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Resumo Sistemas de Gestão Técnica Centralizada (GTC) permitem o controlo e monitoriza-
ção de diversos dispositivos instalados em chão de fábrica ou em outros ambientes,
como por exemplo, escritórios, prédios ou hospitais. Estes dispositivos podem cap-
turar dados sobre o meio onde estão instalados (sensores) ou até interagir com
o mesmo meio (atuadores). Sensores de temperatura, detetores de presença ou
medidores de energia podem ser utilizados para controlar sistemas de AVAC, ilu-
minação, ou até disparar um alarme em caso de emergência. Com o aumento de
aplicações baseadas em Internet of Things (IoT) e Industrial Internet of Things
(IIoT), torna-se necessária a utilização de sistemas de GTC eficazes. Com estes
sistemas, um técnico pode gerir múltiplos dispositivos numa unidade centralizada,
sem ter de estar em contacto direto com o dispositivo e, possivelmente, sem ter de
se deslocar ao edifício onde os instrumentos se encontram. Existem várias contrari-
edades quando se projeta um sistema de GTC, sendo uma o facto de os dispositivos
que se pretende controlar utilizarem diferentes protocolos para comunicarem entre
si. Com isto em mente, no âmbito deste trabalho foi desenvolvida uma framework
para o desenvolvimento de sistemas de GTC. Esta framework permite que todos os
dispositivos ligados à unidade central sejam controlados através de uma interface
gráfica, de igual forma. Ou seja, o sistema cria uma camada que abstrai o pro-
tocolo de comunicação utilizado pelos diversos dispositivos. Neste trabalho foram
utilizadas ferramentas como EdgeX Foundry, InfluxDB, Telegraf e Grafana para
implementar a framework. O funcionamento da framework foi validado utilizando
dispositivos comerciais (protocolo KNX e Modbus) e um dispositivo desenvolvido
de raiz (protocolo MQTT). Adicionalmente, foi implementado um mecanismo de
priorização de mensagens consideradas críticas, que utilizem um protocolo IP. Este
mecanismo permite que uma determinada largura de banda seja reservada para
o protocolo desejado. Para tal, foram utilizados princípios de Software-Defined
Networking e OpenFlow para implementar um mecanismo que prioriza os pacotes
MQTT. Para testar o sistema implementado foram comparados dois setups, com
e sem o mecanismo de priorização de mensagens.





Keywords Centralized Technical Management, Internet Of Things, EdgeX Fondry, Commu-
nication Protocols, OpenFlow, Software-Defined Networking.

Abstract Centralized Technical Management (CTM) Systems allow the control and mon-
itoring of various devices installed on the factory floor or in other environments,
such as offices, buildings, or hospitals. These devices can capture data about the
medium (sensors) or interact with the same medium (actuators). Temperature sen-
sors, presence detectors, or energy meters can be used to control HVAC systems,
lighting, or even trigger an alarm in an emergency. With the increasing Internet
of Things (IoT) and Industrial Internet of Things (IIoT) applications, it becomes
necessary to use effective CTM systems. With these systems, a technician can
manage multiple devices in a centralized unit without having to be in direct con-
tact with the device and possibly without having to travel to the building where
the instruments are. There are several setbacks when designing a GTC system.
One of them is that the devices to be controlled use different protocols to com-
municate with each other. With this in mind, within the scope of this work, we
developed a framework for developing CTM systems. This framework allows all
devices connected to the central unit to be controlled through a graphical interface
in the same way. That is, the system creates a layer that abstracts the commu-
nication protocol used by the various devices. In this work, tools such as EdgeX
Foundry, InfluxDB, Telegraf, and Grafana were used to implement a framework.
The functioning of the framework was validated using commercial devices (KNX
and Modbus protocols) and a device developed from scratch (MQTT protocol).
Additionally, a mechanism for prioritizing messages considered critical, which uses
an IP protocol, was implemented. This mechanism allows a specific bandwidth to
be reserved for the desired protocol. To this end, Software-Defined Network and
OpenFlow principles were used to implement a mechanism that prioritizes MQTT
packages. Two setups were compared to test the implemented system, with and
without the message prioritization mechanism.
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CHAPTER 1
Introduction

Centralized Technical Management (CTM) systems play an important role in the develop-
ment of Internet of Things (IoT) and Industrial Internet of Things (IIoT) applications. They
allow a user to monitor and actuate on every device connected to them by creating a digital
twin of the physical devices and sensors. A digital twin is a virtual representation of the
real devices so that the user only needs to interact with the digital twin to actuate on a real
device. This virtualization process enables a convenient and effortless interaction with all
the devices. For that, a CTM system must implement an abstraction layer in a way that the
system supports devices using different communication protocols.

Furthermore, having all the data gathered from the sensors centralized in one location
allows the user, or third-party software like machine learning algorithms, to find and explore
possible correlations between the data. However, to implement CTM systems, we must address
some concerns. Three major concerns are the dispersion of devices in a complex of buildings,
devices using different communication protocols, and timeliness concerns, particularly when
the network is stressed.

Usually, buildings like factories or hospitals have multiple devices and sensors. These
devices are not typically close to each other, so it is necessary to analyze them one by one
when maintenance is required. The maintenance process is time-consuming, and that time
increases with the number of devices in the building. Additionally, a proper system can
correlate the data gathered from the sensors in different rooms. That correlation could lead
to a more efficient use of the available resources, for example, Heating, Ventilation, and Air
Conditioning (HVAC) systems. However, this actuation and data analysis can only be done if
all devices are connected to a centralized unit.

The physical distance is not the only difficulty to connect all the devices in one building.
The fact that these devices use distinct communication protocols is also an adversity. Take,
for example, a case where a company wants to control lamps based on motion sensors. If the
interface with the lights is done via Digital Addressable Lighting Interface (DALI) [1], it is
required to use DALI based motion sensors. Suppose, at some point, the company decides to
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replace the lamps’ control interface to use the KNX protocol [2]. In that case, it is not only
necessary to make changes to the lamps but also to the motion sensors since the DALI ones
would not work.

Finally, Internet Protocol (IP) protocols, like Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP), are broadly used in IoT applications, and for many cases,
they work well, despite not having real-time specifications. However, as the number of devices
connected to a network increases, so does the network traffic. This increase can lead to
saturation periods in the network, leading to more significant delivery times or even packet
loss. Although this may not be a problem in some scenarios, it may be critical in other ones.
For example, an emergency button that halts a machine in a factory when necessary requires
that when an emergency occurs, the stop command must arrive at its destination in a bounded
amount of time, independently of the network load conditions. This aspect may force the
system designer to choose a specific communication protocol instead of a more convenient one.

To conclude, within the scope of this project, it was designed, implemented, validated,
and tested a framework to develop CTM systems that addresses the three concerns described
before. The functional requirements of the framework developed are defined in Section 1.1,
whereas Section 1.2 and Section 1.3 present the objectives and structure of this dissertation,
respectively.

1.1 Functional Requirements

The system was developed in collaboration with the company Diferencial - Electrotécnica
Geral Lda, which defined the framework’s functional requirements to satisfy common customer
needs:

• Having all the data collected from both the devices and the user stored in a centralized
database.

• Developing a Graphical User Interface (GUI) that allows a user to monitor and actuate
on the connected devices. These procedures must be independent of the device and
protocol in question.

• Providing the capability of adding to the system multiple devices that use various
communication protocols.

• Allowing the GUI to be physically separated from the CTM system and devices.

1.2 Objectives

This dissertation focuses on four specific topics, that are:
• Analyzing possible approaches and mechanisms to implement CTM systems and custom

IoT devices.
• Validating the framework developed using commonly used industrial devices, with

different communication protocols.
• Evaluating the scalability of the framework implemented.
• Designing and validating a solution to prioritize critical messages in situations where

the network is saturated.
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1.3 Document Structure

This document is divided into eight chapters, whose content is the following:
• Chapter 2 - Background: This chapter introduces the most relevant topics relevant for

this dissertation. It starts to review the existing CTM system architectures and relevant
tools to develop them. Then it presents communication protocols relevant for IoT and
IIoT. Finally, it introduces Software-Defined Networking (SDN) and OpenFlow as a
solution to prioritize sensitive messages.

• Chapter 3 - Methodology: This chapter is dedicated to describing the methodology used
to solve the proposed problem. The chapter justifies selecting the chosen tools and
briefly presents the steps to implement, validate, and test the framework.

• Chapter 4 - Architecture: This chapter focuses on the system architecture. It presents
the structure of the whole system and a brief description of the system components and
their interfaces.

• Chapter 5 - Framework for CTM Systems: This chapter shows how the system purposed
was implemented, including the devices, IoT gateway, database and GUI. The chapter
also presents the definition of interfaces between the system components.

• Chapter 6 - Message Prioritization Mechanism: This chapter presents the approach
chosen to prioritize critical messages. Starting from the components required, then
implementing this part of the system, and finally, the definition of two setups for testing
purposes.

• Chapter 7 - Tests, Results, and Discussion: This chapter is dedicated to the tests
performed and their primary outcomes. Then it expounds considerations about the
suitability of the framework to develop CTM systems. Finally, it discusses the results
obtained.

• Chapter 8 - Conclusion: This chapter presents the document closure, the critical analysis
about the work developed and main results, and the future work proposal.
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CHAPTER 2
Background

This chapter aims to introduce the necessary background to develop and validate a
framework for CTM systems. Section 2.1 is dedicated to defining the high-level architecture
used in this context, describing the main components of the selected architecture, and
presenting possible implementations or toolkits to implement such features.

Furthermore, Section 2.2 presents some communication protocols that can be used to
connect devices to a CTM system. The protocols selected are commonly used in different
applications, such as industrial environments, buildings, or IoT systems.

Lastly, Section 2.3 presents the required knowledge to implement the feature of prioritizing
critical packets over the remaining traffic in an IP network. This section also introduces
some topics on SDN, particularly the OpenFlow protocol that was used in the scope of this
dissertation.

2.1 CTM Systems

A typical CTM system requires two main components: a gateway and an infrastructure
(composed, for instance, by a database and a GUI), as presented in Figure 2.1. The gateway
(Subsection 2.1.1) is in control of the interaction with the physical devices, eventually using
distinct communication protocols and makes the interface between them and the infrastructure.

On the other hand, the infrastructure is responsible for storing data (either collected
from the devices or the users) and implementing the user interface. Its components can be
deployed on-premises or remotely, in a cloud system. In both scenarios, a simple infrastructure
requires at least two components: a database (Subsection 2.1.2) and a GUI (Subsection 2.1.3).
A database is necessary to store the data gathered from the devices to create their digital
twins. It is the central component of any IT System’s infrastructure. Moreover, the GUI is
responsible for displaying the data gathered from the devices and for receiving commands
from the user. These commands can be, for example, a GET or a PUT instruction. The
former reads a certain sensor or register asynchronously from the device, whereas the latter
actuates on it.
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Figure 2.1: Simple CTM System Arquitecture.

2.1.1 Gateway

The gateway is the central element of a CTM system. It is responsible for creating an
abstraction layer so that the interaction with all devices is the same, no matter what protocol
each device uses. Typically, by convention, the terms north and south appear referring to the
devices and infrastructure, respectively. In between the north and south parts of the system
lies the so-called gateway. So, for instance, the phrase south to north communication indicates
a process where data generated by the device is acquired by the gateway and sent to the
infrastructure.

Some gateways offer additional tools such as management, data processing, security
features, and different connectors to interact with the northern and southern components
of the system. These connectors are provided to accelerate the development process, and
they support the most commonly used communication protocols. Additionally, most gateway
frameworks provide documentation and Software Development Kits (SDKs) to implement
custom connectors.

There are multiple frameworks and toolkits available that meet the requirements to develop
a gateway for the CTM system. We analyzed several solutions, particularly EdgeX Foundry,
Node-RED, and ThingsBoard, which were studied in more detail and are presented below.

EdgeX Foundry

EdgeX Foundry [3] is an edge IoT middleware platform, being between the cloud systems
and the devices that sense and actuate on the physical domain. EdgeX Foundry is a
software implementation that leverages cloud-native principles (for instance, loosely-coupled
microservices and platform-independence) but was designed to meet specific needs of the
IoT edge. It is a vendor-neutral and open-source solution that is distributed under Apache
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Figure 2.2: EdgeX Foundry Platform Architecture (from [3]).

2.0 license. Dell initially created EdgeX Foundry, but since 2017 it has been one of the
projects from the Linux Foundation. This platform was designed to be Operating System (OS)
agnostic, so it is compatible with Linux, Windows, and macOS machines.

In short, EdgeX Foundry is a collection of microservices, implemented in docker containers,
that are distributed in four main layers (Device, Core, Supporting, and Application Services)
and two additional layers (Security and Management Services), as presented in Figure 2.2.
The other layers contain microservices to protect the data collected and the devices themselves
and allow the administrator to inspect and manage the system at a central point.

Moving to the four main layers and starting from the south, the device services offer a
group of edge connectors to control the devices and sensors connected to the gateway. The
framework has already implemented connectors for protocols like Message Queuing Telemetry
Transport (MQTT), Modbus (Remote terminal unit (RTU) and TCP), Object Linking and
Embedding for Process Control - Unified Architecture (OPC-UA). In addition, developers
can create custom connectors for communication protocols that are not implemented in the
framework. Developers may use the Device Service SDK to implement them. At the moment,
there are two SDKs one written in Go Lang and the other in C.

Next, the core services consist of four microservices - core data, core command, core
metadata, and configuration and registry. These services contain the persistent storage
with data collected by the devices and specifications about the devices themselves. It also
defines the available commands to interact with the different devices and provides the tools
to provision new machines.

Above the core services are the supporting services layer that includes alert and
notification, scheduling, and rules engine microservices. These microservices are specific
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software programs that perform particular tasks, interacting with the southbound devices
through core services and northbound infrastructure through the application services. These
tasks include edge analytics duties, triggering actions at specific times, logging systems, and
alerting the system manager in case of an emergency.

