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Abstract

We consider the problem inf
{ ∫∫

Ω(1+ |∇u(x1, x2)|2)−1dx1dx2 : the function u :
Ω → R is concave and 0 ≤ u(x) ≤ M for all x = (x1, x2) ∈ Ω = {|x| ≤ 1}

}

(Newton’s problem) and its generalizations. In the paper by Brock, Ferone, and
Kawohl (1996) it is proved that if a solution u is C2 in an open set U ⊂ Ω then
detD2u = 0 in U . It follows that graph(u)⌋U does not contain extreme points of
the subgraph of u.

In this paper we prove a somewhat stronger result. Namely, there exists a
solution u possessing the following property. If u is C1 in an open set U ⊂ Ω then
graph(u⌋U ) does not contain extreme points of the convex body Cu = {(x, z) :
x ∈ Ω, 0 ≤ z ≤ u(x)}. As a consequence, we have Cu = Conv(SingCu), where
SingCu denotes the set of singular points of ∂Cu. We prove a similar result for a
generalization of Newton’s problem.

Mathematics subject classifications: 52A15, 52A40, 49Q10

Key words and phrases: Convex body, Newton’s problem of minimal resistance,
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1 Introduction

1.1 History of the problem

1.1.1 Isaac Newton in his Principia (1687) considered the following mechanical model.
A solid body moves with constant velocity through a rarefied medium composed of point
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particles. The particles are initially at rest, and all collisions of particles with the body’s
surface are perfectly elastic.1

The medium is assumed to be extremely rarefied, so as mutual interaction of the
medium particles can be neglected. In physical terms, this means that the free path
length of particles is much larger than the size of the body. As a real-world application,
one can imagine an artificial satellite with well polished surface moving around the Earth
at low altitudes (between 100 and 1000 km) where the atmosphere is extremely thin (but
is still present).

As a result of collisions of the body with the particles, the force of resistance is created,
which acts on the body and slows down its velocity. Newton calculated the resistance
of several geometrical shapes: a cylinder, a sphere, and a truncated cone. What is more
important, he considered the following problem: minimize the resistance in the class of
convex bodies that are rotationally symmetric with respect to a straight line parallel to
the direction of motion and have fixed length along the direction of motion and fixed
maximal width in the orthogonal direction.

Newton described the solution of this problem in geometrical terms (see, e. g., the
book [49]). The solution looks like a truncated cone with slightly inflated lateral surface;
see Fig. 1 for the case when the length is equal to the maximal width. The body in the

Figure 1: A solution to the rotationally symmetric Newton problem.

picture moves in the medium vertically upward; equivalently, one can assume that the
body is at rest and there is an incident flow of particles moving vertically downward.

In modern terms the problem can be stated as follows. Choose a reference system
with the coordinates x1, x2, z connected with the body so as the z-axis coincides with the
body’s axis of symmetry and is counter directional to the flow of particles. Let the front

1Actually, Newton considered a one-parameter family of reflection laws. Namely, a parameter 0 ≤ k ≤
1 is fixed, and in a reference system connected with the body, at each impact, the normal component of the
particle’s velocity of incidence is multiplied by −k, while the tangential component remains unchanged.
In the case k = 1 we have the law of perfectly elastic (billiard) reflection.
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part of the body be the graph of a radial function z = ϕ(r), r =
√
x21 + x22, 0 ≤ r ≤ L.

Since the body is convex, the function ϕ is concave and monotone non-increasing.
The resistance equals 2πρv2R(ϕ), where ρ is the density of the medium, v is the scalar

velocity of the body, and

R(ϕ) =

∫ L

0

1

1 + ϕ′(r)2
r dr.

The values ρ and v are fixed, so the problems is as follows: minimize R(ϕ) in the class of
concave monotone non-increasing functions ϕ : [0, L] → R such that 0 ≤ ϕ(r) ≤ M for
all r. Here M and 2L are, respectively, the fixed length and maximal width of the body.

The new life was given to the problem in 1993 when the paper by Buttazzo and Kawohl
[10] was published. The authors considered the problem of minimal resistance in various
classes, in particular in the class of convex (not necessarily symmetric) bodies and in the
class of nonconvex bodies satisfying the so-called single impact condition. Since then,
many research papers have been published in this area.

In the papers [11, 12, 13, 23, 25, 24, 14, 29], the problem in various classes of convex
bodies is studied. In particular, in [24, 29] there are considered classes of bodies that are
convex hulls of a certain pair of planar convex curves. In [10, 11, 31], the problem in some
classes of (generally) nonconvex bodies are considered. In [17, 9], surveys of the current
state of the problem are given.

The problem for rotationally symmetric bodies is studied under the additional con-
ditions that the so-called arclength is fixed [6]; there is a friction in the course of body-
particle interaction [21]; the thermal motion of the medium particles is present [48].

In [15, 16, 18, 40, 1, 39], the problem is studied in classes of nonconvex bodies satisfying
the condition that each particle of the flow hits the body only once. Connection of this
problem with Besicovitch’s solution of the Kakeya needle problem [7] are found in [40, 39].

In [38], [37] the techniques of the theory of billiards are used to study the problem
in classes of nonconvex bodies where multiple body-particle collisions are allowed. The
problems of resistance optimization for bodies that perform both translational and rota-
tional motion are studied in [44, 35, 34, 47, 46]. In these studies, methods of optimal mass
transport theory [50, 32] are used, and applications to geometrical optics and mechanics
(invisibility [2, 37, 45], Magnus effect [47], retroreflectors [5, 36], camouflaging [41]) are
found.

1.1.2 Suppose that the body is convex and a reference system connected with the
body with the coordinates x1, x2, z is chosen so as the z-axis is parallel and counter
directional to the direction of the flow. Let the front part of the body’s surface be the
graph of a concave function u : Ω → R, where Ω ⊂ R

2 is the projection of the body on
the x1x2-plane. Then the vertical component of resistance is equal to 2ρv2F [u], where
F [u] =

∫∫
Ω
(1 + |∇u(x1, x2)|2)−1 dx1dx2. In what follows we assume that the numerical

coefficient 2ρv2 equals 1. The value F [u] is called resistance.
The earliest and the most direct, and perhaps the most difficult generalization of the
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original problem stated by Newton is as follows: find the body of minimal resistance
in the class of convex bodies with fixed length along the direction of motion and fixed
projection on the plane orthogonal to this direction [10]. The only difference as compared
with the original problem is that the body in general is not rotationally symmetric (as a
consequence, the orthogonal projection of the body on the x1x2-plane is not necessarily
a circle). In terms of the function u, the problem reads as follows:

Generalized Newton’s problem. Given M > 0 and a convex body2 Ω ⊂ R
2,

Minimize the functional F [u] =

∫∫

Ω

1

1 + |∇u(x1, x2)|2
dx1 dx2 (1)

in the class CΩ,M of concave functions u : Ω → R satisfying the condition 0 ≤ u(x) ≤ M
for all x = (x1, x2) ∈ Ω.

Along with this problem, we will also consider its more general version:

Minimize the functional F [u] =

∫∫

Ω

g(∇u(x1, x2)) dx1dx2 (2)

in the class CΩ,M , where g : R2 → R is a bounded continuous function.
Substituting g(υ) = 1/(1 + |υ|2) in (2), one comes to generalized Newton’s problem

(1).
The following is known about a solution u of problem (1).

P1. There exists at least one solution [11, 30]. The same is true for the more general
problem (2) [13].

P2. If ∇u exists at a point x = (x1, x2) ∈ Ω then either |∇u(x)| ≥ 1, or |∇u(x)| = 0
[11]. Moreover, if the upper level set L = {x : u(x) = M} has a nonempty interior then
for almost all x̄ ∈ ∂L, limx→x̄

x 6∈L
|∇u(x)| = 1 [43].

P3. The upper level set L is not a point. Therefore, it is either a line segment or a
planar convex body.

The proof of statement P3 is given in Section 4.3 of Tesi di Laurea of P. Guasoni (su-
pervised by G. Buttazzo) [20].3 Since the thesis is in Italian, for the reader’s convenience
we provide below the main idea of the proof.

Assume that L is a point and for ε > 0 denote uε(x) = min{(1 + ε)u(x), M}. The
function uε is concave, and in view of statement P2, uε < M outside the circle centered at
L with the radiusMε. It follows that F [uε] ≤ F [(1+ε)u]+πM2ε2. Using again statement
P2, one shows that F [u]−F [(1+ ε)u] > cε for a certain c > 0 and for ε sufficiently small,
and therefore, F [uε] < F [u] for ε sufficiently small, in contradiction with optimality of u.

2A convex body is a compact convex set with nonempty interior.
3Note in passing that in this thesis it was shown for the first time that Newton’s radial solution (see

Fig 1) does not solve generalized problem (1) for M sufficiently large.
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P4. If u is C2 in an open neighborhood U of a point x ∈ Ω, then the matrix of the
second derivatives D2u(x) has a zero eigenvalue [12].

This statement implies that the gaussian curvature at each point of the surface
{(x, u(x)) : x ∈ U} equals zero, and therefore, the surface is developable. Unfortu-
nately, one cannot guarantee that the statement is applicable to the solution u, since it
is not proved that u is C2 in an open set.

P5. If all points of the curve ∂Ω are regular4 (for example, Ω is a circle) then u⌋∂Ω = 0
[42].

Some more results concerning the more general problem (2) are obtained by Lachand-
Robert and Peletier in [23, 25].

P6. Let the function g : R2 → R be strictly convex. Fix concave functions u1 and u2
on Ω such that u1 = u2 on ∂Ω and u1 < u2 in the interior of Ω, and consider the class
C(u1, u2) of concave functions u on Ω satisfying u1 ≤ u ≤ u2. Then the unique solution
of problem (2) in the class C(u1, u2) is u1 [23].5

This statement is not applicable to generalized Newton’s problem (1), since the func-
tion g(υ) = 1/(1 + |υ|2) is not convex.

