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Abstract

We consider the generalized Newton’s least resistance problem for convex bodies:
minimize the functional

∫∫

Ω(1+|∇u(x, y)|2)−1dx dy in the class of concave functions
u : Ω → [0,M ], where the domain Ω ⊂ R

2 is convex and bounded and M > 0. It has
been known [1] that if u solves the problem then |∇u(x, y)| ≥ 1 at all regular points
(x, y) such that u(x, y) < M . We prove that if the upper level set L = {(x, y) :
u(x, y) = M} has nonempty interior, then for almost all points of its boundary
(x̄, ȳ) ∈ ∂L one has lim(x,y)→(x̄,ȳ)

u(x,y)<M

|∇u(x, y)| = 1. As a by-product, we obtain a result

concerning local properties of convex surfaces near ridge points.
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1 Introduction

In this paper we consider the following problem.

Problem 1. Given M > 0 and a bounded convex set with nonempty interior Ω ⊂ R
2,

minimize

F (u) =

∫∫

Ω

1

1 + |∇u(x, y)|2 dxdy (1)

in the class of concave functions u : Ω → [0, M ].

Note that Problem 1 is a generalization of the famous Newton’s aerodynamic problem:
Let Ω = {(x, y) : x2 + y2 ≤ 1} be the unit circle centered at the origin; one needs to min-
imize the functional F given by (1) in the (narrower) class of concave radially symmetric
functions, that is, functions u that can be represented as u(x, y) = φ(

√

x2 + y2), with φ
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Figure 1: The solution of Newton’s problem with M = 2.

being a concave monotone decreasing function of one variable. A solution of Newton’s
problem can be seen in Fig. 1.

Newton’s aerodynamic problem and its generalization admit the following aerody-
namic interpretation. Consider a convex body C moving with unit velocity through a
highly rarified homogeneous medium composed of point particles at rest. The mutual in-
teraction of particles is neglected. When colliding with the body, each particle is reflected
elastically. As a result of collisions, there appears the drag force that acts on the body
and slows down its motion.

Take a coordinate system with the coordinates x, y, z connected with the body such
that the z-axis is parallel and co-directional to the velocity of the body. The upper part
of the body’s surface is the graph of a concave function u = uC : Ω → R, where Ω = ΩC

is the projection of C on the xy-plane. Then the z-component of the drag force equals
−2ρF (u), where ρ is the density of the medium and F (u) is given by (1).

The generalized Problem 1 was stated in 1993 in the paper by Buttazzo and Kawohl
[2] and still remains open. Several solutions to this problem obtained numerically in [7]
can be seen in Fig. 2. In [1] (1995) it was proved, in particular, that |∇u(x, y)| ≥ 1 for
any regular point (x, y) such that u(x, y) < M. In the same paper it was conjectured that
|∇u(x, y)| → 1 as u(x, y) → M.

This conjecture is in agreement with numerical simulation in the case when the (con-
vex) set L = {(x, y) : u(x, y) = M} has nonempty interior. On the other hand, if L is a
line segment, it seems that infu(x,y)<M |∇u(x, y)| > 1.1

In this paper we provide a sketch of the proof of the following theorem. The full proof
will be published elsewhere.

Theorem 1. Let u solve Problem 1 and let the upper level set L = {(x, y) : u(x, y) = M}
have nonempty interior. Then for almost all points (x̄, ȳ) ∈ ∂L,

lim
(x,y)→(x̄,ȳ)

(x,y)∈Ω\L

|∇u(x, y)| = 1.
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Figure 2: Numerical solutions of Problem 1 in the cases (a) M = 0.4; (b) M = 0.7;
(c) M = 1.0; (d) M = 1.5.

2 Surface area measure

In the proof we use the representation of the integral in (1) in terms of surface area
measure.

Let C ⊂ R
d, d ≥ 2, be a convex body, that is, a compact convex set with nonempty

interior. Denote by nr the outward normal to C at a regular point r ∈ ∂C.

Definition 1. The surface area measure of C is the Borel measure νC in Sd−1 defined by
νC(A) := |{r ∈ ∂C : nr ∈ A}| for any Borel set A ⊂ Sd−1.

In the same way one can define the surface area measure induced by a Borel subset
B ⊂ ∂C. In this case one only needs to replace ∂C with B in the definition.

