
Universidade de Aveiro
2021

Vadson
Guilherme
Avelino
Culanda

SmartHome - Desenvolvimento de App Mobile em
Flutter para gestão da casa inteligente
SmartHome-Mobile App Development in Flutter
for smart home management

Universidade de Aveiro
2021

Vadson
Guilherme
Avelino
Culanda

SmartHome - Desenvolvimento de App Mobile em
Flutter para gestão da casa inteligente
SmartHome-Mobile App Development in Flutter
for smart home management

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Eletrónica e Telecomunicações, realizada sob a orientação cient́ıfica de Paulo
Jorge de Campos Bartolomeu, Professor Adjunto da Escola Superior de Tec-
nologia e Gestão de Águeda

Este trabalho é financiado pela FCT/MCTES através de fundos nacionais e
quando aplicável cofinanciado por fundos comunitários no âmbito do projeto
UIDB/50008/2020-UIDP/50008/2020.

o júri / the jury

presidente / president Professor Doutor António José Ribeiro Neves
Professor Auxiliar da Universidade de Aveiro (por delegação da Reitora da Univer-

sidade de Aveiro)

vogais / examiners committee Professor Doutor Mário João Barata Calha
Professor Auxiliar da Universidade de Lisboa (Arguente Principal)

Professor Doutor Paulo Jorge de Campos Bartolomeu
Professor Adjunto Convidado da Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

É com muito gosto que aproveito esta oportunidade para agradecer a to-
dos os que ajudaram-me durante o percurso académico. Antes de mais,
gostaria de agradecer aos meus pais, aos meus irmãos e a minha tia, que
acompanharam tudo de perto e sempre me apoiaram.

Quero também agradecer a Inova-Ria e a Altice labs, pela oportunidade
de realizar a minha dissertação em contexto empresarial, especialmente ao
meu orientador Herlander Santos, que garantiu as melhores condições de
trabalho, atribui-me diversas tarefas que ajudaram a ganhar conhecimento
e experiência, e introduziu-me a uma equipa excelente que auxiliou durante
este projeto. Tal como, o João Ferraz que coorientou o meu trabalho,
o Bruno Antunes que guiou-me pelo mundo do Flutter, partilhando a sua
experiência e oferecendo dicas sobre as melhores práticas, o Vasco Coutinho
que me introduziu ao mundo do teste de produto, de modo geral a equipa
toda que tornou este projeto posśıvel.

Também gostaria de agradecer o meu orientador da Universidade de Aveiro,
o Prof. Doutor Paulo Bartolomeu que sempre supervisionou atentamente o
meu trabalho, proporcionou-me todas as ferramentas necessárias e esteve
sempre dispońıvel a ajudar-me.

Por último, gostaria de agradecer a todos os amigos incŕıveis que fiz durante
o meu percurso, são muitos para enumerar, mas sabem quem são. Desde
amigos do curso, à amigos de Erasmus, à amigos da ESN e àqueles que
já me conheciam antes de entrar na universidade. Muito obrigado a todas
as pessoas mencionadas, que foram muito importantes neste caṕıtulo da
minha vida.

Palavras-chave casas inteligentes, automação da casa, assistentes virtuais, dispositivos in-
teligentes, programação, indústria

Resumo A Internet das Coisas acelerou a disponibilização de soluções para casas
inteligentes, oferecendo uma gama cada vez mais variada de produtos e
de aplicações de domótica inteligente que visam simplificar as tarefas do
dia-a-dia e aumentar o conforto dos utilizadores. Contudo, frequentemente
os sistemas disponibilizados são excessivamente complexos na perspectiva
do utilizador, tornando a sua utilização pouco intuitiva e impreviśıvel. No
âmbito desta dissertação foi desenvolvida uma aplicação para casas in-
teligentes baseada na framework Flutter que é capaz de interagir com o
ecossistema de dispositivos Smart Home da Altice labs. Este documento
apresenta uma comparação entre as diversas soluções de casas inteligentes
existentes, além da visão geral da solução desenvolvida pela Altice labs.
A implementação da solução proposta é detalhada recorrendo a excertos
de código que ilustram as opções tomadas em termos de design e de fun-
cionalidade. Por fim, a aplicação desenvolvida é avaliada recorrendo a um
processo de teste que verifica o cumprimento dos seus requisitos.

Keywords smart homes, home automation, virtual assistants, smart devices, program-
ming, industry

Abstract The Internet of Things has accelerated the availability of solutions for smart
homes, offering an increasingly varied range of products and smart home
applications that aim to simplify daily tasks and increase user comfort.
However, the available systems are often excessively complex from the user’s
perspective, making their use unintuitive and unpredictable. Within the
scope of this dissertation, an application for smart homes was developed
based on the Flutter framework, which can interact with Altice labs’ Smart
Home device ecosystem. This document presents a comparison between the
various existing smart home solutions, as well as an overview of the solution
developed by Altice labs. The implementation of the proposed solution
is detailed using code excerpts that illustrate the choices made in terms
of design and functionality. Finally, the developed application is evaluated
using a test process that verifies compliance with its requirements.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Focus and Scope . 1

1.2 Objectives . 2

1.3 Outline . 2

2 State of the art 3

2.1 Tecnologies . 3

2.2 Major Functionalities and Use Cases . 3

2.2.1 Health . 3

2.2.2 Security . 4

2.2.3 Entertainment . 4

2.2.4 Sustainability . 4

2.3 Virtual assistants . 4

2.3.1 Amazon Alexa . 4

2.3.2 Google Home Assistant . 8

2.4 Smart Home solutions . 11

2.4.1 SmartThings Samsung . 11

2.4.2 Apple Homekit . 14

2.4.3 TuyaSmart . 17

2.5 Which Solution is better . 20

2.5.1 Compatible Devices . 20

2.5.2 Digital Assistants . 20

2.5.3 Automation . 21

2.5.4 Extra features . 22

2.5.5 Conclusion . 22

3 Altice Home app 23

3.1 Introduction . 23

3.2 Objectives . 23

3.3 Innovations aspects . 24

3.4 Tools . 24

i

3.5 Devices . 24
3.6 Architecture . 25

3.6.1 Cloud . 25
3.6.2 APIs (Outsourced) . 26
3.6.3 Tuya SDKs(Outsourced) . 26
3.6.4 Flutter Mobile App for Android and iOS 26

4 Design and Implementation 29
4.1 Application Design . 32
4.2 Implementation . 32
4.3 Login Screen Design . 33
4.4 Login Screen Implementation . 35
4.5 Room Screen Design . 37

4.5.1 Main Screen . 37
4.5.2 Add New Room . 39
4.5.3 Choose Devices . 40

4.6 Room Screen Implementation . 41
4.6.1 Main Screen Implementation . 41
4.6.2 Add New Room Implementation . 45
4.6.3 Choose Devices Implementation . 51

4.7 Room Screen 1st Implementation . 53
4.7.1 Main Screen 1st Implementation . 53
4.7.2 Add New Room 1st Implementation 56

4.8 User Account Screen Design . 61
4.9 User Account Screen Implementation . 63
4.10 Settings Screen Design . 65
4.11 Settings Screen Implementation . 67

5 Testing 69
5.1 What is testing? . 69
5.2 Testing Throughout the Software Development Lifecycle 69

5.2.1 Test levels . 69
5.3 Test management tool . 70
5.4 Test Plan . 71

5.4.1 Regression tests . 71
5.4.2 Acceptance tests . 74
5.4.3 Exploratory tests . 74

5.5 Validation . 75

6 Conclusion 79
6.1 Conclusion . 79
6.2 Future Works . 81

Bibliography 83

ii

List of Figures

2.1 (a) Home (b) Communication (c) Entertainment 7

2.2 (a) Devices (b) More . 8

2.3 Home Assistant dashboard-Lovelace . 11

2.4 (a) Introduction (b) Home (c) Panel (d) Add device 14

2.5 (a) Introduction (b) Home (c) Automation (d) Add device 16

2.6 (a) Login (b) Home (c) Remote Control . 19

2.7 (a) Instant Connection (b) One tap to share 20

3.1 Global architecture . 25

3.2 Diagram of process of pairing in Wi-Fi EZ mode by Tuya Inc. 26

3.3 (a) Home (b) Home menu (c) Add device (d) Device info 27

3.4 (a) Add room (b) Add scenario . 28

4.1 Use cases diagram . 29

4.2 Functional and Non-Functional Requirements 31

4.3 Functional and Non-Functional Requirements 31

4.4 Text field factory . 33

4.5 Login Screen . 34

4.6 Login Screen with labels . 35

4.7 Login Screen code excerpt . 36

4.8 Login Screen code excerpt . 36

4.9 Room Main screen . 38

4.10 Add new room screen . 39

4.11 Choose Devices screen . 40

4.12 Main Screen with labels . 41

4.13 RoomPage excerpt . 42

4.14 RoomCard code excerpt . 43

4.15 RoomsPageCubit code excerpt . 44

4.16 RoomsPageCubit code excerpt . 44

4.17 Room model constructor code excerpt . 45

4.18 Add New Room Screen with labels . 46

4.19 Add New Room Page excerpt . 47

4.20 Add New Room Page excerpt . 47

4.21 RoomTypeSquareButton class code excerpt 48

4.22 utils.getSVGIllustrationPathforRoom code excerpt 48

4.23 Add New Room Page excerpt . 49

iii

4.24 Add New Room Page excerpt . 49
4.25 Add New Room Page Cubit code excerpt . 50
4.26 Choose Devices screen with labels . 51
4.27 RoomPage excerpt . 53
4.28 RoomPage excerpt . 53
4.29 RoomPage excerpt . 54
4.30 RoomPage excerpt . 54
4.31 RoomsPageCubit code excerpt . 55
4.32 RoomsPageCubit code excerpt . 55
4.33 Add New Room Page code excerpt . 56
4.34 Add New Room Page code excerpt . 56
4.35 Add New Room Page code excerpt . 57
4.36 Add New Room Page excerpt . 58
4.37 Add New Room Page excerpt . 58
4.38 Add New Room Page excerpt . 59
4.39 Add New Room Page excerpt . 60
4.40 Add New Room Page excerpt . 60
4.41 Add New Room Page Cubit code excerpt . 61
4.42 User Account Screen . 62
4.43 UserAccount Screen with labels . 63
4.44 UserAccountPage excerpt . 64
4.45 UserAccountCubit excerpt . 64
4.46 UserAccountModel code excerpt . 64
4.47 UserAccountRepository code excerpt . 65
4.48 Settings Screen . 66
4.49 SettingsItem code excerpt . 67
4.50 SettingsCubit code excerpt . 67

5.1 Xray layout . 71
5.2 Regression testing . 72
5.3 Regression testing . 72
5.4 Regression testing . 73
5.5 Table of tests executed in all of the screens 75
5.6 Table of test executed for the ”Add New Room” screen 75
5.7 Table of test executed for the ”Choose Devices” screen 76
5.8 Code review of a pull request . 77

iv

List of Tables

2.1 Digital assistants features . 21

v

vi

Chapter 1

Introduction

1.1 Focus and Scope

Nowadays everything around us is becoming smart, our cars, our smartphones, and what
about our houses? With the technological advancement and the need for comfort and simplic-
ity, a huge market opened for the smart home.

