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Abstract: In this paper, we study the properties of faces and exposed faces of the cone of copositive
matrices (copositive cone), paying special attention to issues related to their geometric structure.
Based on the concepts of zero and minimal zero vectors, we obtain several explicit representations of
faces of the copositive cone and compare them. Given a face of the cone of copositive matrices, we
describe the subspace generated by that face and the minimal exposed face containing it. Summa-
rizing the results obtained in the paper, we systematically show what information can be extracted
about the given copositive face in the case of incomplete data. Several examples for illustrating the
main findings of the paper and also for justifying the usefulness of the developed approach to the
study of the facial structure of the copositive cone are discussed.

Keywords: copositive matrices; completely positive matrices; copositive cone; minimal exposed cone

1. Introduction

The paper is devoted to the study of the facial structure of the cone COP p of copositive
matrices and is motivated by our main task for the future: the investigation of optimality
conditions for the problems of copositive programming (CoP) and the search for new dual
formulations for them.

Copositive problems attract the attention of researchers because they have many
interesting applications (see, for example, [1–3], and the references therein). Copositive
problems belong to the class of conic optimization problems consisting of minimizing
a convex function over the intersection of an affine subspace and a convex cone. Conic
optimization leads to simple and ingenious formulations of many optimization problems,
since it allows one to explicitly describe many important types of constraints in a way
that is natural for many applied problems. CoP is sometimes seen as a generalization of
Semidefinite Programming (SDP) and a special case of Semi-infinite Programming (SIP),
whose important applications are well-known [4,5]. Note that the cone COP p can be
considered as a generalization of the cone of semidefinite matrices, but is more complex
and its facial structure is less studied than that of the SDP cone.

For convex conic optimization problems, the study of the facial structure of the
corresponding cone is crucial, since the properties of its faces can be used for

(1) creation of regularization algorithms (facial reduction algorithms) and their justification,
(2) development and understanding of duality theory,
(3) obtaining optimality conditions,

which are important issues for any optimization problem. For example, in the papers [6–9],
the facial structure of the cone of semidefinite matrices is used to solve the above problems.
Currently, some interesting results have been obtained for special classes of faces of the
cone COP p in [10–12], but in general this problem has not yet been completely resolved.
There are many open problems in studying the facial structure of this cone [3,13]. The
structure of the faces of other cones is studied in [14].
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In our previous work (see [15] and the references in it), we defined the zero and mini-
mal zero vectors of a given convex subset of the cone COP p. These definitions generalize
the concepts of zeros and minimal zeros of copositive matrices, which were used in [11] to
study the properties of the minimal and maximal faces of COP p. In [15] we showed how
with the help of zeros and minimal zeros one can obtain different representations of the
faces of the cone COP p and the corresponding dual cones. We also described the minimal
face of COP p containing a given convex subset of this cone, and proved some propositions
that can be useful for obtaining equivalent representations of feasible sets of copositive
problems and creating new numerical methods based on the regularization approach.

In this paper, we will use some of our previous results to give a deeper understanding
of the properties of faces of the cone of copositive matrices. In particular, for a given face of
COP p, we will describe the minimal exposed face containing this face, and examine the
subspace generated by it. Some special classes of faces of the cone COP p and their proper-
ties will also be considered. We will show how one can get as much useful information as
possible about the properties of a face of COP p in case of incomplete data about this face.

The paper is structured as follows. Section 1 hosts an introduction. Section 2 contains
the basic notations and some preliminary results for representing the faces of the cone of
copositive matrices in terms of their zeros, which will be used in the following sections.
Several examples illustrating these results are also presented in section 2. In section 3, we
investigate the structural properties of the faces of the cone COP p and the corresponding
subspaces. In particular, for a given face of COP p, we describe the subspace generated
by that face and the minimal exposed face containing it. In section 4, we discuss the
faces of COP p, which are defined by singleton sets. Section 5 contains several additional
examples that justify the usefulness of the approach developed in the paper to the study
of the facial structure of the cone COP p. In section 6, we present the main conclusions
and systematically show what information about the face of the copositive cone can be
extracted from some incomplete data about this face, based on the results obtained in
the paper.

2. Basic Notation and Preliminary Results
2.1. Cones and Faces: General Definitions

Given a finite-dimensional space X, let us recall some general definitions.
A set C ⊂ X is convex if for any x, y ∈ C and any α ∈ [0, 1], it holds

αx + (1− α)y ∈ C.

Given a set B ⊂ X, denoted by convB its convex hull, i.e., the minimal (by inclusion)
convex set, containing this set, and by span(B) its span, i.e., the smallest linear subspace
containing B. A set K ⊂ X is a cone if for any x ∈ K and any α > 0, it holds αx ∈ K.

A nonempty convex subset F of a convex closed set C ⊂ X is called face of C if from
the condition αx + (1− α)y ∈ F with x, y ∈ C and α ∈ (0, 1), it follows that x, y ∈ F. The
standard notation F E C is used to denote that F is a face of the set C. We say that a face F,
F E C, is proper if F 6= C and write in this case F C C.

A face F of a closed convex set C ⊂ X is called exposed if it can be represented as
intersection of C with a supporting hyperplane, i.e., there exist y ∈ X and d ∈ R such that
for all x ∈ C it holds: 〈y, x〉 ≥ d and 〈y, x〉 = d iff x ∈ F. Every exposed face should also be
a face. Given a face F of a set C, the minimal (by inclusion) exposed face containing F will
be called here the minimal exposed face for that face.

Given a cone K ⊂ X, its dual cone K∗ is given by

K∗ := {x ∈ X : 〈x, y〉 ≥ 0 ∀y ∈ K}.

Here, and in what follows, the notation := means that the item on the left-hand side is
being defined to be what is on the right-hand side. Similarly, the notation =: means that
the item on the right-hand side is being defined to be what is on the left-hand side.
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2.2. The Cone of Copositive Matrices and Its Faces

In this paper, we are dealing with special classes of cones of matrices, in particular,
with the cones of copositive and completely positive matrices.

Given an integer p > 1, consider the vector space Rp with the standard orthogonal
basis {ek, k = 1, 2, . . . , p}. This is denoted by Rp

+; the set of all p-vectors with non-negative
components is denoted by S p—the space of real symmetric p× p matrices.The space S p is
considered here as a vector space with the trace inner product A • B := trace (AB).

Let COP p denote the cone of symmetric copositive p× p matrices:

COP p := {D ∈ S p : t>Dt ≥ 0 ∀t ∈ Rp
+}.

Consider a compact subset of Rp
+ in the form of the simplex

T := {t ∈ Rp
+ : e>t = 1} (1)

with e = (1, 1, . . . , 1)> ∈ Rp. It is evident that the cone COP p can be equivalently described
as follows:

COP p = {D ∈ S p : t>Dt ≥ 0 ∀t ∈ T}.

The dual cone to COP p is the cone of completely positive matrices, defined as

(COP p)∗ = CP p : = conv{xx> : x ∈ Rp
+}.

The cones of copositive and completely positive matrices are known to be proper cones,
which means that they are closed, convex, pointed, and fully dimensional. The rest of this
section is devoted to two alternative representations of the faces of these cones that will be
used in this paper. Some of these results were obtained recently in [15]; others are new and
have not been published before.

Given a vector t = (tk, k ∈ [p])> ∈ Rp
+ with [p] := {1, 2, . . . , p}, consider support of t,

defined as
supp(t) := {k ∈ [p] : tk > 0}.

For a set B ⊂ Rp and a point l ∈ Rp, the distance between them is denoted by ρ(l,B):
ρ(l,B) := min

τ∈B
∑

k∈P
|lk − τk|.

Consider a finite set of vectors in the above simplex T,

V = {t(i), i ∈ I} ⊂ T. (2)

This is denoted by

σ(V) := min {tk(i), k ∈ supp(t(i)), i ∈ I} > 0, (3)

Ω(V) := {t ∈ T : ρ(t, convV) ≥ σ(V)}. (4)

If the set I in (2) is empty, we consider that V = ∅ and Ω(V) = T.
The following results were obtained in [15].

