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Abstract

We consider an integrated berth allocation and quay crane assignment and scheduling problem
where the arrival times of the vessels may be affected by uncertainty. The problem is modelled as a
two-stage robust mixed integer program where the berth allocation decisions are taken before the
exact arrival times are known, and the crane assignment and scheduling operations are adjusted
to the arrival times. To solve the robust two-stage model, we follow a decomposition algorithm
that decomposes the problem into a master problem and a separation problem. A new scenario
reduction procedure for solving the separation problem is proposed as well as a warm start technique
for reducing the number of iterations performed by the decomposition algorithm. To scale the
proposed decomposition algorithm for large size instances, it is combined with a rolling horizon
heuristic.

The efficiency and effectiveness of the proposed algorithms are demonstrated through extensive
computational experiments carried out on randomly generated instances with both homogeneous
and heterogeneous cranes as well as on instances from the literature.

keywords: OR in maritime industry, berth allocation and quay crane scheduling, robust opti-
mization, uncertain arrival times, decomposition algorithm.

1. Introduction

Port management plays a major role in maritime transportation. One of the main strategies to
efficiently manage ports is the minimization of the time required to operate the cargo volume of the
vessels [29]. However, maritime transportation is frequently affected by several uncertainty factors
such as weather conditions and mechanical failures, which may interfere with the port operations
planning. Therefore, it is crucial to account for such uncertainties in decision making [21] to improve
the efficiency of terminal operations.

One property that characterizes a good quality solution of a practical problem is its ability for
dealing with adverse and unpredictable events. This is known as robustness. Different robustness
concepts can be found in the literature. In this paper, we study the integrated berth allocation
and quay crane assignment and scheduling problem, known by the acronym BACASP [28], where
the vessel arrival times are considered uncertain.
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Stochastic programming and robust optimization are two alternative and distinct approaches
for dealing with uncertainty, and both approaches have been applied over the years for solving
different berth allocation problems (see Section 2). While stochastic programming optimizes over
expectations of functions involving random variables, robust optimization optimizes over the worst-
case scenario. Optimizing over the worst-case scenario allows to obtain solutions that remain
feasible for every possible realization of the uncertainty parameters in the uncertainty set. Obtaining
a robust solution for the BACASP means to obtain a berth scheduling that does not need to be
readjusted when disruptions on the arrival times of the vessels covered by the uncertainty set
occur. This is not the case of stochastic programming, where readjustment strategies are often
unavoidable when disruptions occur. Adjusting the original schedule frequently is something that
the port planner does not want to see [18] since frequent rescheduling of the berth plan usually results
in poor performance of the overall terminal efficiency. Because the berth plan is the very first level of
terminal planning and is used as a key input to yard storage, personnel and equipment deployment
planning, any berth scheduling adjustment will induce a series of changes to all the other subsequent
operations [32]. Therefore, this paper focus on robust optimization approaches. Our goal is to derive
a solution that minimizes the total completion time (i.e., the difference between the departure time
of the vessels and their arrival time) assuming the worst scenario amongst all possible vessel arrival
delays within the uncertainty set occurs. This follows the general concept that a robust solution
is interpreted as a solution that remains feasible for every possible realization of the uncertain
parameters in the uncertainty set, see [5, 6] for details. The level of conservatism is controlled
through suitable parameters of the uncertainty set. Different concepts of robust solutions have also
been used by other authors, such as solutions that exhibit a good performance, for example, lower
baseline costs, lower probabilities of constraints violation and lower rescheduling costs, when a set
of possible scenarios of uncertainty is considered, [9, 11, 16, 24, 31, 32, 35].

The robust BACASP with uncertain arrival times we consider has the following assumptions.
The berth is divided into berth sections of equal length and the vessels are allowed to moor at
any place along the wharf (known as continuous berth allocation). The time horizon is divided
into time periods of equal length. The load and unload operations are performed with a set of
cranes that transfer the cargo between the vessels and the storage area at the yard. A crane can
be assigned to a vessel and moved to another vessel in the following period while the first vessel is
still operating (known as time-variant cranes assignment). Nevertheless, non-crossing constraints
and safety spaces between cranes must be obeyed. For a given time horizon, a set of vessels with
different lengths and with known cargo quantities to operate is considered. The estimated arrival
time of each vessel is known, however, since delays during the planning horizon can occur, the
arrival times are assumed to belong to an uncertainty set built upon these estimated (nominal)
arrival times. The deterministic variant of this problem (with known arrival times), that motivated
this work, was studied in [4]. It is worth mentioning that the robust problem studied in our paper
and all the assumptions made arise from a practical application.

In port terminals, some operations, such as the cranes assignment and scheduling, may be easily
readjusted after the arrival time of the vessels are observed, while other decisions such as the berth
allocation of vessels are hard to be reverted or readjusted. Thus, the allocation of a vessel has
a great impact in the allocation of the following incoming vessels. Since the average time of the
vessels at ports is in general large [29], a delay on an arrival of a vessel may have repercussions
on the forthcoming vessels and in several other port operations (such as quay cranes assignment
and scheduling) for the following days. Hence, the robust BACASP under uncertain arrival times
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studied in this paper integrates two types of decisions: the allocation of arriving vessels to berth
positions (known as berth allocation), and the assignment of cranes to vessels and the schedule
of their operations (known as quay crane assignment and scheduling). These decisions correspond
to two subproblems which, in the literature, have also been considered separately and are referred
to as BAP and QCASP, respectively. We assume that the berth allocation decisions are taken
before the exact arrival times are known (here-and-now decisions), while the crane assignment and
scheduling decisions are taken when the exact arrival times are known (wait-and-see decisions).
Therefore, we model the robust BACASP as a two-stage mixed integer program where the berth
positions are the first-stage decisions and the cranes assignment and schedule are the second-stage
decisions.

To solve the introduced two-stage model, we propose an exact decomposition algorithm [7, 33]
where a restricted model, known as master problem, is solved for a subset of scenarios, and a
separation problem, known as the adversarial problem, either identifies a scenario that is violated
by the solution of the master problem or shows that no such a scenario exists. In case such a
scenario is found, then it is added to the master problem and the process is repeated. The general
idea of the decomposition algorithm is presented in Figure 1.

Add such a scenario 

to the master problem Yes 

STOP 

The solution 

is optimal 

No 

Determine a crane 

assignment and 

scheduling for each 

uncertainty scenario 

Determine the berth 

position for all vessels 

and compute the worst 

completion time 

Compute the total 

completion time for 

each uncertainty 
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to a total completion time 
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Initialize the set of 

scenarios 

Master Problem Adversarial Problem 

 

Figure 1: Decomposition algorithm.

The performance of this general procedure greatly depends on how several issues are addressed
for each particular problem. In the robust BACASP considered in this paper, the three main issues
to be addressed are: (i) Solve the master problem efficiently. The master problem is a hard BACASP
with several scenarios that is difficult to solve when the number of scenarios is large; (ii) Solve the
adversarial problem efficiently. This implies to solve a max-min problem where the evaluation
of each scenario of uncertainty requires to solve a crane assignment and scheduling problem. In
other words, it implies to solve a hard mixed integer programming model (with a large number
of binary variables) for each scenario of uncertainty. For this reason, the resulting adversarial
problem is amongst the hardest adversarial problems in robust optimization (see [13] for details),
and therefore, solving it efficiently is a very challenging task; (iii) Minimize the number of global
iterations required to achieve the optimal solution. Since at each iteration of the decomposition
algorithm both subproblems considered in (i) and (ii) need to be solved, an efficient decomposition
procedure should minimize the number of times each subproblem is solved.
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For solving the master problem, we propose an exact approach based on a mixed-integer program
and a rolling horizon heuristic to solve large size instances. It is worth recalling that in order to
ensure that the decomposition algorithm is an exact procedure it is only necessary to solve the
master problem to optimality in the last iteration. To solve the adversarial problem to optimality,
each scenario must be evaluated. We propose a new scenario evaluation heuristic that quickly
determines several heuristic crane assignments and schedules. This heuristic is the basis of a
new procedure, called scenario reduction procedure, that allows to identify a large number of
irrelevant scenarios of uncertainty. Such scenarios can be discarded in the current iteration of the
decomposition algorithm without solving the associated hard mixed integer programming problems.
For reducing the number of global iterations performed by the decomposition algorithm, we propose
a warm start technique where a carefully chosen scenario of uncertainty is used to initialize the
decomposition algorithm through a new heuristic called slack reduction heuristic.

The main contributions of our study are summarized as follows.

i) To the best of our knowledge, this is the first study of the BACASP under uncertain vessel
arrival times aiming to minimize the total completion time of the worst-case scenario. This
concept of robustness was only followed in [15, 19, 34, 26], however, the first three works only
address the BAP, and the last one addresses the BACASP under uncertain quay crane setup
costs. From the robust optimization perspective, the BACASP has the unusual property that
the worst-case scenario does not necessarily correspond to the maximum allowed delay of the
vessels, which makes the problem even more difficult to solve.

ii) A two-stage model is introduced where the berth allocation decisions are taken before the
exact arrival times are known (first-stage decisions), and the cranes assignment and schedule
decisions are taken when the arrival times are known (second-stage decisions).

iii) An exact decomposition algorithm for the robust BACASP under uncertain vessel arrival
times is proposed. Several enhancement strategies for solving the decomposition algorithm
efficiently are proposed, namely: 1) a new crane assignment and scheduling heuristic used
within a new scenario reduction procedure to discard non-relevant scenarios each time the
adversarial problem is solved; 2) a new slack reduction heuristic for finding a relevant scenario
to use in a warm start technique for reducing the number of global iterations performed. Such
enhancements allow us to work with a number of scenarios much larger than the number of
scenarios used in previous works found in the literature.

iv) To solve large size and harder instances, a rolling horizon algorithm is proposed in which the
time horizon is divided according to the arrival times of the vessels.

v) Extensive computational experiments on sets of both randomly generated instances (with
homogeneous and heterogeneous cranes) and instances from the literature are performed.
The obtained results show that 1) the scenario reduction procedure allows to discard around
93% of irrelevant scenarios when the adversarial problems are solved; 2) the warm start
technique drastically reduces the number of iterations of the decomposition algorithm; and
3) the proposed solution methods are scalable for large size instances.

The paper is organized as follows. In Section 2 we review the most relevant literature related
to our work. A deterministic mixed integer model is presented in Section 3 and the corresponding
robust model is given in Section 4. In Section 5 we illustrate a robust BACASP solution and
the gains resulting from applying robust optimization techniques. The proposed decomposition
algorithm and several enhancements are introduced in Section 6. A rolling horizon heuristic to
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handle with large instances is proposed in Section 7. The computational tests are reported in
Section 8. Finally, in Section 9 we present the main conclusions.