P7. Assume that the function g satisfies the conditions (a) g is C2 and the ma-
trix D2g(υ) has at least one negative eigenvalue for all υ ∈ R

2; (b) the relation∑
i,j∈{1,2} g

′′
υiυj

(υ)yiyj = 0 =
∑

i,j,k∈{1,2} g
′′′
υiυjυk

(υ)yiyjyk is impossible for υ ∈ R
2 and

y = (y1, y2) 6= (0, 0). If u is a solution of problem (2) then u is not strictly convex in any
open convex subset U ⊂ Ω [25].

Condition (b) in P7 seems to be quite technical; we do not know if it is really necessary.

Note that the function g(υ) = 1/(1+|υ|2) satisfies conditions (a) and (b), and therefore,
statement P7 is applicable to generalized Newton’s problem (1).

Statement P7 means that there is a dense set of non-degenerate line segments in the
graph of u. It can also be reformulated as follows. Let Cu = {(x, z) : x ∈ Ω, 0 ≤ z ≤
u(x)} and let ExtCu denote the set of extreme points of ∂Cu; then ∂Cu \ ExtCu is dense
in ∂Cu. This statement can serve as a kind of substitute for P4 if u happens to be not
smooth enough.

Numerical study of problem (1) in the case when Ω is a circle has been carried out in
the papers [22, 51].

Numerical results suggest that the graph of a solution u is a piecewise developable
surface; more precisely, singular points of the graph form several curves, and the graph
is the union of line segments with the endpoints on these curves. Statements P4 and P7

provide additional arguments in favor of this conjecture.

4A point ξ ∈ ∂Ω is called regular, if there is a unique line of support to Ω at ξ.
5The authors work with convex, rather than concave, functions u1, u2, u satisfying u2 ≤ u ≤ u1. With

these changes, the statement remains the same.
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1.1.3 In the present paper we prove that the graph of a certain solution u to problem
(1) is formed by line segments and (possibly) planar triangles with the endpoints and
vertices in Sing(graph(u)) ∪ graph(u⌋∂Ω), where Sing(graph(u)) is the closure of the set
of singular points of the graph of u6 and graph(u⌋∂Ω) = {(x, u(x)) : x ∈ ∂Ω} (Corollary
4). This means that the solution is defined uniquely by the set of its singular points and
the values of u on the boundary of its domain.

Unfortunately, we still cannot guarantee that the set of singular points is closed. We
cannot even affirm that this set is not dense in the graph. We believe that the following
statement is true.

Conjecture. The set of singular points of each solution to problem (2) is closed, and
therefore, is nowhere dense.

The main result of this paper is Theorem 2 stated in subsection 1.2.4 for a further
generalization of Newton’s problem and proved in Section 3. The method of the proof is
new and is called stretching the nose. Corollary 4 is a simple consequence of Theorem 2.
In general, we believe that it is fruitful to work with generalized versions of the problem,
and that further progress can be achieved by using methods of convex geometry, including
the notion of surface area measure.

1.2 Statement of the results and discussion

1.2.1 Let us imagine again an artificial satellite on a low-Earth orbit. It is known that
the thermal velocity of molecules in the atmosphere is comparable with the satellite’s
velocity and therefore cannot be neglected. Moreover, the interaction of molecules with
the satellite’s surface by no means obeys the law of elastic reflection. This implies that
formula (1) for resistance may not be valid, and additionally, not only the front part of
the satellite’s surface, but also its rear part should be taken in consideration.

1.2.2 In order to deal with the problem in this general setting, it is more natural and
convenient to work with convex bodies, rather than with concave functions.

First introduce the notation. A convex body is a compact convex set with nonempty
interior. In this paper, the letter C (also with some subscripts or superscripts) is always
used to designate a convex body in R

3. A point ξ ∈ ∂C is called singular if there is more
than one plane of support to C at ξ, and regular otherwise. The set of singular points
of ∂C is denoted by SingC. It is known that almost all points of ∂C are regular. The
outward unit normal to C at a regular point ξ ∈ ∂C is denoted by nξ. If a plane of
support at ξ is unique (and therefore ξ is regular), it is called the tangent plane at ξ.

A point x ∈ C is an extreme point of C, if it is not a convex combination x =
λa + (1− λ)b, a, b ∈ C, a 6= b, 0 < λ < 1. The set of extreme points of C is denoted as
ExtC. The convex hull of a set A is denoted as ConvA. A plane of support to a convex
body is always assumed to be oriented by the outward normal vector.

6A point (x, u(x)) of the graph is singular, if u is not differentiable at x.
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In the sequel we will use the notion of surface area measure. The definition we give
below slightly differs from the traditional one.

Definition 1. Let D ⊂ ∂C be a Borel set. The surface area measure of D is the measure
νD on the unit sphere S2 defined by

νD(A) = Leb
(
{ξ ∈ D : ξ is a regular point of ∂C and nξ ∈ A}

)

for any Borel set A ⊂ S2. Here Leb means the standard Lebesgue measure (area) on ∂C.
In the particular case when D = ∂C, the corresponding surface area measure is denoted
as ν∂C.

If D is not a planar set, the measure νD does not depend on the choice of the convex
body C whose boundary contains D. If D is planar, the measure depends on the choice of
the normal to D (n or −n); in what follows it will always be clear, which normal should
be chosen.

The notion of surface area measure and the related operation between convex bodies
called Blaschke addition go back to Minkowski [33]. The map C 7→ ν∂C between the set
of convex bodies in R

3 and the set of measures ν on S2 that are not supported in any
large circle and satisfy the relation

∫
S2 n dν(n) = ~0 is surjective, and νC1

= νC2
iff C1 is a

translation of C2 [3]. The Blaschke sum of two convex bodies C1 and C2 is the (defined
up to a translation) convex body C such that ν∂C = ν∂C1

+ ν∂C2
.

An easy-to-read survey on Blaschke addition, also containing some new results, can
be found in [4]. A characterization of Blaschke addition is given in [19]. A computer
realization of Blaschke addition is provided in [52]. For possible generalizations of surface
area measure see, e. g., [26, 27, 28].

1.2.3 Let f : S2 → R be a continuous function, and let D ⊂ ∂C be a Borel subset of
a convex body C ⊂ R

3. We define the functional

F (D) =

∫

D

f(nξ) dξ,

where dξ denotes the standard 2-dimensional Lebesgue measure on ∂C. Making a change
of variable, one can write this functional as

F (D) =

∫

S2

f(n) dνD(n).

If D is not a planar set, F (D) does not depend on the choice of C. If D is planar, the
choice of the normal to D, and therefore the value F (D), will always be uniquely defined.

Let two compact convex sets C1 ⊂ C2 ⊂ R
3 be fixed. We consider the problem:

Minimize F (∂C) =

∫

∂C

f(nξ) dξ in the class of convex bodies C1 ⊂ C ⊂ C2. (3)

7



It is known that for any continuous function f and each pair of sets C1 and C2, this
problem has at least one solution; see the paper of Buttazzo and Guasoni [13].

This statement of the problem can be interpreted as follows. In the real-life case,
the pressure of the flow at a point ξ ∈ ∂C depends only on the slope of the surface
at ξ, that is, equals p(nξ)nξ, where p is a certain function on S2 determined, e. g., by
the character of the thermal motion of atmospheric particles and by the body-particle
interaction. The projection of the drag force on the z-axis equals F (∂C) =

∫
∂C
f(nξ) dξ,

where f(n) = p(n)n3 for n = (n1, n2, n3) ∈ S2.
The condition C1 ⊂ C ⊂ C2 can also be reasonably interpreted. Suppose we are given

a metal body occupying the domain C2 \C1 and are going to remove a part of material of
the body to produce the optimal streamlined shape when moving in a certain direction.
The resulting shape is C \ C1, where C satisfies the above condition.

Remark 1. Consider the cylinder C2 = Ω × [0, M ] and its bottom C1 = Ω × {0},
where Ω ∈ R

2 is a convex body and M > 0. Then each body C satisfying the condition
C1 ⊂ C ⊂ C2 is bounded below by C1 and above by the graph of a concave function
u : Ω → R satisfying the inequalities 0 ≤ u(x) ≤M for all x, and therefore, is defined by

C = Cu = {(x, z) : x ∈ Ω, 0 ≤ z ≤ u(x)}.

The body’s boundary ∂C is the union of the disc C1, a part of the cylindrical boundary
∂Ω × [0, M ], and the graph of u.

Consider the function f in the form f(n) = p(n)n3, where p is a continuous
function on S2. Then the integral

∫
f(nξ) dξ over the cylindrical boundary is zero,

the integral over the disc C1 is constant, and the integral over the graph of u (af-
ter making the change of variable ξ  x1, x2 and taking into account that dξ =√

1 + u′2x1
+ u′2x2

dx1dx2 and the outward normal at a point of the graph of u is n =

(n1, n2, n3) = (−u′x1
,−u′x2

, 1)/
√
1 + u′2x1

+ u′2x2
) equals

F [u] =

∫∫

Ω

g(∇u(x1, x2)) dx1dx2,

where

g(υ1, υ2) = p
( 1√

1 + υ21 + υ22
(−υ1,−υ2, 1)

)
. (4)

Thus, problem (3) is reduced to problem (2).
Inversely, let g be a bounded continuous function; then problem (2) amounts to problem

(3) with

f(n) =





g
(
− n1

n3
, −n2

n3

)
n3, if n3 > 0;

0 if n3 = 0;
arbitrary, if n3 < 0.
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Remark 2. In the model where the absolute temperature of the medium is 0 and the body-
particle collisions are perfectly elastic (billiard-like), the pressure equals p(n) = ((n3)+)

2,
where z+ = max{0, z} means the positive part of z. This is the sine-squared law, well
known in aerodynamics. The problem of minimal resistance in the class of bodies C1 ⊂
C ⊂ C2 here takes the form (3) with f(n) = p(n)n3 = ((n3)+)

3.
In the particular case when C2 is the cylinder and C1 is its bottom, C2 = Ω× [0, M ],

C1 = Ω×{0}, the problem amounts to problem (2), where by formula (4) we have g(υ) =
1/(1 + |υ|2); in other words, one comes to generalized Newton’s problem (1).

