψ; tk, φ(0))

= lim sup
h→0+

1

hq

{

V (t, ψ(0)) +

[
t−tk
h

]
∑

r=1

(−1)r qCrV (t− rh, ψ(0) − hqf(t, ψ(0), ψρ(t,ψ0)−t)

}

−
V (tk, φ(0))

(t− tk)qΓ(1 − q)
.

(3.4)

Remark 3.3 The relation between the Dini fractional derivative defined by (3.2) and the

Caputo fractional Dini derivative defined by (3.4) is given by

c
tk
Dq

(2.2)V (t, ψ(0), ψ; tk, φ(0)) = tkD
q

(2.2)V (t, ψ(0), ψ) −
V (tk, φ(0))

(t− tk)qΓ(1 − q)
.

Example 3.4 Let n = 1 and V (t, x) = m(t) x2, where m ∈ C1(R+,R+).

Case 1 Caputo fractional derivative:

c
tk
DqV (t, x(t)) =

1

Γ(1 − q)

∫ t

tk

m′(s)x2(s) + 2m(s)x(s)x′(s)

(t− s)q
ds, t ∈ (tk, sk+1], k = 0, 1, · · · ,
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where x(t) = x(t; t0, φ), t ≥ t0 is a solution of (2.1).

Case 2 Dini fractional derivative.

tkD
q

(2.2)V (t, ψ(0), ψ) = 2ψ(0) m(t)f(t, ψ(0), ψρ(t,ψ0)−t) + (ψ(0))2 GL
tk
Dqm(t), (3.5)

where ψ ∈ PC([−r, 0], Rn).

Case 3 Caputo fractional Dini derivative: Let ψ ∈ PC([−r, 0],Rn). Then

c
tk
Dq

(2.2)V (t, ψ(0), ψ; tk, φ(0))

= lim sup
h→0+

1

hq

{

m(t)ψ2(0)) −m(tk)φ
2(0))

−

[
t−tk
h

]
∑

r=1

(−1)r+1

(

q

r

)

[(

m(t− rh)
(

ψ(0) − hqf(t, ψ(0), ψρ(t,ψ0)−t)
)2

−m(tk)φ
2(0)

]

}

= lim sup
h→0+

1

hq

{

(ψ(0))2
[
t−tk
h

]
∑

r=0

(−1)r qCrm(t− rh) −m(tk)φ
2(0))

[
t−tk
h

]
∑

r=0

(−1)r qCr

− 2ψ(0)hqf(t, ψ(0), ψρ(t,ψ0)−t)

[
t−tk
h

]
∑

r=0

(−1)r qCrm(t− rh)

+ 2ψ(0)hqf(t, ψ(0), ψρ(t,ψ0)−t)m(t)

+ (ψ(0))2h2qf2(t, ψ(0), ψρ(t,ψ0)−t)

[
t−tk
h

]
∑

r=1

(−1)r+1
qCr

(

m(t− rh)

}

= 2ψ(0)m(t)f(t, ψ(0), ψρ(t,ψ0)−t) + (ψ(0))2 GL
tk
Dqm(t) −

(φ(0))2m(tk)

(t− tk)qΓ(1 − q)
. (3.6)

4 Main Results About Practical Stability

4.1 Fixed lower limit of the fractional derivative

Consider the initial value problem for the nonlinear system of non-instantaneous impulsive

Caputo fractional differential equations with state dependent delay (2.1). We will study practi-

cal stability by the fractional extension of the Razumikhin method. In [5], some stability results

for delay fractional differential equations (no impulses of any kind) are obtained, by applying

the Caputo fractional derivative of the Lyapunov function and the generalized Razumikhin

condition

sup
Θ∈[−r,t]

V (Θ, x(Θ)) = V (t, x(t)). (4.1)

Remark 4.1 Note that condition (4.1) is restrictive, but it is necessary because of the ap-

plication of Caputo fractional derivative of the Lyapunov function and the fractional derivative

with fixed lower limit in (2.1).

We will give sufficient conditions for practical stability of the zero solution of NFrDDE (2.1)

by applying the Caputo fractional derivative of the Lyapunov function.

Theorem 4.2 (Practical stability for the Caputo fractional derivative) Let assumptions

A1.1, A2.1, A3.1, and A4 be satisfied. Assume that there exist a number t0 ∈ [0, s1) and a
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continuously differentiable Lyapunov function V ∈ Λ([t0 − r,∞),Rn), with V (t, 0) = 0, such

that

(i) the inequalities

α1(‖x‖) ≤ V (t, x), for t ≥ t0, x ∈ R
n,

V (t, x) ≤ α2(‖x‖), for t ≥ t0, x ∈ Sλ

hold, where αi ∈ K, i = 1, 2, and λ > 0 is a given number.

