

Carolina Albuquerque

BeingCare: Uma Janela Virtual de Comunicação

para o Bem-estar

BeingCare: A Virtual Communication Window for

Wellbeing

Universidade de Aveiro

Universidade de Aveiro

2021

Carolina Albuquerque

BeingCare: Uma Janela Virtual de Comunicação

para o Bem-estar

BeingCare: A Virtual Communication Window for

Wellbeing

Dissertação apresentada à Universidade de Aveiro para cumprimento dos

requisitos necessários à obtenção do grau de Mestre em Engenharia

Informática, realizada sob a orientação científica do Doutor José Maria

Fernandes, Professor Auxiliar do Departamento de Eletrónica,

Telecomunicações e Informática da Universidade de Aveiro, e da Doutora Ana

Raquel Sebastião, Investigadora do Instituto de Engenharia Eletrónica e

Telemática de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Joaquim Arnaldo Carvalho Martins

Professor Catedrático da Universidade de Aveiro

vogais / examiners

committee

Prof. Doutor Sergi Bermúdez i Badia

Professor Associado da Universidade da Madeira

Prof. Doutor José Maria Amaral Fernandes

Professor Auxiliar da Universidade de Aveiro

agradecimentos /

acknowledges

Com o desfecho do meu percurso académico não poderia deixar de

agradecer àqueles que o marcaram positivamente.

O primeiro agradecimento é destinado à minha família, especialmente ao

meu pai, à minha mãe e à Eduarda, não só pelo apoio durante os meus

estudos, mas pelo investimento financeiro prestado ao longos destes últimos

anos na minha formação.

Agradeço ao Hugo por todo o carinho, dedicação e amparo que me transmitiu

nos melhores e nos piores dias.

Gostaria de expressar a minha gratidão por ter conhecido durante estes

últimos anos académicos algumas das pessoas mais importantes que levo

comigo para a vida. A elas, um agradecimento especial por toda a paciência

e disponibilidade quer nos tempos de trabalho árduo quer nos momentos de

descontração.

Por fim, o mais sincero agradecimento pelo voto de confiança e

acompanhamento excecional prestados pelo Professor José Maria e pela

Doutora Raquel Sebastião durante o desenvolvimento deste trabalho. A

orientação dedicada e a envolvência deles tornou-se num factor chave para

o sucesso deste trabalho.

palavras chave

Desenvolvimento multiplataforma, Flutter/Dart, aplicação móvel, suporte

comunicação humana, classificação de áudio

resumo

O crescimento tecnológico permitiu aos utilizadores tirarem partido dos seus

recursos em diversas áreas como a saúde, educação, política, entre outras.

Contudo, a interação humana continua a apresentar alguns desafios, não só em

cenários de isolamento e prestação de cuidados básicos, mas também em

restrições temporárias humanas (incapacidade de falar ou mover), mesmo

recorrendo à tecnologia.

O sistema BeingCare – uma prova de conceito baseada em Flutter – é uma

janela virtual que ajuda a superar restrições de comunicação levantadas em

cenários relacionados com o bem-estar, onde a interação direta entre humanos

envolvidos pode ser prejudicada.

O sistema BeingCare foi desenvolvido em Dart (backend) e Flutter (frontend)

tendo sido implantado com sucesso em iOS e Android com pequenas

adaptações específicas da plataforma. A exploração da abordagem de edge

computing para a classificação de áudio foi bem sucedida com o uso do

Tensorflow Lite, que concede processamento local sem a necessidade de

serviços externos e qualquer troca de dados de áudio – reforçando a

privacidade e a troca de informações pessoais de acordo com as regras e

mentalidade do RGPD. Embora inicialmente não planeado, o brackground do

BeingCare foi inteiramente desenvolvido na linguagem Dart, sugerindo a sua

adequação a alcances para além da web e do mobile em Flutter.

keywords

Cross-platform development, Flutter/Dart, mobile application, human

communication support, audio classification

abstract

The powerful growth of technology granted users to take advantage of their

resources in several areas such as health, education, politics, and others.

However, human interaction continues poses several challenges, not only in

isolation or care support scenarios, but also with human temporary constraints

(inability to speak or move), even with the resource of technology.

The BeingCare system - a proof-of-concept system based on Flutter – is a virtual

window helping surpass communications constraints raised in wellbeing-

related scenarios where direct interaction between the humans involved may

be hindered.

BeingCare was developed in Dart (backend) and Flutter (mobile and web front

ends) and successfully deployed in iOS and Android with minor platform specific

adaptions. Flutter enabled an easy integration of audio acquisition, processing,

and classification. Edge computing approach for the audio classification was

successfully addressed by using Tensorflow Lite, which grants local processing

without the need of external services and any audio data exchange - enforcing

the privacy and personal information data exchange in line with RGPD rules and

mindset. Although not initially planned, the BeingCare back office was based

entirely on the Dart language suggesting its adequacy to scopes beyond

web/mobile using Flutter.

i

List of Contents

List of Contents .. i

List of Figures ... v

List of Tables .. vii

Glossary .. ix

Chapter 1 Introduction .. 1

1 Motivation .. 1

2 Objectives ... 2

3 Contributions.. 3

4 Document Structure .. 3

Chapter 2 State of Art .. 5

1 Human Interaction and Communication .. 5

1.1 Monitoring to Support Communication ... 6

1.2 Audio Detection ... 6

1.3 Technology Advances in Monitoring .. 8

1.4 Technology Advances in Distance Communication .. 9

2 The Impact and Improvements of Mobile Devices .. 10

2.1 Mobile Development ... 10

2.2 Native Development .. 11

2.3 Cross-Platform Development ... 12

3 Machine Learning on Mobile .. 15

3.1 ML Mobile Frameworks Runtimes ... 17

3.2 Solutions Using Machine Learning Frameworks on Mobile ... 19

4 Application Backend .. 20

4.1 Java Enterprise Application Frameworks ... 22

4.2 The Dart from Behind the Flutter ... 23

Chapter 3 System Specification ... 27

ii

1 Description ... 27

2 The Information ... 30

2.1 Events and Data Exchanged ... 31

Chapter 4 Implementation .. 35

1 System Architecture .. 35

2 BeingCare Mobile Component .. 37

2.1 Audio Processing and Classification Unit ... 39

2.2 Speech to Text Unit .. 42

3 BeingCare Service Component ... 44

3.1 Services and Controllers ... 46

3.2 Authentication and Authorization .. 49

3.3 Messaging: Consume and Publish .. 51

3.4 API Documentation .. 52

4 BeingCare Web Application Component .. 54

4.1 BloC Pattern in Navigation ... 55

4.2 Consuming Information ... 57

5 Messaging Runtime ... 57

5.1 MQTT Protocol ... 57

5.2 Mosquitto Message Broker .. 58

6 Deployment .. 60

7 Reflections and Considerations on Development ... 61

7.1 Dart as Applicational Backend Programming Language ... 62

7.2 Flutter in Web .. 63

7.3 Tensorflow and Physical Devices.. 64

7.4 Operating Systems ... 64

Chapter 5 Results Analysis ... 67

1 Mobile Application Demonstration .. 67

2 Web Application Demonstration .. 69

3 Mobile Application Size Analysis ... 70

3.1 Releases ... 71

iii

4 Audio Classification Analysis ... 73

4.1 Model Overview ... 73

4.2 The Distance’s Impact .. 74

4.3 Input Parameters ... 79

Chapter 6 Final Remarks .. 81

1 Conclusions .. 81

2 Future Work ... 83

References .. 85

Appendix A Flutter/Dart Dependencies ... 91

Appendix B Database Schema.. 93

Appendix C Docker Specifications .. 95

iv

v

List of Figures

Figure 1 - Mobile framework purposed in a healthcare scenario [9]... 7

Figure 2 - Voice pathology detection method purposed in [10] .. 8

Figure 3 - Mobile sensors used to monitor health issues [4] ... 9

Figure 4 - Most usable cross-platform mobile frameworks by software developers in 2020, according to [18] 13

Figure 5 - Cross-platform mobile frameworks used by software developers in 2019 and 2020 according to [19] . 13

Figure 6 - Mobile apps revenues since 2014 and projections until 2023 according to iResearch survey [25] 16

Figure 7 - Percentage of Flutter users positively satisfied with Dart during the first quarter of 2021 (Adapted from

[36]) ... 24

Figure 8 - BeingCare logical architecture ... 28

Figure 9 – Technical architecture diagram... 36

Figure 10 - Sequence diagram of the flow of the information exchanged between components 37

Figure 11 – Tensorflow Lite model generated using Google Teachable Machine ... 40

Figure 12 – The state management problem [49] ... 43

Figure 13 – Authentication process returning a JWT for users’ authorization when requests API.......................... 50

Figure 14 – BloC pattern communication [49] ... 55

Figure 15 – MQTT publish-subscribe architecture [53] ... 58

Figure 16 – Deployment diagram .. 60

Figure 17 – Main screen on Android devices ... 68

Figure 18 – History of sent messages on Android devices ... 68

Figure 19 – Speech to text screen on Android devices .. 68

Figure 20 - Main screen on iOS devices ... 68

Figure 21 - History of sent messages on iOS devices ... 68

Figure 22 - Speech to text screen on iOS devices .. 68

Figure 23 – Web application homepage .. 69

Figure 24 – People being cared list and individual overview of events that occurred ... 70

vi

Figure 25 – History board of all information organized by type .. 70

Figure 26 - Visual comparison of the native applications' size between operating systems 73

Figure 27 – Evolution of model accuracy (left) and model loss (right) depending on the epochs elapsed 74

Figure 28 – Confusion matrix obtained from 40 inferences with distances of 0.5 meters (top) and 1 meter (bottom)

tested with random samples used to build and train the classification model ... 76

vii

List of Tables

Table 1 - Categorization of Machine Learning algorithms ... 17

Table 2 - List of Machine Learning frameworks to integrate models in mobile applications 19

Table 3 - Most used backend frameworks by programming language .. 22

Table 4 - Comparison between backend frameworks used for enterprise applications development 23

Table 5 - Comparison between backend frameworks based on Dart language .. 25

Table 6 – Personas of the system .. 29

Table 7- Description of defined stories specifying the system .. 30

Table 8 - Types of messages shared through the system and respective events associated 31

Table 9 – Packages used as support to mobile application development and features .. 39

Table 10 – Description of each package imported .. 45

Table 11 – Description of services implemented ... 43

Table 12 – Annotation’s overview used on each controller... 47

Table 13 – API documentation summary ... 53

Table 14 – Brief description of packages imported to support the web development ... 55

Table 15 – Description of used message topics ... 59

Table 16 – Ports and protocols available for each message topic ... 60

Table 17 – Comparison between Aqueduct and Jaguar frameworks in terms of features provided and issues

encountered .. 63

Table 18 – Comparison APK sizes between releases generated for all the targets ABIs.. 71

Table 19 – Android and iOS native applications’ size comparison ... 72

Table 20 – Classification report of performance metrics calculated per class using the random samples testing

approach .. 78

Table 21 - Audio recording temporal window (in seconds) to be inferred on Android devices depending on sample

rate and buffer size passed as input parameters ... 80

Table 22 - Audio recording temporal window (in seconds) to be inferred on iOS devices depending on sample rate

and buffer size passed as input parameters .. 80

viii

ix

Glossary

ABI Application Binary Interface

API Application Programming Interface

APK Android Package

CORS Cross-Origin Resources Sharing

COVID Corona Virus Disease

EGG Electroglottographic

GMM Gaussian Mixture Model

GTM Google Teachable Machine

HTTP Hypertext Transfer Protocol

iOS iPhone Operating System

IoT Internet of Things

IPA iOS App Store Package

JSON JavaScript Object Notation

JWT JSON Web Tokens

KMM Kotlin Multiplatform Mobile

ML Machine Learning

MQTT Messaging Queueing Telemetry Transport

MVC Model-View-Controller

ORM Object-Relational Mapping

PPE Personal Protective Equipment

REST Representational State Transfer

SQL Structured Query Language

UI User Interface

XML eXtensible Markup Language

x

BeingCare: A Virtual Communication Window for Wellbeing

1

Chapter 1 Introduction

This chapter presents the motivation and objectives that lead to the main contribution of the present

dissertation, the BeingCare, a proof-of-concept system based on Flutter for helping surpass

communications constraints raised in wellbeing-related scenarios where direct interaction between the

humans involved may be hindered.

1 Motivation

Technological advances have granted users to take advantage of their resources in several areas such as

health, education, politics, and others. However, human interaction poses several challenges when direct

interaction is not possible, even with the resource of technology. This happens not

only in isolation scenarios but also with human temporary constraints, such as the inability to speak or

move.

Some examples can be found in health-related contexts. For instance, in hospital services, nursing homes

or in a care support scenario, people are bedridden (or not) and sometimes with respiratory limitations

or with aphasia, having clear communication constraints regardless of the absence of any reasoning

disability. In these cases, where exist communication problems or it is not possible to direct interpersonal

contact, tasks like asking or calling for someone may be cumbersome as well as the report of their pain

status or other problems related with wellbeing, increasing the difficulty of understanding people.

The recent world pandemic, COVID-19, also provides another example where people being cared have

limited ability to speak, either due to auxiliar respiratory devices or due isolation

BeingCare: A Virtual Communication Window for Wellbeing

2

scenarios. Moreover, communication between people being cared and caregivers becomes more limited,

complex, and harder due to the use of uncomfortable personal protective equipment (PPE).

Accordingly, the need to create a system capable of overcoming communications restrictions between

people arises in order to facilitate the interaction and the clarity of the ideas transmitted. The impact

of the constraints mentioned could be reduced by improving communication between people with the

support of monitoring in order to get clearer information about the condition of people being cared for

caregivers. Further, the use of mobile devices coupled with this may turn the

interaction easier and accessible anywhere. Therefore, it is useful to identify events using audio

classification while monitoring and some events e.g. non-critical demanded by people being cared. It is

also relevant to identify some events such as cough, sneeze, demands for help, or other types of requests.

On the other hand, the caregiver’s teams access to the events should be easy and namely asreal-time

notifications, especially to alarms and requests.

2 Objectives

The main objective of this dissertation is to explore the use of the Flutter, a Dart cross-platform

application development solution for developing BeingCare, a proof-of-concept system based on Flutter

for helping surpass communications constraints raised in wellbeing-related scenarios where direct

interaction between the humans involved may be hindered (i.e., people may be bedridden or isolated)

while addressing privacy concerns related with the people being cared state.

Is aimed to achieve through the BeingCare system the support implicit and explicit communication and

should provide:

• Detection of some critical events related with the current state of people being cared, addressing

verbal communication using audio detection techniques with the support of monitoring

• Non-critical information sharing on demand by people being cared

• Report of critical triggered events to caregivers as well as providing other relevant information

related to the current state of people being cared

BeingCare: A Virtual Communication Window for Wellbeing

3

BeingCare will allow addressing Flutter abilities, not only to explore data collection and audio processing

in mobile, but also eventual integration limitations with enterprise solutions e.g., messaging, REST

endpoints, and others.

3 Contributions

The main contribution of this dissertation was the BeingCare system developed in Dart (backend) and

Flutter (both mobile and web frontends). The BeingCare mobile system was developed in Flutter and

successfully deployed in iOS and Android, with minor platform specific adaptions. Flutter enable:

• easy integration of audio acquisition, processing, and classification

• addressing an edge computing approach for the audio classification using Tensorflow Lite

The use of Tensorflow Lite grants local processing without the need of external processing and any audio

data exchange - enforcing the privacy and personal information data exchange in line with RGPD rules

and mindset.

Although not initially planned, the BeingCare back office was based entirely on the Dart language,

suggesting its adequacy to other scopes beyond the web/mobile using Flutter.

4 Document Structure

Chapter 1 presents a brief introduction and the motivation of the problem as well as the objectives

defined and contributions.