Remark 3. In general a solution to problem (3) may not be unique. For example, suppose
that C1 = Ω × {0}, C2 = Ω × [0, 1], f > 0 in a small neighborhood of (0, 0,M), and
f = 0 outside this neighborhood. Then the minimal value of the functional equals 0 and
is attained at a family of bodies Conv(C1∪ {(a, b, c)}), (a, b) ∈ Ω, with c being sufficiently
large (but smaller than M).

Remark 4. In generalized Newton’s problem (1) with the circular base, Ω = {|x| ≤ 1},
the numerical study [22, 51] seems to indicate that there exists a sequence of values +∞ =
M1 > M2 > M3 > . . . converging to zero such that for Mk < M < Mk−1, k = 2, 3, . . . the
solution is unique (up to a rotation about the z-axis) and the top level set {u(x) =M} is
a regular k-gon, and for each value M =Mk there are two distinct solutions with the top
level sets being a regular k-gon and a regular (k + 1)-gon.

1.2.4 Denote by D2u(x) the matrix of second derivatives (whenever it exists),

D2u(x) =

[
u′′x1x1

(x) u′′x1x2
(x)

u′′x2x1
(x) u′′x2x2

(x)

]
.

Let us formulate statement P4 in a more general form.

Theorem 1. Let g be of class C2 and the matrix D2g have at least one negative eigenvalue
for all values of the argument. Assume that u is a solution of problem (2) and u ∈ C2(U)
for an open set U ⊂ Ω. Then detD2u(x) = 0 for all x ∈ U .

Statement P4 corresponds to the particular case of this theorem when g(υ) = 1/(1 +
|υ|2) related to generalized Newton’s problem; it was proved in [12] (Theorem 2.1 and
Remark 3.4). The proof of Theorem 1 is basically the same. For the reader’s convenience,
it is provided in Section 2.

The statement of Theorem 1 implies that the gaussian curvature at each point of the
surface {(x, u(x)) : x ∈ U} equals zero, and therefore, the surface is developable. It follows
that no point of this surface is an extreme point of the body

Cu = {(x, z) : x ∈ Ω, 0 ≤ z ≤ u(x)}.

In other words, we have the following
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Corollary 1. Under the assumptions of Theorem 1 we have

ExtCu ∩ {(x, u(x)) : x ∈ U} = ∅.

The following question still remains. Suppose that an open subset of the lateral
boundary of an optimal body does not contain singular points. Is it true that it does not
contain extreme points (and therefore, is developable)?

Note that in this question only C1 (rather than C2) smoothness of the surface is a
priori assumed.

We shall prove that the answer to this question is positive, even in the case of more
general problem (3), for at least one solution of the problem.

The main result of this paper is the following theorem.

Theorem 2. There is a solution Ĉ of problem (3) such that

ExtĈ ⊂ ∂C1 ∪ ∂C2 ∪ SingĈ. (5)

Here and in what follows, the bar means closure.
Moreover, if a solution C does not satisfy (5) then the set of solutions is extremely

degenerate; namely, there is a family of solutions {C(~s) : ~s = (si)i∈N ∈ [0, 1]∞}, where
~0 = (0, 0, . . .), ~1 = (1, 1, . . .), such that C(~0) = C and Ĉ = C(~1) satisfies (5). The
corresponding family of surface area measures is linear and infinite dimensional; that is,
there is a linearly independent set of signed measures νi, i ∈ N such that for all ~s ∈ [0, 1]∞,

ν∂C(~s) = ν∂C +

∞∑

i=1

siνi.

This theorem will be proved in Section 3.

Remark 5. An example of extremely degenerate case is provided by problem (3) with
C1 = Ω× {0}, C2 = Ω× [0, M ], and the function

f(n) =

{
〈n, e〉, if n3 ≥ 0;
arbitrary, if n3 < 0,

where e = (e1, e2, e3) is a fixed vector and 〈· , ·〉 means the scalar product. Using the well-
known equation

∫
∂C
nξ dξ = ~0 and taking into account that the outward normal to ∂C

at each interior point of C1 equals (0, 0,−1), one obtains
∫
∂C\C1

nξ dξ = −
∫
C1
nξ dξ =

|C1| (0, 0, 1), and therefore,

F (∂C) =

∫

C1

f(0, 0,−1) dξ +

∫

∂C\C1

〈nξ, e〉 dξ = |C1| f(0, 0, 1) + |C1| e3.

This means that all admissible bodies are solutions of the problem.
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Note that, according to Remark 1, this problem is reduced to generalized Newton’s
problem (2) with g(v1, v2) = −e1v1 − e2v2 + e3.

Can degeneracy appear in a less trivial case when f(n) does not coincide, even locally,
with a function of the kind 〈n, e〉? This question is open, and it seems to be difficult. Let
us explain why. Indeed, let C1 and C2 be as above and let f be a generic C2 function.
According to Remark 1, the problem can be reduced to problem (2) with the corresponding
C2 function g defined by (4). Let u be a solution to the corresponding problem (2).

In the ”nice” case the domain Ω is divided by curves into several smaller domains where
u is C2 smooth and D2g does not have zero eigenvalues. If in a subdomain the matrix
D2g has at least one negative eigenvalue then, according to Corollary 1, the corresponding
part of the graph of u does not contain extreme points. If, otherwise, in a subdomain D2g
is striclty positive definite then, applying statement P7, one finds that the restriction of
u on this subdomain is the smallest concave function coinciding with u on the boundary
of the subdomain, and therefore, again, the corresponding part of the graph of u does not
contain extreme points. Thus, u cannot induce degeneracy.

This argument shows that, if degeneracy really exists in nontrivial cases, it should be
related either with a very special behavior of the function g, or with a ”strange” solution
u that is C1 but is not C2 on an open set.

Remark 6. Notice that problem (3) can be expressed as a minimization problem for a
linear functional on a set of measures

inf
Υ(C1,C2)

∫

S2

f(n) dν(n), where Υ(C1, C2) = {ν∂C : C1 ⊂ C ⊂ C2}.

This fact was first observed by Carlier and Lachand-Robert in [14]. Theorem 2 implies
that if a solution ν is not the surface area measure of a convex body satisfying (5), then
the set of solutions contains an infinite-dimensional cube {ν +∑∞

i=1 siνi, si ∈ [0, 1]}.

Using the Krein-Milman theorem, one immediately obtains the following corollary of
Theorem 2.

Corollary 2. There is at least one solution C to problem (3) satisfying the equation

C = Conv
(
SingC ∪

(
∂C ∩ ∂C1

)
∪
(
∂C ∩ ∂C2

))
.

As applied to problem (2), we obtain the following statement (cf. Corollary 1).

Corollary 3. There exists a solution u to problem (2) possessing the following property.
If u ∈ C1(U) and u < M in an open set U ⊂ Ω, then

ExtCu ∩ {(x, u(x)) : x ∈ U} = ∅.
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Notice that no assumptions on smoothness of the (bounded and continuous) function
g are imposed here. Besides, it is a priori assumed that u is C1, rather than C2.

The following statement concerns generalized Newton’s problem.

Corollary 4. There exists a solution u of problem (1) such that

Cu = Conv(SingCu). (6)

It follows that the boundary of Cu is composed of line segments and planar triangles
with the endpoints and vertices in the closure of the set of singular points. Yet, we
cannot exclude the possibility that the set of singular points is dense in the graph of u,
and therefore, all these segments and triangles degenerate to singletons.

Proof of Corollary 4. We have seen in Remark 2 that generalized Newton’s problem (1)
is equivalent to problem (3) with f(n) = ((n3)+)

3. According to Theorem 2, there is a
solution C = Cu of this problem such that

ExtCu ⊂ ∂C1 ∪ ∂C2 ∪ SingCu;

in other words, each extreme point of Cu lies either in SingCu, or in (∂C1 ∪ ∂C2) ∩ ∂Cu.
We are going to prove that each extreme point of Cu contained in (∂C1 ∪ ∂C2)∩ ∂Cu,

is also contained in SingCu. It will follow that

ExtCu ⊂ SingCu,

and by the Krein-Milman theorem, we will have

Cu = Conv
(
ExtCu

)
⊂ Conv(SingCu).

The inverse inclusion Conv(SingCu) ⊂ Cu is obvious.
The set (∂C1∪∂C2)∩∂Cu = ∂C2∩∂Cu is the union of the base Ω×{0}, the cylindric

surface {(x, z) : x ∈ ∂Ω, 0 ≤ z ≤ u(x)} (which may degenerate to a curve), and the upper
level set L = {(x,M) : u(x) = M}. All extreme points of Cu that belong to ∂C2 ∩ ∂Cu

are contained in the union of the curves ∂Ω × {0}, graph(u⌋∂Ω) = {(x, u(x)) : x ∈ ∂Ω},
and ∂L (the two former curves may coincide and the latter one may degenerate to a line
segment); see Fig. 2.

Each point of the curve ∂Ω × {0} is singular, since there are at least two, horizontal
and vertical, planes of support through it. Each point of ∂L is singular, since, in view of
statement P2, there are at least two planes of support through it: one of them is horizontal
and the other one has the slope ≥ 1. It remains to show that each extreme point of the
curve graph(u⌋∂Ω) = {(x, u(x)) : x ∈ ∂Ω} belongs to SingCu.

Each point ξ ∈ ∂Cu is a convex combination of at most three extreme points of Cu:
ξ = λ1ξ1 + λ2ξ2 + λ3ξ3; ξ1, ξ2, ξ3 ∈ ExtCu, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, λ1 + λ2 + λ3 = 1.
(It may happen that some of the points coincide.) Let ξ be a point of the graph of u,
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∂L

∂Ω × {0}

graph(u⌋
∂Ω )

Figure 2: The set Cu and the curves ∂Ω× {0}, graph(u⌋∂Ω), and ∂L.