(ii) for any t ∈
∞
⋃

k=0

(tk, sk+1] and for any solution x(t) = x(t; t0, φ) of (2.1), with φ ∈ PC0

such that

sup
Θ∈[t0−r,t]

V (Θ, x(Θ)) = V (t, x(t)),

the inequality C
t0
Dq
tV (t, x(t)) ≤ 0 holds.

(iii) for any k = 1, 2, · · · , the inequality

V (t,Φk(t, y)) ≤ V (sk − 0, y), t ∈ (sk, tk+1], y ∈ Sβ

holds with β = α2(λ).

Then, the zero solution of (2.1) is practically stable w.r.t. (λ,A), with A = α−1
1 (α2(λ)).

Proof Let x(t) = x(t; t0, φ) be a solution of NIFrDDE (2.1), with ‖φ‖0 < λ. Define the

function

v(t) = sup
s∈[t0−r,t]

V (s, x(s)), t ≥ t0.

The function v is nondecreasing. According to condition (i), the inequalities

V (t0 + s, x(t0 + s)) = V (t0 + s, φ(s)) ≤ α2(‖φ(s)‖) ≤ α2(λ)

hold for s ∈ [−r, 0], i.e., v(t0) ∈ Sβ . We will prove that

v(t) = v(t0), for t ≥ t0. (4.2)

Assume that (4.2) is not true.

Case 1 There exists a natural number p such that v(t) = v(t0) ∈ Sβ , for t ∈ [t0, sp],

but v(t) > v(t0), for t ∈ (sp, sp + ε], where ε > 0 is a small enough number. Then, given

t∗ ∈ (sp, sp + ε], we get v(t∗) > v0 and V (sp, x(sp − 0)) ∈ Sβ . According to condition (iii) we

have

v(t∗) = sup
s∈[t0−r,t∗]

V (s, x(s)) = sup
s∈[t0−r,sp]

V (s, x(s)) = v(sp) = v(t0).

This proves this case is impossible.

Case 2 There exists a point T > t0, T ∈
∞
⋃

k=0

(tk, sk+1), such that v(t) = v(t0), for

t ∈ [t0, T ], but v(t) > v(t0) and v is strictly increasing for t ∈ (T, T + ε], where ε > 0 is a

small enough number. Then, v(s) = v(t0) ≥ V (s, x(s)), for s ∈ [t0, T ], and v(t) = V (t, x(t)),

for t ∈ (T, T + ε]. Therefore, for t ∈ (T, T + ε], the equality

sup
Θ∈[t0−r,t]

V (Θ, x(Θ)) = v(t) = V (t, x(t))

holds, and according to condition (ii), the inequality C
t0
Dq
tV (t, x(t)) ≤ 0 holds. Then, for any

t ∈ (T, T + ε], we obtain

c
t0
Dqv(t) =

1

Γ (1 − q)

∫ t

t0

v′(s)

(t− s)
q ds ≤

1

Γ (1 − q)

∫ t

t0

V ′(s, x(s))

(t− s)
q ds =C

t0
Dq
tV (t, x(t)) ≤ 0,
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because v(s) ≥ V (s, x(s)), for s ∈ [t0, T + ε], and
∫ t

t0

v′(s)

(t− s)q
ds =

∫ t

t0

v′(s) − V ′(s, x(s))

(t− s)q
ds+

∫ t

t0

V ′(s, x(s))

(t− s)q
ds

= −
v(t0) − V (t0, x(t0))

(t− t0)
q − q

∫ t

t0

v(s) − V (s, x(s))

(t− s)
q+1 ds+

∫ t

t0

V ′(s, x(s))

(t− s)
q ds. (4.3)

According to the assumption, we get v′(t) = 0, for t ∈ [t0, T ], and v′(t) > 0, for t ∈ (T, T + ε].

Then, for any t ∈ (T, T + ε], we obtain

c
t0
Dqv(t) =

1

Γ (1 − q)

∫ t

t0

v′(s)

(t− s)q
ds =

1

Γ (1 − q)

∫ t

T

v′(s)

(t− s)q
ds > 0, t ∈ (T, T + ε],

a contradiction. This proves (4.2).

From (4.2) and condition (i), we get

α1(‖x(t)‖) ≤ V (t, x(t)) ≤ v(t) = v(t0) = sup
s∈[t0−r,t0]

V (s, φ(t0 + s))

≤ sup
s∈[t0−r,t0]

α2(‖φ(t0 + s)‖) ≤ α2(λ), t ≥ t0.

�

4.2 Fractional equations with changed lower limit of the derivative

Consider the initial value problem for a nonlinear system of non-instantaneous impulsive

Caputo fractional differential equations with state dependent delay (2.2). First we give compari-

son results (known in the literature ) by Lyapunov functions for systems of fractional differential

equations with state dependent delays (no impulses)

c
aD

qx(t) = f(t, x(t), xρ(t,xt)), for t ∈ (a, a+ Θ],

x(a+ t) = φ(t), t ∈ [−r, 0],
(4.4)

where 0 < Θ ≤ ∞.