2. Literature review and related work

In this section, we review the literature related to our work. Since berth allocation and quay
crane assignment and scheduling problems have received great attention in the last years (see [8]
for a survey), we focus on the literature on both BAP and BACASP under uncertainty, with an
emphasis on the works on robust approaches.

One of the first works addressing uncertainties in quayside operations is [20]. The authors
studied the BAP with uncertain vessel arrival and handling times and proposed a framework to
create robust berth allocations. The problem is solved using a simulated annealing algorithm.
Stochastic based approaches for handling uncertainties of vessel arrival times and handling times
were considered in [12] and [37]. In both works, a genetic algorithm is proposed.

A common approach to obtain robust solutions for both BAP and BACASP is the use of time
buffers. Such time buffers are essentially used to absorb delays propagation throughout the whole
berth plan, avoiding infeasibilities and/or large rescheduling costs. Buffering strategies were used
for the BAP in [9, 16, 32, 35] and for the BACASP in [24].

Du et al. [9] proposed a robust reactive feedback procedure based on the buffer idea to solve
the BAP under stochastic vessel arrival times. It starts by using a simulated annealing procedure
for solving the deterministic BAP with fixed buffers. The obtained solution is evaluated on a set of
arrival delay scenarios and reassignment rules are applied (when needed). Then, heuristic strategies
are employed to adjust the time buffer of each vessel. After updating the buffer times, a simulated
annealing is used again to solve the new model. Hendriks et al. [15] presented a robust proactive
optimization model for the cyclic BAP under uncertain vessel arrival times. The model minimizes
the required crane capacity and determines a time window for each vessel arrival time ensuring that
any vessel arriving in the determined time window is released with no delays. In [36] a two-stage
decision model and a meta-heuristic approach are proposed for a BAP under uncertain arrival and
handling time of vessels. Both a proactive strategy to obtain an initial schedule that incorporates a
degree of anticipation of uncertainty and a reactive recovery strategy to adjust the initial schedule to
handle realistic scenarios are considered. Xu et al. [32] proposed a proactive robust berth scheduling
algorithm that integrates a simulated annealing and a branch-and-bound algorithm for the BAP
with uncertain vessel arrival and handling times. The problem minimizes the total departure delay
time of vessels and maximizes the length of the buffer time (which is constant for all vessels). A
bi-objective optimization model for the BAP aiming to minimize costs and maximize robustness
of schedules is also presented in Zhen et al. [35]. The proposed proactive model is based on time
buffers that are used to absorb delays caused by both vessel arrival and handling uncertain times.
Rodriguez-Molins et al. [24] proposed a multi-objective model for the BACASP under uncertain
handling times, aiming to minimize the total service time and to maximize the robustness of the
solution through buffer times (depending on the size of the vessels). To solve larger instances, the
authors proposed a proactive genetic algorithm.

A proactive genetic algorithm was also proposed by Golias et al. [11] for the BAP with both
vessel arrival and handling uncertain times as well as by Shang et al. [26] for the BACASP assuming
the quay crane setup time of shifting along the quay is uncertain. Golias et al. [11] formulated
the BAP as a bi-level bi-objective optimization problem aiming to minimize the average and the
range of the total service times (that is, the difference between the total service time of the worst
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scenario and the total service time of the best scenario). Zhen [34] studied the BAP under uncertain
handling times. A stochastic programming and a robust formulation were proposed to minimize the
total cost of the baseline schedule plus the average and the maximum cost for handling potential
conflicts, respectively. To solve large scale instances, a three-phase heuristic based on the insertion
strategy is proposed.

Shang et al. [26] proposed two robust optimization models to formulate the BACASP. The goal
is to ensure that the obtained schedule remains feasible when delays occur. Along with a genetic
algorithm, an insertion heuristic is also proposed for solving larger instances. Ursavas and Zhu [30]
proposed a framework based on a stochastic dynamic programming approach to the BAP, and
provided a characterization of optimal policies under stochastic arrival and handling times. Liu et
al. [17] introduced an adaptive differential evolution algorithm to the BAP with uncertain arrival
and handling times. The BAP under uncertainty is also considered in [18]. Using the concept of
conflict, the authors proposed two kinds of service levels and constructed two decision models. A
two-stage heuristic algorithm is presented. A mixed-integer program is proposed in [25] for a more
general problem where arrival times and handling times are uncertain. They proposed heuristic
schemes based on the MIP model. In [27], a BAP where uncertainty resulting from the effect of
tides on the berthing schedule and from the arrival time of vessels is considered. A sample average
approximation method based on a mathematical model is presented for solving the problem.

Xiang et al. [31] studied the BACASP assuming that four types of disruptions can occur: devia-
tion of the vessel arrival and handling times, calling of unscheduled vessels, and breakdown of quay
cranes. To accomplish these unpredictable events, the authors proposed a reactive heuristic strat-
egy that takes the baseline schedule as the reference schedule and minimizes the recovery cost. In
[14] the effect of the arrival uncertainty on the container stacking is studied, and different heuristics
are proposed accordingly to the stacking principles and with levels of vessel arrival information. Iris
and Lam [16] proposed a mathematical model for the BACQAP under vessel arrival and handling
times uncertain with both proactive and reactive properties. The proposed model aims to minimize
the cost associated with the baseline schedule and the cost associated with resource actions while
maximizing the robustness of the solution through buffer times. Harder instances are solved by a
two-stage heuristic framework based on an adaptive large neighborhood search heuristic.

The closest approach to the one developed in our paper was recently presented by Liu et
al. [19] to solve a BAP under uncertainty. As the case presented here, the uncertainty set uses no
probabilistic information. A two-stage robust optimization approach is proposed where the baseline
schedule is made before the uncertain data is revealed and the recovery operation is made after the
disruptions are known. Three two-stage robust models are presented.

3. The formulation for the deterministic BACASP

In this section we present a formulation for the BACASP, based on the time-space diagram,
known as Relative Position Formulation. This formulation is the same used in [4] and it is the
basis of the new formulation of the robust problem introduced in Section 4. Consider a set of N
heterogeneous vessels and a time horizon of M time periods. Assume that the wharf is divided
into J + 1 berth sections and the total number of cranes operating in the wharf is C. Let us define
the following sets: V = {1, . . . , N} the set of vessels, T = {1, . . . ,M} the set of time periods,
B = {0, . . . , J} the set of berth positions and G = {1, . . . , C} an ordered set of cranes where for all
g, g′ ∈ G such that g < g′ means that crane g has an operating range (in term of berth positions)
lower than crane g′.
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The length of each vessel k ∈ V (measured in number of berth sections) is given by Hk and
the cargo volume to be operated and the nominal arrival time are represented by Qk and Ak,
respectively. The maximum number of cranes that can simultaneously work on a vessel k ∈ V is
NCk. The safety time between the departure of a vessel and the berthing of a new one (measured
in number of time units) is denoted by F . Each crane g ∈ G can operate in the wharf between
berth sections Sg and Eg and has a processing rate of Pg.

For each k, l ∈ V, g ∈ G and j ∈ T let us define the following variables:

xk` : binary variable taking value one if ship ` berths after ship k had departed;

yk` : binary variable taking value one if ship ` berths below the berth position of ship k;

zgkj : binary variable taking value one if crane g is assigned to ship k in time period j;

bk : berthing position of vessel k;

tk : berthing time of vessel k;

ck : departing time of vessel k.

The deterministic BACASP can be formulated as follows:

min
∑
k∈V

(ck −Ak) (1)

s.t. x`k + xk` + y`k + yk` ≥ 1, k, ` ∈ V, k < `, (2)

x`k + xk` ≤ 1, k, ` ∈ V, k < `, (3)

y`k + yk` ≤ 1, k, ` ∈ V, k < `, (4)

bk ≤ J −Hk, k ∈ V, (5)

bk ≥ b` +H` + (yk` − 1)J, k, ` ∈ V, k 6= `, (6)

t` ≥ ck + F + (xk` − 1)M, k, ` ∈ V, k 6= `, (7)

tk ≥ Ak, k ∈ V, (8)∑
k∈V

zgkj ≤ 1, j ∈ T, g ∈ G, (9)

tk ≤ jzgkj + (1− zgkj)M, j ∈ T, k ∈ V, g ∈ G, (10)

ck ≥ (j + 1)zgkj , j ∈ T, k ∈ V, g ∈ G, (11)∑
j∈T

∑
g∈G

Pgzgkj ≥ Qk, k ∈ V, (12)

bk +Hk ≤ Egzgkj + (1− zgkj)J, j ∈ T, k ∈ V, g ∈ G, (13)

bk ≥ Sgzgkj , j ∈ T, k ∈ V, g ∈ G, (14)

zgkj + zg′`j ≤ 2− yk`, j ∈ T, k, ` ∈ V, g, g′ ∈ G, g′ < g, (15)∑
g∈G

zgkj ≤ NCk, k ∈ V, j ∈ T, (16)

bk, tk, ck ∈ Z+
0 , k ∈ V, (17)

xk`, yk` ∈ {0, 1}, k, ` ∈ V, k 6= ` (18)

zgkj ∈ {0, 1}, k ∈ V, g ∈ G, j ∈ T. (19)
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The objective function (1) minimizes the sum of the completion time of all vessels. The comple-
tion time of a vessel is the time elapsed between the arrival time and the departure time. Constraints
(2)-(4) are the usual constraints enforcing each pair of vessels not to overlap either in time or in
space. Constraints (6) and (7) relate the space and the time variables of two vessels, respectively.
These constraints also enforce the definition of variables xkl and ykl. Constraints (5) and (8) define
the range of variables bk and tk, respectively.

Constraints (9) ensure that each crane can operate in at most one vessel in each time period.
Constraints (10) guarantee that a crane can be assigned to a vessel only after its arrival, while
constraints (11) ensure that if a crane was operating vessel k in time period j, then this vessel
can only depart after the end of time period j (ck ≥ j + 1). Constraints (12) guarantee that the
cranes assigned to vessel k are enough to operate all the cargo of that vessel. Constraints (13) and
(14) ensure that a crane can be assigned to a vessel if and only if the vessel is berthed within the
range of the crane. Constraints (15) prevent cranes from passing each other at any time period.
Constraints (16) impose a maximum number NCk of cranes that can simultaneously work on vessel
k ∈ V and allow to consider a safety distance between cranes. Constraints (17) define the integer
variables, while constraints (18) and (19) define the binary variables.