ξ = (x, u(x)), with x in the interior of Ω; then the corresponding points ξ1, ξ2, ξ2 also lie
on the graph, ξi = (xi, u(xi)), xi ∈ Ω, i = 1, 2, 3. Let us show that for all i, ξi ∈ SingCu.

Indeed, if xi is in the interior of Ω and u(xi) < M , then by Theorem 2, the point ξi
lies in SingCu. If u(xi) = M , then by statement P2, ξi ∈ SingCu. Finally, if xi ∈ ∂Ω,
there are at least two planes of support at ξi; one of them is vertical, and the other one
contains the line through ξ and ξi, and so, ξi ∈ SingCu.

Now take an extreme point ξ = (x, u(x)) with x ∈ ∂Ω, and consider a sequence of
points ξk = (xk, u(xk)) converging to ξ, with xk in the interior of Ω. Each of these
points is the convex combination of three extreme points (some of them may coincide),
ξk = λ1kξ1k + λ2kξ2k + λ3kξ3k, λ1k ≥ 0, λ2k ≥ 0, λ3k ≥ 0, λ1k + λ2k + λ3k = 1. We have
proved that ξik ∈ SingCu for all i and k. Without loss of generality assume that there
exist the limits limk→∞ λik = λ∗i , limk→∞ ξik = ξ∗i . It follows that ξ = λ∗1ξ

∗
1 + λ∗2ξ

∗
2 + λ∗3ξ

∗
3

and ξ∗i ∈ SingCu for i = 1, 2, 3. Since the point ξ is extreme, this convex combination is
degenerate and ξ coincides with one of the points ξ∗i , and therefore, belongs to SingCu.
This finishes the proof of Corollary 4. �

Remark 7. Concerning generalized Newton’s problem with Ω = {|x| ≤ 1}, one can draw
the following conclusion. If the numerical observation that there are only one or two
distinct (up to a rotation) solutions is true, then each solution u satisfies (6).

In fact, numerical study seems to indicate that (at least for M < 1.5) the optimal
body is indeed the convex hull of the union of several curves composed of singular points:
the circumference ∂Ω × {0}, the boundary of a regular polygon in the horizontal plane
{z =M}, and several convex curves joining each vertex of the polygon with a point of the
circumference.
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2 Proof of Theorem 1

Assume the contrary, that is, there is a point x0 ∈ U such that D2u(x0) > 0. It is
not an interior point of the set {u = M}, hence there is a sequence of points x(i) ∈ U ,
with u(x(i)) < M , converging to x0. (If u(x0) < M , one can take the constant sequence
x(i) = x0). Fix the value i sufficiently large, so as D2u(x(i)) > 0.

Changing, if necessary, the orthogonal system of coordinates, one can put x(i) = (0, 0).
For δ > 0 and c > 0 sufficiently small one has D2u(x) ≥ c and u′′x1x1

(x) ≤ −c when |x| ≤ δ,
and additionally, the circle |x| ≤ δ is contained in U .

Take a C2 function h : R
2 → R equal to zero outside the circle |x| ≤ δ. For |t|

sufficiently small, D2
(
u(x) + th(x)

)
> 0 and u′′x1x1

(x) + th′′x1x1
(x) < 0, and therefore,

the function u + th is concave. Besides, taking |t| sufficiently small, one can ensure that
0 < u(x) + th(x) < M for all x.

Since u minimizes the functional F , we have

d2

dt2

⌋
t=0

F [u+ th] =
d2

dt2

⌋
t=0

∫∫

Ω

g(∇u(x1, x2) + t∇h(x1, x2)) dx1dx2

=
1

2

∫∫

R2

∇h(x)TD2g(∇u(x))∇h(x) dx1dx2 ≥ 0

(we represent the gradient as a row vector, ∇h = (hx, hy)).
Now taking h(x) = φ(x/ε), where 0 < ε < 1 and φ is a C2 function vanishing outside

the circle |x| ≤ δ, and making the change of variable x = εy, one obtains
∫∫

R2

∇φ(y)D2g(∇u(εy))∇φ(y)Tdy1dy2 ≥ 0.

Passing to the limit ε→ 0 one gets
∫∫

R2

∇φ(y)D2g(∇u(0))∇φ(y)Tdy1dy2 ≥ 0.

Take the change of variables y = Λχ, with Λ being an orthogonal matrix with det Λ = 1
diagonalizing the matrix D2g(∇u(0)), that is,

ΛTD2g(∇u(0))Λ =

[
a 0
0 −b

]
with b > 0.

Denoting ψ(χ) = φ(Λχ) and taking into account that ∇ψ(χ) = ∇φ(Λχ)Λ, one comes to
the inequality ∫∫

R2

∇ψ(χ)
[
a 0
0 −b

]
∇ψ(χ)Tdχ1dχ2

= a

∫∫

R2

ψ′
χ1
(χ)2 dχ1dχ2 − b

∫∫

R2

ψ′
χ2
(χ)2 dχ1dχ2 ≥ 0. (7)
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Now let ψ(χ) = ψ(χ, τ) = γ(χ1)γ(χ2) sin(χ2/τ), where γ : R → R is a smooth function
vanishing outside a small neighborhood of 0 and τ 6= 0. The former integral is uniformly
bounded over all τ ; indeed,

∫∫

R2

(ψ′
χ1
(χ))2 dχ1dχ2 ≤

∫
γ′2(χ1) dχ1

∫
γ2(χ2) dχ2,

whereas the latter one goes to infinity as τ → 0,

∫∫

R2

(ψ′
χ2
(χ))2 dχ1dχ2 =

1

τ 2

∫
γ2(χ1) dχ1

∫
γ2(χ2) cos

2(χ2/τ) dχ2 +O(1/τ)

→ +∞ as τ → 0.

It follows that the left hand side in (7) is negative for |τ | sufficiently small. The contra-
diction finishes the proof.

3 Proof of Theorem 2

The main idea of the proof consists in the procedure which is called stretching the nose
and is described in Lemma 5. To the best of our knowledge, this procedure is new.

Namely, suppose that the body C is a solution to problem (3) but does not satisfy
(5). Take a point ξ ∈ ExtC \ (∂C1 ∪ ∂C2 ∪ SingC), then choose a point O outside C
sufficiently close to ξ, and define a 1-parameter family of bodies C(s), 0 ≤ s ≤ 1 with
the endpoints at C(0) = C and C(1) = Conv(C ∪ {O}); see Fig. 5. The corresponding
family of measures ν∂C(s) is a line segment. We prove that all bodies C(s) are solutions
to problem (3). This is the main point in the proof of Theorem 2.

We also prove that the set ExtC \ (∂C1 ∪ ∂C2 ∪ SingC) does not have isolated points,
and therefore, is infinite (Lemma 1 and Corollary 5). Using this fact, in Lemma 4 we
find an infinite sequence ξ1, ξ2, . . . of points dense in this set and a sequence of points
O1, O2, . . . outside C (with each point Oj being sufficiently close to ξj) so as the ”noses”

Conv(C ∪ {Oj}) \ C are mutually disjoint and the body Ĉ = Conv(C ∪ {O1, O2, . . .})
satisfies (5). We define a family of intermediate convex bodies C(~s), ~s ∈ [0, 1]∞, with

C(~0) = C and C(~1) = Ĉ, such that C(0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . .) = Conv(C ∪ {Oj}) and the

corresponding family of surface area measures is linear, and prove that all bodies of the
family are solutions to problem (3).

Denote by Br(a) the open ball with radius r and with the center at a. Let C be a
convex body.

Lemma 1. The set ExtC \ SingC does not have isolated points.
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Proof. Assume the contrary and let ξ be an isolated point of ExtC \SingC; then for some
ε > 0, the punctured neighborhood Bε(ξ) \ {ξ} does not intersect ExtC ∪ SingC.

By Minkowski’s Theorem, C = Conv(ExtC). Further, we have

ExtC ⊂
(
C \Bε(ξ)

)
∪ {ξ} ⊂ Conv

(
C \Bε(ξ)

)
∪ {ξ},

hence
C = Conv(ExtC) ⊂ Conv

[
Conv

(
C \Bε(ξ)

)
∪ {ξ}

]
,

and therefore, we have the equality

C = Conv
[
Conv

(
C \Bε(ξ)

)
∪ {ξ}

]
. (8)

Since the point ξ lies outside Conv
(
C \Bε(ξ)

)
, it is a singular point of the convex body in

the right hand side of (8). This contradicts the assumption that ξ is not a singular point
of ∂C.

Consider three convex bodies C, C1, and C2. Taking into account that the sets ∂C1

and ∂C2 are closed, we immediately obtain the following corollary of Lemma 1.

Corollary 5. The set ExtC \ (∂C1 ∪ ∂C2 ∪ SingC) does not have isolated points.

The following Lemmas 2 and 3 are technical; they will be used in the proofs of Lemmas
4 and 5.

Lemma 2. Let {O1, O2, . . .} be a finite or countable set of points outside C such that for
all i 6= j the intersection of the open line interval (Oi, Oj) with C is not empty. Denote

C̃ = Conv(C ∪ {O1, O2, . . .}).

Then
(a)

C̃ = ∪iConv(C ∪ {Oi}).
(b) If the set of points Oi is finite, ξ ∈ ExtC \ SingC, and for all i the intersection of

the interval (Oi, ξ) with C is not empty, then ξ ∈ ExtC̃ \ SingC̃.
(c)

{O1, O2, . . .} ⊂ ExtC̃ ⊂ ExtC ∪ {O1, O2, . . .}.
(d) Assume that for all i and all ξ ∈ SingC the intersection of the interval (Oi, ξ) with

C is not empty. Then
SingC ∪ {O1, O2, . . .} = SingC̃.
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Proof. (a) Take a point x ∈ C̃. One needs to prove that for some j, x ∈ Conv(C ∪{Oj}).
Two cases are possible: either x ∈ C, or x is a convex combination

x = λx0 +

m∑

i=1

λiOi, m ≥ 1, (9)

where x0 ∈ C, λ ≥ 0, λi > 0 for all i, and λ +
∑m

1 λi = 1. In the former case there is
nothing to prove. In the latter case assume, without loss of generality, that the convex
combination in the right hand side of (9) is the shortest one, that is, m cannot be made
smaller. Let us show that m = 1.