Lemma 4.3 ([1] Caputo fractional Dini derivative) Assume that

1. The function x∗(t) = x(t; a, φ) ∈ ∆, ∆ ⊂ R
n is a solution of (4.4), defined for

t ∈ [a, a+ Θ], Θ > 0.

2. The scalar fractional differential equation c
aD

qu = G(t, u), for t ∈ (a, a + Θ], with

u(a) = u0, where G ∈ C([a, a+ Θ] × R,R+), has a solution u(t; a, u0).

3. The function V ∈ Λ([a− r, a+ Θ],∆) and, for any point t ∈ [a, a+ Θ] such that

V (t, x∗(t)) = sup
s∈[t−r,t]

V (s, x∗(s)),

the inequality
c
aD

q

(4.4)V (t, x∗(t), x∗; a, φ(0)) ≤ G(t, V (t, x∗(t))) (4.5)

holds.

Then, the inequality sup
s∈[−r,0]

V (a+s, φ(s)) ≤ u0 implies V (t, x∗(t)) ≤ u∗(t), for t ∈ [a, a+Θ].

Lemma 4.4 ([1] Dini fractional derivative) Assume the conditions of Lemma 4.3 are

satisfied, where inequality (4.5) is replaced by

c
aD

q

(4.4)V (t, x∗(t), x∗) ≤ G(t, V (t, x∗(t))). (4.6)
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Then, the inequality sup
s∈[−r,0]

V (a+ s, φ(s)) ≤ u0 implies V (t, x∗(t)) ≤ u∗(t), for t ∈ [a, a+ Θ].

We study the practical stability using the following scalar comparison differential equation

with non-instantaneous impulses (NIFrDE):

c
tk
Dqu(t) = g(t, u), for t ∈ (tk, sk+1], k = 0, 1, 2, · · · ,

u(t) = Ψk(t, u(sk − 0)), for t ∈ (sk, tk], k = 1, 2, · · · ,
(4.7)

where u ∈ R, g : [0, s1]
∞
⋃

k=1

[tk, sk+1] × R → R, and Ψk : [sk, tk] × R → R (k = 1, 2, 3, · · · ).

We introduce the following assumptions:

H1 The function g ∈ C([0, s1]
⋃

∞
⋃

k=1

[tk, sk+1] × R,R+) and g(t, 0) = 0.

H2 For all natural numbers k, the functions Ψk ∈ C([sk, tk] × R,R) are such that

Ψk(t, 0) = 0, for t ∈ [sk, tk], and Ψk(t, u) ≤ Ψk(t, v), for u ≤ v, t ∈ [sk, tk].

H3 There exists a positive number K such that, for any k = 1, 2, · · · , the inequality

|Ψk(sk, u)| < K holds for |u| < K.

We will study the connection between the practical stability properties of the system

NIFrDDE (2.2) and the practical stability properties of the scalar NIFrDE (4.7).

Theorem 4.5 (for the Caputo fractional Dini derivative) Let the following conditions be

satisfied:

1. Assumptions A1.2, A2, A3.2, A4 and H1–H3 are fulfilled.

2. There exist a point t0 ∈ [0, s1), a function V ∈ Λ([t0 − r,∞),Rn), and

(i) the inequality

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), x ∈ SA, t ∈ [t0 − r,∞)

holds, where a, b ∈ K, A = b−1(K), and K is the number defined in condition (H3);

(ii) for any functions ψ, φ ∈ PC0 such that ‖ψ‖0 ∈ SA and ‖φ‖0 ∈ SA, and for any point

t ∈ (tk, sk+1), k = 0, 1, 2, · · · , such that V (t + τ, ψ(τ)) ≤ V (t, ψ(0)), for all τ ∈ [−r, 0], the

inequality
c
tk
Dq

(2.2)V (t, ψ(0), ψ; tk, φ(0)) ≤ g(t, V (t, ψ(0)))

holds;

(iii) for any k = 1, 2, · · · , the inequality

V (t,Φk(t, y)) ≤ Ψk(t, V (sk − 0, y)), t ∈ (sk, tk+1], y ∈ SA

holds.

3. There exists a constant λ, with 0 < λ < A and a(λ) ≤ b(A), such that the solution of

(4.7), with an initial value u0 : |u0| < a(λ), satisfies the inequality |u(t; t0, u0)| < b(A), for

t ≥ t0, where t0 is defined in condition 2.

Then, the zero solution of (2.2) is practically stable w.r.t. (λ,A).