Lemma 1 (Theorem 1 in [15]). For any D ∈ S p and any set V defined in (2), the inequalities

Dt(i) ≥ 0 ∀i ∈ I and t>Dt ≥ 0 ∀t ∈ Ω(V),

imply the inequalities
t>Dt ≥ 0 ∀t ∈ T.
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Lemma 2 (Proposition 2 in [15]). Any face K of the cone COP p can be presented as follows:

K = K(V,L) := COP p ∩H(V,L)
= {D ∈ COP p : e>k Dt(i) = 0, k ∈ L(i); e>k Dt(i) ≥ 0, k ∈ [p] \ L(i), i ∈ I},

(5)

where
H(V,L) := {D ∈ S p : e>k Dt(i) = 0, k ∈ L(i), i ∈ I} (6)

with some vector set V given in (2) and some set

L := {L(i), i ∈ I}, (7)

whose elements are the sets L(i), i ∈ I, satisfying the conditions supp(t(i)) ⊂ L(i) ⊂ [p].

In what follows, we assume that any face of COP p is given in the form (5).
The pair of sets {V,L}will be called here the pair of defining sets for the face K(V,L). It

is evident that if I = ∅, then K(V,L) = COP p. If K(V,L)C COP p, then I 6= ∅ and hence
V 6= ∅, L 6= ∅. This case is more interesting for research.

Remark 1. The subspaceH(V,L) defined in (6) can be equivalently described as follows:

H(V,L) = {D ∈ S p : D • (ek(t(i))> + t(i)e>k ) = 0, k ∈ L(i), i ∈ I}.

Let K E COP p. According to the approach proposed in [15], we define the set of
vectors satisfying the following conditions:

T0(K) := {t ∈ T : t>Dt = 0 ∀D ∈ K}. (8)

The set T0(K) is empty if K = COP p, and is the union of a finite number of convex
bounded polyhedra otherwise.

Consider the set
V0 = V0(K) := {τ(j), j ∈ J}, (9)

composed of all vertices of the set conv T0(K) where J is the set of indices of vertices of the
set conv T0(K).

In [15], the set T0(K) was called the set of zeros of the cone K and it was shown that
this definition is equivalent to the concept of immobile indices of the constraints of certain
related conic optimization problems (see, e.g., [16,17]). It was also shown that the set V0 of
vertices of conv T0(K) coincides with the set of minimal zeros of the matrix set K. See [15]
for the definition of minimal zeros of K.

Given a cone K C COP p and the corresponding set of minimal zeros (9), introduce
the sets M(j), j ∈ J, andM:

M(j) := {k ∈ [p] : e>k Dτ(j) = 0 ∀D ∈ K}, j ∈ J, (10)

M := {M(j), j ∈ J}. (11)

The following lemma is based on the results of [15].

Lemma 3. Given a face KC COP p, let T0(K) be the set of zeros and V0 = {τ(j), j ∈ J} the set
of minimal zeros of K. Let the sets M(j), j ∈ J, andM be defined in (10) and (11). Then K can be
presented in the form

K = K(V0,M) := COP p ∩H(V0,M)

= {D ∈ COP p : e>k Dτ(j) = 0, k ∈ M(j), e>k Dτ(j) ≥ 0, k ∈ [p] \M(j), j ∈ J},
(12)
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where the subspaceH(V0,M) is defined by the following rules analogous to the rules (6):

H(V0,M) := {D ∈ S p : e>k Dτ(j) = 0, k ∈ M(j), j ∈ J}, (13)

and there exists a matrix D̂ ∈ K such that

t>D̂t > 0 ∀t ∈ T \ T0(K), e>k D̂τ(j) > 0 ∀k ∈ [p] \M(j), j ∈ J. (14)

Remark 2. From the above considerations, it follows that, in general, for a given KE COP p, there
may be several pairs {V, L} of defining sets (see Example 1 below). It is worth mentioning that, at
the same time, there are faces of COP p, which have a unique pair of defining sets. We consider a set
of such faces in Section 4.

To illustrate the concepts introduced above, consider the following example.

Example 1. Let p = 3, I = {1, 2}, and t(1) = 0.5(1 0 1)>, t(2) = (1 0 0)>. Set V =
{t(1), t(2)}, L = {L(1), L(2)}, where L(1) = {1, 3}, L(2) = {1}, and consider the face
K = K(V,L) of COP3 defined in (5). It is simple to check this is correct:

K = K :=

D =

0 b 0
b d f
0 f 0

, b ≥ 0, d ≥ 0, f ≥ 0

, (15)

and T0(K) := {t ∈ T : t>Dt = 0 ∀D ∈ K} = {t = αe1 + (1− α)e3, α ∈ [0, 1]}. Hence,
for this face K, the set of minimal zeros (i.e., the set of all vertices of convT0(K)) is as follows:

V0 = {τ(1) = e1, τ(2) = e3}, J = {1, 2},

and the corresponding setM defined in (11) and (10) consists of two sets

M = {M(1), M(2)}, M(1) = M(2) = {1, 3}.

Note that, as it follows from Lemmas 2 and 3, in this example we have K = K(V,L) = K(V0,M),
but V 6= V0 and L 6=M.

For the sets V and L given in (2) and (7), consider the corresponding faceK = K(V,L)
defined in (5). As above, let V0 = {τ(j), j ∈ J} be the set of the minimal zeros of K. Define
the set

B = B(V,L, V0) :=

{D ∈ S p : e>k Dt(i) = 0, k ∈ L(i), e>k Dt(i) ≥ 0, k ∈ [p] \ L(i), i ∈ I;

e>k Dτ(j) = 0, k ∈ supp(τ(j)), e>k Dτ(j) ≥ 0, k ∈ [p] \ supp(τ(j)), j ∈ J}.
(16)

Proposition 1. Given a face K = K(V,L)C COP p with the corresponding set V0 of minimal
zeros, the following equalities hold true:

M(j) := {k ∈ [p] : e>k Dτ(j) = 0 ∀D ∈ B} = M(j), j ∈ J, (17)

where the sets M(j), j ∈ J, are defined in (10), and the set B is defined in (16).

Proof. By construction, K ⊂ B. Then M(j) ⊂ M(j), j ∈ J.
Let us show that M(j) ⊂ M(j), j ∈ J. Suppose the contrary: there exists j0 ∈ J such

that M(j0) 6⊂ M(j0). Consequently, there exists k0 ∈ [p] such that k0 ∈ M(j0), k0 6∈ M(j0).
Then for some D ∈ B, it holds:

e>k0
Dτ(j0) > 0, k0 ∈ [p] \ supp(τ(j0)).



Mathematics 2021, 9, 2698 6 of 21

By construction, we have T0(K) ⊂ conv T0(K) = convV0 and by the definition of
the set Ω(V) (see (4)), we have Ω(V0) = {t ∈ T : ρ(t, conv V0) ≥ σ(V0)} with σ(V0) > 0
defined in (3). This implies that

Ω(V0) ∩ T0(K) = ∅. (18)

According to Lemma 3, there exists a matrix D̂ ∈ K such that inequalities (14) hold
true. Let us show that

t>D̂t > 0 ∀t ∈ Ω(V0). (19)

Indeed, suppose the contrary: there exists t̄ ∈ Ω(V0) such that t̄>D̂t̄ = 0. Then it follows
from (14) that t̄ ∈ T0(K) and therefore t̄ ∈ T0(K) ∩Ω(V0). However, this contradicts (18).
Thus, the inequalities (19) are proved.

For the above matrices D̂ and D denote D(α) := D̂ + αD, where α ∈ R. From (19) it
follows that there exists α > 0 such that

t>D(α)t ≥ 0 ∀t ∈ Ω(V0) and D(α)τ(j) ≥ 0, j ∈ J.

According to Lemma 1, from the relations above, it follows D(α) ∈ COP p. Hence,
taking into account the fact that, by construction, it holds

e>k D(α)t(i) = 0, k ∈ L(i); e>k D(α)t(i) ≥ 0, k ∈ [p] \ L(i), i ∈ I,

we conclude that D(α) ∈ K. It is simple to observe that

e>k0
D(α)τ(j0) = e>k0

D̂τ(j0) + αe>k0
Dτ(j0) > 0.