3.1. A discretized reformulation for the BACASP

Model (1)-(19) is based on the big-M constraints (6) and (7), and it is well-known that such
constraints lead to a very weak model in the sense that the associated linear relaxation retrieves a
poor bound. This problem was identified by Agra and Oliveira [4] who proposed a reformulation of
the model that avoids the use of big-M constraints by introducing new variables resulting from the
discretization of both time and space variables tk, ck and bk. They showed that with this new set
of variables the obtained model is stronger than the original one. Therefore, in this paper, we also
use such variables. For each k ∈ V, j ∈ T and n ∈ B the new variables are described as follows:

πkn : binary variable taking value one if the first (lower) berth position of vessel k is n;

σkn : binary variable taking value one if berth section n is assigned to vessel k;

αkj : binary variable taking value one if vessel k starts operating in time period j;

βkj : binary variable taking value one if vessel k is operated in time period j;

γkj : binary variable taking value one if the last time period vessel k is operated is j.

The set of additional constraints is the same used in [4] and it is as follows:

bk =
∑
n∈B

nπkn, k ∈ V, (20)∑
n∈B

σkn = Hk, k ∈ V, (21)∑
n∈B

πkn = 1, k ∈ V, (22)

πkn ≥ σkn − σk,n−1, k ∈ V, n ∈ B,n > 1, (23)

πk1 ≥ σk1, k ∈ V, (24)

πkn ≤ σkn, k ∈ V, n ∈ B, (25)

πkn ≤ 1− σk,n−1 k ∈ V, n ∈ B,n > 1, (26)
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yk` +

J∑
m=max{n−H`+1,0}

πkm + π`n ≤ 2, k, ` ∈ V, k 6= `, n ∈ B, (27)

πkn, σkn ∈ {0, 1}, k ∈ V, n ∈ B, (28)

zgkj ≤
Eg−Hk∑
n=Sg

πkn, k ∈ V, g ∈ G, j ∈ T, (29)

tk =
∑
j∈T

jαkj , k ∈ V, (30)

ck ≥ (j + 1)βkj , k ∈ V, j ∈ T, (31)

zgkj ≤ βkj , k ∈ V, j ∈ T, g ∈ G, (32)∑
j∈T

αkj = 1, k ∈ V, (33)

αkj ≥ βkj − βk,j−1, k ∈ V, j ∈ T, j > 1, (34)

αk1 ≥ βk1, k ∈ V, (35)

αkj ≤ βkj , k ∈ V, j ∈ T, (36)

αkj ≤ 1− βk,j−1, k ∈ V, j ∈ T, j > 1, (37)

xkl + βki + βlj ≤ 2, k, l ∈ V, k 6= l, j, i ∈ T, i ≥ j − 1, (38)

γkj ≥ βkj − βk,j+1, k ∈ V, j ∈ T, j < M, (39)

γk1 ≥ βkM , k ∈ V, (40)

γkj ≤ βkj , k ∈ V, j ∈ T, (41)

γkj ≤ 1− βk,j+1, k ∈ V, j ∈ T, j < M, (42)∑
j∈T

γkj = 1, k ∈ V, (43)

αkj , βkj , γkj ∈ {0, 1}, k ∈ V, j ∈ T. (44)

For ease of presentation, we omit the explanation of the constraints. Such an explanation can
be found in [4]. The deterministic model for the BACASP is then represented by the objective
function (1) and constraints (2)-(44).

4. The robust BACASP formulation

The deterministic model for the BACASP described in the previous section assumes that the
arrival times of all vessels are exactly known in advance. However, this assumption is not true in
most practical problems since the arrival times may be uncertain due to several factors as weather
conditions and mechanical failures. In this section, we present a mathematical model for the robust
BACASP under uncertain arrival times. We assume that the probability distribution of the arrival
times is not known and the arrival times vary in an uncertainty set. In this paper, we consider an
uncertainty set, henceforth referred to as multiple constrained budgeted (MCB) uncertainty set,
inspired by the budgeted uncertainty set proposed by Bertsimas and Sim [6]. There are several
reasons for the choice of this kind of uncertainty sets: i) it allows to control the degree of robustness
of the obtained solutions; ii) it allows to obtain tractable models; iii) it is very easy to be followed
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by practitioners, and iv) it is being widely used by several authors to model the uncertain nature
of parameters like arrival times and traveling times, see [3, 19, 22, 26].

The MCB uncertainty set considered is defined as:

Ω =

Aω : Aωk = Ak + [Âkδk], 0 ≤ δk ≤ 1, k ∈ N,
min{(j+1)[N/ng],N}∑

k=1+j[N/ng]

[δk] ≤ Γj , j ∈ {0, 1, . . . , ng − 1}


where Ak is the nominal/deterministic arrival time of vessel k ∈ V , Âk is the maximum allowed
delay of vessel k ∈ V , and [·] denotes the round operator. Unlike the original budget uncertainty
set, the MCB uncertainty set we propose has multiple budget constraints and a round operator to
ensure that only integer arrival time values are allowed. Note that we are considering a discrete
BACASP, which justifies the use of this round operator. The vessels are grouped into ng groups
according to the nominal arrival times, and a budget constraint is associated with each group of
vessels. For example, the first budget constraint imposes that at most Γ0 vessels of the first group
(the ones with lower nominal arrival time) can arrive to the port with delay. An uncertainty set
with multiple budget constraints was already used by Rodrigues et. al. [23] for the robust inventory
problem.

To maximize the utility of the wharf and improve customer satisfaction, terminal planners
need to schedule the berthing for each arriving vessel carefully in advance [32]. Therefore, the
mathematical model for the robust BACASP we propose is a two-stage model in which the berth
positions of the vessels are the first-stage decisions (decisions that have to be taken before the
uncertainty is revealed), and the cranes assignment and schedule are the second-stage decisions
(decisions taken after the uncertain arrival times are revealed). Since the crane assignment variables
zgkj are second-stage decision variables, the berth time, the departure time of the vessels and the
discrete time variables αkj , βkj , γkj are forced to be second-stage variables as well. Then, all these
variables are redefined as follows:

zωgkj : binary variable taking value one if crane g is assigned to ship k in period j when scenario

ω ∈ Ω occurs;

tωk : berthing time of vessel k when scenario ω ∈ Ω occurs;

cωk : departing time of vessel k when scenario ω ∈ Ω occurs;

αωkj : binary variable taking value one if vessel k starts operating in time period j when scenario

ω ∈ Ω occurs;

βωkj : binary variable taking value one if vessel k is operated in time period j when scenario ω ∈ Ω

occurs;

γωkj : binary variable taking value one if the last time period vessel k is operated is j when scenario

ω ∈ Ω occurs.

Note that all the first-stage decision variables (xk`, yk`, bk, πkn and σkn) remain unchanged. The
formulation of the robust BACASP is as follows:

min θ (45)
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s.t. θ ≥
∑
k∈V

(cωk −Aωk ), ω ∈ Ω, (46)

(2)− (6), (18), (20)− (28)

tω` ≥ cωk + F + (xk` − 1)M, k, ` ∈ V, k 6= `, ω ∈ Ω, (47)

tωk ≥ Aωk , k ∈ V, ω ∈ Ω, (48)∑
k∈V

zωgkj ≤ 1, j ∈ T, g ∈ G,ω ∈ Ω, (49)

tωk ≤ jzωgkj + (1− zωgkj)M, j ∈ T, k ∈ V, g ∈ G,ω ∈ Ω, (50)

cωk ≥ (j + 1)zωgkj , j ∈ T, k ∈ V, g ∈ G,ω ∈ Ω, (51)∑
j∈T

∑
g∈G

Pgz
ω
gkj ≥ Qk, k ∈ V, ω ∈ Ω, (52)

bk +Hk ≤ Egzωgkj + (1− zωgkj)J, j ∈ T, k ∈ V, g ∈ G,ω ∈ Ω, (53)

bk ≥ Sgzωgkj , j ∈ T, k ∈ V, g ∈ G,ω ∈ Ω, (54)

zωgkj + zωg′`j ≤ 2− yk`, j ∈ T, k, ` ∈ V, g, g′ ∈ G, g′ < g, ω ∈ Ω, (55)∑
g∈G

zωgkj ≤ NCk, k ∈ V, j ∈ T, ω ∈ Ω, (56)

bk, t
ω
k , c

ω
k ∈ Z+

0 , k ∈ V, ω ∈ Ω, (57)

zωgkj ≤
Eg−Hk∑
n=Sg

πkn, k ∈ V, g ∈ G, j ∈ T, ω ∈ Ω, (58)

tωk =
∑
j∈T

jαωkj , k ∈ V, ω ∈ Ω, (59)

cωk ≥ (j + 1)βωkj , k ∈ V, j ∈ T, ω ∈ Ω, (60)

zωgkj ≤ βωkj , k ∈ V, j ∈ T, g ∈ G,ω ∈ Ω, (61)∑
j∈T

αωkj = 1, k ∈ V, ω ∈ Ω, (62)

αωkj ≥ βωkj − βωk,j−1, k ∈ V, j ∈ T, j > 1, ω ∈ Ω, (63)

αωk1 ≥ βωk1, k ∈ V, ω ∈ Ω, (64)

αωkj ≤ βωkj , k ∈ V, j ∈ T, ω ∈ Ω, (65)

αωkj ≤ 1− βωk,j−1, k ∈ V, j ∈ T, j > 1, ω ∈ Ω, (66)

xkl + βωki + βωlj ≤ 2, k, l ∈ V, k 6= l, j, i ∈ T, i ≥ j − 1, ω ∈ Ω, (67)

γωkj ≥ βωkj − βωk,j+1, k ∈ V, j ∈ T, j < M,ω ∈ Ω, (68)

γωk1 ≥ βωkM , k ∈ V, ω ∈ Ω, (69)

γωkj ≤ βωkj , k ∈ V, j ∈ T, ω ∈ Ω, (70)

γωkj ≤ 1− βωk,j+1, k ∈ V, j ∈ T, j < M,ω ∈ Ω, (71)∑
j∈T

γωkj = 1, k ∈ V, ω ∈ Ω, (72)
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zωgkj , α
ω
kj , β

ω
kj , γ

ω
kj ∈ {0, 1}, g ∈ G, k ∈ V, j ∈ T, ω ∈ Ω. (73)

The objective function (45) and the constraints (46) ensure that the value of the new auxiliary
variable θ corresponds to the highest total completion time of all vessels among all the scenarios
in Ω. The description of the remaining constraints is similar to the one presented in the previous
section and therefore it is omitted.