The fourth and last main layer contains the application services. The microservices
included in this layer provide mechanisms to export data from the EdgeX Foundry gateway
to external endpoints. There can be cloud-based systems (like Azure IoT Hub, AWS IoT, or
Google IoT Core) or on-premises applications. At the moment, EdgeX Foundry supports
MQTT and Hypertext Transfer Protocol (HTTP) endpoints. The application services provide
tools to prepare and groom data before sending it; developers can include these functions
in a customizable export functions pipeline and, additionally, use the SDK to create their
application service.

There are three different approaches when using the EdgeX Foundry ecosystem: user,
developer, and hybrid modes. In the first approach, to start EdgeX services it is required to
download and activate the correct docker containers. For that, the EdgeX development team
provides docker-compose files that contain instructions to download the docker containers and
the order they should start and input parameters for each container. These files speed the
deployment process and can be found in [4]. If, on the other hand, one wants to make changes
to the platform, it is possible to do so by downloading the source code that is distributed
in C and Go Lang. The EdgeX Foundry Documentation, [3] provides the list of software
dependencies and the instructions to install, build and run EdgeX from the source code. This
solution is called a developer approach. The last approach is called hybrid since it allows the
coexistence of dockerized and non-dockerized microservices. This method allows developers to
make changes to one microservice to run it in developer mode, while the remaining ones are
deployed in the more convenient user mode.

ThingsBoard IoT Gateway

ThingsBoard [5] is an open-source IoT platform with processing, visualization, and man-
agement tools to actuate on the data collected from the IoT devices. It was designed by
ThingsBoard, Inc. in 2016 and is licensed under Apache 2.0 license.

ThingsBoard IoT gateway, whose simplified architecture is shown in Figure 2.3, aims to
connect devices with multiple platforms to the ThingsBoard system. It was developed to run on
Linux machines and supports Python 3 releases since version 3.5. To interact with the devices,
it supports multiple communication protocols, like MQTT, Controller Area Network (CAN),
and OPC-UA. It is also possible to develop a custom connector for communication protocols
that are not implemented. This process may be done in Python 3, via the Application
Programming Interface (API) and documentation available in [5]. Furthermore, the gateway
has an embedded database to save the data gathered, when network or hardware failures occur.
For instance, if there was no backup embedded database and the infrastructure database
failed, the data gathered during that failure would be lost. Finally, the communication to the
ThingsBoard system is carried out via the MQTT protocol.

8



Figure 2.3: ThingsBoard IoT Gateway Architecture (from [5]).

Additional features, like edge analytics, data processing, security, management, and
dashboards, are not part of the ThingsBoard IoT gateway but the ThingsBoard system.
There are two versions of this software, the community, and professional editions. The latter
includes all the features of the former, and it has additional ones. White-labeling, advanced
management and administration tools, and the integration with existing IoT platforms are
some of the advantages of acquiring the professional edition.

Some use cases of the ThingsBoard platform include energy consumption monitorization,
intelligent farming control, and fleet tracking.

Node-RED

Node-RED [6] is a software tool whose objective is to enable communication between
APIs, online services and hardware devices, in one place. The Node-RED project was started
in 2013 by Nick O’Leary and Dave Conway-Jones from IBM’s Emerging Technology Services
team, and it became open-source in the same year. From 2016 to the present, it has been
hosted by the JS Foundation. Node-RED is distributed under Apache 2.0 license.

In contrast with EdgeX Foundy or ThingsBoard, Node-RED is a flexible multipurpose
tool. Hence, it was not developed specifically to develop IoT edge gateways. Nevertheless, it
supports multiple communication protocols, such as MQTT, Modbus, and HTTP tools to
communicate with external databases, like MySQL, InfluxDB, or Cassandra, and a framework
to develop simple user interfaces.

The development of Node-RED-based applications is done via flow-based programming. It
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Figure 2.4: Node-RED flow example (from [6]).

is lightweight so that it can run on low-cost hardware, and it runs on multiple platforms and
OSs. The applications developed are event-driven and are called flows, consisting of nodes
connected to form a pipeline. The nodes are functional blocks that perform specific tasks
(like converting the input data to Extensible Markup Language (XML) format or inserting
the input data in a database). Developers can implement their algorithms in the nodes using
JavaScript. When one node is triggered (for example, when an HTTP message is received or
when a predefined amount of time has passed), it outputs a message. That message is sent to
the next node, which processes it and sends it to the following node. This happens until the
message reaches its endpoint. In the end, the flows developed can be stored conveniently in
the JavaScript Object Notation (JSON) file.

Figure 2.4 presents an example of a flow developed in Node-RED to subscribe to the topics
"sensors/#". When an MQTT packet is received, it converts the received message to JSON
format and then prints the parsed message in the terminal (pipeline’s endpoint).

2.1.2 Database

Databases are mechanisms used to store data. The software programs that allow a user or
a machine to interact with the database are called Database Management Systems (DBMSs).
The most commonly used databases are relational ones. Relational databases are divided
into tables, each containing a different set of columns (fields). The columns have a label and
data type associated and describe the stored records in each row. Considering the example in
Figure 2.5, the fields Reading ID, Device, Room, and Temperature describe the four presented
records. Structured Query Language (SQL) is the most famous programming language to
interact with Relational DBMSs, such as MySQL, SQLite, or PostgreSQL.

Figure 2.5: Relational Database Structure Example.
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However, the strict and rigid architecture of relational databases is not the best solution
for all scenarios. When considering IoT applications, a more flexible design would ease the
storage of the data collected by the "things". Since each device produces different data
types, the information produced is typically called "unstructured data". To better suit cases
with big unstructured data, another kind of database grew in popularity, the non-relational
databases. Some solutions were designed to be schema-less and flexible. The relational
and non-relational databases are usually called SQL and NoSQL databases, referring to the
programming language used to access the data.

NoSQL databases can be designed for different purposes. Some of the most used archi-
tectures include wide-column stores (e.g., Cassandra), document stores (e.g., MongoDB),
key-value data stores (e.g., Redis), graph stores (e.g., Neo4J), and time-series stores (e.g.,
InfluxDB).

In IoT applications, two main types of data need to be stored: information about the
devices (like configurations, attributes, and interfaces) and the data gathered by them. The
latter are time-series data types and represent the vast majority of the data that needs to be
stored. This data can be used to analyze the device’s status or to feed ML algorithms.

We analyzed different types of NoSQL databases, considering scalability, suitability, and
efficiency. In particular, InfluxDB, Apache Cassandra, and MongoDB. The objective of this
study was to select the most appropriate solution to incorporate the infrastructure of the
CTM system.

InfluxDB

InfluxDB [7] is an open-source time-series database released by InfluxData in 2013. It was
developed in Go Lang and is licensed under an Massachusetts Institute of Technology (MIT)
license. As the database is time-oriented, it can efficiently store IoT sensor data and real-time
analytics. Currently, InfluxDB’s latest version is 2.0. InfluxDB can be seen as a toolkit rather
than a simple database, since it comes with a user interface, processing, and monitoring tools.
Flux is the query and scripting language that allows users or external systems to interact with
the DBMS. Its retention policy is convenient for most IoT applications since it allows the
automatic deletion of obsolete data.

Apart from InfluxDB itself, InfluxData provides: InfluxDB Cloud, that is InfluxDB
as a cloud-based service; InfluxDB Enterprise, a clustered version of InfluxDB to increase
availability; InfluxDB Templates, a set of tools to develop monitoring solutions; and Telegraf.
Telegraf [8] is a server agent developed in Go Lang that can collect data from multiple sources
and write them in various outputs, namely databases. Telegraf was developed in a plugin-based
architecture to suit multiple scenarios and has minimal hardware requirements.

Apache Cassandra

Apache Cassandra [9] is an open-source NoSQL database developed by Apache Software
Foundation and released in 2008. Currently, the last stable release is 3.11. Cassandra belongs
to the Wide-Column store category of NoSQL databases and features a SQL-like querying
language, Cassandra Query Language. It is well-known for its high availability and allowing
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partitioning so that multiple endpoints can access the database faster and prevent the risk of
losing data due to hardware failures.

MongoDB

MongoDB [10] is a source-available document-based database. It was released in 2009
by MongoDB Inc. It has a Server Side Public License (SSPL) that is a modified version of
GNU General Public License (GPL) 3.0, which requires the services that make use of software
licensed with SSPL (like MongoDB) to be open-source under the same license. MongoDB is a
NoSQL database that uses JSON-like documents and stands out for having high availability
and tolerance to partitioning. In addition, MongoDB provides optimizations for time-series
data, for instance the ability to distribute nodes from different clusters based on timestamps.

2.1.3 Graphical User Interface

GUIs play a crucial role in the scope of CTM systems, in particular in the infrastructure
part. They are the elements responsible for providing data and insights about the data
generated by the devices connected to the systems. Moreover, it is the GUI that allows the
users to manage and control the devices remotely. So, a user can manage, for example, an
entire building or factory from one place, being able to analyze sensor data, like temperature,
actuate on devices, like HVAC systems, or inspect possible malfunctioning devices.

When developing user interfaces for CTM systems, the two main technical requirements
are graphically presenting the data stored in a database and interacting with the user. For
that, two different types of toolkits can be considered: drag-and-drop solutions and widget-
based applications. The former prioritizes simplicity and standardization, whereas the latter
prioritizes customization. Typically, drag-and-drop-based toolkits offer solutions in which
representing data that is stored in a database is a relatively simple task. In addition, they
provide various visualization schemes to allow the users to interpret different types of data.
Finally, a web browser is responsible for making the interface between the user and the system
when using this approach.

On the other hand, widget-based applications provide the necessary tools to implement a
fully customizable desktop application. Most toolkits offer templates to increase productivity,
but the developer has complete control over how the GUI should look like and should behave.
In the scope of this dissertation, different toolkits were considered, and two were analyzed in
detail, Grafana (web-based tool) and Qt (application-based tool).

Grafana

Grafana [11] is an open-source web-based monitoring solution created by Grafana Labs
in 2014. It is a web application that allows the dashboards to be developed and accessed on
multiple platforms. At the moment, it is licensed under an Affero General Public License
(AGPL) 3.0 license. Grafana Labs developed the toolkit in Go Lang and Typescript, and at
the time of this writing, its latest version is 7.5. Among other characteristics, the integration
between the data stored in the most commonly used databases and Grafana is quite simple
(namely time-series databases like InfluxDB). It allows multiple and varied ways to present
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Figure 2.6: Developing a User Interface Panel Using Grafana.

the data. Grafana Labs provide, alongside the open-source version, a cloud-based service of
Grafana and an enterprise version with additional features.

After installing the required software, a Grafana dashboard can be built using the web
interface provided, as presented in Figure 2.6. Firstly, it is necessary to add a data source,
which is typically a database, then developers can add some panels to the dashboard to
represent the data. These panels can contain visualization methods like pie charts, scatter
plots, heatmaps, and more. Once chosen the visualization method, the data from the database
to be presented can be specified using an SQL-like interface. Here the data can not only be
selected but also transformed. Additionally, Grafana allows the user to add annotations to
their data and define alerts.

Qt

Qt [12] is a cross-platform toolkit to develop GUIs, created in 1995. The Qt Company
manages it, and its latest stable release is version 6.1. Qt is distributed with either commercial
licenses and open-source licenses, namely, GPL 2.0, GPL 3.0, and GNU Lesser General Public
License (LGPL) 3.0. This toolkit was developed in C++ and allowed developers to create
GUIs for platforms like Linux, Android, Windows, macOS, as well as embedded platforms.

For development, the framework provides design tools (Qt Design Studio) in which the
user can design the visible part of the user interface, as shown in Figure 2.7. Developers can
do this design process either with the templates already provided by Qt or by creating custom
ones. Once completed the front-end part, the developers can use the cross-platform Integrated
Development Environment (IDE) Qt Creator. This framework, among other features, allows
developers to interconnect the front-end part of the system with the back-end. This process is
done mainly using C++ and Qt Modeling Language (QML). Qt Creator also provided the
necessary tools to add pre-built visual components and animations to the interface.
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Figure 2.7: Developing a GUI using Qt Design Studio (from [12]).

2.2 Communication Protocols

CTM systems can be applied to multiple scenarios, for example, for buildings, industrial
environments, or even in IoT applications. Each application requires its own specific devices,
and thus, communication standards.

For building automation systems, protocols like KNX [2], Building Automation and
Control (BACnet) [13], and DALI [1] are used. The former two were designed to control and
manage a wide variety of devices, like HVAC systems, blinds, lighting, or access control. The
latter was designed only for controlling lights.

Standards like Modbus [14], Process Field Bus (Profibus) [15], or Ethernet for Control
Automation Technology (EtherCAT) [16] are most commonly adopted regarding industrial
automation. These protocols emerge in Fieldbus systems in industrial environments and
whose objective is to establish a network to allow industrial devices, such as Programmable
Logic Controllers (PLCs), to control factory floor sensors and actuators. In addition, some
protocols, like EtherCAT, offer real-time guarantees.

When considering IoT applications, three of the mostly used communication standards are
MQTT [17], Advanced Message Queuing Protocol (AMQP) [18], and Constrained Application
Protocol (CoAP) [19]. The protocols used in these situations need to be lightweight since
they typically need to be implemented in low-cost hardware.

The following three subsections briefly present the KNX, Modbus, and MQTT protocols,
which are particularly relevant for the scope of this work.

2.2.1 KNX

KNX [2] is a standard developed mainly for building automation. It supports different
transmission media, such as twisted-pair cable, Ethernet, radiofrequency, or power line.
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Figure 2.8: KNX TP Data Transfer (from [20]).
.

Compared to other protocols, KNX has the advantage of not requiring a central management
device, since the nodes, once connected to the bus and properly configured, can communicate to
each other and actuate accordingly. Finally, KNX provides an Engineering Tool Software (ETS)
to allow developers to manage the devices and define their actions conveniently.

The most common communication medium used in KNX is the twisted-pair (TP), given
its simplicity of installation and cost-effectiveness. The KNX TP requires a particular power
supply, since the data transmission is done using the same medium used to power devices, as
presented in Figure 2.8. For this reason, although the KNX bus rated voltage is 24 V, the
power supplied to the system is 30 V. A 9 V range, from 21 V to 30 V, is given to the devices
to allow them to transmit data.