However, on the other hand, from the relations D(α) ∈ K, j0 ∈ J, k0 ∈ M(j0), it
follows that e>k0

D(α)τ(j0) = 0. The resulting contradiction proves the proposition.

Let us compare the equivalent representations (10) and (17) of the sets M(j), j ∈ J.
Note that the set B is polyhedral, but the set K is not (in general). Therefore, to construct
the set M(j) for any j ∈ J, it is enough to solve several Linear Programming (LP) problems.
Hence the representation (17) is more constructive than (10) and in the following we assume
that the sets M(j), j ∈ J, are defined by rules (17).

2.3. Exposed Faces of COP p

At the beginning of this section (see Section 2.1), we presented the definition of
exposed faces of a cone. Applying the results from [18] (see page 51), we can say that a face
K is an exposed face of COP p if and only if there exists a matrix A ∈ CP p such that

K = {D ∈ COP p : D • A = 0}. (20)

The following proposition provides additional information about the structure of
exposed faces of COP p .

Proposition 2. A face KE COP p is exposed iff it admits representation (5) with some sets V
given in (2) and L defined as follows:

L = {L(i) = supp(t(i)), i ∈ I}. (21)

Proof. As mentioned above, any exposed face KE COP p can be presented in the form
(20) with some A ∈ CP p. Being completely positive, the matrix A admits the following
representation:

A = ∑
i∈I

γit(i)(t(i))>, where γi > 0, t(i) ∈ T, i ∈ I, |I| ≤ p(p + 1)/2. (22)
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For any D ∈ COP p and any A in the form (22), let us show the equivalence

D • A = 0 ⇐⇒ e>k Dt(i) = 0, k ∈ supp(t(i)), i ∈ I. (23)

It is evident that the conditions D ∈ COP p and D • A = 0 imply (t(i))>Dt(i) = 0,
i ∈ I. Hence the vectors t(i), i ∈ I, solve the optimization problem min

t∈T
t>Dt.

From the optimality conditions for the vectors t(i), i ∈ I, in the problem above, it
follows that e>k Dt(i) = 0, k ∈ supp(t(i)), i ∈ I. Thus, we showed the implication

D • A = 0 =⇒ e>k Dt(i) = 0, k ∈ supp(t(i)), i ∈ I,

for any D ∈ COP p and any A in the form (22).
On the other hand, it is obvious that the conditions e>k Dt(i) = 0, k ∈ supp(t(i)), i ∈ I,

imply (t(i))>Dt(i) = 0, i ∈ I, and then D • A = ∑
i∈I

γi(t(i))>Dt(i) = 0. Hence, we have

shown that
e>k Dt(i) = 0, k ∈ supp(t(i)), i ∈ I =⇒ D • A = 0.

For D ∈ COP p and A in the form (22), the equivalence of the conditions in (23) follows
from the above-proven implications.

It is easy to see that (23) implies the equivalence of representations (20) and (5) with
the sets V and L defined in (2) and (21), and the proposition is proved.

The next lemma presents one known result that will be constructively proved here by
representation (5).

Lemma 4. For any K E COP p, there exists an exposed face Kexp of COP p such that K is an
exposed face of Kexp.

Proof. According to Lemma 2, any face K of the cone COP p admits the representation
K = K(V,L) (see (5)), where V and L are some sets defined in (2) and (7). Using these sets,
let us form matrices

A := ∑
i∈I

t(i)(t(i))> and B := ∑
i∈I

∑
k∈L(i)

(ek(t(i))> + t(i)(ek)
>).

It is evident that A ∈ CP p = (COP p)∗ and B ∈ COP p.
Consider the cone Kexp := {D ∈ COP p : D • A = 0}.
By construction, Kexp is an exposed face of COP p and it easy to see that for any matrix

D ∈ Kexp, it holds

e>k Dt(i) = 0, k ∈ supp(t(i)), e>k Dt(i) ≥ 0, k ∈ [p] \ supp(t(i)), i ∈ I.

These relations imply that

B • D = 2 ∑
i∈I

∑
k∈L(i)

e>k Dt(i) ≥ 0 ∀D ∈ Kexp.

Hence, we have shown that B ∈ (Kexp)∗.
Now, consider the cone K∗ := {D ∈ Kexp : D • B = 0}. By construction, K∗ is an

exposed face of the cone Kexp (which, in turn, is an exposed face of COP p) and K∗ = K.
The lemma is proved.

From the proof of Lemma 4 it follows that the face representation (5) allows one to
explicitly describe an exposed face Kexp mentioned in the lemma’s formulation.
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3. On the Structural Properties of the Faces of the Cone COP p

3.1. Subspaces Generated by Faces of COP p

Consider the face K E COP p defined in (5) in the form K = K(V,L) = COP p ∩
H(V,L), where the subspaceH(V,L) and the sets V, L are given in (6), (2), (7), respectively.

In the previous section, it was shown that the face K admits the alternative representa-
tion (12) via the subspaceH(V0,M) described in (13) using the set V0 of the minimal zeros
ofK and the setM defined in (11), (17). The following statements establish the relationship
between the subspacesH(V,L),H(V0,M), and span(K).

Lemma 5. The inclusionH(V0,M) ⊂ H(V,L) holds true.

Proof. For a fixed i0 ∈ I, consider t(i0) ∈ V. Since t(i0) ∈ T0(K(V,L)) ⊂ convV0, we have

t(i0) = ∑
j∈J∗(i0)

αjτ(j) with αj > 0, j ∈ J∗(i0), (24)

for some J∗(i0) ⊂ J. Then

k ∈ L(i0) =⇒ k ∈ M(j) ∀j ∈ J∗(i0). (25)

For any D ∈ H(V0,M), taking into account (24) and (25), calculate

e>k Dt(i0) = e>k D ∑
j∈J∗(i0)

αjτ(j) = 0 ∀k ∈ L(i0).

Then D ∈ H(V,L) and consequently,H(V0,M) ⊂ H(V,L). The lemma is proved.

The following example illustrates that, in general,H(V0,M) 6= H(V,L).

Example 2. For p = 3, denote t(1) = (1/3 1/3 1/3)>, t(2) = (0 1 0)>, I = {1, 2},
V = {t(i), i ∈ I}, L = {L(i), i ∈ I}, L(1) = {1, 2, 3}, L(2) = {2}. Then

H(V,L) =


 a b −a

b 0 −b
−a −b a

, a ∈ R, b ∈ R

,

K(V,L) = COP p ∩H(V,L) =


 a 0 −a

0 0 0
−a 0 a

, a ≥ 0

.

The face K(V,L) is exposed, since L(i) = supp(t(i)), i = 1, 2.
It is easy to check that T0(K(V,L)) = {t ∈ T : t1 = t3}, V0 = {τ(j), j ∈ J},

τ(1) = (1/2 0 1/2)>, τ(2) = (0 1 0)>, J = {1, 2}, andM = {M(j), j ∈ J} with M(j) =
{1, 2, 3}, j ∈ J. Hence

H(V0,M) =


 a 0 −a

0 0 0
−a 0 a

, a ∈ R

.

Thus, we haveH(V0,M) ⊂ H(V,L), dimH(V0,M) = 1 < dimH(V,L) = 2.

Theorem 1. Given K E COP p, let V0 = {τ(j), j ∈ J} be the set of minimal zeros of K andM
the corresponding set defined in (11), (17). Then

span(K) = H(V0,M). (26)

Proof. By definition, span(K) := {D =
p∗
∑

j=1
αjDj, αj ∈ R, Dj ∈ K, j = 1, . . . , p∗}, where

p∗ = p(p + 1)/2. From Lemma 3, it follows that span(K) ⊂ H(V0,M).
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Let us show thatH(V0,M) ⊂ span(K). Consider any D ∈ H(V0,M). It follows from
Lemma 3 that there exists D̂ ∈ K satisfying relations (14). Consider a matrix D(λ) :=
D + λD̂ for a sufficiently large λ > 0. Then for D(λ), it holds

t>D(λ)t ≥ 0 ∀t ∈ Ω(V0), D(λ)τ(j) ≥ 0 ∀j ∈ J.