Chapter 2, the State of Art, addresses the existing general solutions to culminate the problems raised and

explains the current technological trends used in the context.

Chapter 3 describes the specification of the system and its minimum requirements to develop a proof-of-

concept.

BeingCare: A Virtual Communication Window for Wellbeing

4

Chapter 4 illustrates a technical architecture and the implementation details of its components, along

with some technical decisions. Some technological considerations about the work developed are also

addressed.

Chapter 5 presents an overview of the implemented user interfaces and a detailed discussion of the

results obtained.

Chapter 6 analyses the objectives and the appropriate approaches to achieve them. It also discusses the

results of this work and presents interesting suggestions for future work.

BeingCare: A Virtual Communication Window for Wellbeing

5

Chapter 2 State of Art

In the present chapter are introduced approaches of human interaction and the impact of mobile

technology interaction during communication. A review of cross-platform frameworks for mobile

development is presented as well as trended backend frameworks to support applicational back office and

useful Machine Learning (ML) frameworks for mobile applications are discussed.

1 Human Interaction and Communication

Communication consists in transmiting information from one person or group to another and can be done

through verbal or non-verbal interaction. While verbal communication consists of the use of words (such

as speech, texts, emails, etc…) in order to transmit a message, non-verbal communication uses gestures,

and body language for this purpose [1].

Verbal communication includes spoken and written communication. Spoken communication consists of

transmiting messages using speech while written communication uses writing texts.

Body language includes not only facial expressions but also physical gestures and movements. Some

specialists in this area argue that nonverbal communication supports verbal communication helping

express ideas and feelings [2]. Nonverbal communication, usually, is explored and used by deaf or speech-

impaired communities.

In social distance or isolation scenarios, communication between people becomes harder due to physical

distance. In such case, the use of some gadgets and new technological trends may become an interesting

solution to exceed these challenges in both ways of communication [3].

BeingCare: A Virtual Communication Window for Wellbeing

6

1.1 Monitoring to Support Communication

Monitoring can be a solution to bypass barriers in communication between persons. It allows observing

changes in individuals namely in vital signs, actions, and movements that can be used to adapt and

improve the communication process, for example adapt the volume of speaker to environment noise. It

can also provide a better characterization and person’s classification related with patterns that could add

an insight on their own mental state. For instance, in health area, a frequent or continuous monitoring

allows early diagnosis of pathologies and detection of risk situations [4].

Monitoring individuals can be based on data collection by invasive or non-invasive technics.

Invasive monitoring solutions are, most of the times, the reference monitoring gold standard in several

areas such as healthcare and sports area. But their downside is that they imply special conditions of

monitoring and can represent a distress constraint on the individual being measured. A good example is

measure blood pressure using the insertion of a catheter into a suitable artery to display in a monitor the

corresponding pressure wave [5], implying operating rooms level collection conditions or intensive care

units.

Monitoring people through non-invasive techniques consists of analyzing information that is not retrieved

directly from body incisions. For example, measure blood pressure invasively could be replaced by the

use of a less invasive use of an upper arm cuff [6].

Currently, with the exponential growth of social networks the potential of continuous “social” monitoring

people has brought the potential of ongoing analysis persons’ behaviors namely on the patterns of

consumed contents or time spent on it [7].

1.2 Audio Detection

The voice plays an essential role in verbal communication between people. This means of communication

often allows the transmission of clearer and more explanatory ideas compared to textual communication.

Technological advances have allowed new investigations in the area of sound detection applied in several

BeingCare: A Virtual Communication Window for Wellbeing

7

areas. For instance, audio detection and their classification have not only enhanced video surveillance

systems [8] as well as the early detection of pathologies [9][10].

In the healthcare area, a study purposes voice pathology detection using Machine Learning (ML)

techniques, improving the accuracy of a healthcare system, and combining it with mobile technology and

sensors accessible via Bluetooth [9]. These mobile sensors are used to capture sound signals from people

being cared and are sent to a local machine to be, subsequently, stored in a cloud. The cloud contains

servers responsible for Deep Learning processing and its result is sent to caregivers with some samples

to validate the decision. Figure 1 describes the purposed system architecture.

Figure 1 - Mobile framework purposed in a healthcare scenario [9]

The voice pathology detection system uses as input audio samples with one second duration. If this

duration is longer than one second, the sample is cut. After that, samples are divided into overlapping

frames and a Fourier transform is applied to each one in order to convert the signal into a frequency-

domain signal. All these frequency-domain signals are concatenated to obtain a spectrogram filtered by

twenty bandpass filters that will be the input of two Convolutional Neural Network (CNN) models

investigated.

A disadvantage of the framework previously referred is the entire audio processing and classification

which is carried out in a cloud, exposing the people being cared voice. A local computing and classification

approach (edge computing) can overcome this disadvantage by guaranteeing people being cared privacy,

as only a final decision will be shared out of the mobile device, as well as the samples to support it instead

of the entire audio captured.

BeingCare: A Virtual Communication Window for Wellbeing

8

Another method purposed is voice pathology detection applied to the smart monitoring of healthcare in

smart cities [10]. In this method, the voice signal captured by smartphones or recording devices and an

electroglottographic (EGG) signal are transferred to a cloud to be processed and classified. Firstly, the

noise ratio of both signals is decreased in order to improve pathology detection. Both signals are explored

to extract from the respective spectrogram some features, and, after, it is used Gaussian mixture models

(GMMs) as modeling process, as seen in Figure 2.

Figure 2 - Voice pathology detection method purposed in [10]

Similar to the system previously proposed, this one uses a cloud for audio processing and classification.

As mentioned earlier, this fact becomes a disadvantage related to user’s privacy due to the samples of

their voice are exposed outside smartphones when used for this purpose.

1.3 Technology Advances in Monitoring

With the technological advances over decades, there were developed external sensors capable of

measuring vital signals [11] and recognizing a different kind of activities. Moreover, there were also

explored existing sensors of mobile devices in order to track and monitor people non-invasively.

External wearable sensors are wearable objects designed to monitor several health-related issues and to

provide, wirelessly, relevant data to a control device for wellbeing purposes. Smartwatches, wristbands,

and body jackets are interesting examples of the most usable wearable sensors.

The evolution of mobile phones for smartphones allowed the inclusion of several sensors incorporated in

a device. Although some mobile phones already had cameras and microphone, smartphones have

brought new sensors such as the accelerometer, gyroscope, and GPS. These sensors are less expensive

compared to wearable sensors but less accurate.

BeingCare: A Virtual Communication Window for Wellbeing

9

Smartphone sensors have become useful to monitor people and detect health issues. Regarding the

monitoring of health issues related with heart, eyes, skin, and physical activity, several developments

using smartphones’ sensors were explored before [4]. Figure 3 resumes which mobile sensors are typically

used to address each issue mentioned.

Figure 3 - Mobile sensors used to monitor health issues [4]

1.4 Technology Advances in Distance Communication

As mentioned before, the use of technology devices may contribute to improving the communication

between people. In the past, communicating at a distance was possible through smoke signals or Morse

Code after the evolution of radio waves. Later, with the emergence of mobile devices and the

development of new connectable gadgets, distance communication has improved connecting people

simpler and faster.

Smartphones or computers allow to make video-calls, send messages, or even share voice audios in chats.

Distance non-verbal communication is also possible due to the gadget’s interaction using gestures to

produce actions. Several handsfree systems allow interacting with systems or other devices without

touching them, using gestures or voice commands [12] for a purpose. Amazon Alexa, Google Assistant,

and Siri can remotely control not only personal smartphones but also other home devices using voice

commands, such as send messages, call someone, or turn on/off TV, lights, and air conditioning.

In fact, the mentioned solutions can improve distance communication between people. Moreover,

people with physical problems (e.g.: bedridden people) may not be able to interact directly with these

gadgets. Therefore, voice commands to communicate with the other side, or even ask for help, can be

crucial to improve communication in this specific scenario.

BeingCare: A Virtual Communication Window for Wellbeing

10

2 The Impact and Improvements of Mobile Devices

Since the invention of the mobile phone, these devices have transformed dramatically over the last few

years. Mobile phones were created to allow distance communication between people through calls, and,

later, short-message-service (SMS). At the beginning of the current century, mobile phones started to

take advantage of accessing information over wireless networks and started to integrate cameras. Since

these improvements, a mobile revolution has emerged, allowing not only the advancement of sensors

and technologies already integrated, but also granted the integration of new sensors. Nowadays, these

devices have become fundamental to people’s life becoming almost an essential asset.

Addressing mobile technology is an important objective of this work as part of the solution due to its ease

of handling and its integrated components and sensors. The development of a mobile application as a

starting point for communication is an asset to the system and should be compatible with different mobile

operating systems.

2.1 Mobile Development

Over the years, the evolution of mobile devices and the easy access to them have contributed to a burst

in the development of mobile applications.

In the beginning, applications were only developed in accordance with the native approach. With the

evolution of the capacities and functionalities of the devices, as well as the appearance of multiple

operating systems, there felt a need to change the development process in order to correspond to the

perspectives of the developers, focusing on temporal effectiveness. Thus, the development of cross-

platform applications arose [13].

In addition, modern mobile users already expect a user experience more simple, intelligent, and

functional, and several mobile applications have started to integrate Machine Learning (ML) mechanisms

to recognize, classify or even suggest content to the users. Peter Flach defined ML as “the systematic

study of algorithms and systems that improve their knowledge or performance with experience” [14].

BeingCare: A Virtual Communication Window for Wellbeing

11

Indeed, learning requires data and information, already collected or not, and related to the target of the

problem. The problems associated with ML usually are classification, regression, or even scoring [15], and

its intent is to find the best connection between the base of knowledge and the target required. ML is

frequently applied by mobile developers for data mining, tracking, monitoring, and search. It is possible

to integrate ML models into mobile applications easily using frameworks for this purpose or developing

algorithms.

During the last decade, computing paradigms have been a significant evolution affecting mobile

application development. Despite the cloud computing concept has revolutionized the development of

internet-based services, there are limitations that it cannot address, such as bandwidth, latency, and

connectivity requirements. With the revolution of Internet-of-Things (IoT), new perspectives to lead with

these challenges emerged, arising the edge computing approach [16].

There are two main approaches to mobile application development: one focuses on native development

for a single operating system, and the other focuses on cross-platform development. The latter seems to

be the most suitable for the proposed system since it may be able to cover not only different mobile

operating systems but also allow other types of platforms, namely web.

2.2 Native Development

Native applications are written and designed for a particular operating system. In native development,

for each operating system is needed a version of a native application. This becomes development more

stable, with a seamless performance once the application is developed for the specific devices operating

system. Also, native apps are more consistent with user interface (UI) components of the devices, since

are built with technologies used by the device's manufacturer.

However, when the target consists of multiple platforms, it will be necessary to develop two or more

separated apps and each operating system has its own technologies and software development kit (SDK).

In addition, it is impossible to share code between separated applications, affecting the development

time and test process because there are needed two or more separated codebases to build and test [13].

The Android operating system is open-source, and its development is supported by Google. As this

operating system is open-source, it is used by several companies on their devices, such as Samsung, LG,

BeingCare: A Virtual Communication Window for Wellbeing

12

and HTC. Native Android applications are written in Java or Kotlin, recently considered the official

programing language of Android.

The iOS operating system is supported by Apple and is used on iPhones and iPads devices. All iOS native

applications are written in Swift or Objective-C.

2.3 Cross-Platform Development

Built mobile applications that are compatible with several operating systems is ensured by cross-platform

applications development approach. Although native applications are developed through their native

operating environment, cross-platform applications development frameworks use a single tool to ensure

multi-operating systems compatibility.

As mentioned before, in native development, each operating system needs a version of a native

application, and developing for devices with different operating systems may cause a higher budget

because it requires a larger team to develop the different versions.

Therefore, cross-platform frameworks are powerful in producing versions both for iOS and Android

systems using a single-engine (easy portability), presenting low-cost development [17]. On the other

hand, cross-platform applications are bigger than native applications due to the fact of operating systems

do not able to run the official code language of these applications. So, it is necessary to include libraries

to support this code language increasing the size of applications.

During the last years, cross-platform development frameworks gain popularity inside the mobile

development world. The recent JetBrains survey [18] that gathers feedback from about 20 thousand

developers shows the last trends around tools, technologies, and programming languages, revealing that

45% of developers develop applications both for Android and iOS systems. Figure 4 indicates which cross-

platform mobile frameworks are most used by the developers surveyed in 2020 and Figure 5 provides a

comparison with the previous year.

BeingCare: A Virtual Communication Window for Wellbeing

13

Figure 4 - Most usable cross-platform mobile frameworks by software developers in 2020, according to [18]

Figure 5 - Cross-platform mobile frameworks used by software developers in 2019 and 2020 according to [19]

2.3.1 React Native

React Native, created by Facebook in 2015, is an open-source cross-platform development framework

based on JavaScript language, which is a wildly popular language. Due to its portability, fast development,

BeingCare: A Virtual Communication Window for Wellbeing

14

and more efficient sharing code between operating systems (specially iOS and Android), React Native has

become the most popular framework to build cross-platform applications [20].

This framework has as main functionality the Fast Refresh, allowing that an application in development

could still be running on the device even when code updates are made. This feature revolutionized the

optimization of application development and testing time.

However, React Native applications are not completely native and despite having a very similar behavior

and performance to the native one, these are not the same. Also, as mentioned above and as other cross-

platform applications, React Native applications are bigger than native applications.

Besides being an open-source project and not being totally stable, large companies such as Uber,

Instagram, Airbnb, and Tesla have already developed their applications based on React Native, supporting

the promising future of this framework.

2.3.2 Kotlin Multiplatform Mobile (KMM)

Kotlin Multiplatform Mobile (KMM) is a development kit developed by JetBrains for cross-platform mobile

development based on Kotlin language. Kotlin is an open-source, static and the official Android

programming language. Oriented-object programming, interoperability, and safety are some advantages

of this language [21].

Similar to the other cross-platform solutions, KMM allows not only the use of a single codebase for both

Android and iOS applications, but also uses the multiplatform capabilities of Kotlin. KMM is still very

recent in the mobile development world, however, due to its features and the base language, it is

predicted that it may have an eminent growth in the next years [22].

Besides KMM documentation mentioning the possibility of developing a full-stack web application using

Kotlin, some projects mentioned on Kotlin hands-on course program use React to support the web

component of Kotlin applications [23]. Hence, web support in KMM cannot be confirmed.

2.3.3 Flutter

Flutter, an open-source mobile development framework provided by Google, concedes developing cross-

platform applications for mobile, web, and desktop (in development stage) using only a single source

code and natively. The use of a unique codebase makes the development, debug, and update processes

BeingCare: A Virtual Communication Window for Wellbeing

15

easier since there is only a unique place to make changes and debugging [24]. Consequently, the time

needed to build an app decreases significantly compared to native development.

Based on Dart Language, an oriented-object programming and fast language, Flutter architecture relies

on reactive programming. Reactive programming deals with asynchronous data streams and the specific

propagation of change. This programming paradigm increases the performance once handles huge

volumes of data in a quick and stable way, improves user experience due to keeping the app more

responsive, and simplifies updates.

Similar to Fast Refresh of React Native, Flutter also provides Hot Reload functionality offering a more

dynamic and faster development. As mentioned above, this feature is important for mobile developers

and helps them to fix bugs and experiment new ideas quickly.

Flutter also has its disadvantages. As it is a new framework in growth, compared to React Native, it is less

established and some libraries still not rich as native development. The application’s size is affected

especially when applications are written in Flutter. Flutter applications are bigger than native applications.

Besides this, and as mentioned previously, Flutter’s interest has been increased significantly.

Flutter also supports web development through different scenarios such as building Progressive Web

Applications (PWA), single-page applications, and from existing mobile applications. Flutter web supports

development compatible with modern browsers like Chrome, Safari, Edge, and Firefox. Flutter web works

identical to Flutter in mobile however to generate a build release, this framework uses dart2js compiler

to convert Dart code into HTML and CSS, generating a single JavaScript file and populates a specific

directory with web files including assets.