Smart homes can be viewed as independent houses. They can be controlled through vari-
ous devices which are programmed to execute specific tasks and functions. Originally, Smart
home technologies were simply used to control lighting and heating systems. Now almost every
electric device can be included in the Smart Home ecosystem to allow monitoring the external
environment as well as all other activities happening inside the house[1]. Modeling the behav-
ior of the devices according to a set of patterns or predefined scenarios, house customization
based on the inclusion of various devices to different divisions, and scheduling of tasks are
many of the existing possibilities. This kind of control can be done through countless Smart
home apps or virtual assistants for smartphones or tablets. From all the available solutions
we can highlight, Google Home assistant, Amazon Alexa, SmartThings, Apple Homekit, and
Tuya Smart.

This dissertation was conducted in a business environment. The smart home project is
being developed by Altice labs and has a goal to produce an innovative solution that can
rival existing ones. Doing the dissertation in this context is analogous to doing an intern-
ship which brings a lot of benefits. Being part of an app development helps understanding
how the job market works, and gives an insight into all the phases that a project under-
goes. The first part is the UI design and the MVP (Minimum Valuable Product) proposi-
tion, after the design is completed then we move to the development part which operates
in parallel with the testing and validation. Finally, we move to the release and the beta
phase where we choose a select group of volunteers to test the product and give feedback.

Altice labs is a company that continuously invests in innovation. They develop equipment
and solutions in areas such as Medicine, Education, Culture, and Sports. Their main concern
rests in ensuring the best customer experiences by creating added value in every client segment
and continuously engaging in collaborative research and development projects as part of a
sustained technological leadership strategy. Exploring innovation activities around strategic
themes such as Artificial Intelligence Machine Learning, Cloud technologies (computing and

1

networking), Smart Living, Internet of Things, Big Data, Security Privacy, Digital Services
Platform, 5G and Future Networks, including the Evolutionary Optical Framework.

1.2 Objectives

As stated previously the main goal of this project is the development in Flutter of a mobile
app for smart home management whose vision is to achieve a complete end-to-end solution
that allows the management of a smart home in an integrated and easy way. As specific goals
we can highlight:

• Research and analyze existing smart home solutions

• Become familiar with flutter

• Implement screens related to the solution

– Login screen

– Room screen

– User account screen

– Settings screen

• Validate the solution by executing use case tests

1.3 Outline

Until now we introduced the context of this dissertation, the description of the problem,
and its relevance. The remainder of this dissertation is organized as follows:

• Chapter 2- This chapter provides an overview and comparison between existing smart
home solutions.

• Chapter 3- This chapter presents an overview of the solution, Altice Home App, as
well as a global vision of the app, major functionalities, and the chosen platform for
implementation

• Chapter 4 and 5- These chapters highlight the individual work done as part of the
global solution developed by the Altice labs and the validation of the same

• Chapter 6- chapter presents the main conclusions of this work along with the future
work perspectives.

2

Chapter 2

State of the art

2.1 Tecnologies

In an initial phase, smart home automation was focused on the installation of plugs or light
switches, and the wiring of infrared controllers all over the house [2]. With the development of
the Internet, mobile communications, and renewable energy technologies came a significant
improvement in smart homes, particularly in better house infrastructures, equipment, and
added motivation for investments related to domotics and control technologies. Connectivity
is a very important aspect in the development of smart homes since almost every device is
dependent on this factor. Bad connectivity implies not only frustrations for the user but
also a huge risk to the security of the system [3]. Therefore, the fast development of mobile
communications has caused a great improvement in this technology. Wireless networks and
smart devices with wireless interface communications (e.g., Bluetooth, ZigBee, Wi-Fi) are
omnipresent and provide a better experience to the user [2]. Currently, smart homes have a
high impact in terms of comfort, security, and energy savings for their users. With the devel-
opment of cloud-based solutions, users have gained access to remote control of every resource,
configuration, and notification of one or more smart homes. And with voice commands, a
better-personalized experience can be obtained through digital assistants that can be called
by name.

2.2 Major Functionalities and Use Cases

Smart homes have the goal of simplifying the lives of their residents, saving energy and
providing comfort and security. They can be used in areas related to health, safety, enter-
tainment, and sustainability.

2.2.1 Health

In this field, the goal is to provide a better quality of life and make sure that the elderly
community can live comfortably and independently. Multiple devices can be used in this area,
for example, a smart wristband can be used to monitor someone’s vital signs and control if any
anomalies are registered, and in case they are, it immediately notifies a health assistant. An
air purifier can also be used at home to provide better living conditions, which are beneficial
not only for people with asthma but to everyone.

3

2.2.2 Security

Many solutions can be implemented like intruders detection, monitoring throughout secu-
rity cameras, panic buttons, and danger prevention and detection, namely carbon monoxide,
fire,...etc.

2.2.3 Entertainment

Several devices can provide improved entertainment experiences, for example, with the
help of a smart TV, smart light, and smart speaker, we can obtain an amazing personalized
audiovisual experience.

2.2.4 Sustainability

Allows energy-saving and decrease of water consumption, through automatic irrigation
systems, automatic lights, temperature control , among other options.

2.3 Virtual assistants

2.3.1 Amazon Alexa

Description

Alexa is a virtual assistant that supports a Smart Home solution developed by Amazon,
which allows the user to realize multiple tasks, such as creation of lists, getting the weather
conditions, access to articles available on the Internet, among many others. Alexa has an
integrated voice assistant that can answer questions and execute functions or skills. Thanks
to the conversion of the sound waves to text by Alexa, it allows the Wolfram Language
technology to process the data and generate precise and accurate answers from multiple
sources [4].

Smart Devices

• Lights - Ability to vary the intensity of the light or change the color to adjust the
environment of each room to the user’s preference.

• Plugs - Allow standard appliances to be integrated into the smart home experience,
such as lamps, Christmas lights, fans, and more.

• Thermostats - They have many economic and environmental benefits. By regulating
the temperature of the house when the user is absent, allowing energy savings.

• Cameras - They have many applications in terms of security, such as monitoring children
and pets and preventing intruders.

Device Communication

Communication between devices and Alexa can be done in any of the following ways:

• Alexa Connect Kit cloud services

4

• Connecting directly to Alexa’s local service through the ZigBee protocol (2.4GHz).

• Through a secondary device, such as a hub, controllable using an Alexa skill provided
by the hub manufacturer.

• Through a pre-certified IoT devices from a service provider, such as Tuya

Home Automation

Skills

The skills work as add-ons. Each one enriches Alexa more and allows it to execute several new
features. For example, didactic skills such as the Jeopardy game, auditory skills such as the
Anypod podcast [5], or even skills to control the home, such as the case of Tuya Smart, which
allows through simple voice commands to control various smart devices that we have at home.

How do skills work?

Skills are composed of two strands, an interactive model- or voice interface- and applica-
tion logic. When a customer speaks, Alexa analyzes the context of the interactive model to
determine the customer’s order. Then it sends the request to the application logic, which will
execute it. The application logic is given as a back-end cloud service where the host is Alexa,
AWS, or any other server.

How to set up a Skill?

Developers use Amazon Web Services (AWS) Lambda, just enter Lambda’s Amazon Re-
source Name (ARN) into the skill configuration. AWS Lambda is compatible with Node.js
(JavaScript), Java, Python, C # or Go.

Scenarios

Users can use voice commands to configure multiple devices with pre-defined configurations.
For example, the user could say “Alexa, activate bedtime” and the light intensity would de-
crease and the room temperature would decrease. The user can create and edit scenarios
through any Alexa compatible hub or the application of the device manufacturers.

Compatibility

Alexa is compatible with smart devices from various manufacturers, such as SNAS, Fibaro,
Belkin, ecobee, Geeni, IFTTT, Insteon, LIFX, LightwaveRF, Nest, Philips Hue, SmartThings,
Wink, and Yonomi.

IoT Solution Providers

They offer hardware modules, software, and services that help users pair their devices with
Alexa. The providers that will be presented develop smart home skills for other companies
as well [6].

5

• Ayla Networks - It works on AWS and includes voice skills developed for Alexa that
can be integrated with customized mobile applications to control smart home devices,
such as locks, lights, and temperature control.

• Broadlink - Setup is done without using any application, works on AWS, and includes
a customizable application that helps to improve the efficiency of the product.

• Coolkit e Welink - It includes a firmware module that supports Wi-Fi, Zigbee, GSM,
and Bluetooth. It also includes PCB hardware, a global software service platform and
open API, customizable Android and IOS applications, and simple integration with
Alexa.

• Tuya - It provides smart devices for various brands and manufacturers. Includes access
to hardware, cloud services, and application development.

6

UI and Screen

In figures 2.1 and 2.2 we have an UI example of the Alexa smart home solution.

(a) (b) (c)

Figure 2.1: (a) Home (b) Communication (c) Entertainment

7

(a) (b)

Figure 2.2: (a) Devices (b) More

2.3.2 Google Home Assistant

Description

It is a free open-source software, developed in Python, that allows the management and
automation of smart homes. The Home Assistant Core is a program developed in Python
that can be implemented on servers that use different operating systems [7]. It facilitates its
execution on devices, such as a RaspberryPi, virtual machine, and other hardware platforms.
The Home Assistant assumes the role of a hub controller that encompasses multiple Smart
home functions, such as security alarm management, sensors for temperature measurement
and control, light control, television, speakers. It also supports voice commands, mobile ap-
plications, and a user interface (front-end) available on the Home Assistant website. The
Application’s main focus is on local control and privacy. It supports smart devices for nu-
merous brands and manufacturers, while including access to hardware, cloud services, and
application development.

Device Communication

Z-wave

It is a wireless communication protocol developed for home automation. It uses a low power

8

network mesh that allows devices that are not in direct reach with each other, to communi-
cate indirectly through nodes that allow the redirection of messages. Each node corresponds
to a device that is powered by alternating current. Battery-powered devices such as door
locks or some types of thermostats are unable to redirect messages[8]. To use this protocol,
a Z-wave controller and one or more devices are required. This controller can be a Z stick or
a hub that supports this protocol, from several hubs compatible with the Home Assistant we
can identify SmartThings, Fibaro, Wink, and Vera. The efficiency of this protocol is
directly related to network mesh, and this is more stable the more associated devices you have.

MQTT(MQ Teletry Transport

It is an IoT connectivity protocol in addition to TCP / IP. It has the advantage of re-
quiring a very simple configuration on the side of the Home Assistant. The configuration
of the devices is carried out directly on them. To avoid multiple entries of the same device
(in the case of reconnections), each device is assigned a unique identifier [9]. MQTT has a
function that allows to automatically find devices that support this protocol, including alarm
control panels, binary sensors, cameras, fans, lights, sensors, tags, etc.

