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Abstract

Inorganic phosphors which can be effectively extitath blue-light are highly desirable for
white light-emitting diodes (WLEDs). Herein, Etactivated LaCe,0; phosphors are prepared
by a self-rising reaction using urea and glycine le@vening agents under hydrothermal
conditions. The phosphors display a well-distributeund or elliptical particle shapes with an
average diameter of about#8% nm. The excitation spectrum is dominated by fe->"D;
transition (366 nm) that overlaps the emission of efficienedlEDs, rendering these phosphors
as very attractive as blue converters. The lumigrese performance can be effectively improved
by optimizing the molar ratios of leavening ageats! the content of Eliconcentration and,
thus, the absolute quantum yield can reach 0.2P280.By combining a commercial blue LED
chip (InGaN, 465 nm) and the phosphors, intrigwefficient pure red emission is achieved with
CIE color coordinates of (0.669,0.330). This pugd emission is used to tune the well-known
poor correlated color temperature values of WLEBsed on YAG:C¥. WLEDs are fabricated
by coating blue LED chips with blends of YAGeand Ed'-activated LaCe0;, yielding
prototypes with enhanced color rendering index thatasily adjusted from 7119 to 3242 K,

demonstrating that this strategy may use to comgiertne red component in WLEDSs.

Keywords: Europium; red phosphor; photoluminescence; blomverter; white light-emitting

diode
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1. Introduction

The International Energy Agency estimated ttal telectrical energy consumptions for
lighting loads of about 19% worldwide [1] (the nuenior USA is about 10% accordingly
to the U.S. Energy Information Administration [2]JEnergy consumption, with the
depletion of fossil-based fuel reserves, has bec@ra@blematic, creating several
challenges, and gained increased attention workelwWitie cumulative global energy crisis
is, then, demanding high energy-efficient lightisgstems that can help to conserve
energy and reduce lighting costs. Nowadays, gréfatte have been devoted to the
development of alternative lighting devices to aepl traditional illumination lamps in
order to save energy. In this regard, WLEDs haverged as an important class of
lighting devices that has been used to replaceeardional lighting due to their admirable
merits such as extraordinary efficiency, lower ggeconsumption, longer operation
lifetime, environmental friendly characteristicsongpactness and robustness and have
been considered as the next-generation light sojjcerhe high color saturation and

reproducibility of WLEDs render these devices cotitiye in color perception.

Currently, commercial WLEDs are based opANO:.:Ce" (YAG:Ce*) broad-band
yellow phosphor in combination with blue LED chiggough a low cost and simple
procedure, in which the yellow phosphor convertekGrCe®*, dispersed in epoxy or
silicone, is directly packed on the blue InGaN ddip When driven by a certain current,
the emitted yellow light from YAG:C& pluses the transmitted blue light to constitue th
white light. This type of WLEDs usually exhibitsghi luminous efficacy (LE, 100 Im/W)
[5]. However, in practical applications, such desiguffers from some technical

weaknesses. The two-color-based WLEDs exhibit tisadyantages of low color
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rendering index (CRI, usually <75), high correlatador temperature (CCT, 4568000
K) and chromaticity drifts due to the intrinsic abse of efficient red light emission from
YAG:Ce**, which only give cool white light and inevitabliyniit its applications in indoor
or back lighting. In addition, the poor thermallsliédy and weak thermal conductivity of
the organic binders result in gradual luminousratégion and color-shift of the phosphors
under long-term heat radiation [6,7].

In order to overcome these shortcomings, a redpgitayswith excitation of blue light
should be integrated into the package of WLEDscivhvill then enable the realization of
a warm white light with high CRI (>85) and low CQB000-4500 K) to meet the
standard applications in indoor lighting [8[his is an issue for most applications
including home lighting where warm white light wighhigh CRI is required. As a result,
it is desired to develop blue-light excited red giwors with sharp emission peaks, high
luminescence efficiency and sufficient chemicaladbiiity for mixing with the YAG:C&"
yellow phosphor to improve the performance of WLEDs

During the last decades, extensive efforts have lbdeeoted to developing novel red-
emitting phosphors for WLED applications in order improve the CRI and CCT
parameters [915]. For this purpose, red phosphors should abstmingly the blue
emission (460 nm) from InGaN chip and ideally have narrow &siun bands centred at
about 610 nm, which match the peak human eye satystb red light [10].For instance,
EUW*- or Cé*-activated nitrides, $8isNg:El#*and M:SisNg:Ce** (M=Ca, Sr, Ba) [11,12],
show high emission output, wide excitation bandthe blue region, high chemical
stability and small thermal quenching. However sthaitride phosphors still have some

inherent disadvantages such as emission band exteride deep red regioh>640 nm),
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serious re-absorption phenomenon and high producatmst [16].0n the other hand,
tetravalent manganese ions (Mnactivated fluoride phosphors.MFs:Mn** (A=alkali
metal ion; M=Si, Ge, Zr, Sn, and Ti), bring suféiot blue absorption and match well with
InGaN chip radiation [17]Nevertheless, these NMadoped fluorides still have some
disadvantages such as “non-green” synthesis condjtisusceptibility to degradation
under high temperature and poor heavy moistursteesie [18].