According to the JetBrains survey [18] presented in Figure 5, Flutter’s popularity has increased 9% while

other frameworks, such as Ionic and Cordova, decreased their popularity. Companies like Ali Baba, BMW,

and even Google themselves are already using Flutter in their production apps right now [24].

3 Machine Learning on Mobile

The growth of mobile technologies boosted the growth of the mobile applications market. According to

a survey performed by iResearch, in 2023 mobile application revenues are expected to be almost double

the revenue obtained in 2019, as seen in Figure 6.

BeingCare: A Virtual Communication Window for Wellbeing

16

Figure 6 - Mobile apps revenues since 2014 and projections until 2023 according to iResearch survey [25]

These impressive numbers demonstrate that the mobile applications market tends to need increasingly

creative and innovative applications. Some innovative features that have been incorporated into mobile

applications are related to ML. The integration of intelligent virtual assistants, the connections of

smartphones and IoT devices, and the development of voice user interfaces are some classic features

included in modern mobile applications [26].

There are four different approaches to defining a ML algorithm for iOS and Android applications explained

in Table 1.

Supervised Learning

This approach uses labeled or marked data as input and expected results.

The learning algorithm, trained with the input data, intends to output

results matching with the expected results. These are commonly used in

healthcare applications, using historical data to predict future events.

Unsupervised Learning

As data is not labeled, in this approach algorithms explore the input data

to describe or reveal hidden patterns. Commonly used in e-commerce

applications and recommended systems.

BeingCare: A Virtual Communication Window for Wellbeing

17

Semi-supervised

Learning

Match between supervised and unsupervised learning using labeled and

non-labeled data, usually, a greater amount of unlabeled data when

compared to labeled data. Commonly used in applications that process

text, audio, or image.

Reinforcement

Learning

Through interaction with the environment, this learning method finds an

optimal strategy in accordance with actions and parameters, errors or

rewards, defined. Commonly used in robots that need to learn all

obstacles around.

Table 1 - Categorization of Machine Learning algorithms (adapted from [26])

ML mechanisms allow companies to predict user behavior, helping to plan and implement more effective

marketing campaigns, personalized content, improve clients’ engagement and increase revenues. For

these reasons, ML is integrated into mobile applications to create personalized content for each user and

helps in performing predictive analytics [27]. Data mining, tracking, data analysis, and monitoring

problems are some examples that benefit from the integration of ML techniques into mobile applications.

Google recently launched the Teachable Machine (GTM) online platform that allows a fast and an easy

creation of trained classification models of three main types: image, audio or poses detection models. In

this platform it is possible to gather and group examples into classes or categories labeled, and train the

model created in order to use online through a sharable link or offline exporting the model in several

Tensorflow formats, addressed in the next section.

3.1 ML Mobile Frameworks Runtimes

The integration of ML procedures in mobile applications can be performed by frameworks capable of

integrating models. Table 2 summarizes a review about frameworks capable of integrating ML

mechanisms in mobile applications.

BeingCare: A Virtual Communication Window for Wellbeing

18

Tensorflow allows an easy model building, robust ML

production, and powerful experimentation for research.

Tensorflow Lite is a lightweight version of Tensorflow

developed specifically for mobile and embedded

devices. It allows local data process, avoiding data

sharing with external servers. The size of mobile

applications using Tensorflow Lite is heavy since the

models are also stored locally. Tensorflow provides a

repository of trained models shared with the

community through Tensorflow Hub project.

Android

iOS

Linux

ML Kit is a powerful and an easy library that brings ML

experience to mobile devices. It allows Android and iOS

applications to be personalized based on users’

interactions and, at the same time, it is optimized to run

in mobile devices. All data processing is in local devices

increasing the speed. In addition, allows processing in

real-time such as video and image processing. ML Kit

provides several projects grouped by vision and natural

language categories.

Android

iOS

Firebase ML stores models into servers that are

distributed to the users. All information processing is

online, and the fact of models being stored outside the

devices reduces the size of applications and allows

model updates easily without new applications releases.

Android

iOS

Framework to develop models for mobile applications

and manage them in a production environment. This

framework supports integration with cloud providers

such as AWS, Azure, and IBM, or environment in order

to organize data and train models [28]. This framework

iOS

BeingCare: A Virtual Communication Window for Wellbeing

19

supports both Core ML and Tensorflow Lite models and

allows models updating remotely.

End-to-end solution for the implementation of Artificial

Intelligent (AI) features into mobile applications. It also

provides an extra real-time dashboard to monitor the

performance of models executing in devices [29]. This

framework provides a set of pre-trained models and a

development platform to generate, collect, label

datasets, and train models ready to use in mobile with

writing code. Moreover, it supports Tensorflow,

Tensorflow Lite, and Core ML models [28].

Android

iOS

Numericcal framework is used commonly for data

science purposes and focuses on optimization and

delivery of models. Also, it provides performance

monitoring tools measuring on-device speed and power

used during computations [28] [30].

Android

Table 2 - List of Machine Learning frameworks to integrate models in mobile applications

3.2 Solutions Using Machine Learning Frameworks on Mobile

Recently, the investigation around healthcare monitoring systems has increased due to their contribution

in detecting pathologies and chronic diseases in a timely manner. A study presented in [31] addresses

cough detection using different mobile devices to collect audio input for classification models. However,

audio inputs were processed outside mobile devices, i.e., these devices only were used for data collection.

In this study, the approaches to classify data were implemented using Tensorflow framework to train the

neural networks.

In [32], approaches related to the detection of human health-related actions (e.g. fall, stomachache,

nausea, sneeze) using an Android camera for video processing and using Tensorflow Object Detection API

were addressed. This work contributes to monitoring children, elderly, and people with special needs

BeingCare: A Virtual Communication Window for Wellbeing

20

when their caregivers are absent. There were explored two different approaches, one using Tensorflow

Object Detection in a mobile device and the other using the Tensorflow Object Detection Notebook

technique. As result, the researchers concluded that using the first approach were precisely detected

several types of human-related actions with high accuracy.

4 Application Backend

The application backend, also known as server-side, is essential in the application’s development process

because it combines the execution runtime providing some sort of resources management and the

programming language or framework used by programmers. For example, it handles all the database

interactions and data mapping using an abstraction provided by the runtime and provides content to

applications through controllers.

A good conduct consists of implementing services, which can be available through webservices,

Representational State Transfer Application (REST) application programming interfaces (APIs), or

messaging processes, in order to create an abstraction in the direct access to the stored data.

Webservices allow easy communication between client applications and application backend.

A typical REST API is a set of definitions and protocols to create and integrate application’s software that

is available through HTTP endpoints and following the basic architectural REST principals. A common

example is API for allowing the access to data sources through abstractions, such as Object-Relational

Mapping (ORM) [33]. An API consumer/client requires content through calls and API responds to the call

by sending the requested content. The implementation of APIs allows multiple applications and external

clients to access the same content at the same time. This is impossible if the server-side is implemented

together with a client application, i.e., the client application besides presenting content to the user, is

responsible for all calculations made by the backend.

With the technological growth and the need to create new software and applications, numerous backend

frameworks for different programming languages have emerged. Some of the currently most used

backend frameworks by language [34] are presented in Table 3.

BeingCare: A Virtual Communication Window for Wellbeing

21

Framework Language License Characteristics Used by

Java

Open

source

Powerful and handy framework

for develop modern java-based

enterprise applications,

providing an easy configuration

model and a comprehensive

programming.

Trivago

Udemy

 JavaScript

Open

source

under MIT

License

Minimal and flexible

framework used by node.js to

build and maintain APIs, and

provides plugins and templates

that reduce the development

time.

IBM

Accenture

Python

Open

source

Django framework enables

building quick and stable high-

level backend applications and

APIs. Provides authentication

and security mechanisms to

protect applications and is

convenient for the

development of feature-rich

database-driven web

applications.

Instagram

Youtube

 PHP

Open

source

under MIT

License

Laravel is a lightweight

framework that allows the

development of robust

microservices and high-

performance APIs. Supports

caching and authentication of

multiple users using tokens.

Pfizer

9GAG

Ruby

Open

source

under MIT

License

Ruby on Rails framework

follows the model-view-

controller (MVC) pattern and

use some web principle such as

XML or JSON for information

sharing and offers database

default structures, web pages

and web services.

Spotify

GitHub

BeingCare: A Virtual Communication Window for Wellbeing

22

Table 3 - Most used backend frameworks by programming language (adapted from [35])

In short, all the frameworks grants are very similar providing a quick development and maintenance of

APIs, whether can be protected with security mechanisms and allowing connections to different

databases, and mapping data to objects quickly and effectively.

4.1 Java Enterprise Application Frameworks

Of all the application development frameworks mentioned above, only Spring Boot is the most suitable

to develop enterprise-level applications. Usually, a microservices approach is followed for enterprise

application development, and technologies like Spring Boot, Quarkus and Jakarta EE present a

significantly relevant performance compared to the other backend frameworks mentioned above. Table

4 compares these three Java-based frameworks.

Framework Language License Characteristics

Java Open source

Framework to develop modern java-based

enterprise applications and web services,

providing an easy configuration model,

starters and a comprehensive programming

[35]. This framework provides faster I/O

operations and reduces the effort of the

developer taking advantage of

configuration’s files. However, it contains a

huge quantity of dependencies [36].

Supports Tomcat, Undertow and Jetty as

embedded servers.

Java Open source

Java framework that enables the delivery of

small artifacts, fast boot and lower first

request time. Is a Microprofile compliant

efficient for serverless, Kubernetes

BeingCare: A Virtual Communication Window for Wellbeing

23

environments and cloud, and provides

dependency injection and REST API

development. Compared to Spring Boot,

Quarkus requires less memory [36].

Java Open source

Jakarta EE is a set of configurations that

allows Java developers working on java

enterprise applications. Jakarta EE

applications relies on microservices or

application servers running on reference

runtimes such as WildFly, GlassFish or Payara

Server [37].

Table 4 - Comparison between backend frameworks used for enterprise applications development

To sum up, it is clear that Java programming language is suitable for enterprise applications development.

Despite Express JS, Django, Laravel and Ruby on Rails being the most used and trended technologies to

backend development, developers should adapt its use to the intended architecture.

4.2 The Dart from Behind the Flutter

The notable positive satisfaction with Flutter boosted a contentment with Dart language during the first

quarter of this year according to Flutter team survey results [38]. Between 2019 and March of 2021, the

enjoyment increased 9% and some developers started to uncover the potential of Dart applied to other

contexts beyond mobile, web and desktop development, namely after the release of Flutter 2 as seen in

Figure 1.

BeingCare: A Virtual Communication Window for Wellbeing

24

Figure 7 - Percentage of Flutter users positively satisfied with Dart during the first quarter of 2021 (adapted

from [38])

Despite the most known frameworks previously mentioned, with the growth of ascertained Dart

language, backend frameworks to build REST APIs and services have also emerged. The most well-known

and used framework was Aqueduct that allows building RESTful APIs based on Dart and multi-threading

HTTP server including ORM providing a stable and fast mapping between databases tables and data

objects [39]. In late March 2021, this framework was discontinued, resulting in an increased demand for

Dart-based identical frameworks. Jaguar [40] and Angel [41] are two examples of frameworks like

Aqueduct, however, the latter has not changed since 2018 and is out of date with the new versions of the

Dart language that have been announced. Although Aqueduct was discontinued, a comparison was made

between the different Dart-based backend frameworks. Table 5 presents a review of the different Dart-

based backend frameworks.

Routing Yes Yes Yes

Multi-threading Yes Yes No

BeingCare: A Virtual Communication Window for Wellbeing

25

ORM Yes Yes Yes

Serialization Yes Yes No

Authentication

Support
Yes Yes Yes

GraphQL Support No No Yes

Last update

August 2020

(Discontinued on

late March 2021)

May 2021

May 2020

(Discontinued on late

April 2021)

Table 5 - Comparison between backend frameworks based on Dart language

All previously listed frameworks are not provided by Google, the creators of Dart language. Therefore, it

is predictable that their support may fall short of the developers’ expectations despite showing promise

in the features provided. Furthermore, a brief survey over the frameworks’ documentation clarify that it

is scarce and unclear in some cases, namely for Jaguar and Angel.

BeingCare: A Virtual Communication Window for Wellbeing

26

BeingCare: A Virtual Communication Window for Wellbeing

27

Chapter 3 System Specification

In this chapter, the BeingCare system specification is presented including its personas, stories, and main

requirements. A logical architecture is presented as well as some examples of information flows in the

BeingCare.

1 Description

In a care support scenario, often the people being cared are bedridden (or not), isolated people, or people

with aphasia problems. These people clearly have difficulties in communicating with their caregivers to

report for example their pain status, or problems related to their wellbeing. Indirect monitoring becomes

a perfect ally to help caregivers get clearer information about their people being cared condition.

Therefore, it is useful to identify events using audio classification while monitoring and some non-critical

events are on demand by people being cared. It is relevant to identify some events associated with the

people being cared, such as cough, sneeze, demands for help, or other types of requests. On the other

hand, the caregiver’s teams should be able to access the events generated by their people being cared,

receiving real-time notifications related to alarms and requests.

In this context is aimed to achieve through the BeingCare system:

• Support implicit communication i.e., detect and report relevant events in the context for example

coughing, gagging, paining, among others;

BeingCare: A Virtual Communication Window for Wellbeing

28

• Support explicit communication i.e., the person wants to communicate providing solutions

according to different levels of autonomy, such as explicit speech, tempting communication using

sounds like tapping

The improvement of direct communication between people or identify events with context valuable may

grant overcome the barriers previously mentioned. Naturally, the system must be based on the exchange

of information through messaging that may be a result of a relevant event in the context.

Figure 8 describes the system’s architecture in a logical context presenting the personas involved as well

as its role.

Figure 8 - BeingCare logical architecture

The system should have two user interfaces intended for each persona: the people being cared and

caregiver. Each people being cared has associated a mobile device running the BeingCare mobile

application. This application is responsible for recording audio and classifying it and for sending the

classification’s results to system services to be stored. The purpose of audio classification is to identify

some relevant events according to sounds provided by people being cared. In case of the classifier detects

an event considered critical, a message is sent to a message broker in order to send it directly to the web

application. Caregivers through the BeingCare web application receive reports of the critical events and

receive other data related to people being cared and their history.

Table 6 summarizes the role of each persona.

BeingCare: A Virtual Communication Window for Wellbeing

29

People being

cared

All monitored people considered isolated, bedridden, or not, or people with

aphasia problems. People being cared can interact with the system directly,

sending messages to caregivers or indirectly through monitoring.

Caregivers

All caregivers interested in the people being cared state. Caregivers have

access to all events, information, and critical situations related to their

people being cared.

Table 6 – Personas of the system

Descriptive stories translating functional and non-functional requirements about the behavior of the

system are detailed in Table 7.

Story Name Description Persona

Visualize events

As a caregiver, I want to access all events related to

people being cared such as the frequency of cough,

sneeze, or snore.

Caregiver Visualize requests

As a caregiver, I want to access all requests (asks for

basic care assistance, water, food) made by people

being cared so that I can attendee it.

Receive notifications

As a caregiver, I want to receive real-time

notifications whenever a people being cared is in a

critical situation so that I act quickly to help.

Send requests

As a people being cared, I want to inform caregivers if

I am hungry, need water, or some basic care

assistance so that caregivers can help me.
People

being

cared

Visualize history
As a people being cared, I want to see all occurred

events related to me and send them to caregivers

BeingCare: A Virtual Communication Window for Wellbeing

30

Send speech to text
As a people being cared, I want to send personalized

messages to caregivers without typing text

Table 7- Description of defined stories specifying the system

It is expected the system allows communication between people being cared and caregivers, ensuring a

point-to-point communication, able to alert the caregivers when their people being cared are in risky

situations, such as pain or gagging/choking. However, as people being cared sometimes only require non-

critical assistance such as basic assistance from their caregivers or even food, the system should include

quick shortcuts for this type of requests, facilitating the interaction of people being cared with it.