Home Automation

Triggers

Triggers are responsible for the automation process. When any of the triggers is activated,
the Home Assistant validates the conditions and then executes the action (if any). There
are different types of triggers, and for certain automation, there can be multiple triggers.
Below are some examples of triggers [10]:

• Event trigger - is fired when an event is received. Events can be activated through
the name, through some specific data, or depending on the context.

• Home Assistant Trigger - is triggered when the home assistant turns on or off.

• State trigger - is activated whenever the state of a given entity changes.

Conditions

Conditions are optional and can be used to prevent a certain action from being performed
when a trigger occurs. Although they look similar, the conditions and triggers are very dif-
ferent. The conditions only observe the system discreetly while the triggers look continuously
in time [11]. For example, a trigger can observe that a switch is being turned on but the
condition only sees if the switch is on or off. “And”, “or”, “not” and “sunState condition”
are some examples of conditions.

Actions

The actions are executed when a trigger is fired through “services” or “events”. In the case of
services, the user can specify the device id that will be affected as an optional parameter (for

9

example to define the brightness). Services can also be used to activate a given scenario[12].

Scenes

The user can create scenes that define a specific state of an entity. For example, the user can
define that Light A should be turned on and the color of Light B should be placed in red[13].

Compatibility

Home Assistant is compatible with smart devices from different manufacturers, such as
Amazon Alexa, Apple HomeKit, Bluetooth, ecobee, Google Assistant, Google Cast (Google
Chromecast), Google Home, Google Nest, IFTTT, IKEA Smart Home, KNX, Xiaomi Smart
Home, MQTT, Philips Hue, SmartThings (Samsung), Tuya Smart, X10, Zigbee, Z-Wave,
among others.

IoT Solution Providers

• Smartthings (Samsung) - It is integrated into the Home Assistant through the Cloud
SmartThings API. Some of the features are as follows:

– Control SmartThings devices as if they were Home Assistant entities.

– Automatic synchronization of entities, which have changed in SmartThings, by
restarting the Home Assistant.

– There is no need for additional dependencies.

• Zigbee Home Automation - Allows direct integration into the Home Assistant of
various devices compatible with Zigbee.

• Philips Hue - Allows to control and monitor the lights and motion sensors connected
to the Hue bridge. Hue integration is done automatically, if not, the device can be
added through the menu.

• Ecobee-Allows to control and view the data from the ecobee thermostat. For example,
it allows to define a climate that is a set of predefined conditions that the thermostat will
try to satisfy. The ecobee thermostat includes 3 predefined climates, “Home”, “Away”
and “Sleep”.

• Amazon Alexa - With the help of the Home Assistant Cloud, integration with Alexa
is quick and effective.

– Allows you to control devices through Alexa routines.

– Allows you to execute voice commands without having to know the name of the
skill, for example, “Alexa turns off the light”.

– Allows to view and control devices through the Alexa application.

10

UI and Screen

In terms of UI in addition to the mobile application, there is Lovelace (figure 2.3), which
is a Home Assistant dashboard with the same features as the mobile application. Lovelace is
customizable, fast, and is a very interesting and efficient way for users to control their homes.
Access can be done on the Home Assistant website, via mobile phone, or computer. Below
are some of the features of Lovelace:

• There are 27 different cards to add and configure to taste.

• The dashboard editor allows you to manage Lovelace and even includes a real-time
forecast.

• The cards have several options for configuring how the data is displayed.

• Theme configuration.

• Access to an existing card repository.

Figure 2.3: Home Assistant dashboard-Lovelace

2.4 Smart Home solutions

2.4.1 SmartThings Samsung

Description

SmartThings is a Smart Home solution developed by Samsung, which allows the user to
make a wireless connection to a large number of smart devices, which can work simultaneously.
SmartThings has an ecosystem called “The SmartThings ecosystem”, which allows you to
create and integrate IoT devices, services, and automation in the SmartThings cloud [14].
This ecosystem includes the following components:

11

• Devices - can connect directly to the SmartThings cloud, or a SmartThings-compatible
hub, via a third-party cloud.

• Automation - are WebHook or AWS Lambda functions that allow the user to control
the ecosystem without manual intervention.

• The SmartThings app - is used to configure and control automation and IoT devices
supported by SmartThings.

• Bixby voice Assistant - allows control and management of devices through voice.

• Developer Workspace - is a space with useful tools for adding IoT devices and
automations to the SmartThings cloud.

• The Smarthings API - allows you to integrate, control, and monitor IoT devices and
services from the SmartThings cloud.

Device Communication

Communication between SmartThings devices and the ecosystem can be done in any of
the following ways [15]:

• Devices connected to the SmartThings cloud through third-party clouds communicate
via:

– SmartThings Schema Connector- is the fastest and most recommended way for
clouds that support OAuth 2.0.

– SmartApp Connector- is an option to implement certain advanced features or to
customize the device’s onboarding Ux.

• Hub connected devices communicate through SmartThings and Zigbee or Z-Wave com-
patible hubs.

• Directly connected devices automatically connect to the SmartThings cloud. This type
of device uses the MQTT Protocol.

Home Automation

Automations

An automation performs actions based on a set of conditions such as specific times, days
of the week, or when a device is activated (for example, a motion sensor).

How do automations work?

Automations work through the “if” (IF) “then” condition (then) action flow. That is, “If” a
certain condition happens, “then” controls the device, executes the scenario or the SmartApp,
or controls the location [16, 17].

12

Scenes

The scenes allow you to control different actions of multiple devices with the touch of a
button. The scenarios can be activated manually or automatically through automation. Un-
like automations, scenes do not have triggers. Automation can be something like “notify me
if the doors open and I’m not at home”. This automation will wait for that situation to occur
to notify the user, it does not happen instantly. On the other hand, a scenario that is to
“turn off all kitchen and living room lights” will be executed the moment it is activated (with
the press of the button) [18].

SmartApps

SmartApps are pre-configured services that give special control over the devices. They can
have a variety of functions - from lock management to activation of security events for the
smart home. SmartApps are programs written in the Groovy language, similar to Java, and
developed in the sandbox.

IoT Solution Provider

• Hub - is the brain of the house.

– Aetoc Smart Home Hub

– V-Home from the Vodafone Security Starter Kit.

• Home builder and developers:

– Truland Homes

– VolkerWessels

– JM Residential

• Property management - Automates, monitors and manages the home with ease.

– Microsoft

UI and Screen

In figure4 2.4 an UI example of the SmartThings smart home solution is shown.

13

(a) (b) (c) (d)

Figure 2.4: (a) Introduction (b) Home (c) Panel (d) Add device

2.4.2 Apple Homekit

Description

The Apple Homekit is a Smart Home solution developed by Apple, which allows users
to control, manage and configure various devices, applications, and services connected to the
Homekit Framework, through Siri or the Home app available on the iPhone, iPad, Apple
Watch, and Mac [19, 20, 21].

Note: In Apple HomeKit “devices” are referred to as “accessories”.

Device Communication

Communication between devices is done through the HomeKit Accessory Protocol (HAP),
this is a protocol that supports IP and Bluetooth LE communication. This communication
is local, when the user is at home the iPhone communicates directly with the device, and
when the user is away the iPhone communicates with a Home Hub (HomePod, Apple Tv,
or an iPad) and the latter communicates with the device. This type of communication is
advantageous in terms of security since only the Hub communicates with the cloud while
the other devices communicate locally with each other [22]. The integration of the devices
is done very simply through the use of the HomeApp to make a scanner with a 8-digit code
that is contained in the device compatible with the HomeKit, either in its instruction manual
or in the box. This integration can also be done through NFC since devices compatible with
Homekit have this functionality [23].

14

Home Automation

Homes

Homekit uses the term “home” to represent a physical house, an office, or some other place
that has some importance to the user. The user can have multiple homes[21, 24]

Rooms

A “room” represents a physical room in the house. The rooms are simply names that have
meaning for people, for example, the living room and the attic. After having devices asso-
ciated with the rooms, you can use various voice commands provided by Siri, such as “Siri,
turn off all lamps except the kitchen”, or “Siri, turn on the attic and corridor lights” [24].

Accessories, services, and features

A service is a feature of a device (accessory), for example, turning the light on or off. A
device can have more than one accessory. For example, a garage door can allow to control
the light and the door separately. A user also can create a group of services (corresponding
to a group of devices) and control that group of devices (for example lights) independently
of the rest of the devices in the same category (in this case lights). A characteristic is a
controllable attribute of a device. For example, a characteristic of light can be the brightness,
temperature, or color, and of a fan, it can be the speed of rotation [24].

Actions and scenes

One action corresponds to changing the characteristic of a service, for example, adjusting
the fan speed or the light intensity of a lamp. Actions are initiated by users or through
automation. A scene is a set of actions that control one or more services in one or more
accessories. For example, the user can create a scenario called “Good morning” that turns
on the lamps and turns on the coffee machine in the kitchen [24].

Automations

Automations perform actions based on a set of conditions such as specific times, days of
the week, or when a device is activated (for example, a motion sensor) [24].

Zones

A zone represents an area of the home that contains multiple rooms, for example, the first
floor or ground floor. The addition of zones is optional but has the advantage of controlling
multiple accessories at once. Like using Siri to turn off all the lights on specific floor [24].

15

IoT Solution Providers

There are more than 100 [25] manufacturers around the world that are compatible and
support Apple HomeKit, such as Lutron, Insteon, Philips, iHome, Nest, etc. All of these
manufacturers must be registered with Apple’s MFI (Made for iPhone / iPod / iPad) program,
which gives access to technical specifications and all the necessary resources to create devices
compatible with the Apple HomeKit.

UI and Screen

In figure 2.5 we have an UI example of the Apple Home smart home solution.

(a) (b) (c) (d)

Figure 2.5: (a) Introduction (b) Home (c) Automation (d) Add device

16

2.4.3 TuyaSmart

Description

Tuya is an IoT services platform that enables products for consumers, brands, OEM
manufacturers and retail chains [26]. The TuyaSmart and Smart Life App are both official
Tuya App. The difference is that the Tuya Smart App uses the Tuya logo and elements, while
the Smart Life App removes all Tuya logo and elements[27].The TuyaSmart or Smart Life
allow the user to remotely control home appliances based on Android and iOS versions. It
uses an originally created connection method called “Pegasus” that can detect new devices
automatically achieving a one-click network configuration. It supports one-tap execution
of combined automation smart scenes, and linkage between scenes and devices to enable
interactions and interconnections between different products. It allows users to use third-party
platforms such as Amazon Echo and Google Home to voice control devices [28, 29]. TuyaSmart
or Smart Life provides easy control over smart devices, cloud storage for cameras, AI filtered
notification, phone notification, message notification and, finally, the ability to know the status
of devices at home in real-time. Tuya also offers another development solution, which is the
Tuya OEM App. It is a solution that does not require additional development resources and
is based on the Tuya official template. It provides some simple UI customization, personalized
brand configuration and other information allowing brand-specific apps to be created within
3 days [30] and be ready to be released in the market. An example of that is the Lidl Home
app.