Indeed, suppose that m ≥ 2. Since the interval (O1, O2) intersects C, we have µO1 +
(1 − µ)O2 = x̂ ∈ C for some 0 < µ < 1. Assume without loss of generality that
λ1/λ2 ≥ µ/(1− µ); then

λ1O1 + λ2O2 =
λ2

1− µ
x̂+ λ2

(λ1
λ2

− µ

1− µ

)
O1,

and the convex combination in (9) can be shortened,

x = λ̃x̃+ λ̃1O1 +

m∑

i=3

λiOi,

where

λ̃ = λ+
λ2

1− µ
, x̃ =

λ(1− µ)

λ(1− µ) + λ2
x0 +

λ2
λ(1− µ) + λ2

x̂ ∈ C, λ̃1 = λ2

(λ1
λ2

− µ

1− µ

)
.

(If m = 2, the sum
∑m

3 equals zero.)
This contradiction shows that m = 1; that is, for some j,

x = λx0 + λjOj ∈ Conv(C ∪ {Oj}) with λ ≥ 0, λj > 0, λ+ λj = 1.

Claim (a) is proved.
(b) Assume that ξ is not an extreme point of C̃. This means that ξ is an interior point

of a line segment [ξ1, ξ2] ⊂ C̃. We are going to prove that each of the semiopen intervals
[ξ1, ξ) and [ξ2, ξ) contains a point of C, and therefore, ξ is not an extreme point of C, in
contradiction with the assumption that ξ ∈ ExtC.

Suppose that ξ1 6∈ C. Since the point ξ1 is in C̃, then by claim (a), for some i we have
ξ1 ∈ [Oi, x1), where x1 ∈ C. On the other hand, by the hypothesis of the lemma, a point
x ∈ (Oi, ξ) lies in C.

If the triangle ξOix1 is non-degenerate then the segments [x, x1] and (ξ, ξ1) intersect
at a point ξ′1. Since x and x1 lie in C, ξ′1 also belongs to C.
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If, otherwise, the points ξ, Oi, x1 are collinear then Conv(ξ, x, x1) is a segment on the
line Oiξ and is contained in C (since the points ξ, x, x1 lie in C). The point ξ1( 6∈ C) lies
on this line between the segment and the point Oi; hence ξ1 ∈ [Oi, ξ). The same inclusion
holds for x; it follows that x ∈ (ξ, ξ1).

Thus, in any case a point of the segment [ξ1, ξ) (either ξ1, or ξ
′
1, or x) belongs to

C. The same argument holds for the segment [ξ2, ξ). Hence we have ξ 6∈ ExtC. This
contradiction proves that ξ ∈ ExtC̃.

It remains to prove that ξ 6∈ SingC̃. Indeed, assume the contrary; then ξ is the limit
of a sequence ξi ∈ SingC̃. Since the set of points Oj is finite, there is a value j such that
infinitely many points ξi are contained in Conv(C ∪ {Oj}). Additionally, for i sufficiently
large, ξi do not coincide with Oj.

There is a neighborhood of ξ that does not contain singular points of ∂C. If a regular
point of ∂C belongs to ∂C̃ , then it is also a regular point of ∂C̃ . It follows that for i
sufficiently large, ξi are not contained in ∂C.

Thus, without loss of generality one can assume that all points ξi lie in Conv(C ∪
{Oj}) \ (C ∪ {Oj}), and therefore, for some xi ∈ C, ξi ∈ (xi, Oj). Taking if necessary a
subsequence, we assume that xi converge to a certain x ∈ C, and therefore, ξ ∈ [x, Oj).
By the hypothesis of the lemma, there is a point x′ ∈ C contained in (ξ, Oj). We have
ξ ∈ [x, x′) ⊂ C. Since ξ is an extreme point of C, we conclude that ξ = x.

Each plane of support to C̃ at ξi is also a plane of support to C̃ at each point of the
segment [xi, Oj], and in particular, at xi. It is also a plane of support to C at xi. Since
ξi ∈ SingC̃, there are more than one such plane, and therefore, xi ∈ SingC. It follows
that ξ = limi→∞ xi ∈ SingC. The obtained contradiction proves claim (b).

(c) The set ∂C̃ is the union of (i) a part of the boundary ∂C, (ii) open segments of
the form (Oi, ξ), where ξ ∈ ∂C and the segment lies in a plane of support to C through
Oi, and (iii) the points Oi.

If a point ξ ∈ ExtC̃ belongs to ∂C then it is also an extreme point of C. Open
segments of the form (Oi, ξ) obviously do not contain extreme points of C̃, and all points
Oi are extreme points of C̃. Claim (c) is proved.

(d) Obviously, each point Oi is a singular point of ∂C̃ .
Take a point ξ ∈ SingC and take a plane of support to C at ξ. Since for all i,

(Oi, ξ)∩C 6= ∅, we conclude that the body C and all points Oi lie in the same half-space
bounded by the plane. It follows that this plane is also a plane of support for the body
C̃ = Conv(C ∪ {O1, O2, . . .}).

Thus, each plane of support to C at ξ is also a plane of support to C̃. Since such a
plane is not unique, we conclude that ξ ∈ SingC̃. Hence SingC ∪ {O1, O2, . . .} ⊂ SingC̃.

Now suppose that x ∈ SingC̃. There may be three cases: (i) x ∈ ∂C; (ii) x is contained
in an open segment (Oi, ξ), where ξ ∈ ∂C and (Oi, ξ) ∩ C = ∅; (iii) x coincides with a
point Oi.

In the case (i) each plane of support to C̃ at x is also a plane of support to C at x.

18



Since it is not unique, we have x ∈ SingC.
The case (ii) is impossible. Indeed, otherwise each plane of support to C̃ at x is also

a plane of support to C at ξ. Since it is not unique, we have a contradiction with the
hypothesis in item (d) of Lemma 2 stating that (Oi, ξ) ∩ C 6= ∅.

It follows that SingC ∪ {O1, O2, . . .} ⊃ SingC̃. Claim (d) is proved.

In what follows, dist means the Euclidean distance between two points.

Lemma 3. Consider a point ξ ∈ ExtC \ SingC and a closed set A ⊂ C that does not
contain ξ. Then for any ε > 0 there exists a point O outside C such that

(a) dist(ξ, O) < ε;
(b) for any x ∈ A, the intersection of the open segment (O, x) with the interior of C

is not empty.

Proof. The convex hull Conv(C \ Bε(ξ)) does not contain ξ. Making if necessary ε suffi-
ciently small, we can assume that the set A∪SingC does not intersect Bε(ξ), and therefore,
is contained in Conv(C \Bε(ξ)).

Take a plane Π that separates the point ξ and the set Conv(C \ Bε(ξ)). Let this
plane be given by 〈x, n〉 = c, with ξ being contained in the half-space 〈x, n〉 > c and
Conv(C \Bε(ξ)), in the complementary half-space 〈x, n〉 < c. Here and in what follows,
〈· , ·〉 means the scalar product. See Fig. 3.

b

b

b

O

ξ
Π

Π1

ξ1

ξ′

C

A

Figure 3: The plane Π separates ξ and A. The set K is bounded above by Π and below
by the dashed line. The part of C below Π is contained in the ε-neighborhood of ξ.

Draw the tangent planes to C through all points of ∂C ∩ Π (which are regular); the
intersection of the half-space 〈x, n〉 ≥ c and all closed half-spaces bounded by these planes
and containing C is a closed convex set containing ξ. Let it be denoted by K.
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Let us show that K \ C is not empty. If K is unbounded, this is obvious. If K is
bounded, draw the plane of support to K with the outward normal n and denote it by
Π1. Thus, K is contained between the planes Π and Π1; see Fig. 3.

Take a point ξ1 in the intersection Π1 ∩ ∂K. There is at least one more plane of
support to K through a point of ∂C ∩Π that contains ξ1. It follows that ξ1 is a singular
point of ∂K. Hence it does not belong to C, since otherwise it is also a singular point of
∂C. Thus, ξ1 ∈ K \ C.

Take a point ξ′ in the interior of K \C. Draw the line segment [ξ, ξ′] and find a point
O on it that lies outside C and belongs to Bε(ξ). Thus, condition (a) is satisfied, due to
the choice of O.

Take a point x ∈ A. The point x lies in the intersection of closed half-spaces bounded
by the tangent planes to C through all points of ∂C ∩ Π and containing C, and O lies
in the intersection of the corresponding open half-spaces. It follows that the point of
intersection of the interval (O, x) with the plane Π lies in the interior of the planar set
C∩Π, and therefore, belongs to the interior of C. Thus, condition (b) is also satisfied.

Assume that we are given three convex bodies C1 ⊂ C ⊂ C2.

Lemma 4. Suppose that the set E := ExtC \ (∂C1 ∪ ∂C2 ∪ SingC) is not empty and
choose a point ξ̂ ∈ E. Then there exists an infinite sequence of points {Oj, j ∈ J ⊂ N}
in C2 \ C such that

(a) for all i 6= j and all ξ ∈ C1 ∪ SingC ∪ {ξ̂}, the intersections of the open segments
(Oi, Oj) and (Oi, ξ) with the interior of C are not empty;

(b) for Ĉ = Conv(C ∪ {Oj, j ∈ J}) one has

ExtĈ ⊂ ∂C1 ∪ ∂C2 ∪ SingĈ.

Proof. Take a sequence of positive values εn converging to 0. Choose a finite sequence
of open sets (for example, open balls) D1, . . . , Dj1 in R

3, each set of diameter less than
ε1, such that the union of the sets contains E. Next we define a finite sequence of open
sets Dj1+1, . . . , Dj2, each set of diameter less than ε2, such that their union contains E.
Continuing this process, we obtain infinite sequences of integers 0 = j0 < j1 < j2 < . . .
and sets D1, D2, . . . such that for each n ≥ 1, the diameter of each of the domains
Djn−1+1, . . . , Djn is less than εn and

E ⊂
jn⋃

i=jn−1+1

Di.