Remark 4.1. The proposed robust model explicitly takes into account all possible realizations of the
arrival times of the vessels in the uncertainty set. However, such a model also allows to obtain a
solution with some degree of protection against uncertain handling times due to the use of parameter
F. This parameter is known in the literature as buffer time and it has been widely used in both BAP
and BACASP to absorb delays propagation, see [9, 16, 24, 32].

5. The importance of a robust solution

In this section, we present an example to illustrate a robust solution for the BACASP and to
show the importance of having such kind of solutions.

Let us consider a wharf divided into 7 berth sections and a set of 4 heterogeneous vessels arriving
at the wharf during a time horizon of 7 time periods. There are 2 homogeneous cranes operating
in the wharf. The length Hk, the nominal (expected) arrival time Ak and the cargo volume Q̄k to
be operated in each vessel k ∈ V (measured in terms of the number of time periods assuming that
only one crane is used) are as follows:

- Ship 1: H1 = 2, A1 = 1, Q̄1 = 2;
- Ship 2: H2 = 2, A2 = 2, Q̄2 = 5;
- Ship 3: H3 = 3, A3 = 1, Q̄3 = 1;
- Ship 4: H4 = 3, A4 = 3, Q̄4 = 3.

Let us assume that at most one vessel may arrive 2 time periods later to the wharf.
The first time-space diagram in Figure 2 shows a solution for this BACASP. Ship 1 arrives at

the port at time period 1, berths in 5 and departs at time period 3 (completion time equal to 2),
ship 2 arrives at the port at time period 2, berths in 0 and departs at time period 7 (completion
time equal to 5), ship 3 arrives at the port at time period 1, berths in 1 and departs at time period
2 (completion time equal to 1) and ship 4 arrives at the port at time period 3, berths in 3 and
departs at time period 5 (completion time equal to 2). Therefore, the cost of this solution when
no delays occur is 10 (2+5+1+2). This solution does not take into account possible delays and,
therefore, it is not necessarily a robust solution for the problem. The second diagram in Figure 2
shows the behavior of the solution presented in the first diagram (i.e., keeping the berth positions
and the relative position of the vessels) when a delay of 2 time periods on ship 3 occurs. We can
observe that the total completion time increases from 10 to 11. This occurs because a delay in
ship 3 creates conflicts with ship 2 and ship 4. We can also observe that the impact on the total
completion time is only one unit because the second-stage variables (quay crane assignment and
scheduling) are optimally adjusted to this scenario.
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Figure 2: Alternative (not robust) solution for the BACASP.

Figure 3: Robust solution for the BACASP.

The first time-space diagram in Figure 3 shows a robust solution for the same BACASP instance.
In such a solution, when there are no delays, ship 1 arrives at the port at time period 1 and departs
at time period 3 (completion time equal to 2), ship 2 arrives at time period 2 and departs at time
period 5 (completion time equal to 3), ship 3 arrives at time period 1 and departs at time period
2 (completion time equal to 1) and ship 4 arrives at time period 3 and departs at time period 7
(completion time equal to 4). Therefore, the cost of the robust solution when no delays occur is 10
(2+3+1+4), the same as the first solution presented in Figure 2. However, this solution takes into
account possible delays. If there is a delay of 2 time periods in the arrival time of ship 1 the total
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completion time of the solution remains the same. If a delay of 2 time periods in the arrival time
of ships 2, 3, and 4 occurs, then the total completion time of the solution is reduced to 8, 9, and 8,
respectively.

The presented example also illustrates situations where delays may have no negative impact
on the total completion time of the solution (as shown in the last three diagrams presented in
Figure 3). This contrasts with other robust optimization problems where the worst-case occurs
for scenarios that consider the maximum allowed deviations from the nominal values. This is the
case of maritime transportation problems with time windows [1] and maritime inventory routing
problems [3]. This is a very important remark that has a strong impact on the solution methods
presented next.

6. Exact decomposition algorithm

The number of scenarios in the robust model presented in Section 4 is usually large (or even
infinite), making the direct use of such a model impractical. However, in general, only a small set
of scenarios is needed to obtain an optimal robust solution, since several scenarios are dominated
by the others [3]. Finding the most relevant scenarios is a very challenging problem that can be
solved by using a decomposition algorithm, see [33].

In this section, we describe an exact decomposition algorithm (DA) for solving the robust
BACASP working as follows. We consider a master problem (MP), where the constraints involving
second-stage variables are written only for a small subset Ξ ⊂ Ω of scenarios. The objective function
value of the MP gives the highest sum of the minimum total completion time of all vessels among
all scenarios in Ξ, henceforth referred to as current worst completion time and denoted by θ̄. Given
a feasible first-stage solution to the MP, we check whether there is an omitted scenario ω ∈ Ω\Ξ
leading to a total completion time θω greater than θ̄ by solving a separation problem known as
adversarial problem (AP). If such a scenario ω is found, then it is added to Ξ and the augmented
MP is solved again. Otherwise, when no such a scenario exists, the procedure stops, meaning that
the current solution is already an optimal robust solution, see Figure 1. The general idea of a DA
is summarized in Algorithm 1.

Algorithm 1 Decomposition algorithm for the robust problem.

1: Initialize Ξ = {ω0}, where ω0 is the scenario corresponding to the nominal arrival times
2: Solve the master problem for set Ξ and compute the current worst completion time θ̄
3: while There is a scenario ω in Ω \Ξ, leading to a total completion time θω greater than θ̄ do
4: Add ω to Ξ and add the corresponding variables and constraints to the MP
5: Solve the new master problem
6: end while

Decomposition algorithms have been widely used in the past for solving complex two-stage
robust problems, but its application to each problem is far from being direct. It is important to
remark that DA has never been used before for solving the robust BACASP. In the decomposition
algorithm we propose, the MP is defined by the objective function (45), by the constraints (2)-(6),
(18), (20)-(28) and by the constraints (46)-(73) defined for a subset Ξ ⊂ Ω of scenarios. Given a
first-stage solution S1 = {x̄, ȳ, b̄, π̄, σ̄} obtained by the MP, the AP is a complex max-min problem
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defined as follows:

max
ω∈Ω\Ξ

min
tω ,cω ,zω ,αω ,βω

∑
k∈V

(cωk −Aωk )

s.t. (47)− (73),

xkl = x̄kl k, l ∈ V,
ykl = ȳkl k, l ∈ V,
bk = b̄k k ∈ V.

Solving a max-min problem is hard since such a problem is not convertible into a single optimization
problem, see [23]. The adversarial problem can be solved as follows. Start by solving the inner
minimization problem for each scenario ω ∈ Ω\Ξ independently to obtain a second-stage solution
Sω2 = {tω, cω, zω, αω, βω} and the corresponding total completion time θω. Then, the scenario ω̄
leading to the highest completion time is chosen. If such a completion time is greater than the
current completion time, then scenario ω̄ is added to the MP. Otherwise, the current solution
determined by the MP is optimal since there is not a scenario leading to a completion time greater
than the current one.

The efficiency of a DA depends on three factors: the hardness of the master problem, the
hardness of the adversarial problem, and the total number of global iterations required to obtain
an optimal robust solution. In our case, the MP is a large MIP model that becomes more difficult
to solve as the number of scenarios in Ξ increases. Solving the AP implies to solve a large number
of MIP subproblems (one for each scenario), and although the first-stage solution is fixed when
solving those subproblems, each subproblem is still difficult to solve due to the large number of
binary variables presented. Note that each MIP subproblem corresponds to an assignment and
scheduling problem which is known to be a very hard problem. Therefore, it is of vital importance
to reduce i) the number of global iterations of the DA; ii) the number of MIP subproblems to solve
occurring in the AP; and iii) the complexity of the master problem. To achieve these three goals we
propose a new warm start technique, a scenario reduction procedure, and a rolling horizon heuristic,
respectively. The use of both the warm start technique and the scenario reduction procedure keeps
the decomposition algorithm an exact procedure.

6.1. Warm start

In the first step of Algorithm 1, the set Ξ is initialized with a single scenario corresponding to the
nominal arrival times. A warm start strategy consists of initializing subset Ξ with a scenario having
some arrival time delays such that the obtained solution is more robust than the one corresponding
to the nominal scenario. By doing so, we expect to reduce the total number of iterations of the DA
and therefore to reduce the total computational time.

It is worth mentioning that the scenario with delays used to initialize the DA must be care-
fully chosen, otherwise, the warm start can produce an undesirable effect by increasing the total
computational time. Note that some delays on the arrival times may reduce congestion at the port
leading to lower cost solutions than the one corresponding to the nominal scenario (see the example
in Section 5). Such kind of scenarios should not be used in a warm start technique.

Based on the intuition that higher cost solutions are associated with scenarios leading to an
increase of the port congestion, we propose a heuristic approach to find the scenario to use in the
warm start. The main idea of the proposed heuristic is to find a scenario with some delays leading
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to a reduction of the slacks between the arrival times of the vessels. Therefore, we expect that in
such a scenario more vessels arrive at the port almost at the same time or at least the arrivals of the
vessels are closer. When several vessels arrive at the port at the same time, limited resources such
as quay cranes have to be shared by those vessels, meaning that not all the vessels will be served
with the minimum possible service time. Therefore, the total completion time of those vessels
increases as well as the aggregated total completion time associated with such a scenario. Hence, it
is likely that the worst scenarios are the ones with smaller slacks between the arrivals of the vessels.
The proposed heuristic, called slack reduction heuristic, is summarized in Algorithm 2.

Algorithm 2 Slack reduction heuristic

1: Initialize MinSlack as the total number of periods M and sort all the vessels by increasing
order of nominal arrival times.

2: for each scenario ω ∈ Ω do
3: Slackω:=

∑N−1
k=2 min{|Aωk −Aωk−1|, |Aωk+1 −Aωk |}

4: if Slackω < MinSlack then
5: MinSlack ← Slackω

6: ω̄ ← ω
7: end if
8: end for
9: Return scenario ω̄

To better understand the slack reduction heuristic presented in Algorithm 2, let us analyze the
following example. Consider a set of 6 vessels and the corresponding vector of nominal arrival times
n = (1, 2, 7, 8, 10, 12). Also consider two arrival time scenarios w1 = (1, 4, 7, 9, 10, 12) and
w2 = (2, 2, 8, 8, 10, 12), both with 2 delays of one and two time periods. Then, we have

Slackn = min{|2− 1|, |7− 2|}+ min{|7− 2|, |8− 7|}+ min{|8− 7|, |10− 8|}min{|10− 8|, |12− 10|}

Slackn = 1 + 1 + 1 + 2 = 5

Slackω
1

= 3 + 2 + 1 + 1 = 7

Slackω
2

= 0 + 0 + 0 + 2 = 2

This means that scenario ω2 is more preferable for the warm start than both scenarios n and
ω1 since it increases the port congestion. Note that in this scenario there are more vessels mooring
at the same time and consequently not all vessels will be operated with maximum efficiency (at
least) in the period corresponding to the arrival time (since the number of cranes is limited).