By Alexandrov’s theorem, the map C 7→ νC is a one-to-one correspondence between
the set of convex bodies in R

d with the geometric center at the origin and the set of
measures on Sd−1 satisfying the equation

∫

Sd−1

n dν(n) = ~0 (2)

and such that the linear span of spt ν is Rd.
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Take the convex body C = Cu associated with the function u, C = {(x, y, z) ∈ R
3 :

(x, y) ∈ Ω, 0 ≤ z ≤ u(x, y)}. The functional F in (1) can be written as F (u) = F(νC),
where

F(ν) =

∫

S2

f(n) dν(n);

here f is the function on S2 defined by f(x, y, z) = (z+)
3 and z+ means the positive part

of z, z+ := max{z, 0} [3, 4].

Let us briefly mention the 2D version of Newton’s problem: minimize
∫ 1

0
(1 +

u′2(x))−1dx in the class of concave functions u : [0, 1] → [0, M ]. It was considered in
[2]. The solution is u(x) = min{M, 1− x}, if M < 1, and u(x) = M(1 − x), if M ≥ 1.

This problem can be reformulated in terms of surface area measure as follows:

Minimize the integral

∫

S1

f(n) dν(n) (3)

in the class of measures ν supported in the first quarter of the unit circumference {(x, z) ∈
R

2 : x2 + z2 = 1, x ≥ 0, z ≥ 0} and satisfying the relation
∫

S1 n dν(n) = (M, 1). (Here by
slightly abusing the language we denote by f the function on S1 = {x2 + z2 = 1} defined
by f(x, z) = (z+)

3.)
The unique solution to problem (3) is the sum of two atoms concentrated at (0, 1) and

1√
2
(1, 1), if M < 1, and an atom concentrated at 1√

1+M2 (M, 1), if M ≥ 1.
Let us formulate separately this statement in the particular case M = 1, which will

be needed later on.

Proposition 1. The minimum of the integral
∫

S1 f(n) dν(n) in the class of measures ν
on S1 satisfying the conditions

(i) spt ν lies in the quarter of the circumference x2 + z2 = 1, x ≥ 0, z ≥ 0;
(ii)

∫

S1 n dν(n) = 1√
2
(1, 1)

equals 1/(2
√
2), and the unique minimizer is the atom δ 1√

2
(1,1).

3 Local properties of convex surfaces

Here we provide auxiliary results on surface area measure that will be needed later on.
Recall that a convex body is a convex compact set with nonempty interior.
Consider a convex body C ⊂ R

3. A singular point r0 of its boundary is called a conical
point, if the tangent cone to C at r0 is not degenerate (that is, does not contain straight
lines), and a ridge point, if the tangent cone degenerates into a dihedral angle (see, e.g.,
[5]).

Take a ridge point r0 ∈ ∂C and let Π be a plane of support to C at r0. Consider
the part of ∂C containing r0 cut off by a plane parallel to Π. We will study the limiting
properties of this part of surface when the cutting plane approaches Π.
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More precisely, let the tangent cone at r0 be given by

(r − r0, e1) ≤ 0, (r − r0, e2) ≤ 0, (4)

where e1 and e2 are non-collinear unit vectors, e1 6= ±e2. Here and in what follows, (· , ·)
means the scalar product. The outward normals of all planes of support at r0 form the
curve

Γ = Γe1,e2 = {v = µ1e1 + µ2e2 : |v| = 1, µ1 ≥ 0, µ2 ≥ 0} ⊂ S2;

it is the minor arc of the great circle on S2 through the points e1 and e2 bounded by these
points.

Let e be a positive linear combination of e1 and e2, e = λ1e1 + λ2e2, λ1 > 0, λ2 > 0,
|e| = 1. Denote by Πt the plane of equation (r − r0, e) = −t and by Πi (i = 1, 2) the
plane of equation (r − r0, ei) = 0. The point e lies on the curve Γ and does not coincide
with its endpoints e1 and e2.

For t ≥ 0 consider the convex body

Ct = C ∩ {r : (r − r0, e) ≥ −t};

it is the piece of C cut off by the plane Πt. It is assumed that the distance t between Πt

and r0 is small. The body Ct is bounded by the planar domain

Bt = C ∩ {r : (r − r0, e) = −t} ⊂ Πt

and the convex surface

St = ∂C ∩ {r : (r − r0, e) ≥ −t} ⊂ ∂C; (5)

that is, ∂Ct = Bt ∪ St.
In what follows we denote by |A| the 2-dimensional Hausdorff measure (area) of the

Borel set A on the convex surface ∂C or on a plane. In particular, |�ABCD| means the
area of the quadrangle ABCD. The same notation will be used for the length of a line
segment or a curve; for instance, |MN | means the length of the segment MN .