Due to flexibility and accessibility in scenarios of monitoring, indeed the mobile technology is an

interesting solution for people being cared. Addressing Flutter cross-platform is the main objective of this

dissertation that grant portability between mobile operating systems ensuring the system availability on

different mobile devices.

2 The Information

The information exchanged in BeingCare can be grouped into four different types: alarms, events,

requests, and messages. Table 8 details each type of message as well as which events are associated.

Types Description Events associated

Alarm
Messages that translate risk situations that happened

to a people being cared

Tap, pain, or gagging

(automatic)

Event
Messages containing people being cared-related

events

Cough, sneeze, or

snore

(automatic)

BeingCare: A Virtual Communication Window for Wellbeing

31

Request
Messages considered requests by people being cared,

such as ask for food, water, or basic care assistance
(on demand)

Message
Voluntarily sent messages that are not considered of

the other types mentioned
(on demand)

Table 8 - Types of messages shared through the system and respective events associated

2.1 Events and Data Exchanged

The information exchange in the system is encoded in JSON and timestamped. Below are brief examples

of data exchange message depending on the type of event.

Example of Alarm Messages

These messages result of pain symptoms, calls for help, or even choking from the person and are

produced automatically and sent as the following example:

{

 “timestamp”: “2021-05-08T14:18:13.109”,

 “sender”: “22e66656dc7fd1df”,

 “type”: “ALARM”,

 “description”: “PAIN”

}

The details of the message also contain the description of the event that caused the alarm, which can be

Pain, Tap, or Gagging.

Example of Event Messages

Events related to the people being cared health, such as coughing, sneezing, and snoring detected

automatically, originate messages similar to the following.

BeingCare: A Virtual Communication Window for Wellbeing

32

{

 “timestamp”: “2021-05-10T11:21:06.521”,

 “sender”: “22e66656dc7fd1df”,

 “type”: “EVENT”,

 “description”: “COUGH”

}

Like the other types of messages, the description details the type of event which caused the alarm, such

as Cough, Snore, or Sneeze.

Example of Request Messages

These messages are on-demand by the people being cared, and he can send requests according to the

options presented to him in the system, for example, request water, food, or basic care assistance.

{

 “timestamp”: “2021-05-11T16:19:59.977”,

 “sender”: “22e66656dc7fd1df”,

 “type”: “REQUEST”,

 “description”: “WATER”

}

Example of Message Messages

Similar to request messages, this type is on-demand by the people being cared however he can have more

freedom to customize what it wants to transmit. These messages are produced after the people being

cared mentions what he wants to transmit through speech to text in order to facilitate the interaction

with the system.

{

 “timestamp”: “2021-05-11T16:19:59.977”,

BeingCare: A Virtual Communication Window for Wellbeing

33

 “sender”: “22e66656dc7fd1df”,

 “type”: “MESSAGE”,

 “description”: “I would like to call to my family”

}

BeingCare: A Virtual Communication Window for Wellbeing

34

BeingCare: A Virtual Communication Window for Wellbeing

35

Chapter 4 Implementation

This chapter details the implementation choices made during BeingCare implementation with special

emphasis on the opting to a full Dart/Flutter solution either for the back office and frontend UI i.e., mobile

and web.

1 System Architecture

In BeingCare system, there are four essential components depicted in Figure 9:

• Mobile component

• Services component

• Persistence component

• Web component

The main flow of BeingCare is centered around audio processing so that any audio relevant interaction is

processed and transmitted to the caregiver. In this flow, audio captured by mobile application is classified

and the result is shared with the system. Audio classification depends on the Tensorflow Lite [42]

framework used to integrate an audio classification model into the mobile component which is addressed

with more detail in the next section. The mobile component communicates with the services component

through REST requests but also uses Message Queuing Telemetry Transport (MQTT) [43] messages to

send information regarding generated alarms. Message passing relies in MQTT support on a Mosquitto

[44] message broker. The web component consumes data provided from services and data that are

transported by the message broker through Websockets.

BeingCare: A Virtual Communication Window for Wellbeing

36

Figure 9 – Technical architecture diagram

Figure 10 details how operations between components are carried out and what information is sent and

when. Each component will be discussed in more detail in the next sections as well as some technological

decisions made to implementing the components. While the red flow represents an automatic

information flow, the yellow and green represents, repectively, information sent on demand and

information that is visualized.

BeingCare: A Virtual Communication Window for Wellbeing

37

Figure 10 - Sequence diagram of the flow of the information exchanged between components

2 BeingCare Mobile Component

The mobile component is implemented in cross-platform framework Flutter [24] and uses the Jaguar [40]

as a client to support REST requests. This component is responsible for audio acquisition, classification,

and event propagation. It relies on an audio processing unit described in other section containing two

sub-units:

• audio processing and classification unit responsible for detecting audio events according to a

classification model;

• speech to text unit to transform speech into text in order to sharing more descriptive information

to the system based on speech.

BeingCare: A Virtual Communication Window for Wellbeing

38

While speech to text is a voluntary audio detection, audio classification occurs automatically in the

background when the application is running.

The mobile component propagates via REST or through the share of MQTT messages if an alarm is to be

triggered. Mobile application also requests information related to the messages sent by its user via REST

to the services component. As the collection of sensitive data requires greater attention regarding sharing

and storage issues, all acquired audio data is collected locally and not transmitted outside the people

being cared device.

The mobile application was developed using Flutter 2.0 version and there were used packages to support

some features and external frameworks. The Appendix A contains the dependencies that are specified

into pubspec.yaml file of the mobile application to support the development and some features

implemented. Below in Table 9 is a brief explanation of each one package used.

cupertino_icons Adds the Cupertino Icons font to application to support iOS style icons

http
Package used to consume HTTP resources through high-level functions

and classes for this purpose

jaguar_resty
Provides building fluent functional REST clients supporting

interceptors and authenticators.

speech_to_text
Package that contains classes use speech recognition capabilities in

Flutter

device_info
Provides detailed information about the device such as model, name,

make and others

tflite_audio Audio classification Tensorflow Lite package

mqtt_client
Adds a server and browser based MQTT client for Dart supporting

normal, secure sockets and web sockets

intl
Package used to deal with internationalized date and number

formatting and parsing

BeingCare: A Virtual Communication Window for Wellbeing

39

isolate_handler Package to support concurrent execution of code through isolates

provider
Wrapper around InheritedWidget to make them easier to use and

more reusable

curved_navigation_bar Add curved and animated style to navigation bars

Table 9 – Packages used as support to mobile application development and features

Verbal data and intentions of users are collected, respectively, using the smartphone’s microphone and

touch inputs. The microphone is used not only to record audio samples to classify and detect events but

also to transform speech into text messages that will sent to the system service.

2.1 Audio Processing and Classification Unit

The implementation of this unit helped to classify automatically relevant events related to people being

cared using the smartphone microphones as input. Thereunto, the Tensorflow Lite framework was used

to integrate ML classification models in mobile applications.

2.1.1 Tensorflow Lite

TensorFlow Lite [42], a lightweight version of Tensorflow [45] framework that allows the integration of

ML models into mobile solutions, was recently released. It allows running Tensorflow models locally on

device, and all audio classification models in a Tensorflow format are supported on Tensorflow Lite. As

Tensorflow Lite framework works offline, it grants a non-dependency on the network to send, for

example, data to be classified and provides greater efficiency because data never leaves the mobile

device, and the entire process is local. So, the use of this framework guarantees the user’s privacy since

it handles sensitive data on the device itself without data being exposed.

The integration of Tensorflow Lite models into a Flutter mobile application was performed by a Flutter

package [46].

BeingCare: A Virtual Communication Window for Wellbeing

40

2.1.2 Tensorflow Lite Audio Classification Models

The classification model tested and used were created with the help of Google Teachable Machine (GTM)

[47] framework since it enables the generation of Tensorflow Lite models. An audio classification model

was created with several classes, each composed of about 14 audio samples recorded not only from

different aged people but also from online sources providing free license samples. The option for using

GTM with Tensorflow Lite was a trade off in the proof-of-concept scenario, while enabling an easy and

straight forward model creation and usage, it is black box design hindered any clear view on both the

model (based on neural networks) [48] and the learning process, relying on GTM automated process.

Figure 11 shows the model created properties using the Netron application [49] to visualize the entire

model workflow. The model input is a tensor. All computations in Tensorflow involves tensors [50], an

immutable and multi-dimensional array of a uniform type of values with a known shape (dimensionality

of the array).

Figure 11 – Tensorflow Lite model generated using Google Teachable Machine

The audio is recorded and inferred using the startAudioRecognition method provided by package where

are passed some important arguments:

• Sample rate: number of samples per second;

BeingCare: A Virtual Communication Window for Wellbeing

41

• Input type: specifies the type of input: rawAudio for GTM models or decodedWav;

• Recording length: determines the size of tensor input and must be equal to the tensor input of

classification model;

• Buffer size: size of the buffer that iterates over recording length;

• Detection threshold: threshold to ignore any predictions below the inference precision of the

event detected.

2.1.3 Audio Classification on the Fly

The audio recognition process is performed parallel to the other features of the mobile application using

an Isolate [51]. Dart Isolate is analogous to a Thread but with some differences namely in the way of

working. An Isolate is an independent worker that does not share memory; however, it is possible to

communicate with other Isolates by passing messages over communication’s channels. In Flutter, the

application runs into a main Isolate. When the application started, it is created other Isolate responsible

for running audio recognition parallelly and whenever the process recognizes an event, a message is sent

containing the classification obtained to the communication channel so that the main Isolate knows the

results. Code 1 shows the implementation of the audio recognition process running in a separated Isolate.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

static void startRecording(Map<String, dynamic> context) {

 String recognition = “”;

 int sampleRate = 44100;

 double detectionThreshold = 0.6;

 final messenger = HandledIsolate.initialize(context);

 _isRecording = true;

 messenger.listen((msg) async {

 result = TfliteAudio.startAudioRecognition(

 numOfInferences: 1,

 inputType: ‘rawAudio’,

 sampleRate: sampleRate,

 recordingLength: 44032,

 bufferSize: 2000,

 detectionThreshold: detectionThreshold,

);

 result.listen((event) {

 log(event.toString());

 recognition = event[“recognitionResult”];

 }).onDone(() {

 _isRecording = false;

 recognition = recognition.split(“ “)[1];

 TfliteAudio.stopAudioRecognition();

 messenger.send(recognition);

 });

 });

 }

BeingCare: A Virtual Communication Window for Wellbeing

42

Code 1 – Audio recognition process

The classification model is preloaded and when the Isolate communication channel initializes and receives

order to start the audio processing, Tensorflow Lite starts the audio recognition according to the input

parameters defined in the respective method (lines 8-15). A stream provides receiving a sequence of data

[52]. The result of the audio recognition process is populated into a data stream that is listened to and

retrieved the inference result sending it through the communication channel to the initial Isolate (lines

17-25).

2.2 Speech to Text Unit

Speech to text uses the speech_to_text package mentioned above. This package transforms the audio

provided by the microphone returning the correspondent text and supports multiple languages speech

recognition, namely native Portuguese.

Both audio detection and speech to text require the use of the microphone to record audio. As the audio

recognition process runs in loop on an Isolate, whenever the speech to text is initialized, it kills the Isolate

in order to interrupt the audio recognition, giving priority to the speech to text process. After the speech

to text is completed, the audio recognition process is restarted.

Provider is a package usually used to manage rebuilding UI based on state changes. The used of Provider

helped with state management problem between audio recognition process and speech to text regarding

the share of microphone resources. Figure 12 demonstrates the state management problem that could

be solved using the Provider.

BeingCare: A Virtual Communication Window for Wellbeing

43

Figure 12 – The state management problem [53]

Provider manages the audio in order to start or stop the audio processing and classification unit whenever

speech to text is used. More precisely, it was used a ChangeNotifier pattern from Flutter responsible for

notifying the listeners about state updates, as seen in line 8 of Code 2. An Audio model that extends from

ChangeNotifier class was implemented and contains all the state data that are being used by the

different units (speech to text and audio processing and classification), allowing notify structure listeners

whenever some data is changed. ChangeNotifier is identical to the Controller’s role in the Model-View-

Controller pattern.

1

2

3

4

5

6

7

8

9

10

class Audio extends ChangeNotifier {

 String _status = “INIT”;

 String get getStatus => _status;

 void setStatus(String s) {

 _status = s;

 notifyListeners();

 }

}

Code 2 – Audio model implementation to notify listeners when data changed

BeingCare: A Virtual Communication Window for Wellbeing

44

It was used the ChangeNotifierProvider type that provides the instance of the audio model to

access state data in the widget. Whenever speech to text tries to start a recording, firstly, the audio status

data is changed to “STOP” to notify the audio recognition listener so that it can interrupt it and release

the microphone, as presented in Code 3. After speech to text is completed, audio status data is again

changed.

1

Provider.of<Audio>(context, listen: false).setStatus(“STOP”);

Code 3 – Changing audio status using Provider

Every time the audio recognition listener is notified, according to the data updated, the audio recognition

process is interrupted or restarted. Through Code 4, whenever the status is changed, is received the new

status after the listener being notified.

1

var status = Provider.of<Audio>(context).getStatus;

Code 4 – Receiving new audio status after listener being notified

The sharing of messages with the others system components differs according to their type. For example,

an alarm message is automatically published to a specific topic in the message. On the other hand, events

and request messages are sent via HTTP requests directly to the storage service.

3 BeingCare Service Component

The BeingCare service component was implemented in Dart using the full stack Dart server framework

Jaguar [40], in order to develop a system’s proof-of-concept based on Dart language. Jaguar framework

includes ORM, serialization, MVC template, authentication, and security with JSON Web Tokens (JWT)

[54]. As advantages, this framework enables writing fast and elegant RESTful APIs based on Dart language.

BeingCare: A Virtual Communication Window for Wellbeing

45

Its syntax is analogous to the syntax of the Spring Boot framework where it is possible to build groups of

routes associated with classes inheriting from the Controller pattern.

Similar to the Flutter application, this component is a Dart application containing several packages to

support the development of the entire service. Jaguar framework is imported as a dependency as well as

other Jaguar packages to support the server. The Appendix A contains the dependencies imported in

pubspec.yaml file and the Table 10 provides a brief description of each package used:

jaguar Provides a production ready HTTP server for building REST APIs in Dart

jaguar_reflect Provides reflection of Jaguar Controllers into Jaguar routes

jaguar_session_jwt Provides JWT session managers to build server sessions on JWT standard

jaguar_auth
Provides username-password based authentication interceptors and helper

methods for Jaguar

jaguar_common Jaguar common components to both server and client

jaguar_cors
Provides Cors interceptor and CorsOptions configuration to add CORS

support to Jaguar server applications

http Provides classes to consume HTTP resources

postgres Driver for connecting and querying PostegreSQL databases

mqtt_client
Adds a server and browser based MQTT client for Dart supporting normal,

secure sockets and web sockets

Table 10 – Description of each package imported

BeingCare: A Virtual Communication Window for Wellbeing

46

3.1 Services and Controllers

The BeingCare service offers 5 logical services, described in Error! Reference source not found. and

developed based on their contextual logic and provide REST endpoints implemented using Jaguar

Controllers.