Proof Choose the initial function φ ∈ PC0 with ‖φ‖0 < λ, and consider the solution

x(t) = x(t; t0, φ) of system (2.2) for the initial time t0 defined in condition 2. Let u∗0 =

sup
t∈[t0−r,t0]

V (t, φ(t − t0)). From the choice of the initial function φ and the properties of the

function b(u), applying condition 2(i), we get

u∗0 = sup
t∈[t0−r,t0]

V (t, φ(t− t0)) ≤ a(‖φ‖0) < a(λ).



No.5 R. Agarwal et al: NON-INSTANTANEOUS IMPULSIVE FRACTIONAL DIFFERENTIAL 1709

Consider the solution u∗ of (4.7) with the initial value u0. According to condition 3, the

inequality

|u∗(t)| < b(A) for t ≥ t0 (4.8)

holds. Let p be a fixed nonnegative integer and t ∈ (tp, sp+1) be a given number such that

x(t + s) ∈ SA, for all s ∈ [−r, 0], and V (t, x(t)) = sup
s∈[t−r,t]

V (s, x(s)). Denote ψ(s) = x(t + s).

Then, ‖ψ‖0 ∈ SA, and from the choice of t, we get

V (t+ τ, ψ(τ)) = V (t+ τ, x(t + τ)) ≤ V (t, x(t)) = V (t, ψ(0)),

for τ ∈ [−r, 0]. According to condition 2(ii) of Theorem 4.2, we get

c
tp
Dq

(2.2)V (t, ψ(0), ψ; tp, φ(0)) ≤ g(t, V (t, ψ(0))),

with φ(0) = x(tp), i.e., condition 3 of Lemma 4.3 is satisfied with a = tp, G(t, u) = g(t, u) and

φ(0) = x(tp), Θ = sp+1 − tp.

We will prove that

V (t, x(t)) < b(A), t ≥ t0. (4.9)

For t = t0 we get

V (t0, x(t0)) ≤ sup
t∈[t0−r,t0]

V (t, φ(t − t0)) ≤ a(λ) < b(A).

Assume (4.9) is not true and let t∗ = inf{t > t0 : V (t, x(t)) ≥ b(A)}.

Case 1 Suppose that t∗ ∈ (tp, sp+1), for some non-negative integer p. Then, the function

x is continuous at t∗ and V (t, x(t)) < b(A), for t ∈ [t0, t
∗), and V (t∗, x(t∗)) = b(A).

Case 1.1 Assume that p = 0. From condition 2(i) and the choice of the initial function,

we have

b(‖x(t)‖) ≤ V (t, x(t) ≤ b(A),

i.e., x(t) ∈ SA, for t ∈ [t0 − r, t∗]. Also,

V (t∗, x(t∗)) = b(A) > a(λ) ≥ sup
t∈[t0−r,t0]

V (t, φ(t − t0))

≥ sup
t∈[t∗−r,t0]

V (t, φ(t− t0)) > V (t, x(t)),

for t ∈ [t∗−r, t0]. Then, x(t∗+s) ∈ SA, for all s ∈ [−r, 0], and V (t∗, x(t∗)) = sup
s∈[t∗−r,t∗]

V (s, x(s)).

Therefore, the conditions of Lemma 4.3 are satisfied for a = t0, G(t, u) = g(t, u), φ(0) = x(t0),

and Θ = t∗ − t0. Then, V (t, x(t)) ≤ u∗(t), for t ∈ [t0, t
∗], and according to condition 2(i) of

Theorem 4.2, we get

b(A) = b(‖x(t∗)‖ ≤ V (t∗, x(t∗)) ≤ u∗(t) < b(A).

This contradiction proves the assumption is not true.

Case 1.2 Assume now that p ≥ 1. From condition 2(i) we have

b(‖x(t)‖) ≤ V (t, x(t) ≤ b(A).

Then, x(t∗ + s) ∈ SA, for all s ∈ [−r, 0], and V (t∗, x(t∗)) = sup
s∈[t∗−r,t∗]

V (s, x(s)). Therefore, the

conditions of Lemma 4.3 are satisfied for a = tp, G(t, u) = g(t, u), φ(0) = x(tp), and Θ = t∗−tp.
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Then, V (t, x(t)) ≤ u(t), for t ∈ [tp, t
∗]. Thus we get

b(A) = V (t∗, x(t∗)) ≤ u(t∗) < b(A).

This contradiction proves the assumption is not true.

Case 2 Suppose that t∗ ∈ (sp, tp), for some natural number p. From condition 2(i) it

follows that

b(‖x(t∗)‖) ≤ V (t∗, x(t∗) ≤ b(A),

i.e., x(t∗) ∈ SA. Then, from condition 2(iii), we get

V (t∗, x(t∗)) = V (t∗,Φp(t
∗, x(sp − 0))) ≤ Ψp(t

∗, V (sp − 0, x(sp − 0))).