6.2. Scenario reduction procedure

At each iteration of Algorithm 1 (Step 3), the AP has to be solved to identify the scenario(s)
to add to the MP, that is, the scenario(s) leading to a total completion time greater than the
current worst completion time. As remarked before, each scenario can be evaluated by solving an
hard MIP subproblem and the number of scenarios to evaluate can be large. Since the complexity
of each MIP subproblem increases as the number of vessels increases, following this procedure to
evaluate a set of scenarios (even small) can be very time consuming. To reduce the time associated
with the AP, we propose a new procedure, called scenario reduction procedure (SRP), that allows
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to discard irrelevant scenarios and therefore to reduce the number of MIP subproblems to solve.
Given a first-stage solution S1 = {x, y, b, π, σ} found by the MP and a scenario ω ∈ Ω\Ξ to be
evaluated, we heuristically determine a feasible second-stage solution Sω2 = {tω, cω, zω} for that
scenario, i.e., a feasible crane assignment. By computing the total completion time in scenario ω,
i.e., θω =

∑
k∈V (cωk − Aωk ), we get an upper bound for the value of the optimal crane assignment

(obtained when the corresponding MIP subproblem is solved). Therefore, all scenarios ω such that
θω ≤ θ̄ can be discarded in the current iteration since they will not lead to a completion time
greater than the current worst completion time. When the feasible crane assignment determined
does not allow to discard a given scenario ω ∈ Ω\Ξ, a different crane assignment can be generated
and the process can be repeated until either the scenario ω is discarded or a predefined number
of iterations is reached. If none of the obtained crane assignments allows to discard the scenario,
then the MIP subproblem needs to be solved for the corresponding scenario. When solving the
MIP subproblem through branch-and-cut, every feasible crane assignment found is evaluated and
if the completion time is lower than the current worst completion time the scenario is discarded.
Otherwise, the MIP subproblem ends when the optimal crane assignment θω

∗
satisfies θω

∗
> θ̄, and

scenario ω is added to the MP.
The description of the SRP is summarized in Algorithm 3.

Algorithm 3 Scenario reduction procedure (SRP)

1: Input: A first-stage solution S1 = {x, y, b, π, σ} and the current worst completion time θ̄
2: Set Feasible=true
3: for each scenario ω ∈ Ω\Ξ do
4: Successively determine a feasible crane assignment according to S1 (and compute θω) until

either θω ≤ θ̄ or a predefined number of iterations is reached
5: if θω ≤ θ̄ then
6: Discard scenario ω
7: else
8: Solve the MIP subproblem to obtain the optimal crane assignment and compute θω∗

9: if θω∗ ≤ θ̄ then
10: Discard scenario ω
11: else
12: Set Feasible=false, ω̄ = ω and go to Step 16
13: end if
14: end if
15: end for
16: if not Feasible then
17: Return scenario ω̄
18: end if

Since the size of the MP rapidly grows as the number of scenarios increases, we only insert
one scenario per iteration in the MP. This means that each time the SRP is employed, not all the
scenarios need to be evaluated since the SRP stops when the first disrupted scenario is found.

Remark 6.1. An alternative version of the SRP is to evaluate all the scenarios and then return the
scenario leading to the highest completion time. This idea was followed in [2, 3] and, in general, it
allows to reduce the number of global iterations performed by the DA comparing with the approach
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that consists of choosing the first scenario found leading to a total completion time greater than the
current one. For the reasons mention before, the evaluation of each scenario in the robust BACASP
can be very time consuming. Therefore, in this paper, we adopt the first strategy since it avoids
evaluating all the scenarios at each iteration and consequently to save a lot of time.

At Step 4 of Algorithm 3, several crane assignments must be quickly determined. Such crane
assignments can be obtained by using a new heuristic (presented in the next section), called scenario
evaluation heuristic.

6.2.1. Scenario evaluation heuristic

Given a feasible first-stage solution S1 = {x, y, b, π, σ}, the scenario evaluation heuristic (SEH)
aims to find feasible crane assignments for a given scenario. A general description of this heuristic
is given in Algorithm 4.

Algorithm 4 Scenario evaluation heuristic (SEH)

1: Input: A feasible first-stage solution S1 = {x, y, b, π, σ} and a scenario ω ∈ Ω\Ξ
2: Cost←0
3: for j ∈ T do
4: Define V̄ as the set of vessels available to be operated in period j
5: Cost← Cost+ #V̄
6: if #V̄ = 1, i.e., V̄ = {v1} then
7: Assign the maximum possible crane capacity to vessel v1

8: end if
9: if #V̄ ≥ 2 then

10: Extract a subset Ṽ = {v1, v2} with two vessels from V̄
11: Define a priority vessel (let us assume v1 as priority vessel)
12: Assign the maximum possible crane capacity to vessel v1

13: Assign the maximum possible crane capacity to vessel v2 taking into account that cranes
assigned to v1 cannot be assigned to v2

14: If beneficial, readjust cranes by moving some cranes assigned to v1 to v2

15: end if
16: end for
17: Return Cost

The SEH is a greedy algorithm that assigns cranes to vessels sequentially over each time period.
At each time period j ∈ T , the SEH identifies a set of available vessels to be operated (Step 4), i.e.,
the vessels that arrived until time j and are not fully unloaded at this time period. If there is only
one available vessel (Step 6), then it is operated with the maximum possible crane capacity. We
assume that the SEH only assigns cranes to at most two vessels in each time period. Therefore, if
more than two vessels are available (Step 9) only two of them are selected to be served (Step 10).
Two alternative criteria are used to select the vessels:

SSC - Select the vessels with smaller cargo onboard.

SAE - Select the vessels that arrived earlier.

Having only two vessels in set Ṽ we identify a priority vessel to be served (Step 11). Three
alternative criteria are used to select the priority vessel:
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PR - Randomly select the priority vessel.

PSC - Select the vessel with smaller cargo as priority.

PSS - Select the vessel with smaller slack as priority. Given a vessel k ∈ Ṽ define set Ṽk as the
set of vessels with an arrival time greater than or equal to Aωk sharing berth sections with
vessel k. The slack of vessel k is then defined as sk = min

`∈Ṽk
{Aω` − cmink }, where cmink is the

minimum completion time of vessel k (computed by assuming that vessel k is always served
with maximum crane capacity).

After selecting the priority vessel, the maximum possible number of cranes is assigned to that
vessel and the maximum number of remaining cranes (not assigned to the priority vessel) is assigned
to the non-priority vessel. However, in some cases, some cranes are moved from the priority vessel
to the non-priority one (Step 14). This is done in the following way. We start by computing
the number (ncv1) of cranes assigned to the priority vessel in the last period in which it is going
to be operated. If such number is lower than the maximum number of cranes that can work
simultaneously on vessel v1 (i.e, ncv1 < NCv1) then we can move at most NCv1 −ncv1 cranes from
vessel v1 to vessel v2. This procedure does not affect the completion time of the priority vessel but
may lead to a lower completion time of the non-priority vessel.

Combining the different ways of selecting vessels in Steps 10 and 11 of Algorithm 4, we obtain
six variants of the SEH: SEHSSC+PSC

, SEHSSC+PSS
, SEHSSC+PR

, SEHSAE+PSC
, SEHSAE+PSS

and SEHSAE+PR
. It should be noted that both SEHSSC+PR

and SEHSAE+PR
variants can be

applied several times to produce a large set of feasible assignments due to the random operator,
which is not the case of the remaining four variants.

Remark 6.2. The proposed decomposition algorithm is based on the model defined in Section 4
which aims to minimize the worst total completion time. Such a model can easily be modified to
optimize different criteria such as the waiting time or the total departure time delay (when maximum
departure times are considered). If a different criterion is chosen, the proposed decomposition
algorithm and all the heuristics described before can be straightforwardly redefined according to it.

7. Rolling horizon heuristic

The MP becomes harder to solve as the number of both vessels and scenarios increases, which can
make it difficult to find feasible solutions for some instances quickly. This statement was already
verified in [4] for the deterministic BACASP. Therefore, to handle large size instances we use a
rolling horizon heuristic (RHH). Rolling horizon heuristics have been successfully applied before
for solving BACASP variants (see [4, 31]) but they were never applied inside of a decomposition
algorithm to solve the MP.

The RHH used in this paper is similar to the one presented in [4]. The main idea of the RHH
is to split the planning horizon into smaller sub-horizons, and then solve a tractable subproblem
for each sub-horizon at each iteration. The RHH starts by considering only a subproblem with
some of the first vessels arriving at the port in the nominal scenario. Then, at each iteration
i > 1, the subproblem to solve is defined by the inclusion of a new set of vessels (not included
yet in subproblem i − 1). The number nv of vessels included at each iteration is fixed. The time
horizon Ti of the subproblem to be solved in iteration i is defined in terms of the later possible
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arrival time of the last vessel k arriving at the port and considered in the subproblem as

Ti := max
ω∈Ω

Aωk + nt

where nt is a given tolerance.
At each iteration i > 1, the berth locations of the vessels considered in the previous iterations are

frozen (as well as the remaining first-stage decision variables). However, to ensure a soft transition
between subproblems, the second-stage decision variables are kept free during the last ut time
periods of the time horizon Ti−1 of the previous iteration. The second-stage decision variables in
periods from 1 to Ti−1 − ut are also frozen. Hence, at iteration i, we solve a restricted problem
where the berth decisions are considered only for the new nv vessels and part of the scheduled
decisions are fixed.

The presented RHH has three parameters:
nv : number of new vessels to consider at each iteration;
nt : number of periods to consider in each subproblem after the arrival time of the last vessel;
ut : number of last periods in time horizon Ti−1 in which the second-stage variables are free

when solving subproblem at iteration i.
The RHH is described in Algorithm 5.