Device communication

Wi-Fi Device

The device that use Wi-Fi module to connect the router, and interact with APP and cloud.

Quick Connection (EZ) Mode

Also known as the quick connection mode, the APP packs the network data packets into
the designated area of the 802.11 data packets and sends them to the surrounding environ-
ment. The Wi-Fi module of the smart device is in the promiscuous model and monitors and
captures all the packets in the network. According to the agreed protocol data format, it can
parse out the network information packet sent by the APP.

Hotspot (AP) Mode

Also known as hotspot mode, the mobile phone connects the smart device’s hotspot. The
two parties establish a Socket connection to exchange data through the agreed port.

Camera Scan Code Network Configuration

The camera device obtains the configuration data information by scanning the QR code
on the APP.

17

Wired Network Configuration

Devices connected to the router via a wired network, such as ZigBee wired gateway, wired
camera, etc.

Sub-device Configuration

Devices that interact with APP and cloud data through gateways, such as ZigBee sub-devices

BLE

Tuya Bluetooth has 3 technology lines.

• SingleBLE - Bluetooth single point device, one-to-one connection between Bluetooth
device and phone.

• TuyaMesh - Mesh released by Tuya.

• SigMesh - Mesh released by SIG (Bluetooth Special Interest Group). In addition to
the above three, there are some multi-protocol devices, such as Dual-mode Device with
Wi-Fi and BLE capabilities. You can use both BLE and Wi-Fi capabilities.

Note: The references used in this all section was part of the Tuya glossary of
terms [31]

Home Automation

Automation and Tap-to-run

The automation allows the App to automatically execute one or more tasks according to
one or more conditions, such as the weather, device status, and time. For example, it is
possible to automatically switch on the smart plug based on sunlight. The Tap-to-run is a
predefined scenario that needs to be pressed in order to be activated as opposed to an au-
tomation.

Group devices

Link all smart devices in a group. For example, you can create a group for all appliances in
the living room, a group for the garden, and a group for the kitchen. This way you can easily
operate all devices that fall into the same group with one easy click.

Time switch

Depending on the type of device, you can set it to turn on or off at a specific time. For
example, you can set the lamps to switch off automatically after 11:00 PM.

Timer

18

Is different from time switch, the timer sets up a specific period of operation. For exam-
ple the user can be in the bed reading a book and set a timer for the lamps to switch off after
30mn, to make sure that in case he falls asleep there’s no waste of energy.

Partners and IoT Solution Providers

Tuya connects the smart devices to various mainstream voice assistants in and outside
China for users to control them with voice commands.

• In China - Xiaodu, Xiaowei, Tencent Jingle, DingDong, and Xiaoai.

• Outside China - Alexa Echo, Google Home, Yandex Alice and Siri. Tuya is also
compatible with many of the same third-party services as the previous solutions as well
as some others like DuerOS and DingDong.

UI and Screen

In figures 2.6 an 2.7 we have an UI example of the Tuya smart home solution.

(a) (b) (c)

Figure 2.6: (a) Login (b) Home (c) Remote Control

19

(a) (b)

Figure 2.7: (a) Instant Connection (b) One tap to share

2.5 Which Solution is better

2.5.1 Compatible Devices

Device compatibility is one of the most important things to consider when building a new
smart home. When it comes to that, SmartThings has the largest coverage of competitive
IoT devices. It’s usage of Zigbee and Z-wave protocols not only allows SmartThings to work
with more devices, but also benefits from the fact that these wireless protocols use up less
power than Wi-Fi, making it perfect for battery operated devices and sensors [32]. Alexa
and Google Assistant are both compatible with a huge range of devices but there are still
some devices that work with Alexa and not Google. Tuya is getting more recognition so more
service providers are joining Tuya making even more devices available. Apple has a tight
control over which devices it certifies to work with HomeKit, therefore there are fewer devices
available for HomeKit [33].

2.5.2 Digital Assistants

When it comes to the smart home, digital assistants are used to control devices with the
voice or to find information from the web, play music, and more. Both Alexa and Google
Assistant are really capable assistants. There are plenty differences between the two but
ultimately they achieve similar performance when it comes to daily tasks. Although Siri and

20

Bixby are getting better and better when compared to these two, they’re still trailing a little.

Alexa[34] Google
Assistant

[35]

Siri Bixby

Device com-
patibility

140,000+ 50,000 exclusive to
Apple

exclusive to
Samsung

Automation 100,000+
skills

1,000000+
actions

*1 *2

IoT brands 9,500+ 10,000+ exclusive to
apple

exclusive to
Samsung

Languages 8 44 21 8

Table 2.1: Digital assistants features

*1- Siri doesn’t have skills like Alexa or actions like Google Assistant, but on
the flip-side it uses an app called Shortcuts which allows the user to quickly do
everyday tasks, and with the most frequently used apps. Shortcuts are suggested
right when you need them. Siri learns the app routines of the user and then
suggests an easy way to perform common tasks.
*2- Bixby learns the user patterns and recommends an automated routine of tasks
so that it no longer has to spend time repeating the same task and chores.

When discussing digital assistants its important to keep in mind that this technology is
evolving quickly. This means that new services and features are constantly under development.
Most of them perform similar tasks, but some excel when it comes to specific cases. In terms
of device compatibility Alexa can be considered the best out of all the other assistants with
over 140,000 compatible devices (from over 9,500 brands), and then Google Assistant with
over 50,000 devices (from over 10,000) and lastly Siri and Bixby which only work with devices
of their own brand. When it comes to automation, Google Assistant with its actions, and
Alexa with its skills are leading the race, once more, providing the user with endless options
of automations. Google Assistant takes the crown when it comes to assistant intelligence and
language support [33].

2.5.3 Automation

Apple Homekit has an advantage when it comes to automation options but the other
solutions aren’t that far behind, they all offer similar capabilities. Some have different names
but most of them offer the options of creating group devices, more then one home, scenes,
routines and timers.

21

2.5.4 Extra features

Although a lot of smart home solutions are similar, each of them has something unique
that distinguishes them from the others.

• Tuya offers the Tuya OEM App. It is a solution that does not require additional
development resources. It is based on the tuya official template, provides some simple UI
customization, personalized brand configuration and other information allowing brand-
specific apps to be created within 3 days and ready to be released in the market. And
that’s a really good thing for developers.

• Apple Homekit has the Zone concept, which allow the user to give commands to all
devices that are inserted in a zone, such as a garage, upstairs, attic, etc.

• Google Assistant can understand two commands at the same time, which is a step above
Alexa’s follow-up mode.

• Alexa’s connection to Amazon offers the user an amazing shopping experience, it allows,
throughout voice commands, to place, cancel, and rack orders.

• SmartApps of Samsung, allows the creation of really deep personalizations by experts,
which can be in a totally different level of the scenes and automations of the other
solutions.

2.5.5 Conclusion

When trying to set up a Smart Home ecosystem there are various factors to consider, from
device compatibility, internet connectivity, available devices, among other things, but one of
the most important factors is the user preferences and specific needs, because depending on
these, one solution can be considered better then others. Ultimately, if the user already owns
a few devices, the best solution will largely depend on that. There are some key benefits
from each solution. For apple users with an iPhone, iPad, HomePod, Apple TV, or any other
Apple smart products, HomeKit is simply going to be the most convenient solution, even if
Siri lags behind a little and there aren’t as many compatible smart devices to choose from.
But HomeKit offers the most comprehensive smart home automation options and the best
app interface [33]. For people who already own and use a lot of Android products, Google
Assistant is likely a better bet. There’s a good assortment of compatible devices to choose
from, and the Google Assistant itself is the smartest out of the 4 voice assistants.

22

Chapter 3

Altice Home app

3.1 Introduction

Altice Home is a smart home solution that is being developed by Altice labs to be adapted
to the needs of every household. It supports a unique ecosystem that allows thorough and
effortless management of the house, interconnecting the various smart devices through a cloud
solution and providing the user with a mobile App and a TV hub to manage the house in a
smart and friendly way. Considering that the house needs permanent attention, this solution
has integrated a virtual Buttler (a Bot) that can be personalized and will assist the user in
the management of the house and its goals. That way, he’ll be always updated on the states
of the devices, consumption, saving suggestions, or tips for a better house experience. The
project is being developed by 3 teams, the UX team, responsible for the app design, the Cloud
team, responsible for the APIs and Endpoints and the Developer team, responsible for the
development of the app in Flutter.

3.2 Objectives

The key objective is the development of a mobile App using the Flutter mobile framework,
that communicates with smart home Cloud and that allows controlling every supported device.
The management is done using the App in an integrated way and with the possibility of:

• Devices and group management

• Device control

• Management of houses and divisions

• Notifications and pop-ups

• Interaction with MEO TV system

• Alexa and google skills interaction using BotSchool.

Future goals would be to invest in the mechanism of predictive behavior, energetic recommen-
dations e other scenarios that take advantage of the information obtained from the devices,
using machine learning to create artificial intelligence and make the houses truly smart.

23

* BOTSchool is a platform to create Virtual Assistants (BOTs) that can be
used for the most diverse purposes of a company, from Support, to Purchasing
Assistant, Self-Care, Management Assistant, among others. It uses Artificial
Intelligence and Machine Learning techniques to provide a more intelligent and
humanized conversation experience.

3.3 Innovations aspects

Although the IoT world is quickly evolving in terms of smart home solutions, most of them
can be too complex, not user-friendly, and lacking in terms of predictive behavior. Therefore,
Altice Home pretends to develop a smart home concept that unifies the different ecosystems
(electric, heating, security, health) of the house and allows the centralized management of
every existing technology connected to the Mesh Wi-Fi network (developed by Altice Labs)
using a simple and user-friendly approach.

3.4 Tools

The App is being developed using the Flutter framework which is a popular, multi-
platform Google’s UI toolkit powered by a single codebase, the Dart platform*, and that
provides tooling and UI libraries to build UI experiences that run on iOS, Android, macOs,
Windows, Linux, and the Web.

* Dart is a client-optimized language for developing fast apps on any platform.
Its goal is to offer the most productive programming language for multi-platform
development, paired with a flexible execution run-time platform for app frame-
works

3.5 Devices

Altice Home app is currently being developed and it’s in the MVP (Minimum Valuable
Product) phase. Therefore, the number of supported devices is limited. The solution supports
a cheap starting kit, with the potential on helping to reach more buyers, which are also easy
targets for up-selling on areas that Altice Labs has great know-how, such as Smart Mesh
Wi-Fi, TV, Bots, and Health (SmartAL). The starter kit is a comprehensive set of low cost
devices that are Smart Home compliant, easy to install and set up using the mobile App. For
the starter kit, the following devices were considered:

• White and RGB lights (from Foshan and Yourlite vendors)

• Plugs (from Hangzhou Hongshi Eletrical Co)

• Cameras (from Nivian and MEARI vendors)

24

3.6 Architecture

The overall global architecture is represented in the figure 3.1. The solution comprehends
several key components to support all the features that are envisioned in the project scope.
The main components of the solution are:

• Cloud

• North Bound APIs to be used by the Mobile App

• Tuya SDKs

• Flutter Mobile App for Android and iOS

Figure 3.1: Global architecture

3.6.1 Cloud

The cloud is a service for securely connecting and managing devices. It enables backend
code to run in response to events triggered by the App. The cloud is the central data hub of
all connected devices. Some of its features include:

• Send commands to devices from the cloud

• Report state from devices to the cloud

• Detect when devices are offline

• Provide users access to manage their devices

25

3.6.2 APIs (Outsourced)

All the features available on the Application, namely, device management, scenario man-
agement, home, rooms, and others, are supported by specific REST APIs available on the
Integration API module on the Cloud side. The APIs are HTTP/REST.