It follows from the relations above and Lemma 1 that D(λ) ∈ K. Hence

D = D(λ)− λD̂, where D(λ) ∈ K, D̂ ∈ K.

This implies that D ∈ span(K). The theorem is proved.

Corollary 1. In the notations of Theorem 1, we can state that dimK = dimH(V0,M).

To illustrate this corollary, let us again consider Example 2. It easy to see that in this
example we have dimK(V,L) = dimH(V0,M) = 1.

For a set V in the form (2), construct the matrix A = ∑
i∈I

t(i)(t(i))> and consider the ex-

posed face K := {D ∈ COP p : D • A = 0}. This face admits the following representations:

K = COP p ∩H0 = COP p ∩H∗ = COP p ∩H(V,L) = COP p ∩H(V0,M), (27)

where H0 := {D ∈ S p : D • A = 0}, H∗ := {D ∈ S p : (t(i))>Dt(i) = 0, i ∈ I}, the set L
is defined in (21), the set V0 is the set of minimal zeros of K, and the setM is given by (11)
and (17).

For the subspacesH(V0,M),H(V,L),H∗, andH0, the inclusions

H(V0,M) ⊂ H(V,L) ⊂ H∗ ⊂ H0

hold true. Hence, the representation K = COP p ∩H(V0,M) is the best (in terms of the
dimension of the subspace used for the representation).

3.2. On the Construction of the Minimal Exposed Face Containing a Given Face

In this subsection, given a face K of the cone COP p, we will consider its minimal
exposed face and show how it can be constructed using only the information about the
corresponding sets V0 and M. After that, we will describe the minimal exposed face
containing a given convex subset of COP p.

Suppose that for some face K E COP p (possibly unknown), the corresponding set
V0 of minimal zeros in the form (9), and the setM defined in (11), (17) are known. Thus,
we consider that the finite data sets

V0 = {τ(j), j ∈ J}, M = {M(j), j ∈ J} (28)

are given.
First of all, let us note that using the known sets (28), one can explicitly present the

face K = K(V0,M) by the rule (12).
Having data (28), let us partition the index set J into subsets J(s) where s ∈ S, |S| ≥ 1,

such that
(a) J =

⋃
s∈S

J(s),

(b) for any s ∈ S, it holds
⋃

j∈J(s)
supp(τ(j)) ⊂ M(i) ∀i ∈ J(s),

(c) if |S| ≥ 2, then ∀s ∈ S, ∀s̄ ∈ S, s 6= s̄, we have

J(s) \ J(s̄) 6= ∅, J(s̄)\ J(s) 6=∅,
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and ∀i0 ∈ J(s) \ J(s̄), ∀j0 ∈ J(s̄) \ J(s) ∃k0 ∈ supp(τ(i0)), k0 6∈ M(j0).

Note that the conditions (b) and (c) are equivalent to the following conditions, respec-
tively:

(b1) (τ(j))>Dτ(i) = 0 ∀j ∈ J(s), ∀i ∈ J(s), ∀D ∈ K, ∀s ∈ S;

(c1) if |S| ≥ 2, then for all s̄ ∈ S and all s ∈ S, s̄ 6= s,

the sets J(s) \ J(s̄) and J(s̄) \ J(s) are non-empty and

∃D ∈ K : (τ(i))>Dτ(j) > 0 ∀i ∈ J(s) \ J(s̄), ∀j ∈ J(s̄) \ J(s).

Proposition 3. Suppose that for a face K E COP p, the sets (28) are known. Let {J(s), s ∈ S}
be the partition of the set J such that the conditions (a)–(c) are satisfied. Then the set T0(K) can be
presented in the form

T0(K) =
⋃
s∈S

T0(s,K), (29)

where
T0(s,K) := conv{τ(j), j ∈ J(s)}, ∀s ∈ S. (30)

Proof. For s ∈ S, consider t ∈ T0(s,K). By construction, the vector t admits a representation

t = ∑
j∈J(s)

αjτ(j), αj ≥ 0, j ∈ J(s), ∑
j∈J(s)

αj = 1.

For any D ∈ K, taking into account condition b1), let us calculate

t>Dt = ∑
i∈J(s)

∑
j∈J(s)

αjαi(τ(j))>Dτ(i) = 0.

Then by definition, t ∈ T0(K) and we have shown the inclusion⋃
s∈S

T0(s,K) ⊂ T0(K). (31)

Now let us show that T0(K) ⊂
⋃

s∈S
T0(s,K). Consider t ∈ T0(K). By construction,

t = ∑
j∈J∗

αjτ(j), αj > 0, j ∈ J∗ ⊂ J, ∑
j∈J∗

αj = 1. (32)

If there exists s0 ∈ S such that J∗ ⊂ J(s0), then t ∈ T0(s0,K) and, consequently,
t ∈ ⋃

s∈S
T0(s,K). Suppose that on the contrary, it holds

J∗ 6⊂ J(s) ∀s ∈ S. (33)

Denoted by J∗(s) := J∗ ∩ J(s), s ∈ S, S∗ := {s ∈ S : J∗(s) 6= ∅}. It is evident that
|S∗| ≥ 2 and J∗ =

⋃
s∈S∗

J∗(s).

Let s̄ ∈ S∗ be such that
|J∗(s̄)| = max

s∈S∗
|J∗(s)|. (34)

Denoted by S∗(s̄) := {s ∈ S∗ : J∗(s) \ J∗(s̄) 6= ∅}.
If S∗(s̄) = ∅, then J∗(s) \ J∗(s̄) = ∅ ∀s ∈ S∗ =⇒ J∗(s) ⊂ J∗(s̄) ∀s ∈ S∗, and hence,

J∗ = J∗(s̄) ⊂ J(s̄). However, this contradicts (33). Therefore, S∗(s̄) 6= ∅.
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Consider any ŝ ∈ S∗(s̄). Suppose that J∗(s̄) \ J∗(ŝ) = ∅. Then J∗(s̄) ⊂ J∗(ŝ), where-
from, taking into account that by construction J∗(s̄) 6= J∗(ŝ), we get the inequality |J∗(s̄)| <
|J∗(ŝ)| contradicting (34). Hence, we have shown that there exist s̄ ∈ S∗ and ŝ ∈ S∗ such that

J∗(s̄) \ J∗(ŝ) 6= ∅, J∗(ŝ) \ J∗(s̄) 6= ∅.

Let i0 ∈ J∗(s̄) \ J∗(ŝ). The condition i0 ∈ J∗(s̄) implies the conditions i0 ∈ J(s̄)
and i0 ∈ J∗. The condition i0 6∈ J∗(ŝ) is equivalent to the following one: i0 6∈ J(ŝ) ∩ J∗
wherefrom, taking into account that i0 ∈ J∗, we obtain i0 6∈ J(ŝ). Thus, we have shown that
i0 ∈ J∗(s̄) \ J∗(ŝ) =⇒ i0 ∈ J(s̄) \ J(ŝ).

In a similar way, we can show that j0 ∈ J∗(ŝ) \ J∗(s̄) =⇒ j0 ∈ J(ŝ) \ J(s̄).
Hence, due to the condition (c) (see also (c1)), for i0 ∈ J∗(s̄) \ J∗(ŝ) ⊂ J∗ and

j0 ∈ J∗(ŝ) \ J∗(s̄) ⊂ J∗, there exists D ∈ K such that

(τ(i0))>Dτ(j0) > 0. (35)

As per the properties of minimal zeroes, it follows that

τ>Dτ(j) ≥ 0 ∀τ ∈ T, ∀j ∈ J, ∀D ∈ K.

Taking into account these inequalities together with (35) and (32), we get

t>Dt = ∑
i∈J∗

∑
j∈J∗

αjαi(τ(j))>Dτ(i) ≥ αj0 αi0(τ(j0))>Dτ(i0) > 0,

which contradicts the condition t ∈ T0(K). Therefore, relations (33) cannot take place.
Hence, we have shown that T0(K) ⊂

⋃
s∈S

T0(s,K). The obtained inclusion and inclu-

sion (31) imply (29).