Let us define the normalized measure νt induced by the surface St as follows: for any
Borel set A ⊂ S2,

νt(A) =
1

|Bt|
|{r ∈ St : nr ∈ A}|.

The surface area measure of the convex body Ct equals νCt
= |Bt|δ−e + |Bt|νt, hence

∫

S2 n dνCt
(n) = |Bt|(−e+

∫

S2 n dνt(n)). Formula (2) applied to Ct results in

∫

S2

n dνt(n) = e. (6)
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We say that νt weakly converges to ν∗ as t → 0+, and use the notation νt −−−→
t→0+

ν∗, if

for any continuous function f on S2,

lim
t→0+

∫

S2

f(n) dνt(n) =

∫

S2

f(n) dν∗(n).

Similarly, ν∗ is called a weak partial limit of νt, if there exists a sequence ti > 0, i ∈ N

converging to zero such that for any continuous function f on S2,

lim
i→∞

∫

S2

f(n) dνti(n) =

∫

S2

f(n) dν∗(n).

We are interested in studying the properties of the limiting measure (weak limit or
partial weak limit) ν∗.

One of the properties is immediate: going to the limit t → 0+ or ti → 0 in formula
(6), one obtains

∫

S2

n dν∗(n) = e. (7)

Consider two examples.

Example 1. Let r0 be an interior point of an edge of a tetrahedron (see Fig. 3).

br0

N

M

A

B
C

D

e1
e2

e

Πt

Figure 3: r0 lies on the edge MN of the tetrahedron, and the section of the tetrahedron
by the plane Πt : (r − r0, e) = −t is the quadrilateral ABCD.

The surface St is composed of two quadrilaterals MNBA and MNCD and two trian-
gles BCN and ADM . The outward normals to the quadrilaterals MNBA and MNCD
are e1 and e2, respectively, and their areas are of the order of t, |�MNBA| = c1t+O(t2),
|�MNCD| = c2t + O(t2), c1 > 0, c2 > 0. The areas of the triangles BCN and ADM
are O(t2).

The planar surface Bt is the quadrilateral ABCD, the normal vector to it is e =
λ1e1 + λ2e2, and its area is of the order of t, |�ABCD| = c0t+ O(t2), c0 > 0. It follows
that the corresponding measure νt weakly converges to the measure ν∗ supported on the

6



two-point set {e1, e2}, ν∗ = c1
c0
δe1 +

c2
c0
δe2. Using formula (7), one finds that c1

c0
= λ1,

c2
c0

= λ2. Thus, we have

νt −−−→
t→0+

ν∗, where ν∗ = λ1δe1 + λ2δe2. (8)

Example 2. Let C be the part of a cylinder bounded by two planes, C = {r = (x, y, z) :
−z − 1 ≤ x ≤ z + 1, y2 + z2 ≤ 1}, and take the ridge point r0 = (0, 0,−1) ∈ ∂C.
The outward vectors of the corresponding dihedral angle are e1 =

1√
2
(−1, 0,−1) and e2 =

1√
2
(1, 0,−1). We take e = (0, 0,−1) = 1√

2
e1 +

1√
2
e2 (see Fig. 4 (a)).

r0

C

b

e1 e2

e(a)

1 2

0

0

(b)

Figure 4: (a) C is the part of a cylinder bounded by two planes through r0. (b) The pro-
jections of S1

t , S
2
t , and S0

t on the xy-plane are marked by ”1”, ”2”, and ”0”, respectively.

We have Ct = C∩{z ≤ −1+t}, and Bt is the rectangle −t ≤ x ≤ t, −
√
2t− t2 ≤ y ≤√

2t− t2 in the plane z = −1 + t. The surface St is the union of three parts, St = S1
t ∪

S2
t ∪S0

t , where S
1
t is the planar domain of equations x = −z−1, x ≥ −t, (x+1)2+y2 ≤ 1

with the outward normal e1 and S2
t is the planar domain of equations x = z + 1, x ≤

t, (x − 1)2 + y2 ≤ 1 with the outward normal e2. S1
t and S2

t are segments of ellipses in
the planes x = −z − 1 and x = z + 1, respectively. The surface S0

t is the graph of the
function z(x, y) = −

√

1− y2 defined on the domain −(1−
√

1− y2) ≤ x ≤ 1−
√

1− y2,
−
√
2t− t2 ≤ y ≤

√
2t− t2; see Fig. 4 (b). The outward normals to S0

t are contained in a
neighborhood of e shrinking to e when t → 0+.