3.6.3 Tuya SDKs(Outsourced)

As stated in previous sections, the starter kit includes Tuya Wi-Fi devices only. Therefore,
some Tuya SDKs are used to implement the functionalities needed on the App like device
setup/onboarding and for the Smart Cameras control. Currently, Tuya devices can be added
using several distinct modes as seen in previous sections (e.g., EZ mode, Ap mode, or Camera
Scan code). In figure 3.2 we can see how the onboarding of devices is done and how the
devices communicate with the App and the cloud. Basically the App communicates with the
SDK, which then relays information to the cloud, ultimately ending up communicating with
the device. New configurations are then passed again to the SDK, which allows the values to
consequently change in the App side.

Figure 3.2: Diagram of process of pairing in Wi-Fi EZ mode by Tuya Inc.

3.6.4 Flutter Mobile App for Android and iOS

As previously stated, Flutter was the chosen framework used to develop the App. A
detailed explanation this framework can be found in section 3.4. The screens implemented
during this project using this platform were the following:

• Login Screen

• Room Screen

• User Account Screen

• Settings Screen

In the next chapter, we’ll see a detailed explanation about each screen, regarding the design
and implementation, but here we can see in figures 3.3 and 3.4 an UI example of the Altice
Home App smart home solution.

26

The Home screen (figure 3.3 “a”) is the center of the Smart Home experience, it’s where
everything connects and gets controlled. In this area we are presenting the scenarios if any
exist, all the devices across multiple rooms. The devices are presented and grouped by room.
If there no rooms, devices appear in a generic or default room. If we press any device or room
we’ll be redirected to that specific device or room detail screen (figure 3.3 “d”) and pressing
the “add” icon next to “My devices” redirects the user to a screen where he can set up new
devices (figure 3.3 “c”). Also, as part of the Home screen, there is a left side menu with all
the major areas of the application (figure 3.3 “b”). From there we can go to the Room and
Scenarios areas where we can create new ones (figure 3.4 “a” and “b”).

(a) (b) (c) (d)

Figure 3.3: (a) Home (b) Home menu (c) Add device (d) Device info

27

(a) (b)

Figure 3.4: (a) Add room (b) Add scenario

28

Chapter 4

Design and Implementation

To help visualize what was implemented in the next sections the use case diagram in figure
4.1 provides a perspective of the system design from the end user’s point-of-view, allowing to
communicate the system’s externally visible behavior in user terms [36].

Figure 4.1: Use cases diagram

• Login - The user writes his account details, which are validated, and in case they are
correct, he moves to the home page of the app otherwise receives an error message.

• View User Account - The user can verify his account information, like email, phone
number, username, etc.

• View Settings - The user is presented with a list of configurations of the App he can
later change, like the language, for example.

• View Room List Page - The user is presented with the list of every existing room,
he’s able to control all the lights of the rooms at the same time or individually. He is

29

also able to add another room and, when he does it, he’s redirected to a page where he
can select the new room details, like name, image or even add devices. When adding
devices he’s redirected to a page with a list of all the available devices in the account.

In the next sections, we’ll have a description of the design and implementation of every
screen implemented and in figures 4.2 and 4.3 there’s presented an highlight of the most impor-
tant functional and non-functional requirements.

Functional requirements - define if/then behaviors and include calculations, data
input, and business process. Can also be thought of in terms of how the system responds to in-
puts. If the functional requirements are not met, the system will not work [37].

Non-functional requirements - do not affect the basic functionality of the system,
even if they’re not met the systems will still perform their basic purpose. The specify how
the system should execute certain tasks [37].

30

Figure 4.2: Functional and Non-Functional Requirements

Figure 4.3: Functional and Non-Functional Requirements

31

Note: Some screens are mainly UI based and therefore all the requirements
are the ones defined in the specifications in the UXpin and are related to the
components and to visual specs only, no logic included or limited one

4.1 Application Design

The application design was done using UXPin, which is a design tool ideal for interactive
prototyping, design systems, and documentation. In this platform is where we have specified
all of the functional and non-functional requirements. It supports variables, conditional inter-
actions, expressions, interactive states, sitemaps, and data generators. The smart home has
a Design system to better respond to different necessities. With a design system the project
benefits in 3 major areas:

• Efficiency - Allow designers and developers to reuse components from a shared library,
optimizing the work.

• Consistency - having a set of principles and rules to build the components, makes
it easier to guarantee aligned and consistent experiences in different platforms and/or
formats.

• Scale - by improving the efficiency and consistency it allows a faster development scale
product. With the saved time the UX team can focus on other areas needed for the
comprehension of the users and better success for the products.

Has indicated, the application design was done by the UX team. In the next part, the
screens implemented under the scope of this dissertation will be described in detail.

4.2 Implementation

There are some concepts and good practices that were adopted to the majority of the
screens, in order to reduce the complexity of the code and avoid boilerplate, they are called
non-functional requirements and are the following :

• The usage of cubit + freezed packages: when developing an app, state management
is an important factor to keep in mind, moreover mixing business logic and UI is not a
good practice and makes the code hard to read. That is why cubit and freezed packages
were used. Cubit is a lighter version of the Bloc package, with less boilerplate (section
of code that is repeated in multiple places with little to no variation). This package is
a well-known and established library when it comes to state management in Flutter. It
promotes good practices such as immutability and it has one of the best ecosystems of
supporting packages and documentation built around it. The freezed package supports
sealed union via code generation, to represent mutually exclusive and immutable states
with unidirectional data flow in the App. And guarantee that only valid states are
allowed. Immutability is an important concept to keep in mind because it gives stricter
control over the data making the code safer and more predictable. In other words,
immutable objects allow to control the interface and data flow in a predictable manner,
discovering the changes efficiently [38].

32

• A text field factory class: wherever there’s a text box in the app we use a text
field factory, and that can receive all of the following parameters, but depending on the
subclass some of them might no be used, an example of this can be found at figure 4.4.

Figure 4.4: Text field factory

• AppSytle class- A class that contains all the styles of text that are used throughout
the app.

• AppColor class- A class that contains all the colors used in the app

Among these non-functional requirements we can also highlight the design specs and assets
present in the UX pin platform such as:

• size and color of components

• typography

• screen size in terms of pixel (to guarantee that the layout remains the same regardless
of the device being used)

4.3 Login Screen Design

This is a simple login page where the user introduces his information and then the in-
formation is posted on the server for the authentication. In case the account already exists
and the information is valid then the login is successful otherwise it returns an error message.

In figure 4.5 we have the design of this screen, which aims to meet the requirements F1
and NF1 from the figure 4.2

33

Figure 4.5: Login Screen

34

4.4 Login Screen Implementation

Figure 4.6: Login Screen with labels

In figure 4.6 we have an highlight of the most important components and widgets used
that we’ll be followed by a brief description.

KeyboardDismissOnTap- Removes the current focus and hides the keyboard when the
user taps on the widget.

Scaffold- This is a single top-level container for a material app. It expands to fill the available
space, usually, it means that it will occupy its entire window or device screen. On the body of

35

the scaffold we have a “BlocConsumer” (BlocConsumer<LoginPageCubit,LoginPageState>).
The BlocConsumer exposes a “builder” and a “listener” to react to new states. It is analogous
to a nested “BlocListener” and “BlocBuilder”, but reduces the amount of boilerplate needed.
BlocConsumer is used in this case because it’s necessary to both rebuild the UI and execute
other reactions to state changes in the “cubit”.

• The “listener” executes 4 different actions based on the 4 different states:

– Initial - waits for the loading state and when loading is true it executes “Navi-
gator.of(context).pop” to go back to the previous context.

– loading - returns a “CircularProgressIndicator” while the authentication is being
done.

– loginsucces - in case of successful authentication, dismisses the CircularPro-
gressIndicator and navigates to the homepage route.

– loginfailed - returns a “snackbar” with the “invalid credentials” text

• The “builder” returns a widget based on the LoginPageCubit state and it’s where the
UI is implemented.

Figure 4.7: Login Screen code excerpt

Figure 4.8: Login Screen code excerpt

In this code excerpt from figures 4.7 and 4.8 we are invoking the text field factory and
sending the controller parameter in the case of the username field and, in the case of the
password, we’re also sending the controller value plus a boolean value to define the visibility
of the password, and a call back function changes the value of this boolean value whenever
the eye icon is pressed.

36

4.5 Room Screen Design

This screen is divided into 3 routes:

• Main screen

• Add new room

• Choose devices

4.5.1 Main Screen

In this screen we have the list of rooms that are associated to the user account and
the list of devices that are associated in each room. We have two kinds of toggle but-
tons: one inside of each room that has at least one light (allows to turn on or off every
light present in the room) and another outside of the rooms (which allows to turn on or
off all the lights in every room that has lights). Finally, we have a the button ”add new
room” that allows the user to navigate to the next screen where he can add a new room.

In the figure 4.9 we have the design of this screen which aims to meet the requirements
F2 and NF2 from the figure 4.2

37

Figure 4.9: Room Main screen

38

4.5.2 Add New Room

In this screen the user can create a new room. When the user selects a room the colors
change from black and white to colored, to simulate the room selected. After the room is
selected the user can choose a name for the room and which device(s) he wants to add to
the room. Finally, the user can press the “save and go ahead” button and get redirected to the
rooms’ main screen. The new room should appear in the list.

In the figure 4.10 we have the design of this screen which aims to meet the requirements
F3 and NF3 from the figure 4.2

Figure 4.10: Add new room screen

39

4.5.3 Choose Devices

In this screen the user gets a list with all the devices. He can choose one or more to add to
the room.

In the figure 4.11 we have the design of this screen which aims to meet the requirements
F4 and NF4 from the figure 4.3

Figure 4.11: Choose Devices screen

40

4.6 Room Screen Implementation

4.6.1 Main Screen Implementation

In figure 4.12 we have an highlight of the most important components and widgets used
that we’ll be followed by a brief description. The header is implemented using the Scaffold
appBar.

Figure 4.12: Main Screen with labels

41

In the excerpt of code on fig. 4.13 we have the next part of the UI. We have the column
which contains the ”all rooms switch” that allows to change the state of the lights when it
is pressed through the callback function “cubit.onAllRoomsLightsSwitchChanged(true)”, the
cubit variable is equal to “BlocProvider.of<RoomsPageCubit>(context)”. This switch is only
visible if we have at least one smart light in any of the rooms. Next, we start by implementing
the list of containers that implement all the rooms associated with the user account by calling
the class “RoomCard()”.