The information is exchanged by the devices, serially and at a rate of 9.6 kbit/s, using
telegrams. A telegram is a sequence of eight to twenty-three bytes separated into four fields:
Control, Address, Data, and Checksum. The first one is used to define the transmission, the
second one carries the sender and receiver addresses, the third contains the telegram payload,
and the last one is used for parity checks. [20]

2.2.2 Modbus

Modbus [14] is a communication protocol developed for industrial applications, in particular,
to interconnect PLCs. There are many variations of the protocol. Modbus can use different
transmission media, transport layer protocol, or error-detection mechanisms in distinct
standard versions. Two of the mostly used Modbus versions are Modbus RTU and Modbus
TCP/IP. The former uses serial communication and requires an error-detection mechanism,
whereas the latter needs to be connected to an IP network and does not require error-detection
tools. Additionally, in Modbus versions that use serial communication as the transmission
media, the master node is responsible for establishing the communication. In contrast, the
slave devices should only respond to the requests. On the other hand, when Internet Protocols
are used, both master and slaves can initiate communication.

The data stored in the Modbus salve devices can be divided into four categories: Coils,
Discrete Inputs, Input Registers, and Holding Registers. The first two are used to store
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single-bit values, whereas the registers hold 16-bit values. The difference between input and
holding register lies in the fact that the former may only be read, while the latter can be read
from and written.

A Modbus RTU frame is composed of four elements: Slave address (1 byte), Function (1
byte), Data (N bytes), and Cyclic Redundancy Check (2 bytes). The slave address identifies
the slave. The function codes allow different possible actions, including reading from or writing
to a holding register or group of registers. The data field contains the message’s payload,
for example, the address of the register to read from. Finally, the last field is used for error
detection during transmission.

2.2.3 MQTT

MQTT [17] is one of the mostly used standards regarding IoT applications. This protocol
is used mainly for being lightweight and for being reliable. The MQTT protocol runs over
TCP/IP, and it has two types of agents: a message broker that is a centralized device that
receives all the MQTT messages, and the clients that can communicate with each other via
the broker.

In MQTT the terms publish and subscribe arise to the place of send and receive. A message
is said to be published when a client sends it to the MQTT broker. Each MQTT message has
a topic associated with it, so for client A to receive messages from client B, it must subscribe
to the topic where client B is publishing its messages. Following this example, if client A has
subscribed to the topic "temperature" every time client B publishes a message on that same
topic, the MQTT Broker sends that message to client A. The same would happen to other
clients that had subscribed to the same topic. Figure 2.9 presents graphically the example
described before, where client A is one of the devices on the right side of the figure, whereas
client B is the one on the left.

Each MQTT connection can specify a Quality of service (QoS). There are three types of
QoS - at most once, at least once, and exactly once. The QoS 1 and 2 are implemented based
on acknowledge or handshaking mechanisms and consequent retransmissions. On the other
hand, QoS 0 takes no additional measures to assure that the message was received correctly.

Figure 2.9: Example of MQTT Communication (from [17]).
.
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2.3 Message Prioritization

One concern regarding Industry 4.0 is the fact the existent network infrastructure may not
be ready to accommodate the increasing number of IIoT applications. In industrial scenarios,
the traffic generated in a network can surpass the maximum values defined by the existing
hardware. A situation like this could jeopardize the implementation of IIoT devices for critical
scenarios. Existing methods, such as handshaking and re-transmission mechanisms, are not
helpful when the network must deliver the data within a certain time interval. A message
prioritization mechanism could be a solution to address this issue. For example, a portion of
the available bandwidth could be reserved for time-sensitive messages to ensure that they are
received on time even if the network is stressed.

This prioritization mechanism can be based on the SDN technology, in particular using
the OpenFlow protocol. A brief introduction of these tools is presented in the following
subsections.

2.3.1 Software Defined Networking

The Software-Defined Networking paradigm emerged mainly to solve the difficulty of
managing complex networks. Traditionally, this process was done device-by-device with the
possibility of having devices from different vendors, and thus, heterogeneous configuration
interfaces. Due to this issue, complex networks, for instance in industrial environments, were
static and almost untouchable once deployed [21].

So, the SDN architecture, presented in Figure 2.10 was designed to separate the data
and control planes of a network, and thus allowing a central entity to control the whole
network. The decisions made by this central entity, called the controller, are sent to data
forwarding devices (e.g., switches). These hardware devices forward packets to a specific egress
port, drop, flood, or even change their content. The interface between the data and control
planes, i.e., the controller and the devices, is done via a southbound signaling protocol, like
OpenFlow. Among other features, SDN provides some QoS mechanisms such as prioritization
and bandwidth reservations.
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Figure 2.10: Generic SDN architecture (from [21]).

2.3.2 OpenFlow Protocol

OpenFlow is the mostly used standard to interface between data-forwarding devices (like
switches) and the controllers. So, accordingly, an OpenFlow-based architecture requires one
or more OpenFlow controllers and one or more OpenFlow switches, whose architecture is
presented in Figure 2.11.

Apart from the SDN controller-related tasks, an OpenFlow controller implements the
required mechanisms to allow the communication and configuration of the OpenFlow switch
[21].

In short, an OpenFlow switch consists of an OpenFlow pipeline, a control channel, and
a group table. The control channel, composed of one or more OpenFlow channels, provides
the interface with the OpenFlow controllers, based on Transport Layer Security (TLS). The
OpenFlow pipeline and group table perform the traffic forwarding and look-up. The former is
composed of one or more flow tables. These flow tables contain multiple flow entries, each one
having a set of match fields and actions. When a received frame matches a specific flow, the
measures defined by the flow are applied. For example, network managers can specify these
actions to drop the packet, forward it to an output port, or set a specific egress queue. In
addition, these queues could have specifications in terms of priorities and bandwidth. Finally,
a meter table is an optional feature of an OpenFlow switch that provides QoS services, like
rate-limiting [21].

Moreover, there are multiple solutions to develop OpenFlow controllers, for instance, NOX,
OpenDaylight, and Ryu. Focusing on the latter, the Ryu SDN Framework is an open-source
framework written in Python that allows the development of network management and control
applications using a specific API. The OpenFlow versions supported by Ryu are 1.0, 1.2, 1.3,

18



Figure 2.11: OpenFlow switch architecture (from [21]).

1.4, and 1.5. Additionally, templates and examples of controllers are provided as examples.
Ryu SDN framework is available under an Apache 2.0 license.
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CHAPTER 3
Methodology

This chapter presents the methodology used to elaborate the project that resulted in this
dissertation and whose objective was to create and validate a framework to develop CTM
systems.

This dissertation followed the work developed by Ferreira in [22], where the author studied
possible architectures for developing automation systems. In this preliminary work, it was
selected an edge computing-based architecture [23][24], an approach that brings the computing
processes closer to the data sources, in this case, the devices. Since it follows the technical
requirements and due to its scalability, Ferreira selected this architecture for this project. In
short, the selected approach supports two types of data-flows:

• The devices generate data that is sent to the gateway that forwards it to the infrastructure,
where data reaches its endpoint, stored in a database, and then is presented to the user
via a GUI.

• The user sends commands, via GUI. These commands are stored in the database,
processed, and sent to the gateway that forwards them to the end device.

One can take the system’s main components from the data-flows. They are the devices,
gateway, and infrastructure (database, server agents, and GUI). Next, the devices selected
and frameworks used to implement each component are presented in section 3.2. Lastly,
in section 3.3 it is discussed how the message prioritization feature was implemented and
validated.

3.1 Communication Protocols and Devices

We selected the devices and thus communication protocols used in this project with the
help of the company Diferencial. It must be noted that there were no concrete functional
requirements set for the devices since it was not an objective to develop a specific solution
but instead to design a generic framework and evaluate and validate the solution. So, it is
advantageous to test different types of devices, communication protocols, and purposes to
validate the system and understand its limitations.
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Firstly, the communication protocols to implement in the gateway were KNX, Modbus,
and MQTT. They were elected because they usually serve different purposes. The former is
most commonly used in building automation applications, whereas Modbus is more used to
establish communication between devices in an industrial environment. The latter, MQTT,
was selected since it can suit multiple purposes and due to its popularity regarding IoT and
IIoT applications.

Finally, after choosing the communication standards that the gateway must implement,
we selected the devices. As for the protocols, we applied three different approaches. For the
Modbus standard, a single commercial device was connected to the gateway. Second, multiple
commercial devices were used regarding the KNX protocol, but the KNX bus interface was
done via a single KNX device acting as a gateway. Finally, no commercial device was selected
regarding MQTT since it was intended to study hardware and software tools to implement an
MQTT device.

The MQTT device implementation process and the commercial devices used to validate
the framework are presented in detail in Chapter 5, particularly in Section 5.2.

3.2 Framework for CTM Systems

3.2.1 Gateway

When reviewing existing frameworks to implement the gateway, we considered some
technical specifications:

• Communication protocols supported and tools to develop custom solutions.
• Data processing features.
• Persistent storage.
• Connections with external databases or endpoints.
• Remote management.
• Scalability.
• User Interface framework.

A similar study was conducted by Ferreira in [22], where Eclipse Kura, macchina.io, Node-Red
and EdgeX Foundry were compared to perform in a similar scenario. The former two were
excluded because of their limited support of communication protocols and their lack of software
tools to develop custom device drivers. In the end, EdgeX Foundry ended up being the chosen
gateway due to the lack of persistent storage in Node-RED.

In the scope of this dissertation, we analyzed another alternative in detail, the ThingsBoard
IoT Gateway. This solution offered similar features compared to EdgeX Foundry, with the
particularity of providing tools to implement a simple user interface similar to the one supplied
by Node-RED. At this point, the tools provided by EdgeX Foundry were considered limited.

The gateway choice started by excluding Eclipse Kura and macchina.io since they still
had the same drawbacks described by Ferreira [22]. So, when comparing the remaining three
candidates, the point of "scalability" played in favor of EdgeX Foundry. Furthermore, both
ThingsBoard and Node-RED offer a flow-based programming solution to implement edge data
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processing, whereas EdgeX presents a traditional programming solution. However, despite the
convenience provided by the flow-based programming approach, we considered that such a
solution could compromise large-scale applications. To conclude, although the three candidates
meet the required specifications to implement a gateway for a CTM system, EdgeX Foundry
was the platform selected.

Once elected the gateway framework, we implemented a gateway based on EdgeX Foundry.
The device profile and configuration files were developed and added to the MQTT, Modbus,
and KNX devices. This process allows the gateway to know the commands, data types,
interfaces, and other specifications of each device connected to it. Finally, using the EdgeX
Foundry Device Services SDK, a custom device driver was developed to interact with the KNX
gateway device. This implementation process is presented in detail in Chapter 5, particularly
in Subsection 5.1.1.

3.2.2 Database and Server Agents

In [22], an in-depth study was conducted to select the database that best suited building
automation systems. First, three types of DBMS were considered and based on popularity
research, and the author selected the databases MySQL, MongoDB, and InfluxDB. Then,
from [25] Rautmare and Bhalerao concluded that when comparing MySQL and MongoDB
to store time-series data, the latter slightly outperforms the former. This advantage was
mainly observed in insert actions, which are the most used ones when storing time-series data
for IoT applications. Finally, in [26], a similar study was conducted, but comparing three
NoSQL-based databases, since the authors consider them as the best approach for time-series
storage in IoT applications. This study concluded that the performance of InfluxDB was
superior, and thus, the most appropriate choice for the context at hand. So, in the work that
preceded this one, InfluxDB was the DBMS selected to store the IoT data.

With the work previously developed in mind, we conducted research intending to analyze
the solutions that best suited the IoT scenario in terms of performance. The conclusions
reached were that the work developed in [26] was the most recent and valid one. So, having
that in mind that InfluxDB, MongoDB, and Apache Cassandra would be suitable solutions for
the context of this dissertation. The databases were studied not according to their performance
since it is already known that InfluxDB outperforms the remaining, but to the additional
tools and features they provided.

When reviewing the database’s additional tools and features, we studied two in particular
detail. Namely, server agents, which are tools to allow data (received from the gateway) to
be preprocessed before it is stored in the database, and tools to connect to a GUI based on
the data stored. All three candidates had in their ecosystem helpful and well-documented
tools. For instance, all DBMSs provided server agent tools to act as a middleman between
the data sources and the database. Additionally, all of them offered connectors to commonly
used dashboards, such as Prometheus or Grafana. However, the design simplicity and the
vast offer of plugins and connectors favored InfluxDB regarding the server agent.

Finally, InfluxDB ended up being the selected database to be the central element of the
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system’s infrastructure. It is, however, essential to note that despite the differences, Apache
Cassandra and MongoDB would also be reasonable solutions.

Regarding the implementation process, with the database selected, all the tools started
to be installed and set up, then based on InfluxData Telegraf, a server agent was developed.
When it was concluded, we established the communication between gateway and database.
Lastly, we implemented another server agent, but this time to ensure the communication
between the database (from the GUI) and the gateway. This implementation process is
described in detail in Chapter 5, particularly in Subsection 5.1.2.

3.2.3 Graphical User Interface

The last main component to be selected was the GUI. We studied two different approaches,
web-based and application-based solutions.

The former has a clear advantage over the latter when considering the simplicity of
implementation since they provide drag-and-drop tools to quickly represent the data stored
in a given database in different schemes. On the other hand, the disadvantage of web-based
solutions is related to the interaction with the user. Although multiple alternatives are
provided to present the data to the user, there are no tools to allow the user to input data
in the system. However, typically these solutions enable the developers to implement their
custom-built panels, with which the user can interact. On the other hand, application-based
solutions have the advantage of flexibility. Usually, some templates are provided, but the
developers have the freedom to implement their GUI as custom as they wish. These can be
helpful scenarios with strict specific functional requirements. However, for most applications,
the flexibility provided by application-based toolkits does not pay off the effort required to
implement the GUI. Additionally, customizing application-based solutions could compromise
scalability, whereas standardization associated with web-based solutions facilitates the scaling
problem.