Remark 3. Note that it follows from Proposition 3 that the set T0(K) can be explicitly described
using only the available data (28) (the set of minimal zeros of K and the setM).

Using the partition {J(s), s ∈ S} of the set J satisfying the conditions (a)–(c), let us
define the following index sets:

P∗(s) :=
⋃

j∈J(s)
supp(τ(j)), s ∈ S, (36)

S(j) := {s ∈ S : j ∈ J(s)}, M∗(j) :=
⋃

s∈S(j)
P∗(s), j ∈ J. (37)

Proposition 4. Under the conditions of Proposition 3, the following inclusions hold true:

M∗(j) ⊂ M(j), j ∈ J, (38)

where the sets M(j), j ∈ J, are defined in (10) and M∗(j), j ∈ J, are defined in (37).

Proof. Let us, first, prove the inclusions

P∗(s) ⊂ M(j), s ∈ S(j), j ∈ J, (39)

where the sets P∗(s), s ∈ S(j), j ∈ J, are defined in (36) and (37).
Suppose the contrary: for some j0 ∈ J and s0 ∈ S(j0), it holds P∗(s0) 6⊂ M(j0). This

implies the existence of an index i0 ∈ J(s0) such that supp(τ(i0)) 6⊂ M(j0). Consequently,
there exists k0 ∈ supp(τ(i0)) such that k0 6∈ M(j0). The latter condition implies that there
exists a matrix D ∈ K such that e>k0

Dτ(j0) > 0. Furthermore, note that the inclusion
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s0 ∈ S(j0) implies j0 ∈ J(s0). Since i0 ∈ J(s0) and j0 ∈ J(s0), then by construction, we have
(τ(i0))>Dτ(j0) = 0 for all D ∈ K. Hence

0 = (τ(i0))>Dτ(j0) = ∑
k∈supp(τ(i0))

τk(i0)e>k Dτ(j0) ≥ τk0(i0)e
>
k0

Dτ(j0) > 0.

The obtained contradiction proves inclusions (39).
It is evident that inclusions (38) follow from (39) and the definition of the sets M∗(j), j ∈

J (see (37)). The proposition is proved.

Let {J(s), s ∈ S} be the partition of the set J introduced above. Denoted by

τ∗(s) :=
1
|J(s)| ∑

j∈J(s)
τ(j), τ̄(j) := 0.5(τ(j) + τ∗(s)), j ∈ J(s), s ∈ S. (40)

For any s ∈ S, by construction, we have

τ̄(j) ∈ T0(s,K), supp(τ̄(j)) = P∗(s), j ∈ J(s). (41)

Let us prove the following Lemma.

Lemma 6. First, let us show that for any s ∈ S, we have

K1(s) :={D ∈ COP p : e>k Dτ̄(j) = 0, k ∈ supp(τ̄(j)), j ∈ J(s)}
={D ∈ COP p : e>k Dτ(j) = 0, k ∈ P∗(s), j ∈ J(s)} =: K2(s),

(42)

where the sets P∗(s), s ∈ S, are defined in (36).
Consider any s ∈ S. Recall that the vectors τ̄(j), j ∈ J(s), are defined in (40). It follows from

these definitions that

τ̄(j) = ∑
i∈J(s)

αi(j)τ(i), τ(j) = ∑
i∈J(s)

βi(j)τ̄(i) ∀j ∈ J(s), (43)

where

α∗ = α∗(s) := 1
2|J(s)| , αi(j) = α∗, i ∈ J(s) \ j, αj(j) = α∗ + 0.5;

βi(j) = −2α∗, i ∈ J(s) \ j, β j(j) = 2(1− α∗) ∀j ∈ J(s).

Notice that, by construction (see (41)), supp(τ̄(j)) = P∗(s), j ∈ J(s).
Suppose that D ∈ K1(s). Then, for all j ∈ J(s) and all k ∈ P∗(s), we have

e>k Dτ(j) = e>k D ∑
i∈J(s)

βi(j)τ̄(i) = 0

and hence, D ∈ K2(s).
Now, suppose that D ∈ K2(s). Then for all j ∈ J(s) and k ∈ P∗(s), we have

e>k Dτ̄(j) = e>k D ∑
i∈J(s)

αi(j)τ(i) = 0,

wherefrom D ∈ K1(s). Relations (42) are proved.
By construction, K1 =

⋂
s∈S

K1(s) and it follows from (42) that K1 =
⋂

s∈S
K2(s).

Suppose that D ∈ K1 =
⋂

s∈S
K2(s). Hence, for any j ∈ J, we have e>k Dτ(j) = 0 ∀k ∈ P∗(s),

∀s ∈ S(j). These equalities and (37) imply the equalities e>k Dτ(j) = 0, k ∈ M∗(j), j ∈ J. Then,
by definition, D ∈ K2.
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Now let D ∈ K2. Taking into account (37), we conclude that e>k Dτ(j) = 0, k ∈ P∗(s), j ∈
J(s), s ∈ S. Consequently, D ∈ ⋂

s∈S
K2(s) = K1. The lemma is proved.

Note that it follows from Proposition 2 that the cone K1 is an exposed face of COP p

and therefore, from the lemma above it follows that the cone K2 is an exposed face of COP p

as well.

Theorem 2. Let K be a face of the cone COP p. Consider the corresponding finite data sets (28)
and the sets M∗(j), j ∈ J, defined in (37). Then the set

Kmin
exp := {D ∈ COP p : e>k Dτ(j) = 0, k ∈ M∗(j), j ∈ J} (44)

is the minimal exposed face containing the face K.

Proof. Note that it follows from (38) that K ⊂ Kmin
exp . By construction, Kmin

exp = K2, where
K2 is an exposed face. Then Kmin

exp is an exposed face of COP p containing the face K.
To prove that Kmin

exp is the minimal exposed face, suppose the contrary: there exists
another exposed face Kexp, such that K ⊂ Kexp ⊂ Kmin

exp = K1 = K2 and a matrix D ∈ Kmin
exp ,

such that D 6∈ Kexp.
As Kexp is an exposed face, for some vectors ξ(i) ∈ T, i ∈ I, it holds

Kexp = {D ∈ COP p : (ξ(i))>Dξ(i) = 0, i ∈ I}, |I| < ∞. (45)

Since D 6∈ Kexp, then there exists i0 ∈ I such that (ξ(i0))>Dξ(i0) > 0. By assumption,
K ⊂ Kexp. Then ξ(i0) ∈ T0(K) and, consequently ξ(i0) ∈ T0(s0,K) for some s0 ∈ S, where
the set T0(s0,K) is defined in (30). Hence ξ(i0) = ∑

j∈J(s0)
αjτ(j) with some αj ≥ 0, j ∈ J(s0),

∑
j∈J(s0)

αj = 1. These relations together with (43) imply

ξ(i0) = ∑
j∈J(s0)

αj ∑
i∈J(s0)

βi(j)τ̄(i) = ∑
i∈J(s0)

βiτ̄(i); supp(ξ(i0)) ⊂ P∗(s0), (46)

where βi = 2(αi − α∗(s0)), i ∈ J(s0), α∗(s0) = 1/|J(s0)|.
From the assumption D ∈ Kmin

exp = K1, it follows D ∈ K1(s) ∀s ∈ S (where the sets
K1(s), s ∈ S, are defined in (42)) and hence, D ∈ K1(s0).

Taking into account the latter inclusion and relations (46), we get

(ξ(i0))>Dξ(i0) = (ξ(i0))>D ∑
j∈J(s0)

β jτ̄(j) = ∑
k∈supp(ξ(i0))

ξk(i0)e>k D ∑
j∈J(s0)

β jτ̄(j) = 0.

This result contradicts the inequality (ξ(i0))>Dξ(i0) > 0, which proves the theo-
rem.

Using Theorem 2 and following the proof of Lemma 4, one can easily prove the
following statement.