Figure 4.13: RoomPage excerpt

42

In the code excerpt of fig 4.14, we have a column with the 3 elements that belong to the
room card container, firstly we have the room image, secondly the room name, and finally,
we have a row with the room’s available devices plus the switch that allows turning on/off
all the lights that belong to that specific room. This switch is only visible if we have at least
one smart light in the room.

Figure 4.14: RoomCard code excerpt

43

Finally, we have the room page cubit, where state management is done. In the code ex-
cerpt of fig 4.15 we have 2 functions. “loadRooms()” it’s a function that calls a cloud API that
allows populating the “rooms” variable with all of the rooms associated with the user account
and then in case of successful data retrieving the function “emitRooms(List <RoomModel
>rooms)” emits the “loaded” state. The starter kit room type doesn’t appear on the room’s
main screen page, only on the home page. In fig 4.17 we have an example of the constructor
of the room model.

In the code excerpt of fig 4.16 we have 3 functions:

• void onAllLightsSwitchChangedForRoom(RoomModel room, bool turnedOn): It’s a
function that updates the power capability state of all the lights in the room when the
switch is pressed.

• void onAllRoomsLightsSwitchChanged(bool turnedOn): It’s a function similar to the
one above, except it changes all the lights present in every room that has a light included.

• void onRoomCreated(RoomModel newRoom): Updates the list of rooms with a newly
created room.

Figure 4.15: RoomsPageCubit code excerpt

Figure 4.16: RoomsPageCubit code excerpt

44

Figure 4.17: Room model constructor code excerpt

4.6.2 Add New Room Implementation

In figure 4.18 we have an highlight of the most important components and widgets used
that we’ll be followed by a brief description. The header is implemented using the Scaffold
appBar.

45

Figure 4.18: Add New Room Screen with labels

46

In the excerpt of code on fig. 4.19, we have the column which comprises most of the
widgets from this screen. Firstly, we have the text widget “Room type”, secondly we have
the function “buildRoomTypes()” which takes into consideration the app current context
as well as all the room types that exist, the current value of the selected room type (the
“RoomTypeSquareButton” class from “buildRoomTypes()” is simply for creating each room
container with the help of the function “utils.getSVGIllustrationPathforRoom()” to change
the image of each from colored to black and white depending on the room which is currently
selected. We can see these excerpts in fig 4.21 and 4.22, and finally the boolean variable that
controls the maximum length of rooms the user is allowed to see at once. In fig. 4.20 we
have the implementation of this function, and we can see that it builds a grid in which the
maximum length is defined by the number of different room types and the minimum is defined
as 4. This value is controlled by the value of the boolean variable “expanded”, whose value
is controlled by the text widget that is wrapped around by a gesture detector in fig 4.19.

Figure 4.19: Add New Room Page excerpt

Figure 4.20: Add New Room Page excerpt

47

Figure 4.21: RoomTypeSquareButton class code excerpt

Figure 4.22: utils.getSVGIllustrationPathforRoom code excerpt

48

In the code excerpt of fig 4.23 and 4.24, we have the “+ add devices to this room” button
that redirects to the “choose devices page” when pressed and the “save and go ahead button”
that creates a new room with all the information that was selected above.

Figure 4.23: Add New Room Page excerpt

Figure 4.24: Add New Room Page excerpt

49

Finally, we have the “add new room page cubit”, where state management is done. In the
code excerpt of fig 4.25 we have 3 important functions:

• “onRoomTypeSelected()” it’s a function that updates the value of the selected room
type;

• “onRoomNameChanged()” it’s a function that updates the name of the selected room

• “onSave()” it’s a function that creates the new room, with all the new pieces of infor-
mation, room type, room name, and devices.

Figure 4.25: Add New Room Page Cubit code excerpt

50

4.6.3 Choose Devices Implementation

The screen of figure 4.26 is mainly UI and there’s no logic implemented. Therefore, there
is no need to present an excerpt of code because the widget implementation used is very
similar to several ones described before.

Figure 4.26: Choose Devices screen with labels

Note: This was the first set of screens developed by me as a Flutter developer.
Hence, there were a lot of aspects where I lacked knowledge and experience. The
code above is an upgraded version of the code developed by me that suffered a
lot of changes from my colleague who performed the code review. In the next
section, I’ll show the first version of my code and conclude what were the best

51

practices adopted by my colleague and how they contributed to my knowledge and
evolution for the other screens.

52

4.7 Room Screen 1st Implementation

4.7.1 Main Screen 1st Implementation

In the upgraded implementation what was achieved by the function “buildroom” and the
class “RoomCard” from fig 4.13 and 4.14 respectively, was implemented in the same class by
the functions “buildRooms” and “buildRoom”. Analyzing both of the code excerpts from
figures 4.27 to 4.30 we can notice a number of differences. In the first implementation we can
see there’s a lot of mix of logic and UI, and the code is not very clear, while in the upgraded
one, everything is well organized and divided by classes.

Figure 4.27: RoomPage excerpt

Figure 4.28: RoomPage excerpt

53

Figure 4.29: RoomPage excerpt

Figure 4.30: RoomPage excerpt

54

In the upgraded version, in the cubit (figures 4.31 and 4.32), we focus on loading the
rooms, and changing the status of the switches, and creating new rooms. In the initial version,
we also load the rooms and change the value of the switch as we update the current state of
the room. In the initial version, the cloud APIs weren’t available yet, so I was using a dummy
provider for obtaining all the house information.

Figure 4.31: RoomsPageCubit code excerpt

Figure 4.32: RoomsPageCubit code excerpt

55

4.7.2 Add New Room 1st Implementation

The first part of the implementation is similar to the upgraded implementation. We start
encountering the first differences in the ”builRoomTypes”, ”RoomTypeSquareButton” and
utils.getSVGIllustrationPathforRoom” (fig 4.19, 4.21 and 4.22 from the upgraded version).
The upgraded version uses the cubit to update the state of the variable corresponding to the
currently selected room, has every significant step in its class, and is simply organized. In the
first version, there’s logic (for and if cycles) mixed with UI and setState (as we can see in the
excerpt of the codes from figures 4.33 to 4.35), which ends up breaking clean code principles.
This is a big problem when we have an app with a lot of screens because it scatters the state
all over the place. ”setState” should only be used when the state only exists within a widget
and no other part of the app needs access to this state.

Figure 4.33: Add New Room Page code excerpt

Figure 4.34: Add New Room Page code excerpt

56

Figure 4.35: Add New Room Page code excerpt

57

In the excerpt of code on figure 4.36 we have the widget “buildRooms” which a column
where each element (the room) is implemented by the widget “buildRoom” from figures 4.37
and 4.38(4.19 from upgraded version), we have the column which comprises most of the
widgets from this screen.The code excerpts from figures 4.33 to 4.35 is where we simulate the
selection of rooms.

Figure 4.36: Add New Room Page excerpt

Figure 4.37: Add New Room Page excerpt

58

Figure 4.38: Add New Room Page excerpt

59

In the code excerpt of fig 4.39 and 4.40, we have the “+ add devices to this room” button
that redirects to the “choose devices page” when pressed and the “save and go ahead button”
that creates a new room with all the information that was selected above.

Figure 4.39: Add New Room Page excerpt

Figure 4.40: Add New Room Page excerpt

60

Finally, we have the “add new room page cubit”, where state management is done. In the
code excerpt of fig 4.41 we have 3 important functions:

• ”onRoomTypeSelected()” it’s a function that updates the value of the selected room
type;

• ”onRoomNameChanged()” it’s a function that updates the name of the selected room

• ”onSave() it’s a function that creates the new room, with all the new pieces of informa-
tion, room type, room name, and devices.

Figure 4.41: Add New Room Page Cubit code excerpt

4.8 User Account Screen Design

This is a simple read only page the contains the user basic information.

In the figure 4.42 we have the design of this screen which aims to meet the requirements
F5 and NF5 from the figure 4.3

61

Figure 4.42: User Account Screen

62

4.9 User Account Screen Implementation

Figure 4.43: UserAccount Screen with labels

In this part there will be a brief description of some of the most relevant widgets used in
the screen of figure 4.43. Like in the previous screens we use a Scaffold. The “appBar” part
contains a back arrow icon that allows to navigate back to the previous screen, a text with
the number of smart points and an SVG image of what is a smarty(this is a type of file that
is provided by the design team, it’s part of the requirements). On the body of the scaffold
we have a “BlocBuilder”(BlocBuilder<UserAccountPageCubit, UserAccountPageStatet>).
The BlocBuilder exposes a builder that handles building a widget in response to new states.
It is analogous to StreamBuilder, but has simplified API to reduce the amount of boilerplate

63

code needed as well as cubit-specific performance improvements.

• The “builder” returns a widget based on the UserAccountPageCubit state and it’s where
the UI is implemented.

Figure 4.44: UserAccountPage excerpt

In the excerpt of code on the fig. 4.44 we initialized the TextEditingControllers with the
information obtained through the jw token (JSON Web Token) (figure 4.45), which is an open
standard (RFC 7519) that defines a compact and self-contained way for securely transmitting
information between parties as a JSON object. This information can be verified and trusted
because it is digitally signed.

Figure 4.45: UserAccountCubit excerpt

In the cubit page we populate the UserAccountModel with the information that was
encoded in the jw token and was decoded in the UserAccountRepository using the flutter
package “jwt decode” (figure 4.46 to 4.47).

Figure 4.46: UserAccountModel code excerpt

64

Figure 4.47: UserAccountRepository code excerpt

In the next part of the code we have a Circle Avatar, a widget which is a circle the
represents the user’s profile image, or, in the absence of such an image, the user’s initials.
From our account model we have access to the user full name and with a simple function we
can extract the user initials and configure the data for building the widget.

In the last part, we simply have a column with four containers that implement a TextForm-
Field, each, and they’re populated with the information present in the TextEditingControllers.

4.10 Settings Screen Design

This is a screen where, in the future, the user will be able to change various settings in the
App. At the time of the implementation no logic, interactions, or functionalities were defined,
therefore this screen is simply a UI screen.

In the figure 4.48 we have the design of this screen which aims to meet the requirements
F6 and NF6 from the figure 4.3

65

Figure 4.48: Settings Screen

66

4.11 Settings Screen Implementation

We use a Scaffold. The “appBar” part contains back arrow icon that allows us to go
back to the previous screen and a text saying “Settings”. On the body of the scaffold we have
a “BlocBuilder”(BlocBuilder<SettingsPageCubit, SettingsPageState>).

• The “builder” returns a widget based on the SetingsPageCubit state and it’s where the
UI is implemented.

Figure 4.49: SettingsItem code excerpt

We are using a Column widget wrapped around a SingleChildScrollView, which is a box
in which a single widget that can be scrolled. Inside the Column’s children we implemented
each element of the list. To avoid boiler plate we created a class called “SettingsItems” where
we pass different parameters for each element in the list.