Several toolkits were considered, either regarding web-based or application-based solutions.
Since the objective was to develop a framework and not a solution to meet specific needs, there
was no point in prioritizing customization over standardization. So, we considered web-based
approaches, analyzing frameworks like Grafana, freboard.io, and Chronograf. Grafana ended
up being the selected one. This choice was mainly due to its offer of visualization solutions,
integration with different data sources, visual appearance, and maturity. Given these four
main elements, we considered that Grafana was the best solution to develop the system’s
GUI.

Finally, after electing Grafana as the framework for developing the system’s GUI, it was
time for implementation. As stated before, presenting the data stored in the database was a
simple process since both frameworks provide connectors to ensure this integration. So, it
was a matter of selecting the desired data and format to present it. However, Grafana does
not provide default panels or plugins to allow the user to input data in the system. So, to
allow such interaction, custom input panels were designed and implemented in HTML and
JavaScript. With the input panels developed and the data graphically represented, the GUI,
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and thus the system, was completed. The GUI implementation process is described in detail
in Chapter 5, particularly in Subsection 5.1.3.

3.3 Message Prioritization

With the framework for a CTM system developed and validated, our focus went towards
preventing losing packets from the devices to the gateway, in particular, critical messages sent
via IP-based protocols, such as TCP and UDP. The objective was to allow some message
prioritization mechanism based on commercial solutions so that minimum bandwidth is
ensured for the devices considered critical. This bandwidth guarantee must be observed even
in cases where the network is stressed due to excessive traffic.

We applied SDN principles to add the desired feature to the framework. An OpenFlow
switch and a Ryu controller were configured in two setups: traditional switch and switch
with bandwidth guarantees for critical messages so that one can validate the system through
comparison. We used two SIMATIC IOT2040 [27] gateways to act as MQTT devices since
they are compliant with industrial environment requirements. It was an opportunity to study
commercial solutions to serve as an IIoT gateway, for instance, for MQTT devices. Finally, we
used four machines to generate traffic to simulate stress in the network. The implementation
of message prioritization features is described in detail in Chapter 6.
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CHAPTER 4
Architecture

This chapter presents in detail the architecture of the framework developed, its main
components and the interfaces between them. A simplified version of the system developed is
presented in Figure 4.1, from where three main elements stand out: (i) the Framework for
CTM systems (Section 4.1); (ii) the devices used to validate the implementation (Section
4.2); and (iii) the network components that implement the message prioritization mechanism
(Section 4.3).

Figure 4.1: System Simplified Architecture.
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4.1 Framework for CTM Systems

The framework developed has two core components, gateway and infrastructure, and it is
graphically represented in Figure 4.2. The gateway is based on EdgeX Foundry and aimed to
be the intermediary between the physical devices and the infrastructure.

On the other hand, the infrastructure is composed of three elements: the database,
GUI, and server agents. The database (InfluxDB) and the GUI, developed in Grafana, are
responsible for storing the data generated and interacting with the users, respectively. In
addition, two server agents are implemented, one for allowing the communication from the
gateway to the infrastructure, called South-to-North (SN) server agent, while a North-to-
South (NS) server agent was developed to establish the communication from the infrastructure
to the gateway. The former server agent is implemented based on Telegraf, whereas the latter
is developed in Python 3.

In terms of hardware, all the framework components are implemented and executed in a
Linux machine running Ubuntu OS 20.04. However, we developed the framework to make it
possible to run the gateway, database, server agents, and GUI in different machines. This is
due to the fact that the interface between the modules is performed using the HTTP protocol,
more specifically, Representational State Transfer (REST) APIs.

Figure 4.2: Framework Architecture.
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4.2 Devices

Three different communication protocols are used to validate the correct operation of the
framework, namely KNX, Modbus, and MQTT. Multiple devices, using these communication
standards, are connected to the gateway, as shown in Figure 4.3.

The KNX devices used are listed in Table 4.1. These devices are commercial solutions to
solve specific tasks regarding building automation. One of these devices is a DALI gateway
that makes the interface between DALI lamps and the KNX bus. It is significant to notice
that only one device (KNX IP BAOS 774 [28]) is connected to the framework via the EdgeX
Foundry gateway. That device makes the interface between the devices connected to the KNX
bus and the gateway implemented via TCP. For this reason, in this text, the term KNX
device appears to refer to all the KNX devices since from the gateway’s point-of-view, there
is only one KNX device. Following the same principle, the DALI lamps and the respective
DALI gateway are considered (for simplicity purposes) a single KNX device.

Moreover, regarding the Modbus protocol, only one device is used. The energy meter
EM340 [35], by Carlo Gavazzi, is a commercial solution whose communication interface is
done via Modbus/RTU. The device uses a serial communication to connect the device to the
gateway.

Lastly, the MQTT device implemented is not a commercial solution but a custom one.
It is custom developed using an ESP32 microcontroller. The device built simulates a simple
ON/OFF controlled heating system. The device is connected to the same network where the
machine running the gateway is connected, via Wi-Fi. Lastly, Eclipse Mosquitto [36] is used
as the MQTT broker to enable the device and the gateway to communicate. This broker is
executed in the same Linux machine that runs the framework.

Figure 4.3: Devices Connected to the CTM Sytem.
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Device Reference Manufaturer
KNX Gateway KNX IP BAOS 774 [28] Weinzierl
DALI Gateway SCN-DALI 64.02 [29] MDT technologies
Switch Actuator AMI-0416.02 [30] MDT technologies
Energy Meter Kamstrup 382Jx8 [31] Kamstrup

Presence Detector Swiss Garde 300 D Presence KNX/KLR [32] Züblin Elektro
Multi-function Actuator ACTinBOX Classic - ZN1IO-AB46A [33] Zennio
Analog/Digital Sensor QUAD - ZN1IO-4IAD [33] Zennio
Temperature Controller SCN-RT4UP.01 [34] MDT technologies

Table 4.1: List of KNX Devices Used.

4.3 Message Prioritization

The message prioritization mechanism is implemented employing an OpenFlow switch,
and an OpenFlow controller, based on the Ryu SDN framework [37].

A different system, depicted in Figure 4.4 is set up specifically for testing the message
prioritization mechanisms. As this feature only affects the communication between the devices
and the gateway, a simplified version of the framework is used. In short, the system for testing
the message prioritization feature has the following characteristics:

• Since the feature implemented is valid for all IP protocols, only the MQTT standard
was tested.

• There was no need to run the system’s infrastructure since that part of the system does
not influence the message prioritization feature.

• The gateway was replaced with a Python program, running on mock gateway, that
communicated with the mock devices (device-A and device-B) via the MQTT broker.

• Contrarily to the CTM system developed, the MQTT broker and the gateway were
executed in different machines approach more realistic scenarios when performing stress
tests.

• Three machines (Traffic Generator (TG)-1, TG-2, and TG-3 ), with the intent of
generating load traffic in the network, were used during stress tests.

To validate the message prioritization mechanisms implemented, two setups that use the
same hardware resources were considered, namely:

• Setup 1 - Traditional switch - In this setup, the system works as a traditional Media
Access Control (MAC)-learning switch. The controller creates flow entries to match the
switch ports to the Hosts’ MAC addresses so that the switch can forward the packets
as a common switch. If no flow entry matches the incoming packet, it is flooded to all
ports.

• Setup 2 - SDN switch - Setup 2 is similar to the first one, but it has the message
prioritization feature. It is configured to reserve 5 Mb/s of bandwidth to the MQTT
packets, which are considered to contain critical information.

With these two setups, it was possible to compare different scenarios, in terms of network
traffic, in a system based on a traditional switch (setup 1) and on a switch that prioritizes
time-sensitive data (setup 2).
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Figure 4.4: System to Test the Message Prioritization.

(a) CLI (b) Web-GUI

Figure 4.5: Switch Interfaces. (a) CLI and (b) Web-GUI.

At first, we used a commercial off-the-shelf switch to perform the tests, but that solution
was discarded due to the hardware gap when comparing the traditional switch with the switch
based on OpenFlow. Since this difference could jeopardize the analysis of the results, the
latter approach was adopted.

The OpenFlow switch used in this project is the Edgecore AS4610-54T [38]. This switch is
a commercial data center switch with 48 GE ports. It is compatible with some OS such as
OcNOS and PicOS [39]. For this project, the PicOS from Pica8 Inc. is used. Among other
features, this OS allows the users to configure the switch via a Command Line Interface (CLI)
(Figure 4.5a) or via a Web-based GUI (Figure 4.5b). These configurations can be OpenFlow
related, like creating flow entries or meters, or traditional ones, like adding a switch port to
a Virtual Local Area Network (VLAN). The CLI can be accessed either via Secure Shell
Protocol (SSH) or via Serial Port.

The mock devices used are based on two SIMATIC IOT2040 [27] devices. These devices,
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created by Siemens, were developed to be intelligent gateways for IIoT that work 24/7 in
an industrial environment. In a real scenario, the gateways would be acquiring factory floor
data, processing it (if necessary), and then sending it to a CTM system. The IOT2040 is
compatible with Yocto Linux. Its operating system image and the SDK can be customized
and created using Poky. For this project, a kernel was generated based on Yocto Linux 3.1
and the metadata provided by the manufacturer. Two main reasons lead to the choice of these
devices instead of the already implemented MQTT device based on an ESP32 microcontroller:
(i) It is a commercial solution to implement an MQTT device or gateway in an industrial
environment; and (ii) it features two Ethernet interfaces, which means that it could connect
directly to the switch via Ethernet, whereas the ESP32 microcontroller would require either a
Wi-Fi access point or additional hardware to implement an Ethernet interface.

The MQTT Broker was implemented on a Raspberry Pi 4 running the Raspberry Pi OS
5.10.

Finally, for the remaining components, common personal computers were used. The mock
gateway and TG-1 run Ubuntu OS 20.04, whereas the Controller, TG-2, and TG-3 run
Lubuntu OS 19.04, since they did no meet the Ubuntu OS recommended minimum system
requirements.
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CHAPTER 5
Framework for CTM Systems

This chapter is dedicated to the implementation and validation of the framework developed.
Section 5.1 presents how the framework, whose architecture has already been defined, was
implemented. In particular, it is discussed how we configured the toolkits and frameworks
selected to implement each component. Additionally, it is presented how the system functional
blocks communicate with each other. Next, we added some devices to the system to validate
the operation of the framework implemented. It is important to refer that the objective was
not to produce a CTM system for a specific purpose but to test the framework. The process
to include each device in the system, from defining it in the gateway to implementing the GUI
to interact with that device, is described in Section 5.2. Moreover, it is described the process
of developing a device driver for the gateway (for the KNX device) and the implementation of
the MQTT device’s firmware.

5.1 Implementation

This section focuses on the implementation of the framework’s components, in particular
the gateway (Subsection 5.1.1), database and server agents (Subsection 5.1.2), and GUI
(Subsection 5.1.3). We used the virtual device provided by EdgeX Foundry to validate
primarily the correct operation of each component.

5.1.1 Gateway

The framework EdgeX Foundry was the selected one to implement the gateway. Since
there was no need to change or add functionalities to the source, we executed it in user mode.
Therefore, it was required to install Docker Engine [40] and Docker Compose [41] (and the
respective dependencies) as specified in the Docker documentation, to run the framework in
user mode.

In the scope of this dissertation, the gateway was based on the release 1.2 (Geneva) of
EdgeX Foundry. There is a GitHub repository [4] that provides YAML [42] docker-compose
files to run the gateway. Several files are provided for the Geneva release, varying: (i) the
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architecture of the machine (x86 of ARM); (ii) the database (Redis or MongoDB); and (iii)
security features. For this project, we selected: (i) the version for x86-based computers,
according to the machine the system is running on; (ii) Redis database as the persistent
storage unit, since MongoDB will be deprecated in future releases; and (iii) without security
features, since it was not the objective of this project to study the security services provided
by the gateway.

Next, by analyzing the docker-compose file downloaded, it is possible to understand that
by default, it defines a Docker network, eleven Docker containers, and the order they should be
started. Nine of the docker containers correspond to the main microservices that compose the
gateway, whereas the last two correspond to device services, namely REST and Virtual. The
former, REST device service, allows third-party applications to push data into the gateway
using a pre-defined REST API. On the other hand, the Virtual device service consists of four
simulated devices that generate random data. The last device is handy to test the gateway’s
operation since it pushes data to the gateway and receives commands from the gateway (e.g.,
to enable or disable randomization). The Docker network is used to allow communication
between the different microservices. Finally, the docker-compose file contains the required
information to run each microservice successfully, including network specifications, host and
container names, environment variables, dependencies, Docker image, and other definitions.
The image field contains the path to a Docker Hub repository that contains the image. When
the system is started for the first time, using the docker-compose command and the selected
docker-compose file, all the microservices are downloaded from their respective Docker Hub
repositories.

After ensuring that the system was running with the virtual device services, two additional
microservices were added to the docker-compose file, and consequently, the gateway. The first
microservice added was a simple user interface used for developers to monitor and manage
the instances of the system. One can find the Docker image of this user interface in [43]. The
second component added to the gateway was an application service based on the already
implemented configurable application service. Figure 5.1 represents the microservices that
compose the gateway.

Until this moment, every image was instantiated with its default configurations. However,
even using the user approach to run the gateway, it is possible to define custom settings to
alter how the containers behave. For that, it is necessary to write configuration files, using
TOML [44], mount them using volumes, and change the microservice’s entry point to use the
custom configuration file.

The configuration files allow developers to change different settings, for instance, regis-
tration, database, and service settings. However, in the scope of this project, we focus on
the Writable and Binding section of the configurable application services’ configuration file.
The former includes a subsection dedicated to specifying the function pipeline used by the
application services. In contrast, the latter is used to define the trigger that precedes the
execution of that pipeline.

So, using the features provided by the configurable application service, it was created our
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Figure 5.1: Gateway Microservices.