Corollary 2. Any face of the cone COP p is an exposed face of its minimal exposed face.

Note that T0(K) = T0(Kmin
exp ) for any face K and the corresponding minimal exposed

face Kmin
exp .
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Theorem 3. A face K C COP p is exposed if and only if W = W∗, where

W := {D ∈ S p : e>k Dτ(j) = 0, k ∈ M(j), e>k Dτ(j) ≥ 0, k ∈ [p] \M(j), j ∈ J},
W∗ :={D ∈ S p : e>k Dτ(j) = 0, k ∈ M∗(j), e>k Dτ(j) ≥ 0, k ∈ [p] \M∗(j), j ∈ J}.

(47)

Proof. Let us show that the faces K and Kmin
exp of COP p admit representations

K = {D ∈W : t>Dt ≥ 0 ∀t ∈ Ω(V0)}, Kmin
exp = {D ∈W∗ : t>Dt ≥ 0 ∀t ∈ Ω(V0)}, (48)

where V0 is the set of all minimal zeros of these faces, and the set Ω(V0) is defined in (4).
Let K be a face of COP p with the corresponding set of minimal zeros V0 = {τ(j), j ∈ J}.

Let the setM = {M(j), j ∈ J} be defined in (11). Then, according to Lemma 3 (see (12)),
the face K can be presented in the form

K = {D ∈ COP p : e>k Dτ(j) = 0, k ∈ M(j), e>k Dτ(j) ≥ 0, k ∈ [p] \M(j), j ∈ J}.

Taking into account the definitions of the cone COP p and the set W (see (47)), we obtain

K = {D ∈W : t>Dt ≥ 0 ∀t ∈ T}.

Now consider the cone

K := {D ∈W : t>Dt ≥ 0 ∀t ∈ Ω(V0)}.

Since Ω(V0) ⊂ T then it is evident that K ⊂ K.
Let us show that K ⊂ K. Consider any D ∈ K. It is evident that the conditions

D ∈W, t>Dt ≥ 0 ∀t ∈ Ω(V0) imply that Dτ(j) ≥ 0 ∀j ∈ J, t>Dt ≥ 0 ∀t ∈ Ω(V0) and due
to Lemma 1 we conclude that D ∈ COP p. This implies that D ∈ K. Thus, we have proved
that the cone K = K(V0,M) can be presented as K.

Similarly, it can be shown that the cone Kmin
exp defined in (44) can be presented in the

form (48) with W∗ defined in (47). Thus, representations (48) are justified.
As before, based on (14) and (18), it is simple to show that there exists B ∈ Kmin

exp such
that t>Bt > 0 ∀t ∈ Ω(V0). Note that the set Ω(V0) is closed and bounded; therefore,
for some sufficiently small µ > 0,, it holds

t>Bt > µ ∀t ∈ Ω(V0). (49)

Note that, from (38), it follows W ⊂ W∗. Suppose that W 6= W∗. Then there exists
D ∈W∗ such that D 6∈W. From the conditions B ∈ Kmin

exp , D ∈W∗, D 6∈W, and inequalities
(49), it follows that for a sufficiently small δ > 0, we have

t>(B + δD)t ≥ 0 ∀t ∈ Ω(V0); (B + δD) ∈W∗, (B + δD) 6∈W.

Taking into account (48), we conclude that (B + δD) 6∈ K and (B + δD) ∈ Kmin
exp .

Therefore K 6= Kmin
exp . As Kmin

exp is the minimal exposed face containing K, it is obvious that
K is not exposed.

Now, suppose that W = W∗. Then it follows from (48) that K = Kmin
exp and hence K is

an exposed face. The theorem is proved.

Theorem 3 reduces the answer to the question of whether a given face is exposed to
checking the condition W = W∗, which can be done by solving a unique LP problem when
the data (28) is assumed to be known.

Remark 4. Note that, given a face K E COP p, one can show that the respective minimal zeros
τ(j) and the sets M∗(j), j ∈ J, can be uniquely constructed using only the set T0(K) of all zeros of
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this face. Hence the minimal exposed face containing K can be constructed on the basis of the set of
all zeros of K.

There may exist several different faces Km, m = 1, . . . , m0, m0 > 1, having the same
sets of all their zeros: T0(Kl) = T0(Km) ∀l, m ∈ [m0]. Hence all these faces have the same
minimal exposed face.

Let us illustrate this with the following example.

Example 3. For p = 3, consider the sets

V1 = {t(1) = e1, t(2) = e3}, L1 = {L1(1) = {1, 2, 3}, L1(2) = {1, 3}},

V2 = V1, L2 = {L2(1) = {1, 3}, L2(2) = {1, 2, 3}},

V3 = {t(1) = 0.5(e1 + e3), t(2) = e1}, L3 = {L3(1) = {1, 3}, L3(2) = {1}}.

It is easy to check that the faces Ki := K(Vi,Li), i = 1, 2, 3, are as follows:

K1 = {D ∈ K : b = 0}, K2 = {D ∈ K : f = 0}, K3 = K,

where the face K is defined in (15).
For each face Km, m = 1, 2, 3, denote by T0(Km) the corresponding set of zeros, by Vm

0 =
{τm(j), j ∈ Jm} the set of minimal zeros, and by Mm(j), Mm

∗ (j), j ∈ Jm, the sets defined in (17),
(37), respectively. Here we have

T0(Km) = T0(∗) := {t = αae1 + (1− α)e3, ∀ α ∈ [0, 1]},
V0(Km) = {τm(1) = e1, τm(2) = e3}, Jm = {1, 2},
Mm
∗ (1) = Mm

∗ (2) = {1, 3}, m = 1, 2, 3;

Mm(j) = Lm(j) ∀j ∈ Jm, m = 1, 2, M3(j) = M3
∗(j) ∀j ∈ J3.

For m = 1, 2, the faces Km, are not exposed since Wm 6= Wm
∗ , and the face K3 is exposed by

construction (see Proposition 2). Here the sets Wm and Wm
∗ are defined by (47) for Km.

Note that the faces Km, m = 1, 2, 3, are different, but have the same set T0(∗) of zeros. Hence
for any Km, m = 1, 2, 3, the minimal exposed face Kmin

exp (m) containing Km should be the same.
In fact, in our case, for m = 1, 2, 3, we have Kmin

exp (m) = K3.

3.3. The Minimal and the Minimal Exposed Faces Containing a Given Set

Based on the results obtained in Section 3.2 and in [15], it is easy to describe the
minimal exposed face containing a given closed convex subset of COP p.

Let Q be a convex subset of COP p. Consider the corresponding set of zeros

T0(Q) := {t ∈ T : t>Dt = 0 ∀D ∈ Q},

that is either empty or the union of a finite number of convex bounded polyhedra.
Let V0(Q) = {τ(i), i ∈ JQ} be the set of all vertices of the set convT0(Q).
It was shown in [15] that the minimal face of COP p containing Q can be presented in

the form K(V0(Q),M(Q)), where

M(Q) := {MQ(j), j ∈ JQ}, MQ(j) := {k ∈ [p] : e>k Dτ(j) = 0 ∀D ∈ Q}, j ∈ JQ.

Applying Theorem 2, we conclude that the minimal exposed face containing the set Q
has the form

Kmin
exp (Q) = {D ∈ COP p : e>k Dτ(j) = 0, k ∈ M∗Q(j), j ∈ JQ},
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where the sets M∗Q(j), j ∈ JQ, are defined by the rules (37) with the sets V0 andM replaced
by V0(Q) andM(Q).

4. Faces of COP p Defined by Singleton Sets

In this section, we consider a special class of faces of COP p, namely, facesK = K(V,L)
defined by the sets V and L, where V is a singleton. Since V is a singleton, then by
construction, the set L is a singleton as well and we can assume that these sets have the
form

V = {τ} ⊂ T, L = {L} , where L is such that supp(τ) ⊂ L ⊂ [p]. (50)

Note that the class of faces defined by singleton sets is interesting in terms of studying
the facial structure of the cone COP p since all maximal faces of COP p belong to it.