Algorithm 5 Rolling horizon heuristic (RHH)

1: Input: nv, nt and ut
2: Define T1 := max

ω∈Ω
Aωnv + nt as the limited time horizon of the first subproblem

3: Define U := dN/nve as the number of iterations to cover the full planning horizon
4: Solve the first subproblem defined with time horizon T1 for nv vessels
5: for all i ∈ {2, . . . , U} do
6: Fix x, y, b, π, σ variables for the vessels considered in iteration i− 1
7: Fix t, z, α, β for all vessels considered in iteration i− 1 for all time periods {1, . . . , Ti−1− ut}

and for all scenarios in Ξ
8: Define the new time horizon as Ti := max

ω∈Ω
Aωi×nv + nt

9: Solve the restricted mixed integer problem for i× nv vessels and Ti time periods
10: end for

7.1. RHH analysis

The proposed RHH is used inside the decomposition algorithm for solving the arising master
problems, which are MIP models defined by constraints (45) - (73). The RHH iteratively solves
several subproblems independently whose dimension depends on the parameters nv, nt, and ut.
Since each master problem is partitioned into several subproblems that are solved independently, the
optimality of the obtained solution can be lost, specially when the number of vessels nv considered
in each subproblem is small. Considering a large number of vessels nv in each subproblem leads
to better quality solutions, but the computational time required for solving each subproblem can
significantly increase. The total number of time periods considered in each subproblem highly
depends on the range of the expected arrival times of the vessels considered in that subproblem.
The larger the range of the expected arrival times, the larger the number of time periods considered,
and therefore, the larger the dimension of the subproblem. The parameter ut is used to make
soft transitions between subproblems, therefore, the larger the value ut, the softer the transitions
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between subproblems, and therefore, the higher the probability of obtaining optimal solutions.
However, large values of the parameter ut increase the hardness of each subproblem, and therefore,
the computational time required for solving them.

Hence, the DA combined with the RHH becomes a heuristic approach since the cost of the
obtained solution can be larger than the one obtained by the exact DA (without RHH).

8. Computational results

In this section, we report the computational experiments carried out to test both the exact de-
composition algorithm (DA) and the rolling horizon heuristic (RHH). In Section 8.1 we describe the
instances used and discuss some implementation details of the algorithms. In Sections 8.2 and 8.3
we report the computational results for the randomly generated instances considering both homo-
geneous and heterogeneous quay cranes, respectively. In subsection 8.4 we present the results for a
set of instances from the literature while in Section 8.6 we solve large size instances with up to 60
vessels and 168 time periods.

All the tests were run on a computer with a CPU Intel(R) Core i7, with 16GB RAM, and using
the Xpress Optimizer Version 27.01.02 with the default options.

8.1. Instances used and implementation details

To test both the exact DA and the RHH, we use randomly generated instances as well as
instances of the literature. The instances of the literature correspond to the ones used in [4]. The
randomly generated instances are obtained as follows.

The number M of time periods is fixed to 60. This value is taken from the larger practical
instances given in [4] that motivated this work. It was observed by other authors [25] that, in
general, the arrival time of a vessel can only be estimated with accuracy one or two days before
its actual arrival. For larger time horizons the solution approaches presented in this paper can
still be used by adjusting the time period. In the literature, we can find periods up to 3 hours
(see [10]). Note that with an intermediate case of 2 hours, the time horizon corresponds to five
working days which may cover most practical cases where a reasonable estimate of the arrival times
is known. The safety time F between two vessels is one time period. The total number N of vessels
arriving at the port varies in {6, 7, . . . , 15}. For each number of vessels, ten instances are randomly
generated. We assume that the time between arrivals follows an exponential distribution with rate
N/M , thus the arrival times are sequentially generated according to that probability distribution.
After generating all arrival times, it is necessary to ensure that all vessels can be operated within
the time horizon. To do so, the arrival times are mapped into the interval [1,M − 10] according to
the formula:

Anewk :=

[
1 + (Aoldk − 1)

(M − 10)− 1

AoldN − 1

]
where Aoldk and Anewk represent the generated and the mapped arrival time for vessel k, respectively,
and [·] is the round operator. The size of the vessels (measured in terms of the number of berth
sections) varies in {5, 6, 7} while the cargo (in ton.) is an integer number varying in [1, 000; 8, 000].
The number J of berth sections is 34 and the number of available cranes is 7. The processing
rate of each crane is constant and equal to 263.644 ton/hr. We assume that at most NCk = 4
cranes can simultaneously operate in vessel k ∈ V . It is worth mentioning that all the parameter
values defined here are based on the real-world instances used in [4]. Since we consider 10 different
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numbers of vessels and for each of those numbers 10 randomly generated instances are obtained,
the test set is composed of 100 instances.

The MCB uncertainty set is built as follows. The vessels are divided into ng = 3 groups and
at most one vessel of each group can arrive with a delay (i.e., Γj = 1 for all j ∈ {0, 1, 2}). The
maximum allowed delay Âk is the same for all vessels k ∈ V and is equal to two time periods.
Therefore, since we are considering a discrete time horizon, it means that each vessel can arrive
either on time or with a delay of one or two time periods. The randomly generated instances used
are online available at http://sweet.ua.pt/aagra/. Each of these instances is identified with the
name R N i where N ranges from 6 to 15 and corresponds to the number of vessels used in the
instance and i ranges from 1 to 10 and denotes the instance number.

Now we describe some implementation details associated with both the scenario reduction
procedure (SRP) and the rolling horizon heuristic (RHH).

In Step 4 of Algorithm 3, a variant of the SEH is successively used to find a feasible crane
assignment leading to a completion time lower than or equal to the current worst completion time.
For each scenario ω ∈ Ω\Ξ, the choice of the SEH variant is defined as follows. The first variants
employed are the static SEH variants (the ones with no random steps) in the following order:

(Static Variants) SEHSSC+PSC
→ SEHSSC+PSS

→ SEHSAE+PSC
→ SEHSAE+PSS

It is important to recall that when one of the SEH variants finds a crane assignment that allows to
discard the scenario, the next variants are not employed. When none of these four variants find a
desirable crane assignment, the random SEH variants are applied in the following order:

(Random Variants) SEHSSC+PR
(×100)→ SEHSAE+PR

(×100).

Each of these two random variants is executed 100 times, allowing to obtain a large number of
different crane assignments and therefore increasing the probability of discard scenarios.

The RHH has three input parameters: the number nv of new vessels to consider in each iteration,
the number nt of periods to consider in each subproblem after the arrival time of the last vessel,
and the number ut of last periods of time horizon Ti−1 in which the second-stage variables are free
when solving the subproblem corresponding to iteration i. In our experiments, we use nv=3 since,
according to the results presented in [4], this is the value leading to a better trade-off between
solution cost and computational time for the deterministic BACASP. Note that, in general, the
quality of the solutions increases and the computational time required to solve each subproblem
decreases as the number nv increases. Taking into account that the maximum cargo of a vessel
is 8,000 ton., the maximum number of cranes simultaneously operating in a vessel is 4, and the
processing rate of each crane is 263.644 ton/hr, we can estimate the maximum completion time

of a vessel (assuming that it is operated with maximum resources) as
⌈

8000
4×263.644

⌉
= 8. Hence, we

must have nt ≥ 8. Since it may not be possible to allocate the maximum resources to each vessel,
using nt = 8 can lead to infeasible solutions. To avoid such infeasibilities we use nt = 10 and set
ut = nt/2 = 5.

8.2. Results for BACASP with homogeneous cranes

In this section, we present the results for the randomly generated instances of the robust BA-
CASP with homogeneous cranes described in the previous section. To understand the complexity
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of our instances and the importance of solving the robust BACASP with a decomposition algorithm
enhanced with the proposed SRP, we start by presenting in Table 1 the total number #Ω of possible
scenarios considered in our instances in terms of the number of vessels. In this table we also report
the computational time required to evaluate all the scenarios in one iteration of the DA when i)
each exact MIP subproblem is solved through Xpress (Column Xpress); ii) only the 4 static SEH
variants are used in SRP (Column Static V ariants); and iii) only the two random SEH variants
are used (100 times each) in SRP (Column Random V ariants).

Table 1: Total number of scenarios and computational times (in seconds) required to evaluate all the scenarios

N #Ω Xpress Static V ariants Random V ariants

7 175 117 <1 25
9 343 305 <1 67
11 567 721 3 130
13 841 1356 6 254
15 1331 2627 8 465

Table 1 shows that the total number of scenarios handled is much larger than the number of
scenarios considered in previous works (see, for example, [19, 31]). Moreover, the time required
by the static variants is very short, meaning that when these variants are able to obtain crane
assignments that allow to discard a large number of scenarios the adversarial problem can be
solved quickly. The computational time associated with the random variants (executed 100 times
each) is much lower than the one associated with solving all subproblems with Xpress. It is worth
recalling that the reported computational times refer to the evaluation of all scenarios, but not all
the scenarios need to be evaluated at each iteration of the DA.

Now we study the effect of using the scenario reduction procedure (SRP) as well as the warm
start (WS) technique in the exact decomposition algorithm (DA). The obtained results are displayed
in Table 2. The first column identifies the number of vessels, while the second reports (for each
number of vessels) the average cost of the obtained solutions over the set of the ten randomly
generated instances. The third and the fourth columns report the average total computational
time (in seconds) spent by the DA when solving the master problems and the adversarial problems,
respectively, while the fifth column reports the average total time (in seconds) spent on solving each
of the ten instances. The sixth column displays the average number of iterations performed by the
DA (corresponding also to the average number of scenarios added). The remaining two groups of
four columns display similar information for the DA combined with the SRP (DASRP ) and for the
DA combined with both SRP and WS (DASRP+WS).
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Table 2: Results for the DA and its improvement strategies for the homogeneous instances

DA DASRP DASRP+WS

N Cost TMP TAP TTotal #it TMP TAP TTotal #it TMP TAP TTotal #it

6 33 17 83 100 2.6 13 8 21 2.6 8 6 14 1.6
7 38 19 148 167 2.9 21 11 32 3.0 16 10 26 2.5
8 43 126 444 570 3.5 139 57 196 3.5 116 35 151 3.3
9 41 152 651 803 4.1 84 95 179 3.6 124 73 197 3.0
10 42 176 886 1062 3.9 126 103 229 3.7 102 62 164 2.9
11 46 712 1711 2423 4.9 728 195 923 4.8 220 115 335 3.6

Table 2 reports results for instances with a number of vessels lower than or equal to 11 since
the computational time tends to increase as the number of vessels increases and there are already
two instances with 11 vessels (R 11 6 and R 11 9 ) that could not be solved to optimality within 6
hours by the DA without improvements. Therefore, the last line of the table refers to a set of only
8 instances (the ones solved to optimality by the DA within 6 hours).