Figure 5.2: Application Service Function Pipeline.

custom application service whose function pipeline is presented in Figure 5.2. It is possible to
observe that the pipeline is triggered whenever a message is published to the topic "events"
from the gateway message bus. This is the topic used by the core data microservice to publish
data received by the devices connected to the gateway. So, in short, the application service
pipeline is triggered when the device services collect data from the devices. Apart from
the trigger function, four standard functions compose the pipeline: FilterByDeviceName,
TransformToJSON, HTTPPostJSON and MarkAsPushed. So this pipeline starts by filtering
the devices whose data should be exported, then the data is transformed to JSON format,
and finally, it is posted to an HTTP endpoint. The list of devices to filter and the HTTP
endpoint are specified in the service configuration file. Lastly, the MarkAsPushed function
signals the gateway that the information has already been exported, meaning that the core
data microservice can delete its entry from the persistent storage unit.

In Listing 1 it is possible to analyze an example of a JSON message exported by the
gateway. First, it can be noted that the application services can send more than one reading
at one time and that two "origin" fields are added. These fields contained Unix timestamps
(in nanoseconds) of the moments when the exported message was prepared, and the data was
collected from the device.

To summarize, at this point, the gateway implemented was ready to receive commands to
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{
"id" : "ea1308ea-b553-4242-923d-dee82ec466df",
"device" : "Random-Integer-Device",
"origin" : 1604659537541997035,
"readings" : [ {

"id" : "d786fcde-3cfa-4843-8ba7-b3db6ba804a3",
"origin" : 1604659537379490905,
"device" : "Random-Integer-Device",
"name" : "Int8",
"value" : "41",
"valueType" : "Int8"

} ]
}

Listing 1: Example of a JSON Message Exported by the Application Services.

actuate on the devices and to send the data gathered by the devices to an HTTP endpoint.
The former feature was done by the provided REST API defined in the Core Command
Service. In contrast, the latter was accomplished by the developed application service.

5.1.2 Database and Server Agents

With the gateway implemented, it was time to implement the infrastructure. Its main
component is a database, but it also requires server agents and a GUI. The latter is discussed
in Subsection 5.1.3 and aims to allow users to establish communication with the gateway.

Firstly, InfluxDB was installed from its source code, alongside its dependencies. The
instruction for this installation process can be found in InfluxDB documentation [7]. Then the
database structure was designed; InfluxDB uses measurements to separate the data inside the
database. So we decided that the information should be divided into measurements according
to their device resource name, to facilitate the analysis of multiple devices that gather the
same physical quantity. Considering Listing 1, the device resource name is specified in the
field "name". In a real-life scenario, such as when using a power meter device, which can be
called for example PowerMeter-1. The field "device" of the exported JSON message would
contain "PowerMeter-1", whereas the "name" field would then contain device resources’ names
like power, voltage, or current. So, the data would be stored in three different measurements:
power, voltage, and current. The structure described can be seen in Figure 5.3 for the example
of the virtual device.

InfluxDB provides a REST API to interact with the database. In particular, it is possible
to push data into the database via an HTTP post, using the InfluxDB line protocol. The
messages that are exported from the gateway use the HTTP protocol, but its content is
in JSON format. To solve this issue, Telegraf was used as a server agent to guarantee
communication from South to North, also called the SN server agent.

Telegraf has a plugin-based architecture, and a typical Telegraf application is composed of
three types of plugins: inputs, processors and aggregators, and outputs. It is necessary to
add the desired plugins to a TOML configuration file to run the Telegraf server agent. Those
plugins act as function pipelines (similar to the gateway’s application services). Figure 5.4
presents the pipeline developed for the Telegaf server agent. It is composed of a single input
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Figure 5.3: Database Structure (Example using Virtual Device).

Figure 5.4: Telegraf SN Server Agent Pipeline.

Int8 value=41i,valueType="Int8",id="d786fcde-3cfa-4843-8ba7-b3db6ba804a3",origin=160465 c
9537379490905,device="Random-Integer-Device"
1604659538571697235

↪→
↪→

Listing 2: Example of a Line Protocol Message To Insert Data Into the Database.

plugin that is responsible for reading and filtering the JSON data sent by the gateway. This
plugin also automatically transforms the information received into the InfluxDB line protocol.
Next, the data is transferred to two processor plugins. The first sets the measurement to the
device resource name and the second converts the data from string type to the data type
specified in the JSON message. Finally, to end the functions pipeline, the processed data is
pushed into the database.

Listing 2 presents, as an example, the message from Listing 1 after being transformed
and processed by the server agent. The server agent ensures that this message is sent to the
database HTTP endpoint to store the data that it contains.

With this implementation, it is guaranteed that the data from the gateway application
services is successfully written in the database (with the correct data type). Next, we
implemented the NS server agent. Contrarily to the SN server agents, its objective is to send
commands to the gateway (that are then sent to the devices). These commands will come
from the GUI, and the interface between the GUI and the gateway is done by the NS server
agent.

The system was designed to work as follows: (i) the user interacts with the GUI; (ii) the
command from the user is processed and stored in the database; (iii) the NS server agents
read that command, process it and send it to the gateway; (iv) the gateway interacts with the
devices. This procedure is represented in Figure 5.5. It is also possible to observe that there
are two types of possible interactions from the users: GET and PUT.
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(a) Get Command.

(b) Put Command.

Figure 5.5: Sequence to Perform (a) Get and (b) Put Commands, from end-to-end.

# Get command
user_input_get device="<my_device>",command="<my_command>"

# Put Command
user_input_put

device="<my_device>",command="<my_command>",body="<my_device_resource>:<my_device_resource_value>"↪→

Listing 3: Line Protocol Message Structure To Insert User Input.

38



Subsection 5.1.3 addresses the part of acquiring the commands from the user and storing
them in the database. Here we discuss the implementation of the NS server agent that sends
commands to the gateway based on the instructions stored in the database. So, it is necessary
to define how the data is deposited in the database (by the GUI) before developing the NS
server agent. Listing 3 presents the InfluxDB line protocol message structure that enables the
GUI to save user commands in the database.

InfluxDB provides a subscription feature [45] that consists of forwarding specific data
written in the database to an external endpoint (for example, an HTTP endpoint). This
feature was used by the NS server agent, which consists of a web-server, implemented using
Python 3, whose operation can be described as follows:

1. Create a subscription to InfluxDB, specifying the subscription name (sub0), database
name (database_influx) and the NS server Uniform Resource Locator (URL).

2. Whenever a post request occurs, verify if the body of the request contains either
"user_input_get" or "user_input_put".

3. If it does, it means that the user wants to send a command to the gateway. So, the
received data (that is in InfluxDB line format) is parsed.

4. Depending on the command type, a put or a get request is prepared based on the device
and command parsed.

5. In case of a put request, the body field is once again parsed to transform its "key:value"
structure into JSON.

6. Finally, the request is sent to the gateway via its REST API, in particular to http://edgex-
core-command:48082/api/v1/device/name/<my_device>/command/<my_command>
and whose body field is either the message obtained from point 5 or empty, depending
on the request type. After the HTTP message is sent, the process repeats from point 1.

One can observe that the response from the HTTP get request is not used because once a
gateway command is sent, the data generated by the device triggers the application services
pipeline. So, instead of expecting the HTTP response itself, the user waits for the application
services to push that same data into the database, that is consequently represented in the
GUI.

Finally, the NS server agent was "dockerized" so that all the infrastructure components
could be added to the system docker-compose file. The database, SN server agent, and NS
server agent were then added to the compose file. Finally, volumes were added to the first two
containers to define specific settings in InfluxDB and pass the configuration file (including the
plugin pipeline) in the other one.

To conclude, the backend part of the infrastructure was completed. With this, the
communication between the gateway and the database was established. Then, two server
agents were used to make the interface between these two components. In the end, we added
the elements used and developed to the docker-compose file that contained the gateway
microservices.
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Figure 5.6: Grafana Query tool.

5.1.3 Graphical User Interface

The last component implemented was the GUI, which was developed using Grafana. At
first, Grafana was installed from the source code, following the instructions provided by the
documentation [11].

After setting up the platform, it was necessary to specify a data source. In the case of
this platform, the source was the database (InfluxDB). This process can be done via the
user interface provided by Grafana, and it requires specifying: the DBMS, query language,
database URL and other communication settings, authentication configurations, and other
details. After configuring the data source, Grafana provides a mechanism to test if it can
connect to the database with the specifications.

Once the communication between the data source and GUI is verified, a dashboard was
created (for testing purposes). This dashboard aimed to represent the data retrieved from the
virtual devices graphically. So we added panels to the dashboard and selected the desired
visualizations that can be, for example, graphs, gauges, bar gauges, text, heatmaps, or pie
charts. Of course, alongside the visualization mechanism, it is necessary to get the data to
represent. For that, Grafana provides a graphical query tool customized for the data source
selected (in our case, InfluxDB) to choose the data. An example of that tool can be observed
in Figure 5.6.

Notice that "Int32" corresponds to the measurement name that refers to a device resource
and not to the data type (that, in this case, are the same). In the figure it is represented a
typical query. It is only necessary to change "Int32" and "Random-Integer-Device" to their
respective measurement and the device for other scenarios. The device field is particularly
necessary when it is intended to filter some device or devices. Take, for example, a situation
where multiple devices collect a "temperature" variable. If they share the same device resource
name then they will be stored under the same measurement. Thus, filtering is required if the
developers only want to show data from specific devices.

After querying the data and selecting the most appropriate visualization tools, the
communication from the South to the North part of the system was accomplished. Finally, it
was guaranteed that the data gathered (although from virtual devices) was presented to the
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Figure 5.7: Grafana Custom Input Panels.

user via a GUI. It was then time to close the loop by allowing the user to interact with the
devices in that same GUI.

The tools to get user inputs provided by Grafana are quite limited. For this reason, text
panels were used to implement the elements that allow users to interact with the devices. The
text visualization tool allows the developers to create custom panels using HyperText Markup
Language (HTML) and JavaScript. We created three different templates:

• Get command - Allows users to retrieve data from the devices asynchronously.
• Put command with binary input - Allows users to send binary commands to the devices

(e.g., turning on or off a heater).
• Put command with text input - Allows users to send text-based commands to the devices

(e.g., defining the temperature setpoint of a heater). Users may send integer, float, and
binary data types using this template.

Figure 5.7 shows a scenario where the three templates described above are used. The
Random-Integer-Device, a virtual device that randomly generates numbers with different data
types, has a command (and a device resource) called "Int16". Users may use a get command to
collect a new random number. Additionally, two put commands may be used, one to disable
randomization and the other to impose a specific value.

To use the template, a developer needs to specify the device and command names. In
the case of PUT commands, it is also necessary to specify the device resource name that
it is intended to change, in the field "body". As defined in Section 5.1.2, the database
name used was "database_influx" and the measurements used to store user commands were
"user_intput_get" and "user_intput_put". Both database and measurement names should
not be changed from the template.

Focusing on the example of the "Int16" command, after configuring the templates
correctly, a user should get and set the integer value. When this happens, i.e. when
the user presses the "GET" or "SEND" buttons, an HTTP post is sent to the URL
https://influxdb:8086/write?db=database_influx with the content presented in Table 5.1,
respectively. Notice that in the body field of the PUT command, the device resource name
and value are separated by a colon.

In the end, and following the same principle applied before, we added Grafana to the
gateway docker-compose file. The image of Grafana is available in Docker Hub [46]. A
volume was mounted to the container with the required provisioning specifications regarding
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Action HTTP Post Command Body (using influxDB line protocol)
GET user_input_get device="Random-Integer-Device",command="Int16"
PUT user_input_put device="Random-Integer-Device",command="Int16", body="Int16:250"

Table 5.1: Examples of an HTTP Post With User Input Data.

Figure 5.8: Grafana Random-Integer-Device Dashboard.

the data source and the dashboards. With this change, there is no need to configure the
connection to the data source since that procedure is done automatically. Moreover, the
dashboards developed must be saved (into JSON files) and stored in the path specified in the
docker-compose file.

To conclude, the GUI was the last element of the framework implemented. It allows users
to graphically analyze the data collected from the virtual devices (stored in the database)
and control the devices using the custom panels developed for this purpose. In terms of
development, we created three HTML templates to allow developers to add their custom
buttons to control the devices. Finally, the GUI was added to the docker-compose file as a
microservice to facilitate the implementation of the CTM system. Figure 5.8 presents the
dashboard created to monitor and control the virtual devices used for testing purposes.

5.2 Validation

This section focus on the validation of the framework for CTM systems developed. Apart
from the REST and virtual device services provided by EdgeX Foundry, three device services
(also referred to as device drivers) were added to the gateway. Each one of them was responsible
for making the interface with a different communication protocol.

EdgeX Foundry already provides the microservices to connect to MQTT and Modbus
(TCP/IP and RTU) devices. However, at the moment of this writing, the KNX protocol was
not supported by the gateway. So, the device service SDK was used to develop a device driver
for the KNX device. In the three cases, configuration files were created to modify specific device
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driver settings and mounted as volumes on the docker container of each microservice. This
procedure was similar to what was done before, for example, in the configurable application
service. The device services’ configuration files include, in particular, a path to the device
service profiles. These profiles are YAML files that contain information about the physical
device connected to the gateway. The device services profiles include:

• General considerations about the device (such as name, manufacturer, model, descrip-
tion).

• Device Resources - a list of the device resources, each specifying the data type, units,
default values, if it is a resource to read from, write to or both, and other features. This
list allows the gateway to implement a digital twin of the physical device, meaning that
when a device resource is modified, it affects the physical device and vice-versa.

• Device Commands - a list that contains the command names, the device resources used
by each command, the operations (get or put) on the device resources, and additional
parameters.

• Core Commands - a list of core commands that define settings regarding the interface
with the devices from outside the gateway. In short, they specify the REST API that
allows third-party agents to interact with the physical devices.

5.2.1 Modbus Device

The Modbus device used to validate the system was the EM340 [35] from Carlo Gavazzi.
This device is a three-phase energy meter with tariff management and an LCD touchscreen
display. It can measure energy, power, voltage, and current values, of three-phase and single-
phase loads. The interface with this device can be done via the display or RS485 port. In
both, it is possible to retrieve the data collected or manage the device settings.