We are going to define inductively an infinite set of natural numbers J ⊂ N and a
sequence of points Oj, j ∈ J , in C2 \ C satisfying condition (a). Denote {1, . . . , m}′ :=
J ∩ {1, . . . , m}. Define the sets

Ĉm := Conv
(
C ∪

{
Oj, j ∈ {1, . . . , m}′

})
and Em := ExtĈm \ (∂C1 ∪ ∂C2 ∪ SingĈm)
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(in particular, Ĉ0 = C and E0 = E); we additionally require that the sets Em contain ξ̂
and are nested, that is, for m1 ≤ m2 we have Em2

⊂ Em1
⊂ E.

For m = 0 the set of points Oi is empty, and therefore, condition (a) is trivially
satisfied, and ξ̂ ∈ E = E0. Now suppose that for a certain integer m ≥ 0, the set
{1, . . . , m}′ is defined, the points Oj, j ∈ {1, . . . , m}′ in C2 \C satisfying condition (a) are

chosen, and the inclusions ξ̂ ∈ Em ⊂ . . . ⊂ E1 ⊂ E0 = E take place. If Em ∩Dm+1 = ∅,
let m+ 1 6∈ J . In this case the statement of induction for m+ 1 is trivially satisfied.

If, otherwise, the set Em ∩ Dm+1 is not empty, let m + 1 ∈ J and take a point ξm+1

from this set distinct from ξ̂. (Such a point exists, since by Corollary 5, the set Em does
not have isolated points, and therefore, Em ∩ Dm+1 is not a singleton.) Let n be such

that m + 1 ∈ {jn−1 + 1, . . . , jn}. Applying Lemma 3 to the convex body Ĉm, the point

ξm+1, and the set A = C1 ∪ SingĈm ∪ {ξ̂}, take a point Om+1 in C2 \ Ĉm such that (a)

dist(ξm+1, Om+1) < εn; (b) for all x ∈ C1 ∪ SingĈm ∪ {ξ̂}, the intersections of the open
segment (Om+1, x) with the interior of C is not empty.

By the hypothesis of induction, for i ∈ {1, . . . , m}′ and ξ ∈ SingC, the intersection of
the interval (Oi, ξ) with the interior of C is not empty. Hence by claim (d) of Lemma 2,

SingC ∪
{
Oi, i ∈ {1, . . . , m}′

}
= SingĈm.

It follows that for any ξ ∈ C1∪SingC∪{ξ̂}, the intersection of the open segment (Om+1, ξ)
with the interior of C is not empty, and for any i ∈ {1, . . . , m}′, the intersection of
(Om+1, Oi) with the interior of C is not empty. Thus, condition (a) is satisfied for the
extended sequence of points Oi, i ∈ {1, . . . , m+ 1}′ = {1, . . . , m}′ ∪ {m+ 1}.

By claim (c) of Lemma 2, ExtĈm+1 ⊂ ExtĈm∪{Om+1}, and by claim (d) of the same

lemma, SingĈm+1 = SingĈm ∪ {Om+1}. It follows that

Em+1 = ExtĈm+1 \ (∂C1 ∪ ∂C2 ∪ SingĈm+1) ⊂ ExtĈm \ (∂C1 ∪ ∂C2 ∪ SingĈm) = Em.

Further, since ξ̂ ∈ Em ⊂ ExtĈm \ SingĈm and the intersection of the interval (Om+1, ξ̂)

with C is non-empty, making use of claim (b) of Lemma 2 we conclude that ξ̂ ∈ ExtĈm+1\
SingĈm+1. It follows that ξ̂ ∈ Em+1. The statement of induction is completely proved for
m+ 1.

In each subsequence {jn−1 + 1, . . . , jn} there is a number m such that Dm contains ξ̂,
and therefore, Em−1 ∩Dm is not empty. It follows that m ∈ J ; hence the parameter set
J is infinite.

We have proved that the sequence of points Oj, j ∈ J satisfies claim (a) of Lemma 4.

Consider the set Ĉ = Conv(C ∪ {Oj, j ∈ J}). For each m = 0, 1, 2, . . . we have

Ĉ = Conv(Ĉm ∪ {Oj, j(∈ J) ≥ m+ 1}). Applying claims (c) and (d) of Lemma 2 to the

convex bodies Ĉ and Ĉm and to the set of points {Oj, j(∈ J) ≥ m+ 1}, we obtain

ExtĈ ⊂ ExtĈm∪{Oj, j(∈ J) ≥ m+1} and SingĈ = SingĈm∪{Oj, j(∈ J) ≥ m+1},
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hence

E∞ := ExtĈ \ (∂C1 ∪ ∂C2 ∪ SingĈ) ⊂ ExtĈm \ (∂C1 ∪ ∂C2 ∪ SingĈm) = Em ⊂ E.

It remains to prove that E∞ is empty.
Assume the contrary and take ξ ∈ E∞. For any natural n there is mn ∈ {jn−1 +

1, . . . , jn} such that Dmn
contains ξ. It follows that the set Emn−1∩Dmn

⊃ E∞∩Dmn
∋ ξ

is non-empty, and therefore, mn ∈ J . For the points ξmn
∈ Dmn

and Omn
chosen above

we have
dist(Omn

, ξ) ≤ dist(Omn
, ξmn

) + dist(ξmn
, ξ) < 2εn.

It follows that the sequence Omn
converges to ξ as n→ ∞. Since by claim (d) of Lemma

2, {Oj, j ∈ J} ⊂ SingĈ, we have ξ ∈ SingĈ, and therefore, ξ 6∈ E∞. The obtained
contradiction proves claim (b) of Lemma 4.

The method we use in the following lemma can be called stretching the nose.
Let O be a point outside C. For 0 ≤ s ≤ 1 define the set

C(s) =
⋃

√
1−s≤λ≤1

(
λC + (1− λ)O

)
. (10)

In particular, C(0) = C and C(1) = Conv(C ∪ {O}).
It is easy to see that C(s) is a convex body.
The sets C(0), C(1), and C(s) with 0 < s < 1 are shown light gray in Figs. 4(a), 4(b),

and 5(a), respectively.

Lemma 5. Let C be a solution to problem (3) and let a point O ∈ C2 \ C be such that
for any x ∈ C1 ∪ SingC, the intersection of the open segment (O, x) with the interior of
C is not empty. Then

(a) all convex bodies C(s), 0 ≤ s ≤ 1 given by (10) are also solutions to problem (3);
(b) the measures ν∂C(s), s ∈ [0, 1] form a linear segment: ν∂C(s) = ν∂C + sν0, where ν0

is a signed measure on S2.

This lemma is the main point in the proof of Theorem 2. In turn, the main point in
the proof of this lemma is extension of the family of admissible convex bodies C(s) to
negative values of s and the statement that the composite function F (∂C(s)) is linear for
s ∈ [0, 1] and differentiable at s = 0.

Proof. The sets C(s) can be defined in another way. Draw all the rays with vertex at O
that intersect C. The union of these rays is a closed convex cone. Denote by A and A′ the
initial (closer to O) and the final points of intersection of a generic ray with C. If the ray
is tangent then its intersection with C is the line segment [A,A′] (which may degenerate
to a point if A = A′). Otherwise, the intersection is the 2-point set {A, A′}.
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Denote by C− the union of the segments OA′ of all rays, and by ∂+C the union of
the corresponding points A′. Denote by V the surface composed of the segments [O,A′]
contained in the tangent rays. The boundary of C− is the union ∂+C ∪ V .

For each ray OA, denote by AA′ the ray contained in OA with the vertex at A. Denote
by C+ the union of the rays AA′, and by ∂−C the union of the points A corresponding to
all rays and the segments [A,A′] contained in the tangent rays. The boundary of C+ is
the union of ∂−C and the rays with the vertices at the points A′ contained in the tangent
rays OA′.

O

A1 = A′
1

A2

A′
2

∂+C

∂−C V

(a)

b

b

b
C

O

∂+C b

b

C−
A

A′

(b)
O

A1 A2

A′
2

∂−C

b

b

b

C+

(c)

Figure 4: The sets C, C−, and C+ are shown in figures (a), (b), and (c), respectively. The
upper curve A1A

′
2 is ∂+C, and the lower curve A1A2A

′
2 is ∂−C.

We have C = C− ∩ C+; see Fig. 4.
Place the origin at the point O; then tC designates the dilation of C with center O

and ratio t. The set C(s) now takes the form (see Fig. 5)

C(s) =

{
C− ∩

√
1− sC+, if s < 1

C−, if s = 1.
(11)

In particular, C(0) = C− ∩ C+ = C and C(1) = C− = Conv(C ∪ {O}). Since C1 ⊂ C ⊂
C(s) ⊂ Conv(C ∪ {O}) ⊂ C2, the bodies C(s), 0 ≤ s ≤ 1 are admissible.

Note that formula (11) defines the body C(s) also for the values s < 0.
All segments [O, A] and the segments [O, A′] contained in the tangent rays do not

intersect the interior of C, hence by the hypothesis of the lemma, no point of these intervals
belongs to C1∪SingC. The set ∂−C is contained in the union of these intervals, therefore
∂−C does not intersect C1 ∪ SingC. Since both sets, ∂−C and C1 ∪ SingC, are compact,
for |s| sufficiently small the dilated set

√
1− s ∂−C also does not intersect C1 ∪ SingC,

and therefore in particular, C1 ⊂ C(s) ⊂ C2, that is, C(s) is admissible.
Let us now study the composite function F (∂C(s)). For 0 ≤ s ≤ 1 this function is

linear. Indeed, ∂C(s) is composed of the surfaces ∂+C,
√
1− s ∂−C, and V \

√
1− s V

(note that
√
1− s V ⊂ V ). The surface area measure of ∂C(s) is ν∂C(s) = ν∂+C + (1 −

s)ν∂−C + sνV . It can be represented as

ν∂C(s) = ν∂C + sν0, s ∈ [0, 1], where ν0 = νV − ν∂−C .
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O

∂+C

(a)

C(s),
0 < s < 1

∂−Cb√
1−
s V

z

yx O

∂+C

∂−C
B

B′

(b)

b

b

b

b C(s),
s < 0

√
1−
s V \

V

Figure 5: The set C(s) (a) for 0 < s < 1 and (b) for s < 0. The surface
√
1− s ∂−C is

shown as dashed line.