From condition (H3), using the inequality V (sp − 0, x(sp − 0)) < b(A) = K, we get the contra-

diction

b(A) ≤ Ψp(t
∗, V (sp − 0, x(sp − 0))) < K = b(A).

Case 3 Finally, suppose that t∗ = sp, for some natural number p.

Case 3.1 Let V (t, x(t)) < b(A), for t ∈ [t0, sp), and V (s+ p− 0, x(sp− 0)) = b(A). Thus,

the inclusion x(t) ∈ SA, for t ∈ [t0, sp], is valid and as in the case 1 we get a contradiction.

Case 3.2 Let V (t, x(t)) < b(A) for t ∈ [t0, sp] and V (sp + 0, x(sp + 0)) ≥ b(A). Thus,

from condition 2(i), we get V (sp − 0, x(sp − 0)) < b(A) = K. From condition (H3) we have

Ψp(sp + 0, V (sp − 0, x(sp − 0))) < K which leads to the contradiction

b(A) ≤ V (sp + 0, x(sp + 0)) = V (sp + 0,Φp(sp + 0, x(sp − 0)))

≤ Ψp(sp + 0, V (sp − 0, x(sp − 0))) < K = b(A).

From (4.9) and condition 3(i) we obtain the claim in Theorem 4.5. �

Remark 4.6 Note that, in Theorem 4.5, the condition in (ii) is similar to the Razumikhin

condition and it is not as restrictive as the condition used in Theorem 4.2 (we note the type of

the fractional derivatives used in (2.1) and (2.2)).

Theorem 4.7 (for the Dini fractional derivative) Let the conditions of Theorem 4.5 be

satisfied but replace condition 2(ii) by:

2(ii) for any function ψ ∈ PC0 with ‖ψ‖0 ∈ SA, and any point t ∈ (tk, sk+1), k = 0, 1, 2, · · · ,

such that V (t+ τ, ψ(τ)) ≤ V (t, ψ(0)), for τ ∈ [−r, 0], the inequality

c
tk
Dq

(2.2)V (t, ψ(0), ψ) ≤ g(t, V (t, ψ(0)))

holds. Then, the zero solution of (2.2) is practically stable w.r.t. (λ,A).

The proof of Theorem 4.7 is similar to that in Theorem 4.5 where instead of Lemma 4.3

we apply Lemma 4.4.

Theorem 4.8 Let the following conditions be satisfied:

1. Assumptions A1.2, A2, A3.2, A4 and H1–H3 are fulfilled.

2. There exist a point t0 ∈ [0, s1) and a function V ∈ Λ([t0 − r,∞),Rn) such that

(i) the inequality

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), x ∈ R
n, t ∈ [t0 − r,∞)

holds, where a, b ∈ K;
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(ii) for any function ψ ∈ PC0 and any point t ∈ (tk, sk+1), k = 0, 1, 2, · · · , such that

V (t+ τ, ψ(τ)) ≤ V (t, ψ(0)), for τ ∈ [−r, 0], the inequality

c
tk
Dq

(2.2)V (t, ψ(0), ψ; tk, φ(0)) ≤ g(t, V (t, ψ(0)))

holds;

(iii) for any k = 1, 2, · · · , the inequality

V (t,Φk(t, y)) ≤ Ψk(t, V (sk − 0, y)), t ∈ (sk, tk+1], y ∈ R
n

holds.

3. There exist positive constants λ, T with 0 < λ < B and a(λ) ≤ b(B), where B = b−1(K),

and K is defined in condition (H3), such that the solution of (4.7), with the initial condition

u0 ∈ R+ : u0 < a(λ), satisfies the inequality |u(t; t0, u0)| < b(B), for t ≥ t0 + T , where t0 is

defined in condition 2.

Then, the zero solution of (2.2) is practically quasi stable w.r.t. (λ,B, T ).

Proof Choose the initial function φ ∈ PC0 with ‖φ‖0 < λ, and consider the solution

x(t) = x(t; t0, φ) of system (2.2) for the initial time t0 defined in condition 2. Let

u0 = sup
t∈[t0−r,t0]

V (t, φ(t− t0)).

From the choice of the initial function φ and the properties of the function b, applying condition

2(i), we get

u0 = sup
t∈[t0−r,t0]

V (t, φ(t − t0)) ≤ a(‖φ‖0) < a(λ).