The load selected to test the device was an electric heater with two operational modes, one
that consumes approximately 1 kW and the other that consumes approximately 2 kW. The
energy meter was placed in between the load and the mains power. We used an RS485/USB
adapter to connect the meter to the gateway. This communication was done using the Modbus
communication protocol. Figure 5.9 summarizes the interfaces between the load, mains power,
meter, and gateway.

After configuring the physical device, the Modbus device driver was added to the sys-
tem. EdgeX Foundry provides the image of this microservice in Docker Hub [47]. So, the
microservice was added to the Docker compose-file of the framework. A directory containing
the configuration file and device profile was mounted to the microservice container.

The configuration file included configurations regarding the device, service settings, and
the device profile name. Considering the device settings, and in particular the communication
part, it was specified the serial port address, baud rate, data bits, stop bits, parity, and unit
ID. The last is helpful in situations where multiple Modbus devices are connected to the
gateway. Note that the gateway acts as the Modbus master device. The configuration file
also included the definition of auto-events. This allows the gateway to gather information
with a defined periodicity automatically. To generate these, it is necessary to specify a device
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Figure 5.9: Modbus Device Electrical Diagram.

resource and the respective sampling period. In our case, the sampling period of all device
resources was 20 seconds.

The device resources, defined in the device profile, were the voltage and current measured in
the three phases and the total energy consumption. These were only some of the measurements
provided by the meter. Notice that, as it was used a single-phase load, and it was connected
to phase 1, only VoltagePhase1, CurrentPhase1, and TotalEnergy device resources provided
relevant measurements. The device profile in the device resources list included the address
of the holding registers containing the desired data. These addresses and other relevant
information regarding the communication with the device are specified by the manufacturer
[48].

At this point, the Modbus device service was completely configured to interact with the
EM340 device. So, a dashboard was implemented, as shown in Figure 5.10, after validating
that the desired data was being inserted in the database. This dashboard uses gauges, bar
gauges and a chart to represent the measurements obtained from the device. In addition,
for each resource, we added a button to allow the user to get the respective measurement
asynchronously.
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Figure 5.10: Part of the Modbus Device Dashboard.

5.2.2 MQTT Device

To validate the system using the MQTT protocol, it was necessary first to create an
MQTT device and then add it to the gateway (similarly to what was done in the Modbus
device).

The device, whose circuit is represented in Figure 5.11 was developed based on a ESP32-
DevKitC [49], from Espressif. The system implemented simulates a heating system with an
ON/OFF controller. The microcontroller reads the temperature from a TC74 [50] sensor and,
based on that, actuates on a resistor that produces heat when the current temperature value
is below the setpoint. A transistor (IRF840 [51] was used as the power interface between the
resistor and the ESP32 board. Additionally, it has two Light-Emitting Diodes (LEDs) and
one pushbutton. One LED indicates if the system is actuating on the resistor, and the other
indicates whether the heater is turned on or off. The pushbutton was added to allow the user
to indicate an emergency. In a real scenario, this button could, for example, halt the heater
or even turn off the power box of a building, house, or factory.

The implemented MQTT device has four device resources, namely, temperature, heater
setpoint, heater state, and alarm. The first resource, temperature, can only be read since it is
acquired from the MQTT device. The heater setpoint is the resource that allows the user to
select its desired temperature and can be either read from or written to the device. The same
happens to the heater state resource, but in this case, it allows the user the turn on or off the
heater. This means that the actuation on the resistor requires both the heater to be turned
on and the temperature value to be inferior to the heater setpoint value.

The code to implement the heater system was developed in C. It was used a framework
ESP-IDF [52] and the MQTT client part of the system was based on the code provided by
the same framework and available on GitHub [53]. After establishing MQTT communication
with a simple third-party application, a device driver was created to communicate with the
TC74 temperature sensor, whose interface was done via I2C. Next, the operation of the
temperature sensor was validated, and the LEDs, pushbutton, and power resistor with the
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Figure 5.11: MQTT Device Circuit Diagram.

respective transistor were added to the system and then validated. So, at this point, all the
required hardware components were set up, the firmware to interact with those components
was implemented, and the software to establish MQTT communication was validated, so it
was time to join all the components together.

From a high-level point of view, the MQTT device performs the three tasks that follow:
• Temperature task - the system periodically reads the temperature from the sensor

and actuates on the resistor based on that temperature, the heater setpoint, and the
heater state. The last two are defined by the user.

• Alarm task - responsible for checking when the alarm button is pushed. If the button
is pressed, an MQTT message is sent to the gateway.

• Communication task - when an MQTT message using the JSON format is received,
it is first parsed. If it is a valid message, i.e., it is a command from the gateway, that
command is executed and the MQTT response is sent. The command can be either a
get or a put. In the second case, the respective variables are updated and the actuation
is executed in the hardware accordingly.

Of course, before starting these tasks, there is a setup process where the whole system is
prepared to execute its function. There, the ESP32 board GPIOs are configured. In particular,
the pin that connects to the transistor via a pull-up resistor is configured in open-drain mode.
This is because its Gate-Source voltage threshold is superior to 3.3 V (the microcontroller
operating voltage). So, we used a pull-up resistor to 5 V, and the pin was configured in
open-drain mode. This mode protects the microcontroller that, in standard configuration, is
only tolerant to voltages up to 3.3 V. The pin that connects to the pushbutton is configured in
pull-up mode to avoid using an external resistor for the same effect. The LEDs are configured
as standard outputs. In the setup process, the TC74 is also initialized, and the MQTT topic
where the gateway publishes its messages is subscribed.
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# Get and Put commands (published in CommandTopic)

{"cmd":"temperature", "method":"get", "uuid":"60d28d41b8dd790001fc6dcc"}
{"cmd":"setpoint", "setpoint":50, "method":"set", "uuid":"60d28d4fb8dd790001fc6dd3"}

# Responses to the get and put commands (published in ResponseTopic)

{"cmd":"temperature", "method":"get", "uuid":"60d28d41b8dd790001fc6dcc",
"name":"MQTT-Demo-Device", "temperature":25}↪→

{"cmd":"setpoint", "method":"set", "uuid":"60d28d4fb8dd790001fc6dd3",
"name":"MQTT-Demo-Device", "setpoint":50}↪→

# Asynchronous data sent by the MQTT device (published in DataTopic)

{"cmd":"alarm", "method":"get", "name":"MQTT-Demo-Device", "alarm":true}

Listing 4: Examples of Packets Exchanged by the MQTT device and the Gateway.

Regarding the communication with the gateway, three topics are used: CommandTopic;
ResponseTopic; and DataTopic. The gateway publishes its commands (get or put) in the
former topic and expects the response from the MQTT device in the second one. The response
from the device is similar for both put and get commands; it adds a "device" field to the
message, containing its name, and in the case of the get command, the device sends the value
of the desired device resource. Lastly, the DataTopic command allows the MQTT device to
send data to the gateway asynchronously. This last feature is used by the alarm button as an
alternative to polling, to reduce bandwidth usage. Listing 4 presents examples of the three
types of messages presented above.

Similar to what was done in the case of the Modbus device, described in Subsection
5.2.1, the device service was based on an image provided by EdgeX Foundry in Docker Hub
[54]. It was mounted on the microservice’s container a configuration file that contained, in
particular, configurations regarding the MQTT protocol (address of the broker, QoS, topics,
credentials, among others). To support MQTT communication, we added a broker to the
system’s docker-compose file. The broker used was the Eclipse Mosquitto, whose image
can also be found in Docker Hub [55]. As stated before, the alarm device resource was not
periodically read by the system, so an auto-event was configured to execute every minute.
This feature works as a "heart bit" to check if this functionality is working. An auto-event
every 20 seconds is triggered to acquire the remaining device resources.

Finally, a GUI was implemented to allow the user to interact with the devices. This
interface is presented in Figure 5.12. Notice that, in contrast to the Modbus device, the user
has now the ability to actuate on the device. This can be done via the text input box (to
change the heater setpoint) and the checkbox (to change the heater state).
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Figure 5.12: MQTT Device Dashboard.

5.2.3 KNX Device

The last protocol added to the framework was KNX. In this case, multiple commercial
KNX devices were used. These devices communicate via a bus. A KNX BAOS was used to
make the interface between the bus and the gateway. This device provides multiple tools to
allow a third-party application to interact with KNX devices.

First, the devices were set up as shown in the simplified schematic presented in Figure 5.13.
A KNX power supply was used to provide energy to all devices, except the DALI gateway
and the energy meter, via the KNX bus. This means that the bus was used not only to allow
communication between devices but also to power them. The ETS5 Professional configuration
software tool was used to design and configure the KNX devices in the bus. This tool, which
runs on Windows machines, makes the connection with the KNX bus via a USB interface
device. In short, and among other functionalities, ETS allows designers and developers to
manage the KNX devices and to create interactions between them. For example, it can
be used to turn on a DALI Lamp via the DALI gateway when the KNX presence detector
detects someone. Additionally, this software tool allows the users to make device-specific
configurations, for example, fine-tuning the presence detection thresholds.

In the scope of this project, the objective was not to use the ETS tool as a way to
automatize and create rules between the devices. The aim was instead to configure the devices
to allow the KNX gateway to access and control all other instruments. After that was done
and validated, the KNX device service was developed.

As stated before, EdgeX Foundry does not provide support for the KNX protocol. For
this reason, the device service SDK was used to implement the custom microservice. The
tools and dependencies required by the kit are specified in the documentation [3]. There are
tools to develop device services in Go Lang and C. In the scope of this project, Go Lang
was selected due to the fact that most of the gateway components were implemented in this
language.

In short, the SDK provides the bare-bones to implement a device service. It already imple-
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Figure 5.13: Simplified Schematic of the KNX Devices.

ments the component that establishes communication with the Core Services, so developers
should focus on two main functions, namely, HandleWriteCommands, and HandleReadCom-
mands, to, as the names imply, handle read and write commands from the gateway. When
these handlers are called, the system establishes a TCP/IP connection with the KNX gateway
to either collect a specific measurement from the KNX bus (read command) or actuate on a
specific KNX device (write command).

After implementing it, the KNX device service was "dockerized", i.e., a container was
created to run that microservice. Then, this container was added to Docker Hub and the
docker-compose file of the framework. As done before, a configuration file (and device profile)
were mounted as volumes to the container. This allows developers to make specific changes
without the necessity to deploy a new container.

Although multiple devices were used, only one device profile was created. This is due to
the fact that, from the framework’s point of view, there is only one KNX device, and that is
the KNX gateway. So, that single device profile, in fact, describes resources from multiple
KNX devices.

Finally, a dashboard was created from where it was possible to monitor the device resources
and to actuate on the devices intuitively. In Figure 5.14 it is shown part of the dashboard
developed, where it is possible to see measurements from the energy meter, switch actuator,
and a DALI lamp (via the DALI gateway) devices. Multiple visualization tools were used
to represent the data, and different buttons were used to allow the user to actuate on the
devices.
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Figure 5.14: Part of the KNX Device Dashboard.
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CHAPTER 6
Message Prioritization Mechanism

This chapter presents how the message prioritization feature was implemented and validated.
It is relevant to emphasize that this change in the system only affected the communication
between the devices and the gateway. Regarding hardware, it consisted of using an OpenFlow
switch and an OpenFlow controller instead of a conventional network switch. Then, all the
configurations were done in those two elements, which means that neither the devices nor the
CTM system framework suffered changes.

Due to the separation mentioned before, it was possible to implement and validate the
message prioritization mechanism in a simplified system. The network diagram of that system
is graphically represented in Figure 6.1.

The simplified version of the CTM system implemented is composed by five main functional
elements: Switch and Controller (Section 6.1), Mock Gateway (Section 6.2), Mock devices
(Section 6.3), MQTT Broker (Section 6.4), and TG (Section 6.5).

When comparing to the CTM system framework developed, the gateway based on EdgeX
Foundry was replaced by a Python script that receives and processes specific MQTT messages
sent by devices. Although the algorithm does not implement a gateway, the term mock gateway
was used to ease the comparison between the CTM system framework and its simplified version.
For the same reason, the phrase mock device was used when referring to the MQTT devices
used to validate the message prioritization mechanisms.
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Figure 6.1: Network Diagram to Test the Message Prioritization Mechanisms.

6.1 Switch and Controller

As mentioned before, for testing purposes, we used the same hardware for both setups 1
and 2 that implement, respectively, a conventional and an SDN switch. In the first setup, the
role of the switch is to forward incoming packets to the correct destination port. On the other
hand, in the second setup, we added the bandwidth reservation feature to guarantee enough
bandwidth for the MQTT messages. This feature was added via the switch CLI, whereas the
packet forwarding feature is implemented by the controller, as explained below.

Firstly, it is necessary to create a bridge on the switch and add the seven required ports.
Then, it is needed to add the controller to the system. One can do these three configurations
via the switch CLI. Note that the controller uses a specific switch port meant for management.

It is important to stress that this experiment was meant to test a network with Fast
Ethernet speed in Full-Duplex mode. However, some elements like the switch, the mock
gateway, and TG-1 have Gigabit Ethernet Interfaces. At first, the switch ports were configured
to limit their speed to 100 Mb/s in Full-Duplex mode. However, we observed that although the
switch’s configurations stated that all the ports were configured in Full-Duplex mode, the links
were working in Half-Duplex mode. We configured the switch to perform auto-negotiation
(default setting) to solve this issue. So, the machines with Gigabit Ethernet interfaces were
configured to advertise their link’s speed as 100 Mb/s in Full-Duplex mode. This was done
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Figure 6.2: Flow Table Example to Perform Packet Forwarding.

using the ethtool command [56].
For both setups, it was used the Ryu controller, which was installed on the machine

responsible for running the controller, and then an application based on simple_switch_13.py
[57] was executed. This Ryu application acts as a standard MAC-learning switch implemented
in OpenFlow. By default, at start-up, it creates a flow entry with low priority (0) to redirect
all the packets received to the controller. Then, whenever there is a new communication,
it adds the MAC address of the transmitting host if it is not already there. When there is
enough information about the hosts (source and destination MAC addresses and the respective
ports), a new flow is added to the flow table with more priority (1) than the one created
by default. So, for example, if Host-A (port 1) sends Host-B (port 2) a message, if the flow
entry: in_port: 1, eth_dst: Host-B, eth_src: Host-A, output: 2 is present in the flow table,
then the packet will be forwarded to the Host-B on port 2 directly (without passing through
the controller). If no flow entry matches the received packet, apart from the default one, the
message is redirected to the controller that either floods the packet to all the switch ports
or, if the packet’s source MAC address was the only information left to add a new flow, the
packet is then forwarded to the respective output port, and a new flow is added to the flow
table. An actual flow table, with four devices connected to the switch, looks like the one
presented in Figure 6.2.