Storage Service Service responsible for store messages and

retrieve information related to people being cared

Alarms Service
Service responsible for retrieve information

related to alarms stored in the repository

Events Service
Service responsible for retrieve information

related to events stored in the repository

Requests Service

Service responsible for retrieve information

related to requests stored and send new

requests received to a message topic

Statistics Service
Service responsible for retrieve statistical

information related to the overall data stored

Table 11 - Description of services implemented

The information is retrieved through querying on the database. All messages exchanged through the

system are stored in a database to ensure that information is not lost if a service fails or restart. For this

purpose, PostgreSQL [55] was used as database due to its advantages, such as low maintenance and

simplicity of querying operations. This database supports not only SQL (Structured Query Language) but

also JSON (JavaScript Object Notation) for relational and non-relational queries.

The database is composed by a single table:

• Message: Responsible for store all information related to messages exchanged

BeingCare: A Virtual Communication Window for Wellbeing

47

The Appendix C contains the database schema that creates tables with specific fields and rules in order

to prepare the database to receive information during the services run.

In the end, all information can be accessed by REST API endpoints implemented using REST Controllers.

Controller actions must be created in order to expose resources to final clients though the REST API. There

were created six different controllers annotated with @GenController annotation. All routes’ handlers

were implemented as methods and annotated using HTTP method annotations (such as @Get, @Post,

@Put, @Delete). Table 12 describes all annotations used grouped by the respective controller.

Annotations Annotation Description Controller Method

@PostJson

Responsible for storing records

provided by the JSON body of the

request

Storage Controller insertMessages

@GetJson

@HttpMethod

Responsible for returning a JSON

object with all records associated

with the respective service

HttpMethod annotation is used to

allow Options methods due to

Cross-Origin Resource Sharing

(CORS) [56]

Storage Controller

Alarms Controller

Events Controller

Requests Controller

Statistics Controller

getRecords

@HttpMethod

Responsible for user’s

authentication through a login

allowing Get and Options methods
Auth Controller

login

@Post
Responsible for clear the user from

session
logout

Table 12 – Annotation’s overview used on each controller

BeingCare: A Virtual Communication Window for Wellbeing

48

Below in Code 5 is depicted the Storage Controller implementation as an example of implementing

controllers using the Jaguar Dart framework and the other controllers are analogous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

const corsOptions = CorsOptions(

 allowAllOrigins: true, allowAllHeaders: true, allowAllMethods: true);

@GenController(path: ‘/storage’)

class StorageController extends Controller {

 @PostJson()

 Future<Map> insertMessages(Context ctx) async {

 await Authorizer.authorize<User>(ctx);

 var body = await ctx.bodyAsJsonMap();

 await StorageService().saveRecords(body);

 return body;

 }

 @GetJson(path: ‘/info/:beingCaredId’)

 Future<List<dynamic>> getRecordsByCareer(Context ctx) async {

 if (ctx.req.method != ‘GET’) return null;

 await Authorizer.authorize<User>(ctx);

 var param = ctx.query.getInt(‘hour’);

 return StorageService()

 .getAllRecordsById(ctx.pathParams[‘beingCaredId’]

 .toString(), param);

 }

 @HttpMethod(path: ‘/messages’, methods: [‘GET’, ‘OPTIONS’])

 @GetJson(path: ‘/messages’)

 Future<List<dynamic>> getMessageRecords(Context ctx) async {

 if (ctx.req.method != ‘GET’) return null;

 await Authorizer.authorize<User>(ctx);

 return StorageService().getMessageRecords();

 }

 @HttpMethod(path: ‘/peopleBeingCared’, methods: [‘GET’, ‘OPTIONS’])

 @GetJson(path: ‘peopleBeingCared’)

 Future<List<dynamic>> getPeopleBeingCared(Context ctx) async {

 if (ctx.req.method != ‘GET’) return null;

 await Authorizer.authorize<User>(ctx);

 return StorageService().getAllPeople();

 }

 @override

 void before(Context ctx) {

 cors(ctx, corsOptions);

 }

}

Code 5 – Storage Controller implementation

BeingCare: A Virtual Communication Window for Wellbeing

49

Some endpoints defined in Storage Controller are accessed by web services. CORS mechanism uses

additional HTTP headers to allows a server to indicate any other origins. The configurations related with

CORS options are specified in lines 1-2 and 40-43 in Code 5, and the endpoints annotated with

@HttpMethod supports Options requests (example in line 24, Code 5). The endpoint path is defined

inside each annotation using the path property.

One of the benefits of Dart centers on its asynchronous operations that enables the program to be

autonomous while it waits for another operation to finish [57]. Asynchronous operations are related to:

• Fetch data from the network;

• Writing or reading data from databases or files;

Dart uses the Future class and the async and await keyworks proving a declarative way to define and

handle with asynchronous operations. These operations are denotated with async keyword before the

function body (see line 8, Code 5) and the Future represents the result of the operations containing two

states: completed or uncompleted before having a value. The await keywork allow getting the result of

the asynchronous operations in the completed state. The session user authorization and the storage of

inserted records methods (lines 9 and 11, respectively in Code 5) are asynchronous operations that

requires waiting before proceeding with the rest of the operations. In other words, if the user is not

authorized for example, he cannot retrieve the information available after the await declaration.

All storage endpoints require authorization. Initially, the user authenticates through the endpoint created

for that purpose in order to obtain a Bearer token through the session that must be used to access the

remaining protected endpoints. The authentication and authorization process will be covered in the

section 3.2

3.2 Authentication and Authorization

Besides all information’s stored and sent to the BeingCare Service being indirect information’s related to

users, additional security issues were considered to protect data accessed. For this purpose, JWT method

was implemented with the help of jaguar_session_jwt package for an authorization scenario where the

user is required to login before accessing other API routes. Figure 13 describes the authentication and

authorization processes workflow.

BeingCare: A Virtual Communication Window for Wellbeing

50

Figure 13 – Authentication process returning a JWT for users’ authorization when requests API

Of the three possible authentication methods offered by jaguar_auth (Basic Auth, Form Auth, and JSON

Auth), authentication is based on Form Auth where an authenticator expects an application/x-

www-form-urlencoded encoded body with username and password fields.

According to documentation, authorization implementation requires the jaguar_auth package that

revolves around three basic principles according to documentation:

• User Model: user model uniquely identified

• User Fetcher: fetch the user model by its unique identification

• Authorizer: verification of a proper user identity in the request

The user model implements a PasswordUser interface provided by jaguar_common for a user model with

a password to operates with Authorizer.

A fixed list of users authorized for login has been defined and all controller’s routes only return results if

the user is authenticated and, consequently, authorized.

BeingCare: A Virtual Communication Window for Wellbeing

51

3.3 Messaging: Consume and Publish

Messages published in alarms topic are sent directly from mobile application to web application.

However, for historic effects it is necessary that the storage service saves all information’s exchanged. For

this purpose, it was implemented a MQTT client capable of connecting to the message broker and

subscribe a certain topic in order to listen the data stream receiving real-time messages. Whenever a

message of alarm type is received (lines 2-10, Code 6), the storage service stores it into the database

(line 9, Code 6).

1

2

3

4

5

6

7

8

9

10

_client.subscribe(topic, MqttQos.atLeastOnce);

_client.updates.listen((List<MqttReceivedMessage<MqttMessage>> c) {

 final recMess = c[0].payload as MqttPublishMessage;

 final pt =

MqttPublishPayload.bytesToStringAsString(recMess.payload.message);

 print(‘[MOSQUITTO] Received message on topic <${c[0].topic}>:

$pt\n’);

 var json = jsonDecode(pt);

 StorageService().saveRecords(json);

});

Code 6 – Subscription and listening alarms to store information sent via MQTT

When the storage service receives a POST request (lines 7-13, Code 5) with messages of request type,

these messages in addition to being stored in the repository, are also published in the requests’ topic so

that the web application can consume this information through a Websocket (Code 7).

1

2

3

4

5

6

7

8

void publish(String message, String topic) {

 final builder = MqttClientPayloadBuilder();

 builder.addString(message);

 _client.publishMessage(topic, MqttQos.exactlyOnce,

builder.payload);

 print(‘[MOSQUITTO] Published message on topic <$topic>:

$message\n’);

 }

Code 7 – Publishing messages into a specific topic

BeingCare: A Virtual Communication Window for Wellbeing

52

3.4 API Documentation

The API was documented using Swagger and it is available1. Table 13 summarizes the created endpoints

and a brief description of each one.

Request Endpoint

Authoriza

tion
Description

Login POST /login

No

Endpoint for user

authentication

POST /logout Endpoint for logout session

Storage POST /storage

Yes

Endpoint for post records

GET /storage Endpoint for returning all

records

GET /storage/info/{beingCaredId} Endpoint for returning all

records of a people being

cared in the last hours

GET /storage/peopleBeingCared Endpoint for returning all

people being cared

GET /storage/messages Endpoint for returning only

messages records

Alarms GET /alarms

Yes

Endpoint for returning all

alarms

GET /alarms/last Endpoint for returning the

alarms occurred in the last x

hours

GET /alarms/last/{beingCaredId} Endpoint for returning the

alarms occurred in the last x

hours given a people being

cared ID

1 https://app.swaggerhub.com/apis-docs/cmalbuquerque/BeingCare/1.0.0

https://app.swaggerhub.com/apis-docs/cmalbuquerque/BeingCare/1.0.0

BeingCare: A Virtual Communication Window for Wellbeing

53

Requests GET /requests

Yes

Endpoint for returning all

requests

GET /requests/last Endpoint for returning the

requests occurred in the last

x hours

GET /requests/last/{beingCaredId} Endpoint for returning the

requests occurred in the last

x hours given a people being

cared ID

Events GET /events

Yes

Endpoint for returning all

events

GET /events/last Endpoint for returning the

events occurred in the last x

hours

GET /events/last/{beingCaredId} Endpoint for returning the

events occurred in the last x

hours given a people being

cared ID

Statistics GET /stats/all

Yes

Endpoint for returning

statistics related to overall

records

GET /stats/alarms Endpoint for returning

statistics related to alarms

records

GET /stats/events Endpoint for returning

statistics related to events

records

GET /stats/requests Endpoint for returning

statistics related to requests

records

Table 13 – API documentation summary

BeingCare: A Virtual Communication Window for Wellbeing

54

4 BeingCare Web Application Component

The development of web application appealed to the address of Flutter in order to try to prove a proof-

of-concept of the entire system based on Dart language. Flutter web allows the compile of Dart code into

HTML, CSS, and JavaScript code and works like Flutter in mobile. Thus, Flutter packages are integrated

into applications in the same way as mobile by adding dependencies to the pubspec.yaml file

described in the Appendix A and the Table 14 provides a brief description of each package imported to

support the development:

http Provides classes to consume HTTP resources

jaguar_resty
Provides building fluent functional REST clients supporting interceptors

and authenticators.

flutter_bloc
Provides pre-implemented Widgets to easily implement BloC (Business

Logic Component) pattern

provider
 Wrapper around InheritedWidget to make them easier to use and

more reusable

mqtt_client
Adds a server and browser based MQTT client for Dart supporting

normal, secure sockets and web sockets

line_icons Icon library based on Awesome Line Icons

intl
Package used to deal with internationalized date and number

formatting and parsing

pie_chart Provides a beautiful Pie Chart Widget with animations

syncfusion_flutter_charts
Provides data visualization by creating beautiful, animated, and high-

performed charts

BeingCare: A Virtual Communication Window for Wellbeing

55

flash Provides customizable and easy-to-use alerts to display messages

Table 14 – Brief description of packages imported to support the web development

4.1 BloC Pattern in Navigation

BloC (Business Logic Component) pattern helped with state management to provide the navigation

between pages through the sidebar clickable buttons. This pattern is similar to other suitable mobile

patterns such as Model-View-Presentation (MVP) and Model-View-View-Model (MVVM) [53]. Indeed,

these patterns represent a very similar form of interaction between the model side and a view, only

varying the flow of communication. BloC allowed an efficient management state across the web

application without a tight coupling between the view and the logic side. Figure 14 shows the details of

the communication flow in the BloC pattern.

Figure 14 – BloC pattern communication [53]

For navigation events management associated with a navigation button, BlocProvider was used to update

the navigation state. BloC is based on streams used to provide and consume a continuous data flow. The

implementation focused on Events, States and the transformation of Events into States through the

BeingCare: A Virtual Communication Window for Wellbeing

56

mapEventToState method provided by the BloC package. Code 8 addresses the BloC pattern

implementation applied in navigation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

class NavigationBloc extends Bloc<NavigationEvents, NavigationStates> {

 @override

 NavigationStates get initialState => MyHomePage();

 @override

 Stream<NavigationStates> mapEventToState(NavigationEvents event)

async*{

 switch (event) {

 case NavigationEvents.HomePageClickedEvent:

 yield MyHomePage();

 break;

 case NavigationEvents.HistoryPageClickedEvents:

 yield HistoryPage();

 break;

 case NavigationEvents.DevicesPageClickedEvents:

 yield DevicesPage();

 break;

 }

 }

}

Code 8 – Navigation BloC implementation

Similar to async keywork used in asynchronous operations, the async* is related to streams. The

yield keyword works similarly to a return keyword; however, it adds a single value to the output

stream. Depending on the event to be mapped, the associated Widget page is added to the output stream

of the surrounding async* method through the yield. Each Widget page implements the

NavigationState and each navigation button has an associated event that is added to the BlocProvider

stream to notify navigation state has changed. BlocProvider is analogous to the Provider used in the

mobile application as can be seen in Code 9.

1

BlocProvider.of<NavigationBloc>(context)

 .add(NavigationEvents.HomePageClickedEvent);

Code 9 – BlocProvider adding a new navigation event

BeingCare: A Virtual Communication Window for Wellbeing

57

4.2 Consuming Information

Web application consumes information from two different sources: REST API through HTTP requests and

Message Broker consuming two message topics.

A generic service class responsible for client authentication and for the remaining requests after being

authenticated was implemented. This web client consumes information from the different services

provided by the REST API, and each service consumed on the client side is an extension of the

implemented generic service.

The information provided by the message broker arrives distributed by topics. Identical to the BeingCare

service component, an MQTT client was implemented allowing the connection between the web

application and the broker in order to consume messages that are published in both topics. Whenever a

message appears in the topic, this is populated in the data stream so that Flutter, later, builds Widgets

based on the data stream’s content.

5 Messaging Runtime

In the context of the problem, as the system focuses on an event-driven approach and the exchange of

information between components, the use of a message broker is advantageous to act as a

communication mediator facilitating the communication process. A message broker is a technology that

enables applications, services, and systems to exchange information through messages translated by a

formal messaging protocol.

5.1 MQTT Protocol

MQTT is a publish-subscribe protocol for message transport which architectures relies on Figure 15. This

protocol is extremely lightweight and efficient and allows bi-directional remote communication between

devices with a minimal network bandwidth [43].

BeingCare: A Virtual Communication Window for Wellbeing

58

Figure 15 – MQTT publish-subscribe architecture [43]

A MQTT client can publish messages on a specific topic, which could be subscribed by other clients

receiving the messages published on it. This protocol significantly reduces the network bandwidth

consumption and increases scalability due to the characteristics of the publish/subscribe model.

To achieve the purposed goals, this protocol was used for messages exchanged between the components

described in the architecture, whenever possible.

5.2 Mosquitto Message Broker

As MQTT broker was used the open-source Eclipse Mosquitto (version 2.0.9). The basic configurations

are defined into a configuration file editable in order to specify other configurations needed in the

context. Besides allowing MQTT protocol, this broker also allows the use of WebSocket protocol and the

use of several listeners at the same time. The default configuration only allows MQTT protocol available

on port 1883 and, since version 2.0 was released, anonymous clients connected to the broker are not

authorized. For these reasons, its settings have been changed in the configuration file in order to allow,

simultaneously, MQTT and WebSocket protocol in different ports. For proof-of-concept purposes, certain

security aspects were discarded and therefore the connection of anonymous users was allowed.