Consider the solution u(t) = u(t; t0, u0) of (4.7). Therefore, the function u satisfies

|u(t; t0, u0)| < b(B), for t ≥ t0 + T, (4.10)

for t ≥ t0 with u0 = u∗0, where u∗(t) = u(t; t0, u
∗
0) is a solution of (4.7). According to condition

2(ii), condition 4(i) of Lemma 4.3 is satisfied for the solution x (with Θ = ∞). From Lemma

4.3, with Θ = ∞, it follows that the inequality V (t, x(t)) ≤ u∗(t), for t ≥ t0, holds. From

condition 2(i) and inequality (4.10) we get

b(‖x(t)‖) ≤ V (t, x(t)) ≤ u∗(t) < b(B),

for t ≥ t0 + T . �

In the case of the application of the Dini fractional derivative we obtain:

Theorem 4.9 Let the conditions of Theorem 4.8 be satisfied with replacing the condition

2(ii) by:

2(ii) for any function ψ ∈ PC0 with ‖ψ‖0 ∈ SA, and any point t ∈ (tk, sk+1), k = 0, 1, 2, · · · ,

such that V (t+ τ, ψ(τ)) ≤ V (t, ψ(0)), for τ ∈ [−r, 0], the inequality

c
tk
Dq

(2.2)V (t, ψ(0), ψ) ≤ g(t, V (t, ψ(0)))

holds.

Then, the zero solution of (2.2) is practically quasi stable w.r.t. (λ,B, T ).

The proof of Theorem 4.9 is similar to that in Theorem 4.8, where instead of Lemma 4.3,

we apply Lemma 4.4.
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Remark 4.10 Note that condition (H3) of Theorems 4.5, 4.8, and 4.9, could be replaced

by the condition:

For all k = 1, 2, · · · , the functions Ψk satisfy Ψk(t, u) ≤ u, for t ∈ [sk, tk] and u ∈ R.

Remark 4.11 The point t0 in the conditions of all the above Theorems is from the interval

[0, s1) but one can modify the proofs so it can be from any interval [tk, sk+1), k = 1, 2, · · · .

4.3 Some examples

We will consider several particular examples and apply our results to illustrate the practical

stability properties.

Example 4.12 (constant delay) Let sk = 2k + 1, tk = 2k, for k = 0, 1, 2, · · · , and r = 1.

Consider the IVP for the nonlinear system of non-instantaneous impulsive fractional differential

equations with constant delay:

c
2kD

qx(t) = y(t)
t

1 + t

(

x(t) + y2(t)
)

+ e−ty(t− 1), for t ∈ (2k, 2(k + 1)], k = 0, 1, 2, · · · ,

c
2kD

qy(t) = −0.5x(t)
t

1 + t

(

x2(t) + y2(t)
)

+ e−tx(t− 1),

for t ∈ (2k, 2(k + 1)], k = 0, 1, 2, · · ·

x(t) = −

√

0.5

Eq(2)
sin(t)x(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 1, 2, · · · ,

y(t) =

√

0.5

Eq(2)
sin(t)y(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 1, 2, · · · ,

x(s) = φ1(s), y(s) = φ2(s) s ∈ [−1, 0], (4.11)

where x, y ∈ R, a, b ∈ (−1, 1) are given constants. In this particular case,

ρ(t, x(t + s), y(t+ s)) ≡ t− 1, s ∈ [−1, 0],

and the conditions A2.1 and A2.2 are satisfied. Therefore,

xρ(t,xt,yt)(s) = x(ρ(t, x(t + s)), y(t+ s))) = x(t− 1) and yρ(t,xt,yt)(s) = y(t− 1),

for s ∈ [−1, 0]. Let V (t, x, y) = 1.5(x2 + 2y2). Then,

1.5(x2 + y2) ≤ V (t, x, y) ≤ 3(x2 + y2),

i.e., b(s) = 1.5s2 and a(s) = 3s2. Let t ∈
∞
⋃

k=0

(2k, 2k + 1] and ψ = (ψ1, ψ2) ∈ PC0 be such that

V (t, ψ1(0), ψ2(0)) > V (t+ s, ψ1(s), ψ2(s)),

for s ∈ [−1, 0), i.e.,

ψ2
1(0) + 2ψ2

2(0) > ψ2
1(s) + 2ψ2

2(s), s ∈ [−1, 0).

In this case,

ψ1ρ(0,(ψ1)0,(ψ2)0)
(s) = ψ1(−1) and ψ2ρ(0,(ψ1)0,(ψ2)0)

(s) = ψ2(−1),

for s ∈ [−1, 0]. Then, according to Example 3.4, for m(t) ≡ 1, we obtain

c
2kD

q

(4.11)V (t, ψ1(0), ψ2(0), ψ1, ψ2; tk, φ1(0), φ1(0))

= 1.5 c
2kD

q

(4.11)(ψ
2
1) + 3 c

2kD
q

(4.11)(ψ
2
2)
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= 3e−t
(

ψ1(0)(ψ1)ρ(0,(ψ1)0,(ψ2)0)(s) + 2ψ2(0)(ψ2)ρ(0,(ψ1)0,(ψ2)0)(s)
)

≤ 1.5e−t
(

ψ2
1(0) + (ψ1(−1))2 + 2ψ2

2(0) + 2(ψ2(−1))2
)