The default simple_switch_13.py writes the new flow entries to flow table 0. That
would work well for setup 1 but not for setup 2, where the objective is to attribute different
packets to different queues based on their protocol. Since the selection of sensitive messages
must be made before forwarding the packets to the output ports, flow table 0 was reserved
for that implementation. This means that, for both setups, table 1 was used for packet
forwarding. So, changes were applied to application simple_switch_13.py and saved to
qos_simple_switch_13.py so that its flow entries are recorded in flow table 1 instead of flow
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table 0.
Finally, for setup 1 (traditional switch) to be implemented entirely, it is necessary to add

a flow entry to table 0. That flow will simply forward all packets to table 1 since no message
prioritization features are to be implemented. The switch will not work correctly without that
flow since the packets always start to be processed in table 0. So, if flow table 0 is empty, the
packets are dropped. After adding the flow entry, using the switch CLI setup 1 is completed.

To properly implement setup 2 (SDN switch), it is required to (i) define two QoS queues
in all seven ports of the bridge, and (ii) create flow entries to match the packets with the
respective queues. Both steps can be done via the switch CLI after the former step is completed.
Each port of the bridge should have two queues as follows:

• Queue 0 - Default
• Queue 1 - Minimum bandwidth of 5 Mb/s
Moving to the flow entries, for setup 2, table 0 is not simply used to forward packets to

table 1. In fact, its objective is to filter the sensitive MQTT packets and, when detected, set
them to go to queue 1 (the one with at least 5 Mb/s), while all the remaining packets are
set to go to queue 0 (the default one). After being assigned to the desired egress queues, all
messages move to flow table 1, where they will be forwarded to the respective switch port or
the controller. So, to implement setup 2, all the previous configurations must be kept apart
from flow table 0. The flow entry created before, that dispatches all traffic to table 1, must
be deleted. Next, in flow table 1, three flows must be added. Two flows to detect MQTT
packets and set them to the priority queue, and the other to assign to the default queue all
the remaining packets. Finally, after completing the configurations described, using the switch
CLI, setup 2 is successfully configured.

The necessity to add two flows is to prioritize MQTT messages from the transmitting host
or hosts to the broker, as well as from the broker to the receiving host or hosts. So, as the
broker uses the network port 1883, it is necessary to prioritize TCP/IP messages (given that
MQTT runs over TCP/IP) whose network destination or source port, respectively, is 1883.
In short, to identify MQTT packets, a flow entry must specify:

• Protocol Type (eth_type) - 0x0800 (IPv4)
• IP Protocol Number (ip_proto) - 0x06 (TCP/IP)
• Network Port (tp_dst or tp_src) - 1883
Figure 6.3 presents the flow tables 0, from setups 1 and 2. Notice that these flow tables

have the role of selecting the sensitive packets and setting them to the specific egress queues.
The process of forwarding packets to the switch ports is done in table 1, which is the same for
both setups. The process of adding the flow entries to table 1 is done automatically by the
Ryu controller. An example of this table can be found in Figure 6.2
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(a) Setup 1

(b) Setup 2

Figure 6.3: Table 0 Flow Entries From Setup 1 (a) and Setup 2 (b).

6.2 Mock Gateway

The computer that mocks the gateway is responsible for initializing the stress test experi-
ences, receive, process and save the MQTT packets, and analyzing them afterwards. To this
end, three Python scripts were written to (i) run the tests; (ii) analyze the raw data, process
it, and retrieve relevant data such as jitter and latency estimations; and (iii) analyze the raw
data, process it, and retrieve relevant data such as jitter and latency estimations.

The first script was implemented using the library Eclipse Paho [58] to establish MQTT
communication. The working principle of this script is:

1. Start the test by establishing communication with the MQTT broker and subscribing
to the topic tests_run, where the messages from the mock devices will be received.

2. Send the stress test configuration file to the topic tests_setup.
3. When a message is received, via the topic tests_run: verify that the message is valid

(the test_id must match the one specified in the configuration file) and store it along
with the arrival timestamp in a text file.

4. The tests are concluded after one of the following two scenarios: all mock devices’ last
messages are received or after a timeout (in cases of packet loss).

The configuration file uses the JSON format and can be edited in the mock gateway. An
example of a configuration file is presented in Listing 5. Note that the only information that
is relevant for the mock devices is: test_id (unique test identifier), devices (list containing the
names of the hosts that should participate in the test), num_messages (number of messages
to send), and interval_ms (the period, in ms, to transmit the messages). The configuration
file’s remaining content refers to traffic generation, and it is only useful for post-processing
purposes.

The messages generated by the MQTT mock devices also use the JSON format. They
contain the transmitting hostname, the test_id, the timestamp referring to the moment the
message was prepared, and the message that is a monotonous sequence of integer numbers
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{
"test_id": 25,
"devices": [

"device-A",
"device-B"

],
"num_messages": 36000,
"interval_ms": 50,
"trfc_gen_machines": [

"mock-gateway",
"tg-1",
"tg-1",
"tg-2"

],
"trfc_mbps_per_machine": 40,
"trfc_protocol": "UDP"

}

Listing 5: Example of a Configuration File.

{"device": "device-A", "test_id": 25, "timestamp": 1621370507152, "msg": 0}
{"device": "device-B", "test_id": 25, "timestamp": 1621370507153, "msg": 0}
{"device": "device-B", "test_id": 25, "timestamp": 1621370507163, "msg": 1}
{"device": "device-A", "test_id": 25, "timestamp": 1621370507162, "msg": 1}

Listing 6: Example of the MQTT messages transmitted by the devices.

{"device": "device-A", "test_id": 25, "timestamp": 1621370507152, "msg": 0,
"timestamp_arrival": 1621370507160}↪→

{"device": "device-B", "test_id": 25, "timestamp": 1621370507153, "msg": 0,
"timestamp_arrival": 1621370507164}↪→

{"device": "device-B", "test_id": 25, "timestamp": 1621370507163, "msg": 1,
"timestamp_arrival": 1621370507174}↪→

{"device": "device-A", "test_id": 25, "timestamp": 1621370507162, "msg": 1,
"timestamp_arrival": 1621370507179}↪→

Listing 7: Example of the MQTT messages modified by the mock gateway.

from 0 to (num_messages - 1). After receiving a message, the arrival timestamp is added
to the message before it is saved to a text file. The test’s configuration file is also saved
to the text file, alongside the modified messages, so that all the information required for
post-processing is saved in a single place. Examples of the messages sent by the mock devices,
as well as the modifications made in the mock gateway, can be found in Listing 6 and Listing
7, respectively.

After performing the tests, the scripts developed to analyze the data were executed. The
main results obtained are presented in Chapter 7.

6.3 Mock Devices

The mock devices, implemented on the SIMATIC IOT2040 machines, have the role of
simulating real MQTT devices or gateways. In an industrial environment, these devices would
be acquiring factory floor data and other MQTT devices’ data and then sending them to a
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CTM system. In this experiment, there were no sensors, so the data was generated on the
IOT2040 machines based on the configuration files received.

A Python script was written, also based on the Eclipse Paho library, and its working
principle is the following:

1. Establish communication with the MQTT broker and subscribe to the topic
tests_setup where the mock gateway will eventually send the configuration file.

2. When a configuration file is received, it starts the test if its hostname is specified in the
device list.

3. The mock device publishes MQTT messages with the same format as shown in Listing
6, in topic tests_run. The number of messages, periodicity, and test_id are specified
in the received configuration file.

4. When the test ends, the device waits for the mock gateway to send a new configuration
file and repeats the process from point 2.

6.4 MQTT Broker

The MQTT broker runs on a Raspberry Pi 4. The central role of the broker in MQTT
is to analyze the received packets’ topics and forward them to the hosts that subscribed to
that same topic. In this experiment, the MQTT broker used was Eclipse Mosquitto. All
the default configurations were kept, meaning that the network port 1883 was used as the
transmission and reception points.

6.5 Traffic Generators

In this experiment, we used three computers whose only purpose was to generate network
traffic. The use of these components aimed to mock real traffic in an industrial environment.
The software packETH [59] was used to generate traffic. For all the experiments, the target
of the packets generated was the Raspberry Pi (MQTT broker). To configure packETH
accordingly, it was necessary to specify:

• Source IP address and port.
• Destination IP address and port (Raspberry Pi’s IP address and port 1883)
• Protocol (e.g., UDP)
• Message Pattern (e.g., 0xAA)
• Packet Length (e.g., 1000 bytes)
An example of these configurations can be observed in Figure 6.4. Next, to generate traffic

in the network, it is necessary to set the bandwidth intended to be occupied by these packets.
For this experiment, to simulate a stressed network, the three TG machines and the mock
gateway generated UDP traffic at a rate of 160 Mb/s. This means that each traffic generator
machine and the mock gateway sent packets to the MQTT broker at a rate of 40 Mb/s each.

A simple UDP server was implemented, in Python, to run on the Raspberry Pi. We used
this server for two reasons: (i) for debugging purposes, to analyze if the UDP packets were
arriving at the rates defined in packETH; and (ii) to avoid creating more than the desired
traffic due to the unreachable port response from the Raspberry Pi.
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Figure 6.4: packETH Configuration Example.
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CHAPTER 7
Tests, Results, and Discussion

This chapter defines the tests performed to validate the system and discusses the main
results obtained from them. In particular, Section 7.1 presents the tests performed regarding
the framework developed for CTM systems, these tests aimed to evaluate the framework’s
scalability. On the other hand, Section 7.2 presents the tests to validate the message
prioritization mechanism implemented and its consequent results and discussion.

7.1 Framework for CTM Systems

The framework for CTM systems was validated by assuring that it was possible to (i)
analyze the data gathered from the devices in the GUI, and (ii) control the devices via the GUI.
In other words, the system ensures end-to-end communication. We repeated this process for
different devices, each with a distinct communication protocol (KNX, Modbus, and MQTT).
Finally, we tested the framework in terms of its scalability.

The scalability tests conducted focused on the MQTT protocol. However, we did not
use the MQTT device previously developed (based on an ESP32 board). Instead, personal
computers and a Raspberry Pi were used. This choice was made because there was only one
ESP32 board available. In addition, since we intended to test the system’s scalability, it would
be necessary to have more devices to test different scenarios.

So, in terms of hardware, we used a switch, five personal computers, and a Raspberry Pi 4.
The latter used the Raspberry Pi OS 5.10, whereas two personal computers ran Ubuntu OS
20.04 and the remaining Lubuntu OS 19.04. All of these machines ran mock MQTT devices
for testing purposes. Additionally, one of the personal computers ran the system, i.e., the
gateway, infrastructure, and MQTT broker. This setup is presented in Figure 7.1.

In terms of software, we implemented two types of mock MQTT devices:
• Automatic devices - These devices sent data to the gateway, asynchronously, with a

frequency defined in the device.
• Responding devices - These devices respond to request performed by the gateway.
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Figure 7.1: Setup to Test the Framework.

These two types allowed to test the three possible ways that the gateway has to gather MQTT
data: asynchronous messages sent by the devices, through the gateway’s REST API and via
auto-events. The last two made use of the Responding devices since in these scenarios the
gateway is responsible for requesting the data it intends to receive.

These mock devices were developed in Python 3, based on the Eclipse Paho library. They
were designed to send to the gateway, in JSON format, three components: a UNIX timestamp
of when the device prepared the message, a sequence number, and a test identifier. Thus,
both automatic and responding devices sent the same information, either periodically or after
a gateway’s request, depending on their type. It was also defined a command called "reset" to
allow the gateway to assign a specific test ID and reset the sequence number of the devices.

In total, we used six machines to perform the scalability tests. However, to simulate a
more realistic situation, each machine executed up to eight devices. This means that eight
scenarios were considered, from one device per machine (six devices) to eight devices per
machine (forty-eight devices).

From the gateway’s point-of-view, we created a single MQTT mock device. Forty-eight
resources were added to the device, one for each device. In practice, we used these resources
to acquire and store the JSON information sent by each device. An additional "reset" resource
was created to allow third-party software to control the tests via the gateway’s REST API.

The scalability tests considered four aspects: packet loss, latency, CPU usage, and memory
usage. Since the entire system (except the devices) runs on Docker, the performance metrics
were obtained using tools provided by Docker (namely, the command docker stats). Thus, we
studied the CPU and memory usages of the machine that runs the gateway, infrastructure,
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and MQTT Broker. That machine has 8GB of RAM and an Intel® Core™ i7-7500U CPU.
Finally, we performed several scalability sets of tests to reach the results presented in the

following subsection. The results presented were obtained from a set of tests that consisted of
acquiring data sent asynchronous, with a period of 1s, from the mock devices. For each test,
which took approximately 25 minutes, we used a different number of devices. The system was
restarted in between tests. After performing the scalability tests, the system’s latency was
studied, but this time, using responding devices instead of automatic devices. The objective
of this test was to analyze the latency in detail, taking UNIX timestamps in multiple points
of the system. These tests consisted of making 1500 consecutive requests to the gateway, via
the REST API.

7.1.1 Results

The scalability tests regarding CPU and memory usage of the gateway, according to the
number of devices used, are presented in Figure 7.2. As already discussed, the gateway is a
collection of multiple layers of services, so Figure 7.3 presents the evolution of the resources’
usage of each layer of services. Then, Figure 7.4 shows the same metrics of the last two figures,
but regarding the infrastructure services and the MQTT broker.