The areas of the surfaces are easy to calculate, |Bt| = 2t · 2
√
2t− t2 = 4

√
2 t3/2(1 +

o(1)), t → 0, |S0
t | = 4

√
2

3
t3/2(1+o(1)), and |S1

t | = |S2
t | = 8

3
t3/2(1+o(1)), t → 0. It follows

that νt converges to the measure

ν∗ =

√
2

3
δe1 +

√
2

3
δe2 +

1

3
δe

supported on the three-point set {e1, e2, e} ⊂ Γ.

The following Theorem describes the limiting behavior of νt in the general case.

Theorem 2. The set of weak partial limits of νt as t → 0+ is nonempty, and each partial
limit is supported on a subset of Γ containing e1 and e2.
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4 Sketch of the proof of Theorem 2

It is not difficult to show that the full measures νt(S
2) do not exceed a constant on a

certain interval (0, t0), and therefore, there is at least one partial limit of νt as t → 0+.
Further, the statement that each partial limit of νt is supported in Γ is a consequence of
the fact that the graph of the subdifferential mapping of a convex function is closed (and
the similar fact for concave functions); see Theorem 24.4 of the book [6]. It remains to
prove that spt ν∗ contains e1 and e2.

Let us explain the underlying idea of the proof. It suffices to prove that e1 ∈ spt ν∗;
the proof for e2 is the same. Let l1 = lt1 and l2 = lt2 be the parallel lines resulting from
intersection of Π1 and Π2, correspondingly, with Πt. In Fig. 5 the point r0 is marked by
A. Draw the plane through this point perpendicular to the edge of the dihedral angle,
and let the segment MN = MtNt be the intersection of this plane with Bt. We assume
that the point M is closer to l2 and N is closer to l1. In the plane Πt draw two lines of
support to Bt orthogonal to l1 and l2.

Choose two points C = Ct and D = Dt in Bt that belong, respectively, to the first
and second lines of support and assume, without loss of generality, that dist(D,MN) ≥
dist(C,MN). Draw the plane through the edge of the dihedral angle and the point D;
let it intersect the line MN at the point H = Ht (see Fig. 5).

A

N̂ F̂

EHC D

M

l1

l2

Q

Q̂

N
F

Bt

b

b

b

Figure 5: The convex body Ct in the dihedral angle and the corresponding notation.

Now fix 0 < θ < 1 and take the point E = Et,θ on the segment HD so as |HE| =
θ|HD|. Further, we compare the surface area measures induced by the following two
convex bodies. The first one is called Prismt(θ); it is the prism HAN̂EQF̂ bounded by
the 5 planes: Π1, Π

t, the plane through the edge of the dihedral angle and through the
points H and E, and the two planes orthogonal to that edge through the points H and E.
The second body, called Ct(θ), is the intersection of this prism with C; in other words, it
is the part of C contained in the prism and bounded by the 4 of the above planes (except
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for Π1).
In Fig. 5 the point Q on the edge of the dihedral angle and the points N̂ and F̂ on

l1 are chosen so as the lines QE, N̂H , F̂E are orthogonal to HD. The point Q̂ is the
intersection of the segment QE with ∂C. The surface area measure induced by the face
AQF̂ N̂ of the prism is ν0

t,θ = |AQF̂ N̂ |δe1, and there is a partial limit of the normalized

surface area measure 1
|Bt| ν

0
t,θ equal to c δe1 with a certain c > 0. The surface area measure

induced by the part AQ̂FN of ∂Ct(θ) is denoted by νAQ̂FN , and the normalized surface

area measure is 1
|Bt| νAQ̂FN =: νt,θ.

We now compare the surface area measures of the prism Prismt(θ) and the body Ct(θ).
Using the relation (2) for both bodies and comparing the areas of the four corresponding
planar parts of the bodies, one finally comes to the conclusion that the set of partial limits
of νt,θ as t → 0+ is nonempty and for θ small and each partial limit νθ = limi→∞ νti,θ (with
limi→∞ ti = 0), the angle between the vectors

∫

S2 n dνθ and
∫

S2 n dν0
t,θ = ce1 becomes small.