Table 2 shows that, in general, the largest portion of time required by the DA is spent on solving
the adversarial problems. The time required to solve the adversarial problems can be reduced in
88% on average when the DA is combined with the SRP. Furthermore, the total time of the DA
can be reduced in around 82% when it is combined with both the SRP and the WS. Columns #it
show that the number of iterations performed (scenarios added) decreases when the warm start
strategy is used. This may explain the fact that, in general, the lowest running times correspond
to the DASRP+WS strategy.

The results presented in Table 2 clearly demonstrate the benefits of using both the SRP and WS
techniques. Therefore, we only combine the rolling horizon heuristic (RHH) with the DASRP+WS

approach. For ease of notation, the resulting approach is denoted by RHH. The obtained results
are displayed in Table 3. The first column identifies the number of vessels. Columns TMP , TAP ,
TTotal, and #it have the same meaning as in Table 2. To obtain the results reported in the last
column, we start by computing the gap of the solution obtained by the RHH with respect to the
optimal solution obtained by the DASRP+WS approach for each of the 10 instances, according with
the formula

Gapi(%) =
CRHHi − C∗i

C∗i
× 100, i = 1, . . . , 10

where CRHHi denotes the cost of the solution obtained by RHH when solving instance i and C∗i
denotes the cost of the optimal solution of instance i. The last column of Table 3 displays the
average of those gaps.
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Table 3: Computational results to access the performance of the RHH when solving homogeneous instances

DASRP+WS RHH
N TMP TAP TTotal #it TMP TAP TTotal #it Gap(%)

6 8 6 14 1.6 5 5 10 1.7 0.0
7 16 10 26 2.5 11 7 18 2.5 1.0
8 116 35 151 3.3 32 26 57 3.3 0.5
9 124 73 197 3.0 39 70 109 3.3 0.2
10 102 62 164 2.9 20 55 76 2.6 0.7
11 1123 163 1286 4.0 59 164 224 4.0 0.0

The results reported in Table 3 show that RHH is faster than DASRP+WS specially because
it drastically reduces the computational time required to solve the master problems. Moreover, we
can see from the last column that the average gaps associated with the solutions obtained by the
RHH are lower than 1%, indicating a good performance of this approach in terms of the cost of
the obtained solutions. The last row of Table 3 reports the results for only 9 of the 10 instances
with 11 vessels since the instance R 11 6 could not be solved to optimality within 6 hours by the
DASRP+WS approach. That instance was solved with RHH in 1196 seconds.

Table 4 displays the results obtained with RHH when solving the large size instances with a
number of vessels ranging from 12 to 15. The first column identifies the number of vessels. The
second, third and, fourth columns report the average cost of the obtained solutions, the average
total time required by RHH to solve each of the ten instances, and the average number of iterations
performed. Column STotal shows the average number of scenarios evaluated per instance when the
RHH is employed. Columns SS and SR show the average number of scenarios eliminated by the
static SEH variants and by the random SEH variants, respectively. The numbers in parenthesis
correspond to the percentage of scenarios eliminated in each case.

Table 4: Computational results obtained by RHH when solving large size homogeneous instances

N Cost TTotal #it STotal SS SR
12 54 120 3.2 1172 1018 (89%) 137 (9%)
13 55 294 3.6 1199 1060 (90%) 73 (4%)
14 68 1829 4.8 1937 1360 (73%) 354 (15%)
15 60 1726 7.1 2678 2126 (80%) 351 (12%)

Table 4 shows that the average number of scenarios evaluated per instance by RHH is large. The
obtained results also reinforce the importance of the SRP since, on average, 98% of the scenarios are
eliminated by both static and random SEH variants. Is it worth reminding that the random SEH
variants are just employed when the static SEH variants are not able to find a crane assignment
that allows to discard the scenario. Note also that the total number of scenarios evaluated (Column
STotal) is larger than the one presented in Table 1 since some scenarios are evaluated in more than
one iteration of the DA.

8.3. Results for BACASP with heterogeneous cranes

In this section, we present the results for the randomly generated instances of the robust BA-
CASP with heterogeneous cranes. The heterogeneous cranes instances were obtained from the
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homogeneous instances by increasing the processing rate of cranes 3 and 4 from 263.644 to 319.001.
The processing rate of the remaining cranes 1, 2, 5, 6, and 7 are kept unchanged and equal to
263.644 units per hour.

Table 5 shows the effect of using both SRP and WS techniques in the exact decomposition
algorithm. The description of each column is the same as in Table 2.

Table 5: Results for the DA and its improvement strategies for the heterogeneous instances

DA DA+ SRP DA+ SRP +WS
N Cost TMP TAP TTotal #it TMP TAP TTotal #it TMP TAP TTotal #it

6 31 34 116 150 2.5 52 31 83 2.5 20 27 47 1.5
7 36 203 233 436 3.4 193 44 237 3.1 74 20 94 2.1
8 36 190 399 589 3.9 245 99 344 4.0 108 19 127 3.4

Table 5 reports results for instances with at most 8 vessels since there are already three instances
with 8 vessels (R 8 1, R 8 2, and R 8 8 ) that could not be solved to optimality within 6 hours
by the DA without improvements. Therefore, the last line of the table refers to a set of only 7
instances (the ones solved to optimality by the DA within 6 hours).

The conclusions drawn from Table 5 are according to the ones obtained from Table 2, i.e., the
time required to solve the adversarial problems can be reduced in 77% on average when the DA is
combined with the SRP and the total time of the DA can be reduced in 74% on average when it is
combined with both the SRP and WS. The number of iterations performed also decreases when the
warm start strategy is used. It is important to note that there are 3 heterogeneous instances with
8 vessels that were not solved to optimality by the DA without improvements within 6 hours, while
all the homogeneous cranes instances with up to 10 vessels were solved by the DA. This indicates
that the instances with heterogeneous cranes are more difficult to solve than the ones in which
homogeneous cranes are used.

Table 6 displays results similar to the ones presented in Table 3 to evaluate the performance of
the RHH.

Table 6: Computational results to access the performance of the RHH when solving the heterogeneous instances

DASRP+WS RHH
N TMP TAP TTotal #it TMP TAP TTotal #it Gap(%)

6 20 27 47 1.5 8 22 30 1.5 0.0
7 81 22 103 2.2 28 22 50 2.1 0.6
8 108 19 127 3.4 19 5 24 2.9 0.4

The results reported in Table 6 show that RHH is faster than DASRP+WS and the average
gaps associated with the solutions obtained by RHH are lower than 0.6%, which reveals a good
performance of the RHH. The last row of Table 6 reports results for only 7 of the 10 instances
with 8 vessels since the instances R 8 1, R 8 2, and R 8 8 could not be solved to optimality within
6 hours by the DASRP+WS .

Table 7 displays the results obtained with RHH when solving the instances with a number of
vessels ranging from 9 to 15. The meaning of each column is the same as in Table 4.
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Table 7: Computational results obtained by RHH when solving large size heterogeneous instances

N Cost TTotal #it STotal SS SR
9 37 288 2.9 471 255 (59%) 128 (25%)
10 39 177 3.6 746 547 (76%) 146 (17%)
11 45 583 4.4 1083 763 (74%) 239 (21%)
12 50 705 5.0 1509 1029 (63%) 358 (27%)
13 51 725 3.8 1325 836 (81%) 297 (13%)
14 62 3152 4.0 1525 1021 (69%) 223 (13%)
15 55 4071 6.1 3177 2113 (61%) 533 (19%)

Instances R 14 9, R 14 10, and R 15 1 could not be solved by RHH in less than 6 hours,
therefore these three instances are not included in Table 7. To obtain robust solutions for such
instances, we imposed a time limit of 2 minutes when solving each rolling horizon subproblem. The
results for these three instances are reported separately in Table 8.

Table 8: Computational results obtained by RHH for large size instances

Instance Cost TTotal #it STotal SS SR
R 14 9 61 1959 5 1538 486 (32%) 914 (59%)
R 14 10 64 660 4 1228 1191 (97%) 32 (3%)
R 15 1 62 2899 3 1579 970 (61%) 423 (27%)

Table 7 shows that the average number of scenarios evaluated per instance by RHH is large.
Around 88% of the scenarios are eliminated by applying both static and random SEH variants.
Table 8 shows that most difficult instances can be heuristically solved in a reasonable time by
imposing a time limit to each rolling horizon subproblem. This observation allows to use the RHH
for solving instances with more than 15 vessels and 60 time periods.

8.4. Results for BACASP instances of the literature

In this section, we test the proposed RHH and the DA enhanced with both the SRP and WS on
the instances used in [4]. It is worth reminding that some of those instances are classified as difficult
instances even under deterministic assumptions. The set of instances is composed of 9 instances.
All instances identified with index a (I7a, I8a, I10a, I12a, and I15a) are real-world instances, while
the instances identified with index b (I8b, I10b, I12b, and I15b) are artificial instances derived from
the instances with index a by enforcing the first 4 vessels to arrive at the same time.

The obtained results are displayed in Table 9. The first column identifies the instances. The
number of vessels and time periods are given in the second and third columns. Each time the master
problem in the DA is solved to optimality, the resulting worst completion time is a lower bound
for the optimal value of the robust problem. In column LB we report the (best) obtained lower
bounds. We set a time limit of 6 hours (21600 seconds) to solve the DA. It is worth mentioning
that when the DA ends before the time limit, the reported lower bound coincides with the value
of the optimal solution (all these cases are identified with an asterisk). Columns TTotal and #it
report the total computational time required for solving either the DA or the RHH and the total
number of iterations performed. Column Cost reports the cost of the robust solution obtained by
RHH and column Gap(%) shows the gap between the cost of the solution obtained by the RHH
with respect to the best lower bound obtained by the DA. Since the best lower bounds can be
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much lower than the optimal solution, the reported gaps can also be interpreted as maximum gaps
of the RHH solution in relation to the optimal robust solution value. Instance I15b could not be
solved within 6 hours neither by the DASRP+WS nor by the RHH. Therefore, to obtain a robust
solution for this instance using RHH, we imposed a time limit of 2 minutes when solving each
rolling horizon subproblem.