Figure 7.5 presents the evolution of the latency, from the moment a message is prepared
in the devices until it is inserted into the database. Notice that the points represented in the
chart correspond to the average latency values of all the devices used in the respective test.

For all the scalability tests performed, no packets were lost, and thus, this metric is not
graphically represented in this section.

Finally, we performed a different set of tests to understand better which system components
contributed the most to the latency. The results of such tests are presented in Table 7.1.

(a) CPU (b) Memory

Figure 7.2: Gateway Scalability Results Regarding (a) CPU and (b) Memory Usage.
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(a) CPU (b) Memory

Figure 7.3: Gateway Services’ Scalability Results Regarding (a) CPU and (b) Memory Usage.

(a) CPU (b) Memory

Figure 7.4: Infrastructure and MQTT Broker Scalability Results Regarding (a) CPU and (b) Memory
Usage.

Figure 7.5: Average Latency Estimation Regarding the Number of Devices.
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Timestamp Location Latency
Start End Average (ms) Standard Deviation (ms)

Request (out) MQTT Device (in) 46.39 34.40
MQTT Device (out) Core Service (out) 976.91 100.1
Core Service (out) Application Service (out) 0.40 2.75

Application Service (out) NS Server Agent (in) 12.67 3.50
NS Server Agent (out) Database (in) 8.06 4.21

Table 7.1: Latency From the Request to he Database

7.1.2 Discussion

From Figure 7.2 it is possible to conclude that for up to forty-eight devices, the usage of
the resources from the gateway grows nearly linearly, both in terms of CPU and memory. In
terms of the gateway’s services, it is possible to observe in Figure 7.3 that the vast majority
of the resources used by the gateway are consumed in its Core Services, which grow roughly
linearly with the number of devices used. In terms of memory, all other services remained
insensitive to increasing the number of devices. However, considering CPU usage, the Device
Services and Application services also increased with the number of devices.

Regarding the infrastructure, only the SN Server Agent and Database were considered
in the scalability tests. The GUI and the NS Server Agent were not affected by the number
of devices in the system, but by the users’ interaction with the system. Figure 7.4 shows
that the Server Agent and Database CPU usage increase, practically, linearly while increasing
the number of devices. Nevertheless, the former uses more resources than the latter, even
though this usage is relatively reduced compared to the gateway. In terms of memory, the
Server Agent appeared to be less sensitive to the number of devices’ variation than the
database, which increases with the number of devices. However, the memory usage of these
infrastructure elements is substantially smaller than the gateway’s usage.

Focusing on Figure 7.4 it is also possible to observe that the MQTT Broker’s CPU usage
increases linearly with the number of devices in the system. Yet, in terms of memory usage, it
is insensitive to the same increase.

It is possible to conclude from Figure 7.5 that the latency, from the devices to the database,
also increased approximately linearly with the number of devices. Furthermore, we studied
this latency and observed that around 80% of it occurred from the gateway’s device services
to the gateway. Thus, the reaming time was spent from the devices to the gateway’s device
services.

Finally, in a different set of tests, it was possible to study in detail the latency, but this
time from the moment of request to the moment the data is inserted in the database. We
observed that for the cases when the gateway’s performed a request to the devices (either
caused by a command sent via REST API or by an auto-event trigger), the data would take
more time to reach the database. After performing the tests, it was possible to conclude that
device services were the main responsible for this latency, with an average value of 976.91 ms.
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7.2 Message Prioritization Mechanism

Some tests were conducted to check whether the proposed solution solves the problem at
hand. We performed those tests under two scenarios: one where the network is not saturated
and the other where traffic is randomly generated to stress the network.

If the network is not saturated, no relevant traffic is being generated apart from the MQTT
packets, which we consider time-sensitive. On the other hand, to simulate a scenario where
the network is stressed, it is necessary to generate random traffic, so the software packETH
was used. All four Traffic Generators are programmed to send 1 KB UDP packets, at a rate
of 40 Mb/s each, to the Raspberry Pi 4 (MQTT Broker). So, as all network links were set to
100 Mb/s in Full-Duplex mode, those UDP packets will saturate the Raspberry Pi’s network
link.

Two tests, with both scenarios described above, were performed for each setup. For all tests,
each mock device was configured to send 36,000 MQTT packets with a period of 50 ms. These
packets were received and saved by the mock gateway and the receiving timestamp, which
made it possible to compute the inter-arrival time and latency estimation. It is important
to stress that the latency value is just an estimation, since the timestamps are not gathered
precisely where the packets are sent and received. That would require specific hardware and
since the objective of this project was to compare the implementations rather than getting
precise absolute results, this approach was not followed. This aspect must be taken into
consideration when analyzing the data in Subsection 7.2.1 and Subsection 7.2.2, i.e., latency
estimation values should only be used as a way to compare the two setups implemented.

7.2.1 Results

In this section, the results obtained from the tests described before are presented. In
Tables 7.2 and 7.3 it is possible to compare both setup 1 (Traditional Switch) and setup 2
(Intelligent/SDN Switch) under both saturated and non-saturated network scenarios. The
average, standard deviation, and percentiles of the inter-arrival time and latency are presented,
as well as the percentage of packets lost, to compare both setups. The terms traditional and
intelligent regarding the switch are used to ease the analysis and comprehension of the results.
The former refers to a common MAC-learning switch implemented in OpenFlow, whereas the
latter refers to the implementation with bandwidth reservation to prioritize critical massages.

In Figures 7.6 and 7.7 the inter-arrival time and latency, respectively, are represented
by their histogram. It is possible to make conclusions about the latency and jitter in a
non-saturated environment in these figures. In the histogram from Figure 7.6 more than

Network Traffic Setup Inter-Arrival Time (ms) Latency Estimation (ms) Packet Loss (%)Average Standard deviation Average Standard deviation

Not Saturated Traditional 50.17 0.71 12.27 1.32 0
Intelligent 50.17 0.73 9.64 1.18 0

Saturated Traditional 51.54 635.35 3842.30 7397.18 2.54
Intelligent 50.17 3.18 13.63 7.19 0

Table 7.2: Inter-Arrival Time and Latency Estimation Main Results.
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Network Traffic Setup Inter-Arrival Time Percentiles (ms) Latency Estimation Percentiles (ms)
Min 1 10 50 90 99 Max Min 1 10 50 90 99 Max

Not Saturated Traditional 0 50 50 50 51 51 91 10 10 11 12 14 14 53
Intelligent 0 50 50 50 51 51 91 8 8 8 10 11 11 51

Saturated Traditional 0 0 0 0 13 892 92945 26 46 234 967 11025 41785 56485
Intelligent 0 50 50 50 51 51 834 12 12 13 13 15 15 805

Table 7.3: Inter-Arrival Time and Latency Estimation Percentiles.

Figure 7.6: Inter-Arrival Time Histogram in a Non-Saturated Network.

99.97% of the data is represented. Whereas in the one from Figure 7.7 at least 99.99% of the
information is conveyed.

In Figures 7.8 and 7.9, the inter-arrival time and latency, respectively, are represented
in histogram form, but for this case, the network was stressed when the data was retrieved.
It is possible to make conclusions about the latency and jitter in a saturated network in
these figures. In the histogram from Figure 7.8 more than 99.62% of the data is represented.
Whereas in the histograms from Figures 7.9a and 7.9b at least 97.87% and 52.26% of the
data, respectively, are represented.
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Figure 7.7: Latency Estimation Histogram in a Non-Saturated Network.

Figure 7.8: Inter-Arrival Time Histogram in a Saturated Network.

(a) (b)

Figure 7.9: Latency Estimation Histogram in a Saturated Network. (a) Not Zoomed (b) Zoomed.
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7.2.2 Discussion

From Tables 7.2 and 7.3, as well as from Figures 7.6 and 7.7, it is possible to observe that
when the network is not stressed, both setups 1 (Traditional switch) and 2 (Intelligent switch)
have similar behavior in terms of jitter, latency, and packet loss.

On the other hand, it is possible to note that same does not happen when the network is
saturated. In that case, using the traditional switch setup, 2.54% of the transmitted MQTT
packets are not received, whereas when using the intelligent switch setup, no packets are
lost. The latency estimation average value decreases approximately 99.64% when 5% of the
bandwidth is reserved for the time-sensitive messages.

Under the same circumstances, the inter-arrival average time decreases approximately
2.66%, but its standard deviation drops around 99.50%. The decrease in the average inter-
arrival time is not as significant as in the latency estimation, but when considering the
percentiles (and maximum values), one can observe that at least 90% of the packets have a
jitter value inferior to 13 ms. In addition, in 1% of them, the inter-arrival time was between
892 ms and 92945 ms (between 17.84 and 1858.9 times the ideal theoretical value), which
lead to the conclusion that the mock gateway received most of the packets in bursts after
being retained in the switch for too long, thus the relatively small jitter average value and the
considerable latency average value.

Under the same saturation conditions, when we used the intelligent switch setup, the
results were different, as shown in the histograms in Figures 7.8 and Figures 7.9. In this case,
no packets were lost, and the latency estimation and inter-arrival time values, over time, were
identical to the case where the network was not saturated. It was observed approximately no
difference in the inter-arrival average time and a difference of around 9.98% in the latency
estimation average value when comparing the intelligent switch under stress conditions and
the traditional switch under normal conditions. This concludes that reserving 5% bandwidth
for sensitive messages allows those messages to be exchanged as there was no stress at all in
the network, even when there is.

Lastly, it is possible to conclude that a message prioritization mechanism is feasible using a
network based on SDN/OpenFlow principles. With this implementation, the MQTT packets
were prioritized over the remaining without being necessary to change the devices, the protocol,
or the gateway, only requiring a commercial SDN switch and a proper configuration. So,
although the tests were performed only using the MQTT protocol, it is concluded that using
a similar approach, other IP-based protocols could benefit from the same strategy.
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CHAPTER 8
Conclusion

This dissertation focused on describing the design, development, validation, and testing
processes of a framework for CTM systems. At first, architectures for CTM were studied.
With the architecture selected, we analyzed and compared several toolkits and frameworks to
implement the system components. The system implemented may be divided into three ele-
ments: the framework (composed by the gateway, database, and GUI), message prioritization
mechanism (implemented using the OpenFlow switch and controller), and the devices used to
validate the system operation.

The framework’s gateway was implemented based on EdgeX Foundry, which provided the
required tools to connect to different devices with different communication protocols. The
gateway application services were configured to export the data collected from the devices
to a pre-determined HTTP endpoint in a JSON format. This endpoint was the SN server
agent, implemented using Telegraf. That server agent was responsible for inserting the data
from the gateway into the database (InfluxDB). Once the data was stored in the database,
it could be presented to the user via the GUI based on Grafana. This SN communication
was validated using the virtual devices provided by EdgeX Foundry. The same devices were
used to test the NS connection that started in the GUI where the users send commands to
the devices. These commands are stored in the database and consequently analyzed by the
NS server agent. This server agent, developed in Python 3, is responsible for parsing the
commands and sending them to the gateway via the REST API provided by EdgeX Foundy
framework. Finally, the gateway processes and sends the commands to the devices using the
respective communication protocol.

Furthermore, we added three devices to the framework: Modbus, KNX, and MQTT
devices. The former was a single device connected to the gateway via Serial communication.
Then, the KNX device is, actually, a group of eight KNX devices connected to a gateway that
makes the interface between the KNX bus and the framework gateway. Finally, the MQTT
device was implemented from scratch based on an ESP32 board. With these devices, we
validated the system operation since it was possible to monitor and control them via the GUI.
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Finally, we evaluated the framework on its scalability. We used up to forty-eight mock MQTT
devices to study how the system behaves according to the number of devices connected to it.
The results showed that the system’s usage of resources (namely CPU and Memory) grew
close to linearly with the number of devices. It was also possible to observe that the gateway’s
core services were the principal responsible for resource consumption. Moreover, although
the latency (between the device and database) increased close to linearly with the number
of devices used, no packets were lost. Finally, in a different set of tests, we analyzed the
latency in detail. From there, it was possible to conclude that when the gateway’s REST
API or auto-event triggers are used to acquire data from the devices, the latency is more
significant when comparing it to the case where data is generated asynchronously. Additionally,
we observed that most of the time is spent between the gateway’s device services and the
application services in these periods.

Lastly, the message prioritization mechanism was implemented applying SDN/OpenFlow
principles. The agent selected the critical messages based on specific fields of the packets
and assigned them to a queue with a minimum of 5 Mb/s. In contrast, all the remaining
packets were set to the default queue. This feature was tested in scenarios with diverse
traffic conditions in the network, using two setups. One without the prioritization agent
(traditional switch) and the other with the prioritization agent (SDN switch). The tests
were performed considering that the MQTT protocol carried the time-sensitive information.
The tests conducted under stress conditions show that the packet loss and high latency
values observed, on MQTT packets, in the traditional switch setup were not verified when
we implemented the message prioritization mechanism. It is, however, essential to note that
we applied no additional measures to the remaining network traffic, which means that those
messages were affected by the global network’s stress conditions.

To conclude, as this work followed the work Development of a Centralized Building Manage-
ment System [22], the future work suggestions presented there were taken in consideration. We
accomplished four of the five suggestions during this dissertation. Additionally, the framework
meets all the functional requirements agreed with the company Diferencial at the beginning
of the project.

8.1 Future Work

Despite being functional, the framework developed could benefit from additional features
that can be considered when carrying out the work described in this dissertation. Some of the
aspects that can be explored include:

• Implement and test security features in the framework.
• Evaluate the framework under real-life scenarios, such as an industrial environment with

multiple nodes and communication standards.
• Extend the message prioritization mechanism to other protocols.
• Implement a message prioritization agent that selects messages based on their content

(e.g., a specific MQTT topic).
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• Automate the message prioritization mechanism by applying a dynamic reservation of
bandwidth. This way, it would not be necessary to define the QoS queues and their
bandwidth boundaries statically.
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