≤ 3e−t
(

ψ2
1(0) + 2ψ2

2(0)
)

= 2V (t, ψ1(0), ψ2(0)). (4.12)

For any t ∈ (2k + 1, 2k + 2], k = 0, 1, 2, · · · , x, y ∈ R, we have

V

(

t,−

√

0.5

Eq(2)
sin(t)x,

√

0.5

Eq(2)
sin(t)y

)

=
0.5

Eq(2)
sin2(t)1.5

(

x2 + 2y2
)

≤
0.5

Eq(2)
sin2(t)V (2k + 1 − 0, x, y)

≤
0.5

Eq(2)
V (2k + 1 − 0, x, y). (4.13)

Consider the IVP for the scalar fractional differential equation with non-instantaneous impulses

c
2kD

qu(t) = 2u, for t ∈ (2k, 2k + 1], k = 0, 1, · · ·

u(t) =
0.5

Eq(2)
u(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 0, 1, 2, · · · ,

u(t0) = u0,

(4.14)

It has a solution (see Figure 1)

u(t) =















u0Eq(2t
q), if t ∈ (0, 1]

0.5ku0Eq(2(t− 2k)q), if t ∈ (2k, 2k + 1], k = 1, 2, · · ·

0.5ku0, if t ∈ (2k − 1, 2k], k = 1, 2, · · ·

If λ = 1/
√

3Eq(2) then, for |u0| < a(λ) = 3λ2 = 1
Eq(2)

≈ 0.00917929, we have |u(t)| ≤

0.5
t−1
2 →t→∞ 0.

u

u

u

E

Figure 1 Example 4.12. Graph of the solution of (4.13) for different initial values

Now choose A such that A >
√

2/(3Eq(2)). According to Theorem 4.5, the solution of

(4.11) is practically stable w.r.t. the couple (1/
√

3Eq(2),
√

2/(3Eq(2))), i.e., if

‖φ1‖0 + ‖φ2‖0 <
1

√

3Eq(2)
,
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then

‖(x(t), y(t))‖ <

√

2

3Eq(2)
.

Let, for example, q = 0.5 and the initial functions φ1(s) = φ2(s) = 0.2(1 + sin(s)), s ∈ [−1, 0],

i.e.,

‖φ1‖0 + ‖φ1‖1 <
1

√

3E0.5(2)
≈ 0.055315.

The solution of the system (4.11) with these particular initial functions φ1(s) = φ2(s) = 0.2(1+

sin(s)), s ∈ [−1, 0] is shown in Figure 2.

Figure 2 Example 4.12. Graph of the solution of (4.11)

Now, let change the impulsive functions in (4.11) to other ones, for example, let the impul-

sive conditions of the system (4.11) be changed by

x(t) = −tx(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 1, 2, · · · ,

y(t) = ty(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 1, 2, · · · .
(4.15)

Figure 3 Example 4.12. Graph of the solution of (4.11) for large impulsive functions
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Note the impulsive functions −tx and ty do not satisfy the conditions of Theorems 4.5, 4.7,

and 4.8, and as can be seen from Figure 3, the system (4.11) is not practically stable. Thus,

condition (iii) is not only sufficient but also it is necessary to assure the practical stability for

the system.

Example 4.13 (variable time delay) Let sk = 2k + 1, tk = 2k for k = 0, 1, 2, · · · ,

and r = 1. Consider the initial value problem for the nonlinear system of non-instantaneous

impulsive fractional differential equations with time variable delay:

c
2kD

qx(t) = y(t)
t

1 + t

(

x(t) + y2(t)
)

+ e−ty(t− sin2(t)),

for t ∈ (2k, 2k + 1], k = 0, 1, · · ·

c
2kD

qy(t) =
−x(t)

2

t

1 + t

(

x2(t) + y2(t)
)

+ e−tx(t− sin2(t)),

for t ∈ (2k, 2k + 1], k = 0, 1, · · ·

x(t) = −

√

0.5

Eq(2)
sin(t)x(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 1, 2, · · · ,

y(t) =

√

0.5

Eq(2)
sin(t)y(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 1, 2, · · · ,

x(s) = φ1(s), y(s) = φ2(s) s ∈ [−1, 0],

(4.16)

where x, y ∈ R.

In this partial case,

ρ(t, x(t+ s), y(t+ s)) ≡ t− sin2(t), s ∈ [−1, 0],

and the assumptions A2.1 and A2.2 are satisfied, with r = 1 (see Figure 4).

t

t

t

t

Figure 4 Example 4.13. Graph of the delay in (4.16)

Therefore,

xρ(t,xt,yt)(s) = x(ρ(t, x(t + s)), y(t+ s))) = x(t− sin2(t))

and

yρ(t,xt,yt)(s) = y(t− sin2(t)), for s ∈ [−1, 0].