Thus, claim (b) of the lemma is proved.
For 0 ≤ s ≤ 1 we have F (

√
1− s ∂−C) = (1 − s)F (∂−C) and F (V \

√
1− s V ) =

F (V )− (1− s)F (V ) = sF (V ), therefore

F (∂C(s)) = F (∂+C) + (1− s)F (∂−C) + sF (V ).

Let us now show that the derivative d
ds

⌋
s=0

F (∂C(s)) exists.
The calculation of the right derivative is straightforward,

d

ds

⌋
s=0+

F (∂C(s)) = lim
s→0+

F (∂C(s))− F (∂C)

s
= F (V )− F (∂−C).

If s < 0, the boundary of the convex body C(s) is composed of parts of the surfaces
∂+C and

√
1− s ∂−C. Namely,

∂C(s) = (∂+C ∩
√
1− sC+) ∪ (

√
1− s ∂−C ∩ C−),

and the complementary parts of these surfaces, ∂+C \
√
1− sC+ and

√
1− s ∂−C \ C−,

do not take part of the boundary. Therefore we have

F (∂C(s)) = F (∂+C) + (1− s)F (∂−C)−
[
F (∂+C \

√
1− sC+) + F (

√
1− s ∂−C \ C−)

]

= F (∂+C) + (1− s)F (∂−C) + sF (V )

−
[
sF (V ) + F (∂+C \

√
1− sC+) + F (

√
1− s ∂−C \ C−)

]
.

Therefore, the left derivative (if exists) equals

d

ds

⌋
s=0−

F (∂C(s)) = lim
s→0−

F (∂C(s))− F (∂C)

s
= F (V )− F (∂−C)− lim

s→0+

R(s)

s
,
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where
R(s) = sF (V ) + F (∂+C \

√
1− sC+) + F (

√
1− s ∂−C \ C−)

= F (∂+C \
√
1− sC+) + F (

√
1− s ∂−C \ C−)− F (

√
1− s V \ V ).

Let us prove that R(s) = o(s) as s → 0−; it will follow that the derivative
d
ds

⌋
s=0

F (∂C(s)) exists and is equal to F (V )− F (∂−C).
Draw a straight line through O intersecting the interior of C. Let B and B′ be the

points of intersection of this line with ∂C, so as the open segment OB is outside C.
Introduce an ortogonal coordinate system with the coordinates x, y, z so as the origin

is at O and the z-axis coincides with the axis OB; see Fig. 5 (b). Let Ds, D
+
s , D

−
s ,

s < 0, be the orthogonal projections of
√
1− s V \V , ∂+C \

√
1− sC+,

√
1− s ∂−C \C−,

respectively, on the xy-plane. The area of Ds equals −ks, where k is the area of the
corresponding projection of V . For −s sufficiently small, the domains D+

s and D−
s have

disjoint interiors and D+
s ∪D−

s = Ds, hence

Area(D+
s ) + Area(D−

s ) = Area(Ds) = −ks.

Denote by n(x, y) = (n1(x, y), n2(x, y), n3(x, y)) the outward normal to
√
1− s V \ V

at the pre-image of (x, y) ∈ Ds under the projection. Similarly, let n+(x, y) =
(n+

1 (x, y), n
+
2 (x, y), n

+
3 (x, y)) and n

−(x, y) = (n−
1 (x, y), n

−
2 (x, y), n

−
3 (x, y)) be the outward

normals to ∂+C \
√
1− sC+ and

√
1− s ∂−C \ C−, respectively. The third components

of these vectors, n3(x, y), n
+
3 (x, y), and n

−
3 (x, y), are negative for −s sufficiently small.

The function n(x, y) is continuous in Ds and is constant in the radial direction. The
function n+(x, y) coincides with n(x, y) on the inner boundary of Ds; in other words, for
any (x, y) ∈ D+

s there exists 0 < c ≤ 1 such that (cx, cy) ∈ D+
s and n(x, y) = n(cx, cy) =

n+(cx, cy). The function n+(x, y) is continuous (and therefore uniformly continuous) in
the closure of Ds for −s sufficiently small. Thus, for any ε > 0 there exists δ > 0 such
that for all 0 < −s < δ, for all (x, y) ∈ D+

s , and for a suitable positive c = c(x, y) ∈ (0, 1]
we have (cx, cy) ∈ D+

s , n(cx, cy) = n+(cx, cy), and |n+(x, y)− n+(cx, cy)| < ε; it follows
that for any (x, y) ∈ D+

s , |n+(x, y)− n(x, y)| < ε.
A similar reasoning holds for the function n−(x, y) with (x, y) ∈ D−

s . As a result we
have

sup
(x,y)∈D+

s

|n+(x, y)− n(x, y)|+ sup
(x,y)∈D−

s

|n−(x, y)− n(x, y)| → 0 as s→ 0−.

For −s sufficiently small the function p(n) = f(n)
|n3| is well defined, and therefore is

uniformly continuous, in the closure of the set {n(x, y) : (x, y) ∈ Ds}∪{n+(x, y) : (x, y) ∈
D+

s } ∪ {n−(x, y) : (x, y) ∈ D−
s } ⊂ S2, hence

sup
(x,y)∈D+

s

|p(n(x, y))−p(n+(x, y))|+ sup
(x,y)∈D−

s

|p(n(x, y))−p(n−(x, y))| =: α(s) → 0 as s→ 0−.
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We have

R(s) =

∫

∂+C\
√
1−sC+

f(nξ) dξ +

∫
√
1−s ∂−C\C−

f(nξ) dξ −
∫
√
1−s V \V

f(nξ) dξ.

Making the change of variable ξ  x, y in these integrals and taking into account that
dξ = dx dy

|n+

3
(x,y)| , dξ = dx dy

|n−

3
(x,y)| , and dξ = dx dy

|n3(x,y)| in the first, second, and third integrals,

respectively, we get

R(s) =

∫

D+
s

p(n+(x, y)) dx dy +

∫

D−

s

p(n−(x, y)) dx dy −
∫

Ds

p(n(x, y)) dx dy

=

∫

D+
s

(
p(n+(x, y))− p(n(x, y))

)
dx dy +

∫

D−

s

(
p(n−(x, y))− p(n(x, y))

)
dx dy,

and so,

|R(s)| ≤
∫

D+
s

|(p(n+(x, y))− p(n(x, y)))| dx dy +
∫

D−

s

|(p(n−(x, y))− p(n(x, y)))| dx dy

≤ α(s) k|s| = o(s) as s→ 0−.

It follows that there exists the derivative

d

ds

⌋
s=0

F (∂C(s)) = F (V )− F (∂−C).

Since F (∂C(s)) takes the minimal value at s = 0, we have d
ds

⌋
s=0

F (∂C(s)) = 0, therefore
F (∂C(s)) is constant for 0 ≤ s ≤ 1. Thus, all bodies C(s), 0 ≤ s ≤ 1 are solutions of
problem (3). Claim (a) of the lemma is also proved.

Let us finish the proof of the theorem.
Let C be a solution of problem (3). Assuming that the set ExtC \ (∂C1∪∂C2∪SingC)

is not empty, we use Lemma 4 to obtain an infinite sequence of points O1, O2, . . . in
C2 \ C such that (a) for all i 6= j and all ξ ∈ C1 ∪ SingC, the intersections of the

open segments (Oi, Oj) and (Oi, ξ) with the interior of C are not empty; (b) for Ĉ =
Conv(C ∪ {O1, O2, . . .}) holds

ExtĈ ⊂ ∂C1 ∪ ∂C2 ∪ SingĈ.

For any ~s = (s1, s2, . . .) ∈ [0, 1]∞ define

C(~s) = ∪iCi(si), where Ci(s) =
⋃

√
1−s≤λ≤1

(
λC + (1− λ)Oi

)
.
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One has C(~0) = C and by claim (a) of Lemma 2, C(~1) = ∪iConv(C ∪ {Oi}) = Ĉ.
Denote ~ei = (0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . .); then we have C(~ei) = Conv(C ∪ {Oj}).

In Appendix 1 we prove that each set C(~s) is convex. We have C1 ⊂ C ⊂ C(~s) ⊂ C2,
hence C(~s) belongs to the class of admissible bodies.

Fix i and consider all rays with vertex at Oi intersecting C. Denote by A and A′ the
initial (closer to Oi) and the final points of intersection of a generic ray of this kind with
C. Let ∂−i C be the union of the points A corresponding to all rays and the segments
[A, A′] contained in the rays tangent to C. Let Vi be the union of all segments [Oi, A

′]
contained in the tangent rays.

In Appendix 2 we prove that the closed sets bounded by the surfaces Vi and ∂
−
i C are

mutually disjoint. (Note that every such set is the union of all segments [Oi, A] and the
segments [Oi, A

′] corresponding to the tangent rays.)
The boundary of C is the disjoint union of all surfaces ∂−i C and the remaining part

of the boundary, ∂C \ (∪i∂
−
i C),

∂C = ∪i∂
−
i C

⋃(
∂C \ (∪i∂

−
i C)

)
.

Denote by Ti(k) the dilation with center Oi and ratio k and consider the convex body
C(s~ei), 0 ≤ s ≤ 1. Its boundary is the disjoint union

∂C(s~ei) =
(
∂C \ ∂−i C

)
∪
(
Ti(

√
1− s)(∂−i C) ∪

(
Vi \ Ti(

√
1− s)(Vi)

) )
.