Below in Code 10 are the configurations defined for Mosquitto broker through its configuration file:

BeingCare: A Virtual Communication Window for Wellbeing

59

1

2

3

4

listener 1883

listener 9001

protocol websockets

allow_anonymous true

Code 10 – Configurations defined in Mosquitto configuration file

Message broker clients can subscribe two topics related to the context. Table 15 describes the topics used

in the system, as well as its logic context and which clients subscribe or publish on it.

MQTT Topic Description Operation Client

alarms Topic used to exchange

messages of alarm type,

generated from an event

detected in mobile

component.

Publish Mobile

Subscribe Web Application

Storage Service

requests Topic used to send requests-

related messages to web

application

Publish Storage Service

Subscribe Web Application

Table 15 – Description of used message topics

As defined in the Mosquitto configuration file, two different ports are used with different protocols. Each

topic is available for consumption through Websocket protocol on port 9001 while the alarms topic is

consumed on port 1883 by storage service through a MQTT client in order to store all messages published

on it. A resume of ports and protocols available for each topic are detailed in Table 16.

BeingCare: A Virtual Communication Window for Wellbeing

60

Topic Port Protocol

alarms

1883 MQTT

9001 Websocket

requests 9001 Websocket

Table 16 – Ports and protocols available for each message topic

6 Deployment

For data privacy reasons, the system was deployed locally using docker containers. Figure 16 shows the

deployment diagram where the components of the message broker, database and services are deployed

in different docker containers.

Figure 16 – Deployment diagram

BeingCare: A Virtual Communication Window for Wellbeing

61

Docker compose defines and runs multi-container Docker applications running in containers. In the

docker-compose.yml file the services were defined, and for each one, it was indicated the

respective image used or a pre-compilation of a Dockerfile, ports exposed, and volumes mounted.

The details specified for each service are described below:

• postgres – this container uses an already pre-defined PostegreSQL image available on Docker

Hub, a hosted repository service provided by Docker containing containers images. The

environment variables stated are related to the database access credentials as well as its name.

As PostgreSQL uses the port 5432 as its official port, it was decided to keep it and expose it in

order to allow mapping all requests arriving at the port to the container’s port. Having created a

schema with the database structure, the schema is specified on the volumes tag to prepare the

database;

• mosquitto – like postegres container, this container uses also a pre-defined image

available on Docker Hub. In this case, as Mosquitto message broker uses two different ports in

accordance with the protocol as seen before, both two ports need to be exposed (1883 for MQTT

and 9001 for Websockets). The environment variable stated specifies the host and the

configuration file is specified in the volumes tag;

• beingcare-services – this container uses a custom image built using the Dockerfile in the

beingcare_services/. Directory and depends on postgres and mosquitto

containers already addressed.

The Appendix C contains the Docker-compose specifications and the Dockerfile with the custom image

that compiles and runs the BeingCare services Dart application.

7 Reflections and Considerations on Development

During the implementation of this work, several constraints have arisen over time largely due to the

novelty that Dart presents as a new programming language. Following are considerations and opinions

about the work process.

BeingCare: A Virtual Communication Window for Wellbeing

62

7.1 Dart as Applicational Backend Programming Language

The Dart language syntax, similar to Java, is more concise and straightforward, and an example of this are

prints and main functions. It resembles Python in its simplicity however the fact that it is object-oriented

makes it more robust. The great advantage of Dart is the simplicity of synchronization and the range of

patterns provided are easy to apply for cleaner state management.

However, compared to other application backend frameworks namely the popular Java-based Spring

Boot, the Dart ecosystem is still very inconsistent. Despite the several existing frameworks like Jaguar,

Angel, Aqueduct among others, these lack still a clear community support for now. This was clearly

reflected in progress of BeingCare development. Initially, Aqueduct framework was adopted however, as

soon the released of Flutter 2, Aqueduct did not keep up with language changes and, in the end

discontinued at the end of March. Besides this downside, Aqueduct provided some valuable features that

were already being using namely the ORM and the automatically API documentation.

The second option was the Jaguar framework. Jaguar framework has positive aspects namely in the

development of REST APIs and the routes mapping is more intuitive and effective thanks to the

annotations available when compared with Aqueduct. Yet, its ORM support is not functional in contrast

with ORM provided by Aqueduct. Aqueduct version worked perfectly, automatically creating the

necessary migrations to build the database schema.

With Jaguar, the ORM was dropped, and it were ended up in a classical SQL handmade based approach

in model creation. To mapping to objects, queries were also custom made. Despite some interesting

integrations with Jaguar from a developer perspective its documentations are quite disorganized and

flawed.

Jaguar has the advantage of being very consice and intuitive for write REST APIs. The endpoint creation

process works based on self-explanatory annotations allowing greater control to the developer through

path configurations, path parameters, among others.

Table 17 summarizes some relevant considerations about the functionalities provided by each Dart-based

applicational backend framework explored during this dissertation.

BeingCare: A Virtual Communication Window for Wellbeing

63

ORM
Consistent and functional only

for PostgreSQL
Not functional

Documentation Guides well detailed Disorganized and flawed

Community Support
More considerate due to the

number of users
Sparce

REST APIs Documentation
Automatically and integrating

Swagger
Not supported

Table 17 – Comparison between Aqueduct and Jaguar frameworks in terms of features provided and issues

encountered

Along the development, although not particular to Dart, the quick evolution of Dart lead to constant issues

with package incompatibilities due to versioning, several time indirect ones not fully clear from the start.

It is natural to assume this will stabilize but currently it is an obstacle in the development process.

There is still a discrepancy between packages released by Google and packages provided by Dart

developers open community. If the development process is constrained mostly to Google released

packages besides being well documented, they are clearly more reliable them packages provided by the

community. The community’s efforts are notorious, but certain aspects need to be enhanced.

Nonetheless, there are renowned IT companies that have started to provide consistent packages as well.

7.2 Flutter in Web

Flutter Web was only released for the stable kernel with the fresh Flutter 2 announcement. Only after

this release, the lack of packages available supporting web compared to mobile began to be surpassed.

As the screen of a web application is significantly larger than the screen of a mobile device, sometimes

the web application will have more content per window, i.e., there trends to be a greater number of

BeingCare: A Virtual Communication Window for Wellbeing

64

Widgets to be displayed in a single window. This factor can lead to more extensive and complex code if

the developer does no reuse or organize the code well. Flutter has the advantage of granting the creation

of reusable and customizable Widgets which can be applied in different contexts depending on the input

data passed to them. Indeed, the messy caused by the complexity of many Widgets can be overcome by

adopting the referred conducts.

7.3 Tensorflow and Physical Devices

It is important to emphasize there were constraints related to Tensorflow Lite support on emulators (both

on Android and iOS emulators). Recently, Tensorflow stopped supported debugging and testing on

emulators with x86_64 architectures due to, mainly, a CocoaPods issue. CocoaPods is a dependency

manager for Objective-C, Swift, and other related languages that allows managing external libraries in a

standard format. Tensorflow Lite dependencies are managed by CocoaPods on iOS devices, however, the

Tensorflow community decided to withdraw support for any type of emulator. This constraint can be

surpassed by using physical devices to test and debug applications that use this package or packages

dependent on this. As the Tensorflow Lite package used also depends on Tensorflow, applications will

crash when using virtual devices (both in Android and iOS).

7.4 Operating Systems

Flutter is officially support for both Android and iOS. During this dissertation, two operating system-

related obstacles were discovered:

• iOS mobile development by itself is quite restricted;

• the release of stable packages for native iOS apps takes longer.

Besides the development and deployment for Android being simple and effortless, the same does not

happen in iOS. Apple is very strict about mobile development and the complexity with iOS is mainly due

to Apple restrictions but not from Flutter itself.

With iOS, the Flutter development is coupled to the actual Apple development and deployment toolkit

and the process of releasing iOS applications requires enrollment in the non-free App Developer Program.

A non re enrollment poses limitations e.g., impossibility to generate IPA (iOS App Store Package) files and

BeingCare: A Virtual Communication Window for Wellbeing

65

publish apps on the App Store. For this reason, besides the BeingCare mobile application being functional

on iOS devices (tested using the debug mode) its IPA file which stores an iOS app was not generated.

Another issue faced with iOS is that evolutions in Flutter may take some time to be fully covered by Flutter

iOS native apps. Some packages especially provided by the Dart community, sometimes in a first

release/update have bugs related to the iOS component.

Also, during the proof-of-concept development phase, there was a greater difficulty in the iOS component

compared to the Android component. Settings about the developer’s authenticity must be considered

and when it is not well defined, the operating system does not authorize the debugging of applications.

Furthermore, initially there were founded bugs related to the plugins used, namely the Tensorflow Lite,

since the developer team sometimes release new versions without testing their operation on iOS. This

fact is due to the difficulty of testing on iOS because these tests require the use of an iPhone or an

emulator that is only supported on Apple computers.

BeingCare: A Virtual Communication Window for Wellbeing

66

BeingCare: A Virtual Communication Window for Wellbeing

67

Chapter 5 Results Analysis

The pandemic, namely in relation due to interpersonal restrictions, made unpratical the conduction of

system usability tests in scenarios related to wellbeing and care support for people – the options of using

volunteers to perform were excluded from the start as they are not the typical target population.

Therefore, the BeingCare system evaluation focus on the UI and audio classification using local ML. Firstly,

the user interfaces developed for each interaction point of the system are presented and explained.

Regarding the machine learning model, issues related to the variation of the size of mobile application,

are also analyzed, as well as an evaluation related to the detection of audio varying input parameters and

distances between the audio source and the recognition device.

1 Mobile Application Demonstration

The mobile application has been designed considering that it could be used by elderly people or people

with motor constraints. Thus, the application was built based on simplicity to be intuitive and provide an

easy user experience. Figure 17, Figure 18, and Figure 19 show the three screens created, running on

Android devices.

The main screen contains a kind of interactive command that, depending on the clicked button, sends the

associated message to the system. Thus, an elderly person who is not used to interacting with

smartphones can easily communicate with the other side of the system.

The mobile application also supports iOS devices and as seen in Figure 20, Figure 21 and Figure 22, the

design is identical since the used code base is the same. However, Flutter contains a panoply of native

Widgets of each operating system that can be used instead of the Widgets provided by the Material

Design.

BeingCare: A Virtual Communication Window for Wellbeing

68

Figure 17 – Main screen on

Android devices

Figure 18 – History of sent

messages on Android devices

Figure 19 – Speech to text

screen on Android devices

Figure 20 - Main screen on iOS

devices

Figure 21 - History of sent

messages on iOS devices

Figure 22 - Speech to text

screen on iOS devices

BeingCare: A Virtual Communication Window for Wellbeing

69

2 Web Application Demonstration

The web application was specially designed so that caregivers can have a visual idea of the overall events

happening or already happened. Therefore, at the homepage shown in Figure 23, there are presented

graphs in order to summarize the percentage of each type of information and the evolution of these types

over the last 24 hours. When critical people being cared-related events occur, the caregivers receive a

notification with a description of the event and who rises that alert.

Caregivers can access individual information related to each people being cared with de UI represented

in Figure 24 containing a chart of all records separated by type and occurred in the last 24 hours

accumulated per hour.

Finally, a raw history of all records stored in the system, divided by their type, is presented sorted by

recent date allows caregivers to have a gross information, as seen in Figure 25.

Figure 23 – Web application homepage

BeingCare: A Virtual Communication Window for Wellbeing

70

Figure 24 – People being cared list and individual overview of events that occurred

Figure 25 – History board of all information organized by type

3 Mobile Application Size Analysis

The application size is an important factor to be discussed to understand, mainly, the role of machine

learning mechanisms related to the memory occupied in devices. Despite the use of a cross-platform

framework in mobile development, Flutter enables the generation of application native files for each

operating system. An analysis of the size of these files will be presented below.

BeingCare: A Virtual Communication Window for Wellbeing

71

3.1 Releases

As Android devices use various CPUs with different characteristics that support different instructions set,

the generation of an APK that works for all platforms can cause problems regarding the size of APK. To

fight this constraint, there were generated APK files per ABIs (Application Binary Interface) using the –

split-per-abi flag provided by Flutter. Table 18 analyzes the size of each APK generated according

to the inclusion or exclusion of the classification model.

APK file generated Size with classification model Size without classification model

app-armeabi-v7a-release.apk 29,9 MB 24,2 MB

app-arm64-v8a-release.apk 33,4 MB 27,6 MB

app-x86_64-release.apk 37,2 MB 31,4 MB

Table 18 – Comparison APK sizes between releases generated for all the targets ABIs

Using the APK app-arm64-v8a-release.apk, it was installed in several Android devices the BeingCare

application including and excluding the classification model and the comparison is reported in Table 19.

Due to the constraints related to the limitations of iOS releases discussed in 7.4, the generation of the

application native file (IPA) was prevented. Nevertheless, comparisons related to the native application

size with and without the classification model have been established assuming the iOS native application

installed during debug mode, and the results are as well depicted in Table 19.

Device
Operating

System

Size with classification

model

Size without

classification model

LG Nexus 5 Android 121 MB 116 MB

Xiaomi Redmi Note 5 Android 131 MB 125 MB

Samsung Galaxy A21s Android 129 MB 123 MB

BeingCare: A Virtual Communication Window for Wellbeing

72

iPhone 7 iOS 318 MB 312 MB

iPhone 7 Plus iOS 318 MB 312 MB

Table 19 – Android and iOS native applications’ size comparison

Some documentations [46] refer that GTM models may increase the application’s size. Analyzing the

results presented in Table 18, comparing the size of APK generated per ABIs, it is concluded the GTM

classification model adds up to a maximum of 5.8 MB (4% in worst case). This value coincides with the

size of the Tensorflow Lite classification model file generated by GTM framework and which is added to

the application’s assets. As GTM requires select Tensorflow operators to work, this can increase the

overall application’s size and it is recommended the built of an own custom classification model to

overcome this constraint [46]. Therefore, it is expected that building and training an own Tensorflow Lite

model without the help of GTM will decrease the size of the APK because of the size of the model will be

smaller.

The relation between the model size (5.8 MB) and the size of the application installed on Android devices

is equal to the relation discussed above. The results obtained and exposed in Table 19 reinforce both

native applications (Android and iOS) which include a classification model are about 5.8 MB weightier

than applications without the model.

Regarding Android native applications, the behavior of the size of the installed applications varies

according to the device itself. In the worst scenario, this variation is about 10 MB, comparing LG Nexus 5

and Xiaomi Redmi Note 5. On the other hand, iOS native applications, regardless of the device model,

installed applications are the same size.

Figure 26 represents a visual comparison between Android and iOS native applications’ size including and

excluding the classification model. For Android application size was assumed the average of sizes obtained

and referred in Table 19.

BeingCare: A Virtual Communication Window for Wellbeing

73

Figure 26 - Visual comparison of the native applications' size between operating systems

Overall, it's noticeable that native iOS applications are significantly heavier than Android apps, around

60% at least.

Another interesting observation, resulting from the analysis of the classification model’s size, concerns

the fact that its size remains constant, i.e., regardless of the number of the classes’ model and its samples,

the model generated by GTM will always have 5,8 MB.

4 Audio Classification Analysis

In this section, several tests are presented as a starting point for analyzing the performance of the

classification model under different scenarios, as well as discussed obtained results that are considered

curious and pertinent. As mentioned before, the use of a GTM model with Tensorflow Lite , while allowing

easy and straight forward model creation, the GTM black box design did not allowed a model analysis.

4.1 Model Overview

GTM framework generates Tensorflow Lite models already trained. The model built using GTM

framework was based on a balanced dataset where each class contains about 14 samples, splitting the

dataset into two buckets:

BeingCare: A Virtual Communication Window for Wellbeing

74

• Training samples: corresponding to 85% of the samples and are used to train the model in order

to learn the classification of the samples into the classes defined

• Test samples: corresponding to 15% of the samples that are never used to train the model but to

evaluate the performance of on new samples of never-before-seen data

The model was trained with 50 epochs, which means that model works through the entire training dataset

50 times. Below, in Figure 27, are the charts that analyze the accuracy (metric used to evaluate or monitor

the performance of the model during testing and training, respectively) and the loss (function to optimize

the model’s parameters) of the model according to the course of the epochs.