1716 ACTA MATHEMATICA SCIENTIA Vol.41 Ser.B

Let V (t, x, y) = 1.5(x2 + 2y2). Similar to Example 4.12 and (4.12) and (4.13), we prove

the validity of Conditions 2(ii) and 2(iii) of Theorem 4.5 and the comparison scalar equation is

also (4.14). According to Theorem 4.5, the solution of the system (4.16) is practically stable.

Let for example q = 0.5 and the initial functions φ1(s) = φ2(s) = 0.2(1+sin(s)), s ∈ [−1, 0],

i.e.,

‖φ1‖0 + ‖φ1‖1 <
1

√

3E0.5(2)
≈ 0.055315.

The solution of the system (4.16) for these particular initial functions is shown in Figure 5.

Figure 5 Example 4.13. Graph of the solution of (4.16) with time variable delay

Similar to Example 4.12, we change the impulsive functions in (4.16) by othr ones. For

example, let the impulsive conditions of the system (4.16) be changed by

x(t) = −tx(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 1, 2, · · · ,

y(t) = ty(2k − 1 − 0), for t ∈ (2k − 1, 2k], k = 1, 2, · · · .
(4.17)

Figure 6 Example 4.13. Graph of the solution of (4.16) with large impulsive functions

The impulsive functions −tx and ty do not satisfy the conditions of Theorems 4.5, 4.7, and
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4.8, and as can be seen from Figure 6 the system (4.16) is not practically stable. Therefore,

condition (iii) for the impulsive functions is not only sufficient but also it is necessary to assure

the practical stability for the system.

Example 4.14 (state dependent delay) Let sk = 2k + 1, tk = 2k for k = 0, 1, 2, · · · ,

and r = 1. Consider the initial value problem for the nonlinear system of non-instantaneous

impulsive fractional differential equations with time variable delay

c
2kD

qx(t) = y(t)
t

1 + t

(

x(t) + y2(t)
)

+ e−tyρ(t,x(t),y(t)),

t ∈ (2k, 2k + 1], k = 0, 1, · · ·

c
2kD

qy(t) =
−x(t)

2

t

1 + t

(

x2(t) + y2(t)
)

+ e−txρ(t,x(t),y(t)),

t ∈ (2k, 2k + 1], k = 0, 1, · · ·

x(t) = a sin(t)x(2k + 1 − 0), y(t) = b sin(t)y(2k + 1 − 0),

for t ∈ (2k + 1, 2k + 2], k = 0, 1, 2, · · · ,

x(s) = φ1(s), y(s) = φ2(s) t ∈ [−r, 0],

(4.18)

where x, y ∈ R, r > 0 is a small constant, a, b ∈ (−1, 1) are given constants,

ρ(t, x, y) ≡ t− 0.5(sin2(x) + cos2(y)).

Then, the assumptions A2.1 and A2.2 are satisfied. Therefore,

xρ(t,xt,yt)(s) = x(ρ(t, x(t + s)) + s, y(t+ s)))

= x(t − 0.5(sin2(x(t + s)) + cos2(y(t+ s))))

and

yρ(t,xt,yt)(s) = y(t− 0.5(sin2(x(t + s)) + cos2(y(t+ s)))) for s ∈ [−1, 0].

Let V (t, x, y) = 1.5(x2 +2y2). Also, let t ∈
∞
⋃

k=0

(2k, 2k+1] and ψ = (ψ1, ψ2) ∈ PC0 be such

that

V (t, ψ1(0), ψ2(0)) > V (t+ s, ψ1(s), ψ2(s)) for s ∈ [−r, 0),

or

ψ2
1(0) + 2ψ2

2(0) > ψ2
1(s) + 2ψ2

2(s) for s ∈ [−r, 0)

In this case,

ψ1ρ(0,(ψ1)0,(ψ2)0)
(s) = ψ1(−0.5(sin2(ψ1(s)) + cos2(ψ2(s))), s ∈ [−1, 0],

ψ2ρ(0,(ψ1)0,(ψ2)0)
(s) = ψ2(−0.5(sin2(ψ1(s)) + cos2(ψ2(s))), s ∈ [−1, 0].

Apply −0.5(sin2(ψ1(s)) + cos2(ψ2(s)) ∈ [−1, 0] and we get

(ψ1(−0.5(sin2(ψ1(s)) + cos2(ψ2(s))))
2 + 2(ψ2(−0.5(sin2(ψ1(s)) + cos2(ψ2(s))))

2

≤ ψ2
1(0) + 2ψ2

2(0), s ∈ [−1, 0]. (4.19)

Similar as in Example 4.12, applying inequality (4.19), we get inequalities (4.12), (4.13) and

the comparison scalar equation (4.14). According to Theorem 4.5, the solution of the system

(4.18) is practically stable.
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