More precisely, there is a nested family of open convex cones Uθ(e1) centered at 0 and
shrinking to the ray {λe1, λ ≥ 0} as θ → 0 such that

∫

S2 n dνθ ∈ Uθ(e1).
Let ν∗ be a partial limit of νt, that is, ν∗ = limi→∞ νti with limi→∞ ti = 0. Without loss

of generality assume that the sequence of measures νti,θ weakly converges to a measure νθ;
otherwise choose a converging subsequence of this sequence. Since νθ ≤ ν∗, we conclude
that spt ν∗ has nonempty intersection with Uθ(e1) ∩ Γ. Since θ can be made arbitrarily
small, spt ν∗ contains points arbitrarily close to e1, and therefore, contains e1. Theorem
2 is proved.

5 Proof of Theorem 1

Fix a regular point (x̄, ȳ) ∈ ∂L (note that the set of regular points of ∂L has full Lebesgue
measure). The tangent cone to C with the vertex at r0 := (x̄, ȳ,M) is a dihedral angle,
with one face being horizontal and the other one having the slope k ≥ 1. Assume that
k > 1; our goal is to come to a contradiction.

Denote by (ǫ1, ǫ2) the outward normal to L at (x̄, ȳ), by r = (x, y, z) a generic point
in R

3, and let e = 1√
2
(ǫ1, ǫ2, 1) and ǫ = (ǫ1, ǫ2, 0)). The outward normals to the dihedral

angle are e1 = (0, 0, 1) and e2 =
1√

1+k2
(kǫ1, kǫ2, 1).

Take t > 0 and draw a plane with slope 1 parallel to the edge of the dihedral angle
at the distance t from this edge. More precisely, the plane is given by the equation
(r− r0, e) = −t, which can be expanded to obtain z = M −

√
2 t+ ǫ1(x̄− x) + ǫ2(ȳ − y).

Now take the body C(t) obtained by cutting off a small part of C = Cu by the plane.
We have C(t) = {(x, y, z) : (x, y) ∈ Ω, 0 ≤ z ≤ u(t)(x, y)}, where

u(t)(x, y) = min{u(x, y), M −
√
2 t+ ǫ1(x̄− x) + ǫ2(ȳ − y)}.

We are going to prove that F (u(t)) < F (u) for a certain t, in contradiction with optimality
of C.
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Let Bt be the intersection of C with the cutting plane and St be the part of ∂C located
above the plane, that is, Bt = {(x, y, z) : 0 ≤ z = M−

√
2 t+ǫ1(x̄−x)+ǫ2(ȳ−y) ≤ u(x, y)}

and St = {(x, y, z) : z = u(x, y) ≥ M −
√
2 t + ǫ1(x̄− x) + ǫ2(ȳ − y)}.

Let νt be the normalized measure induced by St. Since the normalized measure induced
by Bt is δe and f(e) = 1/(2

√
2), we have

∫

S2 f(n) dδe(n) = 1/(2
√
2), and

1

|Bt|
(

F (u)− F (u(t))
)

=
1

|Bt|
(

F(νC)−F(νC(t))
)

=

∫

S2

f(n) dνt(n)−
1

2
√
2
.

By Theorem 2, there exists a weak partial limit ν∗ = limi→∞ νti , and the support of
ν∗ is contained in the smaller arc of the big circle {xǫ+ ze1, x

2+ z2 = 1} bounded by the
points e1 and e2 and contains these points. Thus,

(i) spt ν∗ lies in the quarter of the circumference {xǫ+ze1, x
2+z2 = 1, x ≥ 0, z ≥ 0};

(ii) by (7), using that e = 1√
2
(ǫ+ e1), we have

∫

S1 n dν∗(n) =
1√
2
(ǫ+ e1),

and passing to the limit i → ∞ one obtains

lim
i→∞

1

|Bti |
(

F (u)− F (u(ti))
)

=

∫

S2

f(n) dν∗(n)−
1

2
√
2
. (9)

According to Proposition 1, the infimum of
∫

S2 f(n) dν(n)− 1
2
√
2
in the class of measures ν

satisfying (i) and (ii) is attained at the atomic measure δe and is equal to 0. The measure
ν∗ does not coincide with the minimizer, since its support contains two different points,
therefore the expression in the right hand side of (9) is positive, in contradiction with
optimality of C. Theorem 1 is proved.
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