Figure 27 – Evolution of model accuracy (left) and model loss (right) depending on the epochs elapsed

An accuracy close to one means that the model is predicting correctly and, according to the previous

graph, the accuracy of the model, in training data, increases along with the epochs. The predictions of

the model are considered perfect if the loss is zero, otherwise, the loss is greater than zero. In this case,

after 50 epochs, the trained model achieves a loss a little bit greater than zero.

4.2 The Distance’s Impact

The experimental objective is to analyze the impact of the audio distance on the performance of the

classification model.

BeingCare: A Virtual Communication Window for Wellbeing

75

Thus, the distance impact assessment was performed based on random samples taken from the initial

dataset. For each class, 3 random samples were randomly repeated into a sequence and 40 inferences,

i.e., audio events, were drawn from it. For that, the input parameters of the recorder method, sample

rate and buffer size, were 44100 and 22000, respectively.

As those 360 inferences were presented to the classification model at different distances between the

model’s device and the audio source, this procedure leads to two different test sets. Notwithstanding

that the samples randomly used to create the audio sequence, were used by the learning algorithm when

training the model, it is also worthwhile to mention that, by randomly drawn the audio events from the

sequence and by varying the distance between the model’s device and the audio source, these test sets

were not entirely used in the training. Hereupon, these test sets are related to the trained concept and

the resemblance of these new test sets with the set for training the classification model is not

overwhelming.

Therefore, and considering that the aim is to analyze the impact of the audio distance rather than

generalize on the performance of the model, these test sets fit the purpose.

As stated, these experiments were performed varying the positioning distance of the mobile device that

runs the model to classify the events from the audio source that produces the events and were executed

on the Android mobile device LG Nexus 5.

With the results obtained, a simple Python script was implemented to obtain the confusion matrix (a

tabular summary denoting the visualization of correct and incorrect predictions returned by the

classification model) and evaluate the model performance through the computation of the following

metrics: accuracy, precision, recall, and F1 score.

The confusion matrices with the results from both experiments are presented in Figure 28.

BeingCare: A Virtual Communication Window for Wellbeing

76

Figure 28 – Confusion matrix obtained from 40 inferences with distances of 0.5 meters (top) and 1 meter

(bottom) tested with random samples used to build and train the classification model

BeingCare: A Virtual Communication Window for Wellbeing

77

The confusion matrices obtained allow concluding that, to some extent, the model can correctly predict

the event that occurred. However, as the distance increases, the decrease in the number of hits is

notorious, eventually assigning a proximal class to the event other than the true one (background beep

is, majority, classified as background noise). At first glance, it is notorious that, regardless of the distance,

the model presents a higher performance for short and simple sounds, as is the case of taps, as well for

sonorous sounds such as snore. There are some cases where the model confuses classes that have

identical sounds, namely, the gagging sound is very similar to the coughing sound. A person who gags

ends up coughing involuntarily. At a shorter distance, the cough is mostly classified as gag, while at a

higher distance as background noise, pointing the audio quality deteriorates.Another important

conclusion is related to the Help class. This class is composed of audio samples that comprise help request

words. Compared to the other classes, it is clear that the model is not able to infer well this type of class,

but, surprisingly, at a greater distance, the classification of this class is better.

Comparing both confusion matrices, it is clear the distance between the mobile device and the audio

source has an impact on classification results and longer distances negatively affect the correct

classification. Also, the performance metrics endorse this conclusion. As the problem addresses

multiclass, for a deeper analysis on the model performance, for each class was calculated the accuracy,

precision, recall, and sensitivity resorting the Python’s module sklearn:

• Accuracy – returns the fraction of the total samples that were correctly classified;

• Precision – returns the fraction of correct predictions and all the predictions of a given class;

• Recall or sensitivity – returns the fraction of correct predictions and all the examples that belong

to that class;

• F1 score – weighted arithmetic mean of recall and precision.

In addition, macro average metrics were also calculated, and the results are shown in Table 20 (weighted

average metrics are omitted as the results are equal to macro average metrics due to the equal support

of each class).

BeingCare: A Virtual Communication Window for Wellbeing

78

 0.5 meters 1 meter

 Precision Recall F1 Score Precision Recall F1 Score Support

Background Beep 0.500 0.400 0.444 1.000 0.250 0.400 40

Background Noise 0.404 0.525 0.457 0.179 0.300 0.224 40

Cough 0.200 0.075 0.109 0.182 0.100 0.129 40

Gag 0.367 0.450 0.404 0.560 0.350 0.431 40

Help 0.250 0.050 0.083 0.455 0.125 0.196 40

Pain 0.242 0.375 0.294 0.242 0.375 0.294 40

Sneeze 0.419 0.450 0.434 0.306 0.375 0.337 40

Snore 0.697 0.575 0.630 0.600 0.600 0.600 40

Tap 0.439 0.725 0.547 0.338 0.625 0.439 40

Accuracy 0.403 0.344 360

Macro Average 0.391 0.403 0.378 0.429 0.344 0.339 360

Table 20 – Classification report of performance metrics calculated per class using the random samples testing

approach

The classification report indicates the accuracy of each class varies dramatically. For example, the Pain

class has a very depressed F1 score (0.242) compared to the Snore class (0.697), regardless of the

distance. The F1 score obtained for each class conveys interesting results from classes where distance

does not affect performance as in classes Background Beep, Cough, Gag, Pain, and Snore. It remains to

notice the surprising improvement in the performance of the Help class with increasing distance,

however, the performance is still quite low.

The overall model accuracy in the best-case scenario, which is at a smaller distance, is about 40%

indicating the model misclassifies 60% of the events that occurred. Accuracy is further negatively affected

BeingCare: A Virtual Communication Window for Wellbeing

79

by increasing the distance, as it is decreased by 6%. These results prove that the performance of the

classification model is not perfect and the need to be improved is obvious, but that distance does not

pose a major burden.

To improve the overall performance of the classification model, more examples should be considered

during the learning step. The model built using GTM framework was based on a balanced dataset, where

each class has about 14 samples. This number is considered low since only 85% of these 14 samples are

used to build the model and only 15% of samples are used for training. This means that there was no wide

variety of samples used during the training process, which drastically affects the results. The poor

performance of the classification model does not result from an unbalanced dataset and most possibly

can be related to the lower number of samples, the similarity between the samples assigned to different

class or the algorithm cannot distinguish between classes. Thus, it is expected that performance may

increase if a larger number of samples per class is used, and these should be most distinct from each

other.

4.3 Input Parameters

Another interesting analysis consists in varying some input parameters required by the Tensorflow

package during audio recording. The recording length must be equal to the tensor input size expected in

the model, i.e., 44032.

According to the package’s documentation, it is recommended the use of 16000, 22050, or 44100 for

sample rate, corresponding, respectively, to 16 kHZ, 22 kHZ and 44,1 kHZ. In order to analyze the behavior

of the audio recording time window, the sample rate values were varied along with the buffer size values

and the results are registered below. For testing purposes, two devices with different operating systems

and hardware components were used, LG Nexus 5 (Android) and iPhone 7 Plus (iOS), and the results are

expressed in Table 21 and Table 22, respectively.

BeingCare: A Virtual Communication Window for Wellbeing

80

Sample Rate

Buffer Size

2000 8000 16000 22000

16000 Hz 3.059 s 3.254 s 3.298 s 3.698 s

22050 Hz 2.365 s 2.408 s 2.443 s 2.775 s

44100 Hz 1.448 s 1.350 s 1.328 s 1.546 s

Table 21 - Audio recording temporal window (in seconds) to be inferred on Android devices depending on

sample rate and buffer size passed as input parameters

Sample Rate

Buffer Size

2000 8000 16000 22000

16000 Hz 2.583 s 2.712 s 2.739 s 2.956 s

22050 Hz 1.976 s 2.012 s 2.172 s 2.306 s

44100 Hz 1.032 s 0.803 s 0.785 s 1.123 s

Table 22 - Audio recording temporal window (in seconds) to be inferred on iOS devices depending on sample

rate and buffer size passed as input parameters

The temporal window is an important factor not only for the model's behavior but also for the system

application context. Scarce windows may not properly capture the event that is occurring and,

consequently, cause a poorly classification performance. Comparing both results obtained for different

mobile devices, it is noticeable that devices with a better-quality processor speed up the recording time.

To sum up, buffer size influences the time window of audio captured for inference. A lower value

increases the time window however, it is computationally heavier due to the load exerted on the device’s

processor. There is an exception to the rule for a buffer size of 22000, which proves to be the ideal value

so as not to raise computational forces for an ideal time window. It is expected that the variation of

sample rates will influence the accuracy of the inference and higher values will improve the accuracy.

BeingCare: A Virtual Communication Window for Wellbeing

81

Chapter 6 Final Remarks

The conclusions and final considerations about the engouraging results obtained in this work are

summarized during this chapter and future work is purpose in order to refine and improve the presented

developed system.

1 Conclusions

The focus of this Dissertation consisted in the development of a proof-of-concept for a system capable of

surpassing some communications constraints raised in some wellbeing-related scenarios and improving

the direct interaction between the humans involved. It is considered that the work covered throughout

this document has successfully reached all previously defined objectives, validating the concept.

The main objective was the development of a Flutter-based proof-of-concept system addressing mobile

technologies to integrate part of the solution in restricted communication scenarios. This objective was

successfully fulfilled due to the development of a mobile application that gathers the necessary conditions

for clean and clear communication with the monitoring support. Flutter cross-platform framework

allowed portability between operating systems through a fast and efficient development. Flutter follows

a reactive programming approach increasing the performance by handling huge volumes of data in a

quick and stable way.

Audio detection granted the analysis of verbal communication through the recognition of several audio

sounds characteristic of the health and wellbeing of individuals for detecting not only critical but also non-

critical events. For this, the benefits of Machine Learning allowed the creation of an audio classification

model, being possible its successful integration in mobile devices through specific frameworks, in this

case, the Tensorflow Lite. Tensorflow Lite framework guaranteed the processing of audio locally without

BeingCare: A Virtual Communication Window for Wellbeing

82

its exposure outside the mobile device, safeguarding the user's privacy according to the RDPG rules.

Speech to text techniques that allowed the sharing of non-critical information were also addressed.

The possibility of developing an applicational backend using the Flutter’s base language, Dart language,

was investigated and the entire support backend system was implemented using the Dart-based

framework Jaguar. Backend application development is feasible despite some verified limitations.

However, given the evolution felt in the satisfaction of the use of Flutter accompanied by the Dart

language, and with its growth, it is believed that the support for the applicational backend development

will stabilize as well as the range of functionalities will increase according to the developers' needs.

During the process of implementing the work, several constraints were faced due to the novelty of the

frameworks addressed. Relevant reflections and considerations from a technological point of view were

also discussed and some comparisons between programming languages and frameworks were

established.

Due to the current pandemic situation, it was impossible to perform system usability tests in limited

communication or care support scenarios. Thus, the discussion of results focused on the size of the native

applications generated for each operating system and on the classification model. The process of

integrating models in mobile applications through Tensorflow Lite is quite accessible, allowing the

insertion/update of new files with the model.

As result, the native applications’ sizes had different sizes depending on the operating system and the

weight of the classification model within the application is considered ridiculous given the overall

applications’ size. iOS applications installed are weightier than Android although its content is pretty much

the same.

In addition, tests were conducted on the classification model in order to assess the impact of distance on

the classifications obtained. According to the calculated performance metrics, it is concluded that the

performance of the classification model used is not ideal, which may be due to the limited number of

examples in each class, during the training, and to the fact that there is low variability in the subjects that

produce the examples of audio.

Despite these limitations of the classification model, the proof-of-concept system has been successfully

demonstrated, indicating that it is possible to easily integrate ML models into mobile applications capable

of processing data locally using Tensorflow Lite. In addition, the concept addressed by Tensorflow Lite

BeingCare: A Virtual Communication Window for Wellbeing

83

proved to be an asset to the BeingCare system as it avoids exposing people being cared’ data outside of

mobile devices.

2 Future Work

The main objective of this dissertation consisted in the development of a proof-of-concept of the

BeingCare system. The pandemic we are facing has limited the carrying out of tests and experiments in a

real context of care support scenarios, avoiding contact with people sometimes considered at risk in the

context of the problem. Therefore, it is encouraged that in the future the system is tested in the

appropriate context in order to adapt it to the needs of more limited users.

It is clear that the system needs some improvements, in particular related to the ML component. The

classification model used did not present an ideal performance, so it would be interesting to train the

model with a broader dataset. Also, according to [46], using GTM models may increase the mobiles

application’s size and it is recommended the creation of an own Tensorflow Lite model, more lightweight,

to decrease the memory affected.

With the results obtained in the analysis of the distance’s impact on the classification of events, it would

be interesting to create several models from audio at different distances, varying their noise, to make the

classification process closer to reality.

In the context of illness, the health condition can change quickly and seriously compromise the quality of

the audio. It is advisable to create a poll of models in order to be able to choose the one that presented

the best performance. Moreover, in these scenarios, if none of the models in the poll presented a suitable

performance , it would be interesting to adapt to these cases, training a new model with new data from

this context.

The implementation of features that aim to fill the system is encouraged, such as:

• Fall detection

• Breath and sleep analysis – may include detection of apnea situations

• Inclusion of more languages (speech to text also supports native Portuguese)

BeingCare: A Virtual Communication Window for Wellbeing

84

In addition, a study on the percentage of CPU or battery consumed during the background audio

classification process is encouraged.

Finally, increasing the personal data associated with each people being cared in accordance with RGPD

rules and mindset, namely age and gender, creating clusters to obtain new conclusions associated with

the status of people being cared, would be an interesting approach to be addressed.

BeingCare: A Virtual Communication Window for Wellbeing

85

References

[1] SkillsYouNeed, “What is Communication? Verbal, Non-Verbal & Written | SkillsYouNeed.”

https://www.skillsyouneed.com/ips/what-is-communication.html (accessed Nov. 22, 2020).

[2] D. Phutela, “The Importance of Non-Verbal Communication,” IUP J. Soft Ski., vol. IX, No. 4, pp. 43–

49, 2015.

[3] H. Wanga, T. Joseph, and M. B. Chuma, “Social Distancing : Role of Smartphone During Coronavirus

(COVID – 19) Pandemic Era,” Int. J. Comput. Sci. Mob. Comput., vol. 9, no. 5, pp. 181–188, 2020.

[4] S. Majumder and M. J. Deen, “Smartphone sensors for health monitoring and diagnosis,” Sensors

(Switzerland), vol. 19, no. 9, pp. 1–45, 2019, doi: 10.3390/s19092164.

[5] MEMSCAP, “MEMSCAP | Invasive blood pressure.” http://www.memscap.com/applications-and-

market-segments/medical-and-biomedical/invasive-blood-pressure (accessed Dec. 04, 2020).

[6] A. S. Meidert and B. Saugel, “Techniques for Non-Invasive Monitoring of Arterial Blood Pressure,”

Front. Med., vol. 4, no. JAN, p. 231, Jan. 2018, doi: 10.3389/fmed.2017.00231.

[7] M. J. Zhao, A. R. Driscoll, S. Sengupta, N. T. Stevens, R. D. Fricker, and W. H. Woodall, “The effect of

temporal aggregation level in social network monitoring,” PLoS One, vol. 13, no. 12, pp. 1–21, 2018,

doi: 10.1371/journal.pone.0209075.

[8] N. Almaadeed, M. Asim, S. Al-Maadeed, A. Bouridane, and A. Beghdadi, “Automatic detection and

classification of audio events for road surveillance applications,” Sensors (Switzerland), vol. 18, no.

6, p. 1858, Jun. 2018, doi: 10.3390/s18061858.