Recall that by definition, a face F of COP p is the maximal face if F 6= COP p and there
does not exist a face F 6= COP p such that F 6= F and F ⊂ F .

The next lemma is proved in [11].

Lemma 7. A face F E COP p is maximal if and only if there exists τ ∈ T such that F = {D ∈
COP p : τ>Dτ = 0}.

The main result of this section is the proof of the following lemma.

Lemma 8. Consider a face K = K(V,L) with the defining sets V and L satisfying (50). Then
(i) T0(K(V,L)) = V andM := {k ∈ [p] : e>k Dτ = 0 ∀D ∈ K(V,L)} = L;
(ii) the pair {V,L} is unique, i.e., there is no other pair {V,L} such that K(V,L) =

K(V,L);
(iii) dim(K(V,L)) = p(p + 1)/2− |L|.

Proof. (i) Let us show that T0(K(V,L)) = {τ} andM = L. Without loss of generality, we
can suppose that

supp(τ) = [q∗], L = [q], 1 ≤ q∗ ≤ q ≤ p,

and present τ in the form τ> = (τ>∗ , 0>p−q), where τ>∗ = (τ1, . . . , τq) with τk > 0, k =

1, . . . , q∗, and 0>p−q = (0, . . . , 0) ∈ Rp−q.
Let {τ∗, ϕk, k = 1, . . . , q− 1} be an orthogonal basis in Rq. Denoted by

Φ := (ϕk, k = 1, . . . , q− 1) ∈ Rq×(q−1), D∗ := Φ(Φ)> ∈ Rq×q.

Consider any vector t∗ ∈ Rq. Since the representation t∗ =
q−1
∑

k=1
αkϕk + α∗τ∗ holds, it is

easy to check that

t>∗ D∗t∗ =
q−1

∑
k=1

α2
k

{
> 0 for all t∗ ∈ Rq \ {τ}, ||t∗|| = 1,
= 0 for t∗ = τ.

Consider a matrix D :=
(

D∗ D0
D>0 I

)
∈ Rp×p, where I is the (p− q)× (p− q) identity

matrix and D0 is a q× (p− q) matrix with positive elements.
By construction, t>Dt > 0 ∀t ∈ T \ {τ} and τ>Dτ = 0, and

e>k Dτ = 0 ∀k ∈ L, e>k Dτ > 0 ∀k ∈ [p] \ L. (51)

Then D ∈ K(V,L), T0(K(V,L)) = {τ}, andM = L.
(ii) Using the latter equalities, it is easy to show that the face K = K(V,L) has a

unique defining pair {V,L}, i.e., there no other sets V and L such that K(V,L) = K(V,L).
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(iii) Finally, let us prove that the dimension of the face K = K(V,L) with V = {τ},
τ ∈ T, is equal to p(p + 1)/2 − |L|. Taking into account Corollary 1, it is enough to
show that

dimH(V,L) = dim{D ∈ S p : D • (ekτ> + τe>k ) = 0, k ∈ L} = p(p + 1)/2− |L|.

Let us prove that the matrices

(ekτ> + τe>k ), k ∈ L, (52)

are linearly independent. Suppose the contrary, i.e., there exist yk, k ∈ L, such that

∑
k∈L

yk(ekτ> + τe>k ) = Op×p, ∑
k∈L
|yk| > 0. (53)

The equality in (53) implies ykτs + ysτk = 0 ∀k ∈ L, ∀s ∈ L and hence yk = 0 ∀k ∈ L,
which contradicts the inequality in (53). Thus, the matrices in (52) are linearly independent
and therefore dimK(V,L) = p(p + 1)/2− |L|.

Note that the above-proven lemma generalizes the related result from [11], where
it was shown that a maximal face Kmax := {D ∈ COP p : τ>Dτ = 0} of COP p has
dimension dim(Kmax) = (p + 1)p/2− |supp(τ)|.

For a given τ ∈ T, set m0 = 2(p−|supp(τ)|) and consider faces

Km = K(V,Lm), m = 1, ..., m0, (54)

with the defining sets V = {τ} and Lm = {Lm} such that supp(τ) ⊂ Lm ⊂ [p], and
Lm 6= Lm̄, for all m 6= m̄.

It follows from Lemma 8 that all faces in (54) are different; for any m = 1, . . . , m0,
the face Km has a unique pair of defining sets V = {τ} and Lm, and its dimension is
dim(Km) = p(p + 1)/2− |Lm|.

Set L1 := {supp(τ)}. From Theorem 2, one can conclude thatK(V,L1) is the minimal
exposed face of COP p containing all other faces Km, m = 2, . . . , m0, which are all not
exposed. Note that if supp(τ) = [p], then m0 = 1 and the set of faces defined in (54)
consists of a unique exposed face K(V,L1).

5. Examples

In this section, we present a few more examples that justify the advantages of the
approach developed here to the study of the facial structure of the cone COP p and illustrate
some of the properties of the faces of COP p.

Let us start with an example illustrating the usefulness of the set of minimal zeros of a
face of the cone COP p and the corresponding setM, introduced in this paper. In particular,
this example shows that these sets make it possible to explicitly describe the cone dual to
this face without using the closure operator.

As above, for some sets V and L in the form (2) and (7), we will consider face
K = K(V,L) of the cone COP p defined in (5), the corresponding set V0 = {τ(j), j ∈ J} of
its minimal zeros, and the setM of the sets M(j), j ∈ J, defined by rules (17).

Consider the dual to K cone K∗. It was shown in [15] that

K∗ = cl Z0 = clZ1 = Z2, (55)

where

Z0 := {D ∈S p : D =
p∗

∑
i=1

µ(i)(µ(i))> + ∑
i∈I

(λ(i)(t(i))> + t(i)(λ(i))>),

µ(i) ∈ Rp
+, i = 1, . . . , p∗, λ(i) ∈ Rp, λk(i) = 0, k ∈ [p] \ L(i), i ∈ I},
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Z1 := {D ∈S p : D =
p∗

∑
i=1

µ(i)(µ(i))> + ∑
i∈I

(λ(i)(t(i))> + t(i)(λ(i))>),

µ(i) ∈ Rp
+, i = 1, . . . , p∗; λ(i) ∈ Rp; λk(i) ≥ 0, k ∈ [p] \ L(i), i ∈ I},

Z2 := {D ∈S p : D =
p∗

∑
i=1

µ(i)(µ(i))> + ∑
j∈J

(η(j)(τ(j))> + τ(j)(η(j))>),

µ(i) ∈ Rp
+, i = 1, . . . , p∗; η(j) ∈ Rp; ηk(j) ≥ 0, k ∈ [p] \M(j), j ∈ J}.

Here, clB denotes the closure of a set B.
It was shown in [15] that Z0 ⊂ Z1 ⊂ Z2 and, in general, Z0 6= Z1.
Now, let us illustrate that in general Z1 6= Z2 and, therefore, K∗ 6= Z1, which means

that we cannot omit the use of the closure operator in that equalities in (55) that concern the
sets Z0 and Z1 (constructed using the defining sets V and L), while in the equality in (55)
regarding the set Z2 (constructed using the sets V0 andM), no closure operator is needed.
This gives us an explicit description of the dual cone K∗.

Example 4. Let us once again consider Example 1 (see Section 2.2), where p = 3, I = {1, 2},
and t(1) = 0.5(1 0 1)>, t(2) = (1 0 0)>, V = {t(1), t(2)}, L = {L(1), L(2)}, with L(1) =
{1, 3}, L(2) = {1}. We have shown that the face K = K(V,L) of COP3 has the form (15) and
V0 = {τ(1) = e1, τ(2) = e3}, J = {1, 2}, M(1) = M(2) = {1, 3}.

Consider a vector η = (η1, η2, η3)
>, where η1 ≥ 0, η2 > 0, and the matrix

Θ := η(τ(2))> + τ(2)η> =

 0 0 η1
0 0 η2
η1 η2 2η3

 = [θk,s]s=1,...,p;k=1,...,p ∈ S3.