Correspondingly, its surface measure is

ν∂C(s~ei) = (ν∂C − ν∂−

i
C) + (νTi(

√
1−s)(∂−

i
C) + νVi

− νTi(
√
1−s)(Vi))

= (ν∂C − ν∂−

i
C) +

(
(1− s)ν∂−

i
C + νVi

− (1− s)νVi

)
= ν∂C + sνi,

where νi = νVi
− ν∂−

i C , and

F (∂C(s~ei)) = F (ν∂C) + s(F (Vi)− F (∂−i C).

Since by Lemma 5, every convex body C(s~ei) is a solution of problem (3), we have

F (Vi)− F (∂−i C) = 0. (12)

In general, the boundary of C(~s), ~s ∈ [0, 1]∞ is the disjoint union of ∂C \ (∪i∂
−
i C)

and the surfaces Ti(
√
1− si)(∂

−
i C) and Vi \ Ti(

√
1− si)(Vi) for all values of i,

∂C(~s) =
⋃

i

(
Ti(

√
1− si)(∂

−
i C) ∪

(
Vi \ Ti(

√
1− si)(Vi)

) )⋃(
∂C \ (∪i∂

−
i C)

)
;

27



O2O1

C

C1

C2
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b

Figure 6: The body C(~s) with ~s = (3
4
, 3

4
, 0, 0, . . .) is shown in gray. The body C(~0)

coincides with C. The body C(1, 1, 0, 0, . . .) = Conv(C ∪ {O1, O2}) is bounded by the
closed curve O1O2S. The bodies C1 and C2 are bounded by dashed lines. The set SingC
is represented here by the point S.

see Fig. 6 for the case when ~s = (3
4
, 3

4
, 0, 0, . . .). Correspondingly, the surface measure is

ν∂C(~s) =
∑

i

(
νTi(

√
1−si)(∂

−

i C) + νVi
− νTi(

√
1−si)(Vi)

)
+
(
ν∂C −

∑

i

ν∂−

i C

)

=
∑

i

(
(1− si)ν∂−

i C + νVi
− (1− si)νVi

)
+
(
ν∂C −

∑

i

ν∂−

i C

)
= ν∂C +

∑

i

si(νVi
− ν∂−

i C).

Hence we have
ν∂C(~s) = ν∂C +

∑

i

siνi with νi = νVi
− ν∂−

i
C

and
F (∂C(~s)) = F (∂C) +

∑

i

si(F (Vi)− F (∂−i C)).

Using (12), one obtains F (∂C(~s)) = F (∂C), that is, for every ~s the convex body C(~s) is
a solution to problem (3). Theorem 2 is proved.
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Appendix 1

Since all sets Ci(si) are convex, it suffices to show that for all i 6= j, xi ∈ Ci(si) and
xj ∈ Cj(sj), the segment [xi, xj ] lies in Ci(si) ∪ Cj(sj).

We have
xi = µ1x̂i + (1− µ1)Oi and xj = µ2x̂j + (1− µ2)Oj (13)

for some x̂i, x̂j ∈ C,
√
1− si ≤ µ1 ≤ 1,

√
1− sj ≤ µ2 ≤ 1. If µ1 = 1 or µ2 = 1 then

the segment [xi, xj ] is contained in Cj(sj) or Ci(si), respectively. If, otherwise, both µ1

and µ2 are not equal to 1 then we make use of the fact that the open segment (Oi, Oj)
intersects C, and therefore, for some 0 < λ < 1 the point x0 = λOi + (1− λ)Oj lies in C.

Take the point x̄ = λ̃xi + (1− λ̃)xj , where

λ̃ =

λ
1−µ1

λ
1−µ1

+ 1−λ
1−µ2

and hence, 1− λ̃ =

1−λ
1−µ2

λ
1−µ1

+ 1−λ
1−µ2

.

Using formula (13), one sees that x̄ is a convex combination of the points x0, x̂i, x̂j , and
therefore, lies in C.

Thus, the segment [xi, xj ] is divided by the point x̄ into two parts [xi, x̄] and [x̄, xj ],
with xi ∈ Ci(si), xj ∈ Cj(sj), x̄ ∈ C. Hence the former segment belongs to Ci(si) and
the latter one belongs to Cj(sj).

Thus, C(~s) is convex.

Appendix 2

The closed set bounded by the surfaces Vi and ∂−i C is the union of segments [Oi, Ai]
contained in rays from Oi intersecting C and segments [Oi, A

′
i] contained in tangent rays

from Oi. A generic segment of this kind ([Oi, Ai] or [Oi, A
′
i]) will be denoted as [Oi, Bi].

It suffices to show that for i 6= j, the generic segments [Oi, Bi] and [Oj , Bj] are disjoint.
Assume the contrary: [Oi, Bi] and [Oj, Bj ] intersect at a point ξ, and therefore,

ξ = λiOi + (1− λi)Bi = λjOj + (1− λj)Bj

for 0 ≤ λi ≤ 1, 0 ≤ λj ≤ 1. We know that a point of the interval (Oi, Oj) belongs to the
interior of C; let it be O = µOi+ (1−µ)Oj, 0 < µ < 1. We also know that the points Bi
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and Bj lie in C and that the segments [Oi, Bi] and [Oj, Bj ] do not contain interior points
of C.

Suppose that λi 6= 0 and λj 6= 0. Take the values

λ̃ =

µ

λi

µ

λi
+ 1−µ

λj

, 1− λ̃ =

1−µ

λj

µ

λi
+ 1−µ

λj

.

We have

ξ = λ̃
[
λiOi+(1−λi)Bi

]
+(1−λ̃)

[
λjOj+(1−λj)Bj

]
=

1
µ

λi
+ 1−µ

λj

O+λ̃(1−λi)Bi+(1−λ̃)(1−λj)Bj;

that is, ξ is a convex combination of O, Bi, and Bj , with nonzero coefficient at O. Hence
ξ lies in the interior of C, in contradiction with the condition that no point of [Oi, Bi]
belongs to the interior of C.

It remains to consider the cases λi = 0 and λj = 0. Let, for example, λi = 0; then we

have Bi = λjOj + (1− λj)Bj . If λj 6= 0, denote µ̃ =
λj

(1−µ)(1−λj )+λj
and take the point

ξ = µ̃O + (1− µ̃)Bj = µ̃µOi +
1− µ

(1− µ)(1− λj) + λj
Bi ∈ [Oi, Bi],

Since O is in the interior of C, Bj ∈ C, and µ̃ 6= 0, the point ξ lies in the interior of C.
We have again a contradiction with the condition that no point of [Oi, Bi] belongs to the
interior of C.

If λi = 0 and λj = 0, we have Bi = Bj. The points Oi, Bi, and Oj are not collinear,
since otherwise the segment (Oi, Oj) = (Oi, Bi)∪ [Bi, Oj) does not contain interior points
of C. Using that the segment [O, Bi] is contained in C and no point of the segments
[Oi, Bi] and [Bi, Oj] is contained in the interior of C, one concludes that the intersection
of C with the plane OiOjBi is a planar convex body contained in the angle OiBiOj, and
both lines OiBi and OjBi are lines of support to this planar body. Since Bi is a regular
point of C, the plane OiOjBi is tangent to C, in contradiction with the assumption that
O ∈ (Oi, Oj) is an interior point of C.

Thus, the segments [Oi, Bi] and [Oj, Bj ] are disjoint.

References

[1] A. Akopyan and A. Plakhov. Minimal resistance of curves under the single impact
assumption. SIAM J. Math. Anal. 47, 2754-2769 (2015).

[2] A. Aleksenko and A. Plakhov. Bodies of zero resistance and bodies invisible in one
direction. Nonlinearity 22, 1247-1258 (2009).

30



[3] A. D. Alexandrov. Selected Works. Part I: Selected Scientific Papers, Chapter V,
§3. Ed. by Yu. G. Reshetnyak and S. S. Kutateladze. Gordon and Breach Publishers
(1996).

[4] V. Alexandrov, N. Kopteva, and S. S. Kutateladze. Blaschke addition and convex
polyhedra. arXiv:math/0502345v1 [math.MG]

[5] P. Bachurin, K. Khanin, J. Marklof and A. Plakhov. Perfect retroreflectors and bil-
liard dynamics. J. Modern Dynam. 5, 33-48 (2011)).

[6] M. Belloni and A. Wagner. Newtons problem of minimal resistance in the class of
bodies with prescribed volume. J. Convex Anal. 10, 491500 (2003).

[7] A. S. Besicovitch. The Kakeya problem. Amer. Math. Monthly 70, 697-706 (1963).

[8] F. Brock, V. Ferone and B. Kawohl. A symmetry problem in the calculus of varia-
tions. Calc. Var. 4, 593-599 (1996).

[9] G. Buttazzo, A survey on the Newton problem of optimal profiles. Variational analysis
and aerospace engineering, 33-48, Springer Optim. Appl. 33, Springer, New York,
2009.

[10] G. Buttazzo, B. Kawohl. On Newton’s problem of minimal resistance. Math. Intell.
15, 7–12 (1993).

[11] G. Buttazzo, V. Ferone, B. Kawohl. Minimum problems over sets of concave func-
tions and related questions. Math. Nachr. 173, 71–89 (1995).

[12] F. Brock, V. Ferone and B. Kawohl. A symmetry problem in the calculus of varia-
tions. Calc. Var. 4, 593-599 (1996).

[13] G. Buttazzo, P. Guasoni. Shape optimization problems over classes of convex do-
mains. J. Convex Anal. 4, No.2, 343-351 (1997).

[14] G. Carlier and T. Lachand-Robert. Convex bodies of optimal shape. J. Convex Anal.
10, No. 1, 265-273 (2003).

[15] M. Comte, T. Lachand-Robert. Newton’s problem of the body of minimal resistance
under a single-impact assumption. Calc. Var. Partial Differ. Equ. 12, 173-211 (2001).

[16] M. Comte, T. Lachand-Robert. Existence of minimizers for Newton’s problem of the
body of minimal resistance under a single-impact assumption. J. Anal. Math. 83,
313-335 (2001).

[17] B. Kawohl. Some nonconvex shape optimization problems. Optimal shape design
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