Figure 4.50: SettingsCubit code excerpt

The state of each switch is controlled by the callback function on the settings item, which
evokes the cubit whenever the switch is pressed, ending up changing the current state (figure
4.49).

67

68

Chapter 5

Testing

5.1 What is testing?

App development is a process that goes through numerous phases. In this part we discuss
software testing, which is a crucial part of the development process. A company can not
risk to launch a defective product. Therefore, each product must undergo a delicate testing
process before being released. The main activities that are included in the testing process are
[39, p. 13]:

• design

• planning

• implementation

• execution

5.2 Testing Throughout the Software Development Lifecycle

For each testing process there’s an associated software development lifecycle that describes
how the activities relate to one another logically and chronologically. Good software testing
is characterized by the following characteristics [39, p. 28]:

• For every development activity, there is a corresponding test activity

• Each test level has test objectives specific to that level

• Test analysis and design for a given test level begin during the corresponding develop-
ment activity

• Testers must always define and review all the requirements and design of the product.

5.2.1 Test levels

Test levels are groups of test activities that are organized and managed together. They
can be divided into:

• Component testing

69

• Integration testing

• System testing

• Acceptance testing

and characterized by the following attributes[39, p. 30]:

• Specific objectives

• Test basis, referenced to derive test cases

• Test object (i.e what is being tested)

• Typical defects and failures

• Specific approaches and responsibilities

5.3 Test management tool

The tool that we used in this project is Xray (see fig. 5.1), which is a full-featured app
for Jira that does not require any other software in order to run. Xray supports the entire
testing life cycle: test planning, test design, test execution and test reporting.

70

Figure 5.1: Xray layout

5.4 Test Plan

Test planning is a continuous activity and is performed throughout the product’s lifecycle
[39, p. 66]. Test plans depend on the project and may include different test levels or types.
In this project we’re doing usability test, namely, acceptance tests and regression tests. To
construct a test plan we first need to design a test battery, which will include all the features
to validate. Each test from the battery is carefully designed considering the specifications of
the App and the Ux planning, and needs to contain all the functionalities we’re validating as
well as the expected results. The App development is divided into numerous sprints (short
period of time where the development team works to complete specific tasks, milestones, or
deliverable), each one with a two weeks duration and an associated test plan. In the test plan
we always execute three kind of black-box use case tests*, regression tests, acceptance tests
and exploratory tests.

*use case testing - is a technique that helps identifying test cases that cover the entire
system, can be described by preconditions and post-conditions [39, p. 60].

5.4.1 Regression tests

When we start a new sprint where new functionalities of the App are implemented, we
need to always execute regression test, to confirm that the changes made, or the defects
correction (in case they were defects from the previous sprint) have not caused unforeseen
adverse consequences, like accidentally affect the behavior of other parts of the App. This
kind of side-effects are called regressions [39, p. 41]. In the image bellow we can see an example
of a regression test plan:

71

Figure 5.2: Regression testing

Figure 5.3: Regression testing

72

Figure 5.4: Regression testing

73

5.4.2 Acceptance tests

Acceptance tests are made for the purpose of validating the product and guaranteeing
its readiness for deployment and use by the costumer. During these tests, defects may be
found, but finding them is often not an objective, and finding a significant number of defects
during acceptance testing may in some cases be considered a major project risk [39, p. 36].
For every sprint an acceptance test was made, which contained a test battery with the test
of the screens or functionalities we wanted to validate.

5.4.3 Exploratory tests

Exploratory tests are informal and undocumented tests that are useful as a complement
of the more formal tests. They are a good way to navigate through the app and find some
aspects that might need to be improved. They are also beneficial for when there are few or
inadequate specifications or significant time available [39, p. 61].

74

5.5 Validation

The tables in figures 5.5, 5.6 and 5.7 are related to the acceptance tests we executed to
validate the functionalities implemented, UI design, and correctness of some strings. These
tests were use cases and manually implemented. In the end, all the tests were conducted
successfully. During the development and testing at each sprint, if some bug or malfunction
was discovered through tests a defect was opened and the problem was fixed. That is the
reason why in the final version everything was working correctly.

Figure 5.5: Table of tests executed in all of the screens

Figure 5.6: Table of test executed for the ”Add New Room” screen

75

Figure 5.7: Table of test executed for the ”Choose Devices” screen

76

As previously indicated, for every screen implemented in the scope of this dissertation
there was a through process of code review. This process was supported by the Bitbucket
version control software, which allows to efficiently work as a team on a shared codebase.
We had a main branch called ”develop” and for every new functionality or screen developed,
we worked on separate branches. After finishing implementing the screen, a pull request was
created to the main branch that was merged once approved. An example of the code review
can be found in figure 5.8. Because of this code review process a lot of bugs could be prevented
before the commit of the new functionality in the App. But most of the issues found were
typos related to the implemented screens or mismatches with the design specification, like
the size of some icons or images, or the spacing between components.

On the other hand, when testing other functionalities of the App some more relevant issues
were found, and we used Jira to document them. This process consists of a brief description
of the bug, followed by a screenshot or screen capture of the bug, and finally a register of
the version of the equipment used, since some bugs can be related to the software version, in
Android or iOS.

Figure 5.8: Code review of a pull request

77

78

Chapter 6

Conclusion

6.1 Conclusion

Smart home technology is a “world” that has been attracting more and more attention.
When it comes to setting up a Smart Home ecosystem there are various factors to consider.
From all the numerous existing solutions, like Google Assistant, Alexa, Apple Home app, Sam-
sung SmartThings, among others, is difficult to define the best ecosystem. Most of these solu-
tions offer similar benefits and each one excels in some particular area(s). Therefore, the best
solution depends on the user preferences. This dissertation had the objective of developing
a mobile App in Flutter for smart home management that could rival those solutions and offer
something more.

The used approach was focused on targeting the customer desire of having a user-friendly
experience at home, using technologies that simplify the set up and management of smart
devices in the house. Flutter has only been around for 4 years, but throughout this project,
we noticed that we’re able to achieve a lot with it. Even if some setbacks were encountered,
there a lot of libraries available that are useful and play a major role in the development.

When implementing all the screens we learned about the importance of defining the
use-cases and the requirement because they allow a better understanding of what are the
client needs. We also learned about some of the best practices we should have in mind
to increase performance, track the changes more efficiently, have stricter control over the
data (by using immutable variables), and avoid unnecessary portions of repeated code (by
using global classes). Lastly, we proceeded to the validation part where we executed a
number of acceptance tests, guaranteeing that all the requirements were met as intended.

In a final note with this project, we were able to learn all the steps and phases behind the
development of a mobile App and the testing process that occurs before releasing the product.
There are a lot of test techniques that could be used, but each of them has a different efficiency
depending on the product. For this project, we learned what was the best to use and how to
design and execute the tests.

79

80

6.2 Future Works

The Altice Home app is in the MVP phase and is being actively developed, which means
it still has room for improvement and restructuring. Presently, the app only supports Tuya
devices such as RGB/white lights, plugs and cameras, but the goal for the future is to support
even more devices like air purifiers, locks, or thermostats and also devices from other brands
and manufacturers. There’s also a number of functionalities in the App that aren’t currently
implemented. The future goal is for the app to evolve to other areas of interest, such as
Entertainment, Connectivity, Health, Security and related domains. The end vision is to
have a Smart Home ecosystem that allows for a unified experience in a friendly and unique
interface to control all the devices and systems at home.

Some of the envisioned advanced functionalities are the following:

• Multiple homes and users - The app will support multiple homes for a single user (for
example the house and the work office) and the possibility of inviting people (typically
family members) to our house and with the options of defining the role;

• ChatBot - The Bot will be like a virtual assistant it will be particular skilled for in-
home automation services and the idea is to support the most common interaction for
controlling the house, either texting or using voice directly in the Chat Bot widget;

• Alerts and push notifications - Instant notifications to the smart device to keep the
user aware of whats happening at home;

• Device and scenario history - The app will provide a monthly energy consumption
graph and daily updates for when the devices and scenarios status gets updated

• Planned Activity - The app will allow the user to plan his day, week or month, by
scheduling a series of events and scenarios;

81

82

Bibliography

[1] Vincent Ricquebourg, David Menga, David Durand, Bruno Marhic, Laurent Delahoche,
and Christophe Logé. The smart home concept: Our immediate future. 2006 1st IEEE
Int. Conf. E-Learning Ind. Electron. ICELIE, pages 23–28, 2006. doi:10.1109/ICELIE.
2006.347206.

[2] Othmar Kyas. How To Smart Home, volume 3. 2013.

[3] Smart Nutter. Mesh Wi-Fi Router for Smart Home Automation – SmartNutter. URL:
https://smartnutter.com/mesh-wi-fi-router-for-smart-home-automation/.

[4] Brian Heater. ALEXA gets access to Wolfram’s Alpha knowl-
edge engine, 2018. URL: https://techcrunch.com/2018/12/20/

alexa-gets-access-to-wolfram-alphas-knowledge-engine/.

[5] John Walsby and Megan Stewart. Guidelines for Amazon Echo Alexa brand usage for
external partners. pages 1–48, 2019.

[6] Amazon. Works with Alexa IoT Solution Providers — Alexa Skills Kit,
2010. URL: https://developer.amazon.com/en-US/docs/alexa/smarthome/

smart-home-iot-solution-providers.html.

[7] Home Assistant. Home Assistant vs. Home Assistant Core. URL: https://www.

home-assistant.io/faq/ha-vs-hassio/.

[8] Home Assistant. Z-Wave. URL: https://www.home-assistant.io/docs/z-wave/.

[9] Home Assistant. MQTT. URL: https://www.home-assistant.io/integrations/

mqtt/.

[10] Home Assistant. Automation Trigger. URL: https://www.home-assistant.io/docs/
automation/trigger.

[11] Home Assistant. Automation Conditions. URL: https://www.home-assistant.io/

docs/automation/condition.

[12] Home Assistant. Automation Actions. URL: https://www.home-assistant.io/docs/
automation/action.

[13] Home Assistant. Scenes. URL: https://www.home-assistant.io/integrations/

scene/.

83

https://doi.org/10.1109/ICELIE.2006.347206
https://doi.org/10.1109/ICELIE.2006.347206
https://smartnutter.com/mesh-wi-fi-router-for-smart-home-automation/
https://techcrunch.com/2018/12/20/alexa-gets-access-to-wolfram-alphas-knowledge-engine/
https://techcrunch.com/2018/12/20/alexa-gets-access-to-wolfram-alphas-knowledge-engine/
https://developer.amazon.com/en-US/docs/alexa/smarthome/smart-home-iot-solution-providers.html
https://developer.amazon.com/en-US/docs/alexa/smarthome/smart-home-iot-solution-providers.html
https://www.home-assistant.io/faq/ha-vs-hassio/
https://www.home-assistant.io/faq/ha-vs-hassio/
https://www.home-assistant.io/docs/z-wave/
https://www.home-assistant.io/integrations/mqtt/
https://www.home-assistant.io/integrations/mqtt/
https://www.home-assistant.io/docs/automation/trigger
https://www.home-assistant.io/docs/automation/trigger
https://www.home-assistant.io/docs/automation/condition
https://www.home-assistant.io/docs/automation/condition
https://www.home-assistant.io/docs/automation/action
https://www.home-assistant.io/docs/automation/action
https://www.home-assistant.io/integrations/scene/
https://www.home-assistant.io/integrations/scene/

[14] Samsung. SmartThings Developers, 2020. URL: https://smartthings.developer.

samsung.com/docs/platform-basics.htmlhttps://smartthings.developer.

samsung.com/docs/index.html.