By construction, Θ ∈ Z2, and it is easy to see that D • Θ = 2η2 f ≥ 0 for any D ∈ K.
Consequently, Θ ∈ K∗.

Suppose that Θ ∈ Z1. Hence it can be presented in the form

Θ =
p∗

∑
i=1

µ(i)(µ(i))> + ∑
i∈I

(λ(i)(t(i))> + t(i)(λ(i))>)

= Ω + 0.5

 2λ1(1) λ2(1) λ1(1) + λ3(1)
λ2(1) 0 λ2(1)

λ1(1) + λ3(1) λ2(1) 2λ3(1)

+

2λ1(2) λ2(2) λ3(2)
λ2(2) 0 0
λ3(2) 0 0

,

where λ2(1) ≥ 0, λ2(2) ≥ 0, λ3(2) ≥ 0, Ω =
p∗
∑

i=1
µ(i)(µ(i))> = [ωk,s]s=1,2,3;k=1,2,3 with

ωk,s =
p∗
∑

i=1
µk(i)µs(i) ≥ 0, k = 1, 2, 3; s = 1, 2, 3.

It follows from the latest relations that

0 = θ2,1 = 0.5λ2(1) + λ2(2) + ω2,1, where λ2(1) ≥ 0, λ2(2) ≥ 0, ω2,1 ≥ 0, (56)

0 = θ2,2 = 0 + 0 + ω2,2, where ω2,2 ≥ 0, (57)

and 0 < θ2,3 = 0.5λ2(1) + ω2,3. (58)

From (56) and (57), we get λ2(1) = 0, λ2(2) = 0, ω2,1 = 0, ω2,2 = 0. The equality
ω2,2 = 0 implies ω1,2 = ω2,2 = ω2,3 = ω2,1 = ω3,2 = 0. Then the relation (58) takes the form

0 < θ2,3 = λ2(1) + ω2,3 = 0.

The obtained contradiction proves that Θ 6∈ Z1. Remind that by construction, Θ ∈ K∗. Hence
K∗ 6= Z1, Z1 ⊂ K∗.
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Note that one can show that if for a face K, the set of zeros T0(K) consists of isolated
elements then all these zeros are the minimal ones. In the next example, we will show that
there exists an exposed face K(V,L) of COP p with V = {τ(j), j ∈ I} and L = {L(j) =
supp(τ(j)), j ∈ I}, for which the set of zeros T0(K(V,L)) consists of isolated elements
τ(j), j ∈ J, such that I ⊂ J, |I| < |J|, which illustrates that the number |J| of the minimal
zeros can be greater than the number |I| of elements in the defining set V. To construct this
face we will use some data from Example 5 in [19].

Example 5. Set p = 11 and consider a p× p matrix S := (P p−1a, . . . ,P1a, a), where P =
(ep, e1, . . . , ep−1), a = (32, 18, 4, −24, −31, −31, −24, 4, 18, 32, 32)>. It is shown in [19]
that S ∈ COP p and it has 33 isolated zeros:

τ(i) = P iu, i = 1, . . . , 11; τ(i) = P iv, i = 12, . . . , 22; τ(i) = P iw, i = 23, . . . , 33,

where u> = 1
21 (8, 0, 3, 0, 0, 0, 10, 0, 0, 0, 0), v> = 1

21 (10, 0, 0, 0, 3, 0, 8, 0, 0, 0, 0), and
w> = 1

7 (2, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0).
Consider an exposed face

K := {D ∈ COP p : D •M = 0}, where M := ∑
i∈J

τ(i)(τ(i))>, J := {1, . . . , 33}.

By construction,
(τ(i))>Dτ(i) = 0 ∀i ∈ J, ∀D ∈ K,

S ∈ K, t>St > 0 ∀t ∈ T \ {τ(i), i ∈ J}, e>k Sτ(i) > 0 ∀k ∈ [p] \ supp(τ(i)), ∀i ∈ J.

It follows from the relations above that

T0(K) = {τ(j), j ∈ J} = V0 and M = {M(j) = supp(τ(j)), j ∈ J}.

Hence, according to Lemma 3, the face K admits a representation K = COP p ∩H(V0,M),
where subspaceH(V0,M) is defined in (13).

One can check thatH(V0,M) = H(V,L), whereH(V,L) is defined in (6), and

V = {τ(i), i ∈ I}, L = {L(i) = supp(τ(i)), i ∈ I}, I = {12, . . . , 30} \ {27}, |I| = 18.

Hence K = COP p ∩H(V,L) =: K(V,L), where |V| = 18 and the face K has 33 minimal zeros
τ(j), j ∈ J.

Based on Theorem 1, we can easily determine the dimension of K:

dimK = dimH(V0,M) = 12.

6. Summary of the Results and Conclusions

The main contribution of the paper is to study the properties of faces of the copositive
cone COP p. The concepts of zeros and minimal zeros were formulated for the case of
an arbitrary face K of the cone of copositive matrices and allowed us to obtain various
representations of this face, an explicit representation of the subspace generated by it,
and to describe the minimal exposed face containing K.

Summarizing the results of the paper, let us consider a few possible scenarios for their
application, starting with the strongest and most effective one.

Given a face K of COP p, the following sets (the data) are related to it:
1. the corresponding set T0(K) of all zeros of K,
2. the set V0 of minimal zeros of K (the set of vertices of the set convT0(K)),
3. the setM defined in (11),
4. some sets V and L such that the cone K admits representation (5).
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Suppose we do not have complete information about the cone K, as only some of the
sets from the list above are given. Let us see what information we can easily acquire in the
case of incomplete data. The following scenarios are possible here.

A. In the case when the finite data sets enumerated in 2. and 3. are given, we can

(a1) explicitly describe the corresponding face of the cone COP p:

K = K(V0,M) = {D ∈ COP p : e>k Dτ(j) = 0, k ∈ M(j), j ∈ J};

(a2) easily construct the set T0(K) (see Proposition 3);
(a3) explicitly describe (without using the closure operator) the cone K∗ that is

dual to the face K (see (55));
(a4) explicitly describe the minimal exposed face Kmin

exp containing the face K and
check whether the face K is exposed (see Theorems 2 and 3);

(a5) determine span(K) = H(V0,M) and

dim(K) = dim(H(V0,M)) ≤ dim(H(V,L)),

whereH(V0,M) := {D ∈ S p : e>k Dτ(j) = 0, k ∈ M(j), j ∈ J}.
B. Suppose that only the set T0(K) (the first set in the list 1.–4.) is given. In this case, we

can only do the following:

(b1) find the set of vertices V0 = {τ(j), j ∈ J} of the set convT0(K);
(b2) construct the sets M∗(j), j ∈ J, defined in (37), and hence
(b3) explicitly describe the minimal exposed face Kmin

exp containing the face K but
not the face K itself.

C. Suppose that the sets V and L (see (2), (7)) defining the face are given, but it’s
unknown whether the pair {V,L} of these sets is the same as the pair {V0,M} (i.e.,
it is possible that {V,L} 6= {V0,M}). In this case the only guaranteed result consists
of the explicit description of the face K by the rule (5).

D. Suppose that additionally to the data given in Scenario C (i.e., the pair of the sets
{V,L}, defining the face K = K(V,L) by the rule (5)), the set V0 = {τ(j), j ∈ J} of
minimal zeros of K is given. In this case one can easily find the sets M(j), j ∈ J, and
hence provide all the constructions described in the items (a1)–(a5) of Scenario A.

Remark 5. From the above considerations, it follows that the data set {V0,M} is the most useful
finite data set for the corresponding face. In some cases, for K = K(V,L), the set V0 can be
constructed based on the available data V and L. From Proposition 1, it follows that having V0, V
and L, one can find the setM, solving several Linear Programming problems.

In general case, the problem of finding the set V0 is not trivial, but is very important and
deserves a separate consideration.

The results of the paper may help to better understand the facial structure of the cone
of copositive matrices and this knowledge can be effectively used in the duality theory of
copositive optimization. The explicit descriptions of the faces of the copositive cone and
their dual cones can be used in constructive regularization procedures based on the face
reduction approach.
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