Table 9: Computational results for instances of the literature

DASRP+WS RHH
Inst. N M LB TTotal #it Cost TTotal #it Gap(%)

I7a 7 50 27∗ 35 2 27 29 2 0.0
I8a 8 55 41∗ 700 4 41 31 3 0.0
I8b 8 55 48∗ 6609 2 48 59 1 0.0

I10a 10 60 56∗ 14235 6 56 1116 7 0.0
I10b 10 60 63 >21600 >2 64 916 3 1.6
I12a 12 65 63∗ 14629 3 63 677 1 0.0
I12b 12 65 73 >21600 >1 75 7807 4 2.7
I15a 15 65 72 >21600 >3 76 1196 4 5.3

I15b 15 65 72 >21600 >2 104 3669 4 30.8

Table 9 shows that only 5 of the 9 instances were solved to optimality by the DA within the
imposed time limit. The total time required by the RHH is much lower than the one required by
the DA and RHH was able to obtain optimal solutions for all the 5 instances solved to optimality
by the DA. For the 3 instances I10b, I12b and I15a not solved to optimality by the DA, the gap
associated with the RHH is still low (lower than 5.3%). The gap associated with instance I15b is
high for two reasons: i) the DASRP+WS was only able to perform 2 iterations during the time limit
of 6 hours, which indicates that the reported lower bound can be a poor bound, and ii) the first
rolling horizon subproblem corresponds to the first 3 vessels that arrive at the same time, which
makes such subproblem difficult to solve. It is important to note that this is an artificial instance
(still difficult to solve in the deterministic case) that does not reflect a real-world situation.

8.5. Performance of the robust solutions

In this section, we evaluate the performance of the proposed robust algorithm on the real-world
instances I7a, I8a, I10a, I12a and I15a based on the following two indicators:

Deterministic solution. The solution of the deterministic model (where the uncertain
arrival times are replaced by their expected values) is frequently used in literature to evaluate
the impact of disregarding the uncertainty in the solution procedure, as well as the benefits
of using robust solutions. To compute this indicator, we start by solving the deterministic
problem. Then, given a set of NS scenarios, we fix the berthing schedule of the vessels and
compute the total completion time of that schedule for each scenario independently. This
procedure generates a sample of NS values of completion times. In Table 10, we report the
average and the maximum of the obtained values (in columns Det).

Perfect information. This is an indicator frequently used in stochastic optimization that
we adapt to evaluate the obtained robust solutions. Computing this indicator implies to
solve several deterministic problems (one for each scenario) independently and obtain the
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total completion time for each scenario. This procedure generates a sample of NS values
of completion times. In Table 10, we report the average and the maximum of the obtained
values (in columns PI).

After obtaining the robust solution generated for the decomposition algorithm for each instance,
we fix the berthing schedule of the vessels and compute the total completion time of the schedule
for each scenario independently. This procedure generates a sample of NS values of completion
times. In Table 10, we report the average and the maximum of the obtained values (in columns
Robust).

Table 10: Performance of the robust solution analysis

Average Worst-scenario
Inst. NS PI Robust Det PI Robust Det

I7a 175 26.1 26.1 26.5 27 27 27
I8a 245 39.7 39.8 39.7 41 41 41
I10a 441 53.1 53.2 54.3 56 56 60
I12a 729 60.6 60.7 61.8 63 63 69
I15a 1331 73.5 73.7 74.4 75 76 78

Table 10 provides very interesting insights about the obtained robust solutions as well as about
the strategy of optimizing the worst-case scenario. First, from the comparison between columns
Det and Robust, it becomes clear that the robust solutions outperform the deterministic solutions
not only in terms of the worst-case scenario, but also in terms of the average completion time.
Second, the comparison between columns PI and Robust shows that our approach (that directly
optimizes over the worst-case scenario) also keeps the expectation of the completion times (usually
optimized by stochastic programming approaches) under control. This observation clearly justifies
the importance of optimizing over the worst-case scenario. Note that the PI indicator corresponds
to the not realistic case where the values of the arrival times are exactly known and therefore, the
results associated with PI are the best ones that can be achieved. The average results associated
with our robust solutions are really close to the ones associated with PI and the worst-case value is
almost always the same (except for instance I15a). This shows the good performance of the robust
approach.

8.6. Results for large size instances

In this section, we use the proposed decomposition algorithm with both the warm start technique
and the SRP (DAWS+SRP approach) combined with the rolling horizon heuristic for solving large
size instances. Following the procedure described in section 8.1, we randomly generate a new set
of instances (with homogeneous cranes) composed of three subsets of instances with 40, 50 and 60
vessels, respectively. Each subset has 5 different instances and all of them have 168 time periods
(corresponding to the number of weekly hours).

For the instances considered in the previous sections (with up to 15 vessels), the proposed
uncertainty set divides the set of vessels into ng = 3 groups (according to their expected arrival
times) and at most one vessel of each group can arrive with a delay of either one or two time periods.
However, grouping the vessels into 3 groups is not suitable for instances with a large number of
vessels. For example, for instances with 60 vessels, each group has 20 vessels, meaning that at most
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one of those 20 vessels can arrive later. Therefore, for large size instances, the parameter ng used
in the uncertainty set has to be increased. The uncertainty set used for the instances considered
in this section has the following parameters: i) the number ng of groups is set to

[
3×N

10

]
, where

[·] denotes the round operator; ii) the maximum allowed delay of a vessel k ∈ V , Âk, is two time
periods (as before); and iii) the maximum number of vessels that can be delayed in each group,
Γj , j = 0, . . . , ng−1, is one (as before). This uncertainty set configuration implies that each group
of vessels is composed of either three or four vessels and at most one of those vessels is allowed to
arrive later with a maximum delay of two time periods.

For instances with a number of vessels greater than or equal to 40, the total number of scenarios
defined by the uncertainty set is extremely large (up to 3×1010) making impossible to solve such
instances considering all vessels in the same model. Hence, we solve such instances by considering
several subproblems with a smaller number of vessels. The illustration of the procedure is shown
in Figure 4.

It 1 

It 2 

ST2 ST3 
SP 1 SP 2 SP 3 

It 3 

Group of 

vessels 

Time 

ST1 

 

Figure 4: Procedure for solving large size instances.

We start by grouping the vessels according to the groups defined by the uncertainty set. Each
circular mark represents a group of vessels, and its size is related to the expected arrival times of the
vessels in that group. The first and the last extremities of each mark represent the expected arrival
time of the first and of the last vessels of the group, respectively. At each iteration, a subproblem is
solved considering only 3 groups of vessels. In the first iteration, the subproblem to solve considers
only the first three groups of vessels and the time horizon is defined by the expected arrival time
of the last vessel considered plus the maximum allowed delay plus the minimum handling time
of that vessel plus a given tolerance (15 time periods in our experiments). After solving the first
subproblem, by using the RHH approach, the worst-case scenario is found and the departure time
of the vessels is computed.

In the second iteration, the second set of three groups of vessels is considered. The start time
for the corresponding problem (ST2) is the expected arrival time of the first vessels considered.
However, there may exist vessels associated with the previous iteration having a departure time in
the solution (obtained in the first iteration) greater than ST2. Such vessels must be also considered
in the second iteration as follows:
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• If in the solution of the first iteration a vessel started to be handled before time ST2, then
its cargo at the beginning of the second iteration is the difference between the initial cargo
quantity and the volume of cargo handled until period ST2-1. The berth position of the vessel
is fixed to the berth position determined in the solution of the first iteration and the start
time of the handling operations in that vessel is fixed to ST2.

• If in the solution of the first iteration a vessel started to be operated after time ST2, then its
cargo at the beginning of the second iteration is the initial cargo. The berth position of the
vessel is not fixed and the start time of the handling operations in that vessel is fixed to the
one determined at the first iteration.

The same process is repeated for the next iterations until the end of the time horizon and
the resulting subproblems are always solved by using the RHH approach. This procedure reflects
several practical situations at ports since not all the arrival times of the vessels are known at the
beginning of the planning horizon. Such arrival times are usually successively known over the time.

The obtained results for the large size instances are displayed in Table 11. The number of vessels
considered is shown in the first column. The average cost of the obtained solution is given in the
second column. Columns TMP and TAP report the average computation time spent when solving
all the master problems and all the adversarial problems, respectively. Column TTotal shows the
average total computational time, while the last column reports the average number of iterations.

Table 11: Computational results for large size instances with 168 time periods

N Cost TMP TAP TTotal #it

40 181 916 1689 2605 17
50 227 1735 1582 3317 21
60 238 1821 2726 4581 27

The results presented in Table 11 shows that the proposed approach is scalable for large size
instances since the average computational times are lower than two hours. Furthermore, these
results also reinforce the difficulty of solving each adversarial problem since a large portion of the
total time is devoted to that task.

9. Conclusion

In this paper, we study the robust BACASP assuming that the vessel arrival times are uncertain
and belong to a multiple constrained budget uncertainty set, inspired by the original budget uncer-
tainty set proposed by Bertsimas and Sim [6]. A two-stage mathematical model is proposed, where
the berth decisions are first-stage decisions and the crane assignments are second-stage decisions.
Such a model aims to minimize the worst sum of the completion times of all vessels taking into
account all possible realizations of the arrival times in the uncertainty set.

Since a large number of scenarios is considered, an exact decomposition algorithm that splits
the original problem into a master problem and a separation problem (adversarial problem) is
proposed to obtain an optimal robust solution. Taking into account that solving the adversarial
problem requires to solve a hard MIP subproblem for each scenario of uncertainty, we propose a new
scenario reduction procedure that discards irrelevant scenarios, and therefore reduces the number of
MIP subproblems to solve as well as the time associated with the adversarial problem. A warm start
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technique, where a carefully chosen scenario is used to initialize the decomposition algorithm, is
also proposed to reduce the number of global iterations performed by the decomposition algorithm.
Large size instances are solved heuristically by the decomposition algorithm combined with a rolling
horizon heuristic.

Computational experiments are conducted on both randomly generated instances and instances
from the literature. The results for the randomly generated instances are obtained considering both
homogeneous and heterogeneous cranes. The obtained results reveal that the instances become
more difficult to solve when heterogeneous cranes are considered. However, in both homogeneous
and heterogeneous cases, the conclusions are similar. First, the proposed scenario reduction proce-
dure drastically reduces the computational time required for solving the adversarial problem, since
around 93% of the scenarios are discarded. Second, the warm start technique reduces the number
of iterations performed by the decomposition algorithm and therefore reduces the global computa-
tional time. These two improvements together reduce the total running time of the decomposition
algorithm by around 78%. Third, the rolling horizon heuristic allows to solve large size instances
in a short time and the gap associated with the obtained solutions, with respect to the optimal
solution value, is very low. Finally, the proposed methods are scalable for large size instances since
we are solving instances with up to 60 vessels and 168 time periods in less than two hours.
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