[15] Samsung. SmartThings Developers — Documentation, 2020. URL: https://

smartthings.developer.samsung.com/docs/devices/device-basics.htmlhttps:

//smartthings.developer.samsung.com/docs/index.html.

[16] Samsung. Use automations in SmartThings. URL: https://www.samsung.com/us/

support/answer/ANS00078852/.

[17] Rixin Xu, Qiang Zeng, Liehuang Zhu, Haotian Chi, Xiaojiang Du, and Mohsen Guizani.
Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study. IEEE
Access, 7:63457–63471, 2019. arXiv:1902.03168, doi:10.1109/ACCESS.2019.2911202.

[18] Samsung. SmartThings Developers — Documentation, 2020. URL: https:

//smartthings.developer.samsung.com/docs/devices/working-with-scenes.

htmlhttps://smartthings.developer.samsung.com/docs/index.html.

[19] Nicholas Fifield. Apple HomeKit Application and Cost Breakdown. 2020.

[20] Apple. HomeKit Overview - Apple Developer, 2021. URL: https://developer.apple.
com/homekit/.

[21] James Stables. Apple HomeKit: Everything you need to know about liv-
ing in an Apple Home, 2021. URL: https://www.the-ambient.com/guides/

apple-homekit-complete-guide-194.

[22] Apple. HomeKit Accessory FAQs - HomeKit - Apple Developer, 2021. URL: https:
//developer.apple.com/homekit/faq/.

[23] Apple. Add a HomeKit accessory to the Home app - Apple Support, 2021. URL:
https://support.apple.com/en-us/HT204893#room.

[24] Apple. Terminology and Layout - HomeKit - Human Interface Guide-
lines - Apple Developer, 2021. URL: https://developer.apple.com/design/

human-interface-guidelines/homekit/overview/terminology-and-layout/.

[25] Apple. iOS - Home - Apple, 2021. URL: https://www.apple.com/ios/home/.

[26] Gadget Freak. Starting With Tuya: The Ultimate Guide! - Gadget-Freakz.com, 2020.
URL: https://gadget-freakz.com/starting-with-tuya-the-ultimate-guide/.

[27] Tuya. What is the Difference between Native App and Hybrid App? — Existek Blog,
2021. URL: https://support.tuya.com/en/help/_detail/K9hrdz10p224ehttps://
existek.com/blog/difference-between-native-app-and-hybrid-app/.

[28] Tuya. What does Tuya Smart App do? What are the advantages?, 2021. URL: https:
//support.tuya.com/en/help/_detail/Kajju51fy56w3.

[29] Tuya Inc. What’s the advantages of Tuya, 2021. URL: https://support.tuya.com/
en/help/_detail/K8sdy0ybarg3y.

84

https://smartthings.developer.samsung.com/docs/platform-basics.html https://smartthings.developer.samsung.com/docs/index.html
https://smartthings.developer.samsung.com/docs/platform-basics.html https://smartthings.developer.samsung.com/docs/index.html
https://smartthings.developer.samsung.com/docs/platform-basics.html https://smartthings.developer.samsung.com/docs/index.html
https://smartthings.developer.samsung.com/docs/devices/device-basics.html https://smartthings.developer.samsung.com/docs/index.html
https://smartthings.developer.samsung.com/docs/devices/device-basics.html https://smartthings.developer.samsung.com/docs/index.html
https://smartthings.developer.samsung.com/docs/devices/device-basics.html https://smartthings.developer.samsung.com/docs/index.html
https://www.samsung.com/us/support/answer/ANS00078852/
https://www.samsung.com/us/support/answer/ANS00078852/
http://arxiv.org/abs/1902.03168
https://doi.org/10.1109/ACCESS.2019.2911202
https://smartthings.developer.samsung.com/docs/devices/working-with-scenes.html https://smartthings.developer.samsung.com/docs/index.html
https://smartthings.developer.samsung.com/docs/devices/working-with-scenes.html https://smartthings.developer.samsung.com/docs/index.html
https://smartthings.developer.samsung.com/docs/devices/working-with-scenes.html https://smartthings.developer.samsung.com/docs/index.html
https://developer.apple.com/homekit/
https://developer.apple.com/homekit/
https://www.the-ambient.com/guides/apple-homekit-complete-guide-194
https://www.the-ambient.com/guides/apple-homekit-complete-guide-194
https://developer.apple.com/homekit/faq/
https://developer.apple.com/homekit/faq/
https://support.apple.com/en-us/HT204893#room
https://developer.apple.com/design/human-interface-guidelines/homekit/overview/terminology-and-layout/
https://developer.apple.com/design/human-interface-guidelines/homekit/overview/terminology-and-layout/
https://www.apple.com/ios/home/
https://gadget-freakz.com/starting-with-tuya-the-ultimate-guide/
https://support.tuya.com/en/help/_detail/K9hrdz10p224e https://existek.com/blog/difference-between-native-app-and-hybrid-app/
https://support.tuya.com/en/help/_detail/K9hrdz10p224e https://existek.com/blog/difference-between-native-app-and-hybrid-app/
https://support.tuya.com/en/help/_detail/Kajju51fy56w3
https://support.tuya.com/en/help/_detail/Kajju51fy56w3
https://support.tuya.com/en/help/_detail/K8sdy0ybarg3y
https://support.tuya.com/en/help/_detail/K8sdy0ybarg3y

[30] Tuya. OEM App-Documentation-Tuya Developer, 2021. URL: https://developer.
tuya.com/en/docs/iot/oem-app?id=K9j6yqpc43u9t.

[31] Tuya. Glossary-Documentation-Tuya Developer, 2021. URL: https://developer.

tuya.com/en/docs/iot/terms?id=K914joq6tegj4#title-2-Communication.

[32] Sinclair,Patrick. HomeKit vs SmartThings Protocols: Which to Choose?
— All Home Robotics. URL: https://www.allhomerobotics.com/

homekit-vs-smartthings-protocols-which-to-choose/.

[33] Christian De Looper. Google Assistant vs Amazon Alexa vs HomeKit: which smart
home is best? - Business Insider, 2020. URL: https://www.businessinsider.com/

homekit-vs-google-assistant-vs-amazon-alexahttps://www.businessinsider.

com/homekit-vs-google-assistant-vs-amazon-alexa?r=US&IR=T.

[34] Amazon. Alexa for Device Makers. URL: https://developer.amazon.com/en-US/

alexa/devices.

[35] Google. Data security and privacy on devices that work with Assistant - Google
Nest Help. URL: https://support.google.com/googlenest/answer/7639952?hl=

enhttps://support.google.com/googlenest/answer/7072285?hl=en.

[36] Visual Paradigm. What is Use Case Diagram? URL: https://www.visual-paradigm.
com/guide/uml-unified-modeling-language/what-is-use-case-diagram/.

[37] Qra corp. Functional vs Non-Functional Requirements: The Definitive Guide. URL:
https://qracorp.com/functional-vs-non-functional-requirements/.

[38] geeksforgeeks. Why is Immutability so Important in JavaScript? URL: https://www.
geeksforgeeks.org/why-is-immutability-so-important-in-javascript/.

[39] International Software Testing Qualifications Board. Certified Tester Foundation Level
Syllabus. page 85, 2011.

85

https://developer.tuya.com/en/docs/iot/oem-app?id=K9j6yqpc43u9t
https://developer.tuya.com/en/docs/iot/oem-app?id=K9j6yqpc43u9t
https://developer.tuya.com/en/docs/iot/terms?id=K914joq6tegj4#title-2-Communication
https://developer.tuya.com/en/docs/iot/terms?id=K914joq6tegj4#title-2-Communication
https://www.allhomerobotics.com/homekit-vs-smartthings-protocols-which-to-choose/
https://www.allhomerobotics.com/homekit-vs-smartthings-protocols-which-to-choose/
https://www.businessinsider.com/homekit-vs-google-assistant-vs-amazon-alexa https://www.businessinsider.com/homekit-vs-google-assistant-vs-amazon-alexa?r=US&IR=T
https://www.businessinsider.com/homekit-vs-google-assistant-vs-amazon-alexa https://www.businessinsider.com/homekit-vs-google-assistant-vs-amazon-alexa?r=US&IR=T
https://www.businessinsider.com/homekit-vs-google-assistant-vs-amazon-alexa https://www.businessinsider.com/homekit-vs-google-assistant-vs-amazon-alexa?r=US&IR=T
https://developer.amazon.com/en-US/alexa/devices
https://developer.amazon.com/en-US/alexa/devices
https://support.google.com/googlenest/answer/7639952?hl=en https://support.google.com/googlenest/answer/7072285?hl=en
https://support.google.com/googlenest/answer/7639952?hl=en https://support.google.com/googlenest/answer/7072285?hl=en
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://qracorp.com/functional-vs-non-functional-requirements/
https://www.geeksforgeeks.org/why-is-immutability-so-important-in-javascript/
https://www.geeksforgeeks.org/why-is-immutability-so-important-in-javascript/

86

	Contents
	List of Figures
	List of Tables
	Introduction
	Focus and Scope
	Objectives
	Outline

	State of the art
	Tecnologies
	Major Functionalities and Use Cases
	Health
	Security
	Entertainment
	Sustainability

	Virtual assistants
	Amazon Alexa
	Google Home Assistant

	Smart Home solutions
	SmartThings Samsung
	Apple Homekit
	TuyaSmart

	Which Solution is better
	Compatible Devices
	Digital Assistants
	Automation
	Extra features
	Conclusion

	Altice Home app
	Introduction
	Objectives
	Innovations aspects
	Tools
	Devices
	Architecture
	Cloud
	APIs (Outsourced)
	Tuya SDKs(Outsourced)
	Flutter Mobile App for Android and iOS

	Design and Implementation
	Application Design
	Implementation
	Login Screen Design
	Login Screen Implementation
	Room Screen Design
	Main Screen
	Add New Room
	Choose Devices

	Room Screen Implementation
	Main Screen Implementation
	Add New Room Implementation
	Choose Devices Implementation

	Room Screen 1st Implementation
	Main Screen 1st Implementation
	Add New Room 1st Implementation

	User Account Screen Design
	User Account Screen Implementation
	Settings Screen Design
	Settings Screen Implementation

	Testing
	What is testing?
	Testing Throughout the Software Development Lifecycle
	Test levels

	Test management tool
	Test Plan
	Regression tests
	Acceptance tests
	Exploratory tests

	Validation

	Conclusion
	Conclusion
	Future Works

	Bibliography