[9] M. Alhussein and G. Muhammad, “Voice pathology detection using deep learning on mobile

BeingCare: A Virtual Communication Window for Wellbeing

86

healthcare framework,” IEEE Access, vol. 6, pp. 41034–41041, Jul. 2018, doi:

10.1109/ACCESS.2018.2856238.

[10] M. S. Hossain, G. Muhammad, and A. Alamri, “Smart healthcare monitoring: a voice pathology

detection paradigm for smart cities,” Multimed. Syst., vol. 25, no. 5, pp. 565–575, 2019, doi:

10.1007/s00530-017-0561-x.

[11] J. Kim, A. S. Campbell, B. E.-F. de Ávila, and J. Wang, “Wearable biosensors for healthcare

monitoring,” Nat. Biotechnol., vol. 37, no. 4, pp. 389–406, Apr. 2019, doi: 10.1038/s41587-019-

0045-y.

[12] M. Sreejith, S. Rakesh, S. Gupta, S. Biswas, and P. P. Das, “Real-time hands-free immersive image

navigation system using Microsoft Kinect 2.0 and Leap Motion Controller,” in 2015 5th National

Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, NCVPRIPG

2015, Jun. 2016, pp. 1–4, doi: 10.1109/NCVPRIPG.2015.7489999.

[13] D. Alymkulov, “Desktop Application Development Using Electron Framework Native vs. Cross-

Platform,” South-Eastern Finland University of Applied Sciences, 2019.

[14] P. Flach, Machine Learning: The Art and Science of Algorithms That Make Sense of Data, 1st ed.

Cambridge, UK: Cambridge University Press, 2012.

[15] “Common ML Problems | Introduction to Machine Learning Problem Framing.”

https://developers.google.com/machine-learning/problem-framing/cases (accessed Jun. 24, 2021).

[16] M. De Donno, K. Tange, and N. Dragoni, “Foundations and Evolution of Modern Computing

Paradigms: Cloud, IoT, Edge, and Fog,” IEEE Access, vol. 7, pp. 150936–150948, 2019, doi:

10.1109/ACCESS.2019.2947652.

[17] M. Martinez and S. Lecomte, “Towards the Quality Improvement of Cross-Platform Mobile

Applications,” Proc. - 2017 IEEE/ACM 4th Int. Conf. Mob. Softw. Eng. Syst. MOBILESoft 2017, pp.

184–188, 2017, doi: 10.1109/MOBILESoft.2017.30.

[18] JetBrains, “The State of Developer Ecosystem in 2020 Infographic | JetBrains: Developer Tools for

Professionals and Teams,” 2020. https://www.jetbrains.com/lp/devecosystem-2020/ (accessed

Nov. 26, 2020).

BeingCare: A Virtual Communication Window for Wellbeing

87

[19] Statista, “Cross-platform mobile frameworks used by global developers 2020,” 2020.

https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/

(accessed Nov. 25, 2020).

[20] B. Eisenman, Learning React Native: Building Native Mobile Apps with JavaScript, 1st ed. O’Reilly

Media, 2015.

[21] “Kotlin for Cross-Platform Mobile Development | Kotlin Multiplatform Mobile.”

https://kotlinlang.org/lp/mobile/ (accessed Apr. 07, 2021).

[22] “Kotlin Multiplatform Mobile Goes Alpha | The Kotlin Blog.”

https://blog.jetbrains.com/kotlin/2020/08/kotlin-multiplatform-mobile-goes-alpha/ (accessed Apr.

07, 2021).

[23] KotlinLang, “Welcome to Kotlin hands-on.” https://play.kotlinlang.org/hands-on/Full Stack Web

App with Kotlin Multiplatform/01_Introduction (accessed May 05, 2021).

[24] “Flutter - Beautiful native apps in record time.” https://flutter.dev/ (accessed Apr. 07, 2021).

[25] Statista, “Mobile app revenues 2014-2023.”

https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/ (accessed

May 04, 2021).

[26] “Machine Learning in Mobile Applications.”

https://theappsolutions.com/blog/development/machine-learning-in-mobile-app/ (accessed May

27, 2021).

[27] KeyUA, “How to Use Machine Learning (ML) in Mobile Applications | KeyUA.”

https://keyua.org/blog/how-to-use-machine-learning-in-mobile-applications/ (accessed May 04,

2021).

[28] Zain Sajjad, “Comparing Mobile Machine Learning Frameworks,” Heartbeat.

https://heartbeat.fritz.ai/comparing-mobile-machine-learning-frameworks-f8d498c2562a#e3f3

(accessed May 05, 2021).

[29] “Fritz AI | Machine Learning for iOS, Android, SnapML.” https://www.fritz.ai/ (accessed May 05,

2021).

BeingCare: A Virtual Communication Window for Wellbeing

88

[30] “Numericcal.” https://www.numericcal.com/ (accessed May 05, 2021).

[31] F. Barata, K. Kipfer, M. Weber, P. Tinschert, E. Fleisch, and T. Kowatsch, “Towards device-agnostic

mobile cough detection with convolutional neural networks,” Jun. 2019, doi:

10.1109/ICHI.2019.8904554.

[32] F. Al Azzo, A. M. Taqi, M. Milanova, and F. Al-Azzo, “Human Related-Health Actions Detection using

Android Camera based on TensorFlow Object Detection API,” Artic. Int. J. Adv. Comput. Sci. Appl.,

vol. 9, no. 10, 2018, doi: 10.14569/IJACSA.2018.091002.

[33] R. T. Fielding, “Architectural Styles and the Design of Network-based Software Architectures,”

University of California, 2000.

[34] “Stack Overflow Developer Survey 2020.” https://insights.stackoverflow.com/survey/2020#most-

loved-dreaded-and-wanted (accessed Jun. 21, 2021).

[35] “Top 10 backend frameworks | Which is the best option for you? | Back4App Blog.”

https://blog.back4app.com/backend-frameworks/ (accessed May 04, 2021).

[36] Javasterling, “Spring Boot Vs Quarkus - Difference Between Two Microservices.”

https://javasterling.com/spring-boot/spring-boot-vs-quarkus/ (accessed May 05, 2021).

[37] “Jakarta EE Working Group: the Future of Cloud Native Java Applications | The Eclipse Foundation.”

https://jakarta.ee/about/ (accessed Jun. 21, 2021).

[38] J. Lee, “Which factors affected users’ decisions to adopt Flutter? — Q1 2021 user survey results,”

Medium, 2021. https://medium.com/flutter/which-factors-affected-users-decisions-to-adopt-

flutter-q1-2021-user-survey-results-563e61fc68c9 (accessed May 29, 2021).

[39] “Aqueduct | Multi-threaded Dart Server-Side Framework.” https://aqueduct.io/ (accessed May 04,

2021).

[40] “Jaguar.” https://jaguar-dart.com/ (accessed May 04, 2021).

[41] “Angel - Dart on the Server.” https://angel-dart.dev/ (accessed May 04, 2021).

[42] “TensorFlow Lite | ML for Mobile and Edge Devices.” https://www.tensorflow.org/lite (accessed

Jun. 20, 2021).

BeingCare: A Virtual Communication Window for Wellbeing

89

[43] “MQTT - The Standard for IoT Messaging.” https://mqtt.org/ (accessed Apr. 07, 2021).

[44] “Eclipse Mosquitto.” https://mosquitto.org/ (accessed Jun. 20, 2021).

[45] “TensorFlow.” https://www.tensorflow.org/ (accessed Jun. 20, 2021).

[46] “tflite_audio | Flutter Package.” https://pub.dev/packages/tflite_audio (accessed May 11, 2021).

[47] “Teachable Machine.” https://teachablemachine.withgoogle.com/ (accessed Jun. 20, 2021).

[48] “Teachable Machine Diving Deeper.” https://teachablemachine.withgoogle.com/faq#Diving-

Deeper (accessed Jul. 14, 2021).

[49] “Netron.” https://netron.app/ (accessed Jun. 20, 2021).

[50] Tensorflow, “tensorflow:: Tensor Class Reference | TensorFlow Core v2.4.1.”

https://www.tensorflow.org/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor

(accessed Apr. 07, 2021).

[51] “Isolate class - dart:isolate library - Dart API.” https://api.flutter.dev/flutter/dart-isolate/Isolate-

class.html (accessed Jun. 20, 2021).

[52] “Stream class - dart:async library - Dart API.” https://api.flutter.dev/flutter/dart-async/Stream-

class.html (accessed Jun. 21, 2021).

[53] “What is the BLoC pattern in Flutter?” https://www.flutterclutter.dev/flutter/basics/what-is-the-

bloc-pattern/2021/2084/ (accessed May 24, 2021).

[54] “JSON Web Tokens - jwt.io.” https://jwt.io/ (accessed Jun. 20, 2021).

[55] “PostgreSQL: The world’s most advanced open source database.” https://www.postgresql.org/

(accessed Jun. 20, 2021).

[56] “Cross-Origin Resource Sharing (CORS) - HTTP | MDN.” https://developer.mozilla.org/en-

US/docs/Web/HTTP/CORS (accessed Jul. 14, 2021).

[57] “Asynchronous programming: futures, async, await | Dart.” https://dart.dev/codelabs/async-await

(accessed Jun. 21, 2021).

BeingCare: A Virtual Communication Window for Wellbeing

90

BeingCare: A Virtual Communication Window for Wellbeing

91

Appendix A Flutter/Dart Dependencies

This appendix contains additional information regarding imported packages and respective versions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

dependencies:

 flutter:

 sdk: flutter

 cupertino_icons: ^1.0.0

 http: ^0.12.2

 jaguar_resty: ^2.10.15

 speech_to_text: ^3.1.0

 device_info: ^1.0.0

 tflite_audio: 0.1.7+1

 mqtt_client: 9.0.0

 intl: ^0.17.0

 isolate_handler: 1.0.0

 provider: ^5.0.0

 curved_navigation_bar: ^0.3.7

Code 11 - Flutter dependencies imported to support mobile development

1

2

3

4

5

6

7

8

9

10

dependencies:

 jaguar: ^2.4.32

 jaguar_reflect: ^2.4.6

 jaguar_session_jwt: ^2.4.2

 jaguar_auth: ^2.4.4

 jaguar_common: ^2.1.4

 jaguar_cors: ^2.4.4

 http: ^0.11.3

 postgres: ^2.1.1

 mqtt_client: 8.2.0

Code 12 - Dart packages used to develop the BeingCare service component

BeingCare: A Virtual Communication Window for Wellbeing

92

1

2

3

4

5

6

7

8

9

10

11

12

13

14

dependencies:

 flutter:

 sdk: flutter

 http: ^0.13.0

 jaguar_resty: ^3.0.0

 flutter_bloc: 3.1.0

 provider: 4.3.3

 mqtt_client: ^8.2.0

 line_icons: ^2.0.1

 intl: ^0.17.0

 pie_chart: ^5.0.0

 syncfusion_flutter_charts: ^19.1.64

 flash: ^2.0.0

Code 13 - Packages imported and used by web application

BeingCare: A Virtual Communication Window for Wellbeing

93

Appendix B Database Schema

This appendix contains a database modeling script

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 CREATE TABLE public.message (

 id bigint NOT NULL,

 "timestamp" text NOT NULL,

 "type" text NOT NULL,

 sender text NOT NULL,

 "description" text NOT NULL

);

 ALTER TABLE public.message OWNER TO beingcare_user;

 CREATE SEQUENCE public.message_id_seq

 START WITH 1

 INCREMENT BY 1

 NO MINVALUE

 NO MAXVALUE

 CACHE 1;

 ALTER TABLE public.message_id_seq OWNER TO beingcare_user;

 ALTER SEQUENCE public.message_id_seq OWNED BY public.message.id;

 ALTER TABLE ONLY public.message ALTER COLUMN id SET DEFAULT

nextval('public.message_id_seq'::regclass);

 ALTER TABLE ONLY public.message

 ADD CONSTRAINT message_pkey PRIMARY KEY (id);

Code 14 - Database schema file

BeingCare: A Virtual Communication Window for Wellbeing

94

BeingCare: A Virtual Communication Window for Wellbeing

95

Appendix C Docker Specifications

This appendix contains the Docker files which support the deployment

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

 version: '3'

 services:

 postgres:

 image: "postgres:13"

 container_name: "postgres_database"

 environment:

 - POSTGRES_PASSWORD=password

 - POSTGRES_USER=beingcare_user

 - POSTGRES_DB=beingcare

 ports:

 - 5432:5432

 volumes:

 - ./postgres/schema.sql:/docker-entrypoint-initdb.d/schema.sql

 restart: unless-stopped

 mosquitto:

 image: eclipse-mosquitto

 container_name: "mosquitto"

 ports:

 - 1883:1883

 - 9001:9001

 environment:

 - MQTT_HOST=mosquitto

 volumes:

 - ./mosquitto/mosquitto.conf:/mosquitto/config/mosquitto.conf

 restart: unless-stopped

 beingcare-services:

 build: beingcare_services/.

 container_name: "beingcare_services"

 ports:

 - 8888:8888

 depends_on:

 - mosquitto

 - postgres

Code 15 - Docker-compose file

BeingCare: A Virtual Communication Window for Wellbeing

96

1

2

3

4

5

6

7

8

9

10

11

FROM google/dart

WORKDIR /app

ADD pubspec.* /app/

RUN pub get --no-precompile

ADD . /app/

RUN pub get --offline --no-precompile

WORKDIR /app

ENTRYPOINT ["dart", "bin/beingcare_services.dart"]

Code 16 – Dockerfile for BeingCare services Dart application

	Chapter 1 Introduction
	1 Motivation
	2 Objectives
	3 Contributions
	4 Document Structure

	Chapter 2 State of Art
	1 Human Interaction and Communication
	1.1 Monitoring to Support Communication
	1.2 Audio Detection
	1.3 Technology Advances in Monitoring
	1.4 Technology Advances in Distance Communication

	2 The Impact and Improvements of Mobile Devices
	2.1 Mobile Development
	2.2 Native Development
	2.3 Cross-Platform Development
	2.3.1 React Native
	2.3.2 Kotlin Multiplatform Mobile (KMM)
	2.3.3 Flutter

	3 Machine Learning on Mobile
	3.1 ML Mobile Frameworks Runtimes
	3.2 Solutions Using Machine Learning Frameworks on Mobile

	4 Application Backend
	4.1 Java Enterprise Application Frameworks
	4.2 The Dart from Behind the Flutter

	Chapter 3 System Specification
	1 Description
	2 The Information
	2.1 Events and Data Exchanged

	Chapter 4 Implementation
	1 System Architecture
	2 BeingCare Mobile Component
	2.1 Audio Processing and Classification Unit
	2.1.1 Tensorflow Lite
	2.1.2 Tensorflow Lite Audio Classification Models
	2.1.3 Audio Classification on the Fly

	2.2 Speech to Text Unit

	3 BeingCare Service Component
	3.1 Services and Controllers
	3.2 Authentication and Authorization
	3.3 Messaging: Consume and Publish
	3.4 API Documentation

	4 BeingCare Web Application Component
	4.1 BloC Pattern in Navigation
	4.2 Consuming Information

	5 Messaging Runtime
	5.1 MQTT Protocol
	5.2 Mosquitto Message Broker

	6 Deployment
	7 Reflections and Considerations on Development
	7.1 Dart as Applicational Backend Programming Language
	7.2 Flutter in Web
	7.3 Tensorflow and Physical Devices
	7.4 Operating Systems

	Chapter 5 Results Analysis
	1 Mobile Application Demonstration
	2 Web Application Demonstration
	3 Mobile Application Size Analysis
	3.1 Releases

	4 Audio Classification Analysis
	4.1 Model Overview
	4.2 The Distance’s Impact
	4.3 Input Parameters

	Chapter 6 Final Remarks
	1 Conclusions
	2 Future Work

	References