Lanthanide (Ln) oxide phosphors show higher chehstability with an eco-friendly
preparation procedure. The ¥iactivated phosphors for blue LED chips usuallyilith
weak emission due to either the low absorptionlue lbegion from parity-forbiddenf-44f
transitions or mismatch excitation wavelength i@ thv region from charge transfer band
(CTB). For instance, Birdoped Ce®@shows weak absorption in the blue region and can
only be a potential candidate for UV-based LEDSg.[A%s0, the LE of CeQEu is very
low that limits its applications in solid-stateHigng. It is, therefore, very desirable to find
alternative red phosphors with high absorptionha blue region and strong red line-
emission [20]Recently, it was reported that the*tdoped 2Ce©-0.5La03 phosphors
prepared by a solution combustion reaction showédueced luminescence when thé'Eu
ions occupied C& rather than L¥ sites, which was due to the concentration charige o
oxygen vacancy [21Furthermore, La-doped Cg@omposite with 1:1 molar ratio of
La:Ce, LaCe0O;, has been studied as a thermal barrier-coatingermahtfor high-
temperature applications and proton conductor um@elucing atmosphere [22,23].
Moreover, Ed'-doped Ce®-La,O; composites can overcome some of the above
mentioned limitations of CeflEu materials and the luminescence properties eddped

La,CeO; have been seldom reported [24]. In order to develogreen eco-friendly
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preparation method for blue-light excitable*Ebased red phosphors, the *Edoped
CeO—Lay03 phosphors, La&fe, «O7—x2:XEu (x=0.20.9), were prepared in this work by a
hydrothermal self-rising process assisted with mhixeea/glycine as leavening agent. The
structural characterization, surface morphology &ndinescence performance of the
composites were performed and compared with thésee®,:Eu. Red emitting diodes
were fabricated and their luminescence performaneese characterized using
commercial blue chips (465 nm) coated with the*'Eactivated LaCe,O; phosphor.
Moreover, as the pure red emission of this phosgbBobbtained under analogous
conditions found in commercial WLEDs combining auélchip and the commercial
YAG:Ce*" yellow phosphor, we fabricate innovative WLEDs dnyating the blue chips
with blends formed by distinct proportions of YAG and Ed*-activated LaCeO;.
The luminescence performance of the devices cosfiimat this strategy allows
overcoming the low amount of red emission that tinthe performance of the current

used WLEDs.

2. Experimental section
2.1. Preparation of red phosphors

A series of Eti-doped blue-light excitable red phosphors were gnep by self-rising
method under hydrothermal condition. The startirgtanals include Ce(N£xBH,O (Yongda
Chemical, Tianjin, A.R.), EOs; (Institute of Non-ferrous Metals, Beijing, 99.99%)
La,Os(Institute of Non-ferrous Metals, Beijing, 99.95%yea (A.R.) and glycine (A.R.). All of
them were used as received without further putifice In addition, La(N@)s and Eu(NQ)s

aqueous solutions were prepared by dissolvingdlaged oxides with dilute nitric acid.
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It was proved that the Blidoped 2Ce®-0.5L30; system showed enhanced luminescence
when the EXi ions are located in the Eesite rather than in the Baone [21]. Therefore, in this
study, LaCe,O7_2:XxEu phosphors were synthesized with thé*ans located in the Césite.
First, the Ln (La, Ce and Eu) nitrate solutionsewvetixed together in a molar ratio of 2;x2and
X, for La, Ce and Eu, respectively. Then, the singka or mixed urea/glycine (5-fold of the total
Ln molar amount) as leavening agent was addedeoniited solution (about 50 mL) that was
put into autoclave at 16X for 180 min to perform the self-rising reactionder hydrothermal
conditions. During the self-rising reaction, thgamic leavening agent was decomposed t@ NH
and CQ, and the aqueous solution was gradually changesimasion. The emulsion was put
into crucible and heated in a furnace at 8G0for 30 min to move away the residual organic
content. Finally, the samples were formed via lesttment at 956C for 2 h. When single urea
was used, the sample seemed to be a mixture o @e®La0s;, implying that the compound
was not appropriately formed. On the contrary, wttem mixed urea/glycine was used, the as-
prepared product was confirmed as a purgCke#gD; compound. For comparison, CebBu was

also prepared by similar way.
2.2. Fabrication of red-emitting LED and WLED prototypes

The LaCe-xO;—2:XEu (x=0.7) particles were used to produce an ldeDice emitting in the
red spectral region by coating a commercial blud Lé&hip emitting at 465 nm (RLS-B465,
Roithner Laser technik, GmbH). The fine powder (2%5@) and polymethylmethacrylate
(PMMA, 50 mg) were dissolved in 2 mL of CHQlinder stirring. The resulting mixture was
further stirred at room temperature to get a homoge solution. This solution was used to coat
the commercial blue LED by dip-coating. This prasedwas repeated until the LED surface was

totally covered.
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To fabricate WLEDs, the two-part, semi-rigid compiak polyurethane resin
(UR5634polyurethane resin, Electrolube, UK) with fueight ratio were used to encapsulate the
commercial yellow-emitting YAG:C& and the red-emitting L& Or2XEu (x=0.7)
phosphors. Before coating the blue-emitting LEDpsh{RLS-B465, Roithner Laser technik,
GmbH), the polyurethane resin, YAG:Ceaand LaCeOr—y2:XEu (x=0.7) with 160:3:150 of
weight ratio were completely blended. After coatittte LED prototypes were moved into an

oven at 60C for 2 h for gelation.
2.3. Characterization

The crystal structure of the samples waskad by X-ray powder diffraction (XRD) using
a D8 Advance X-ray powder diffractometer with Gui1.54056 A) radiation. The scanning
angle @ ranges from 20 to 80The internal structure and oxygen vacancies \aaedyzed by a
HORIBA JY HR800 confocal microscope Raman specttemand an Ar-ion laser (514.5 nm).
The particle morphology and size were measurednb$-4800 field emission scanning electron
microscope. The photoluminescence emission anda¢ioti spectra were recorded by an F-4600
fluorescence spectrometer equipped with a 65 W Kdamp as the excitation source. The
photoluminescence decay curves were acquired by RBdinburgh FS5-TCSPC
spectrofluorometer. Additionally, the excitationrda@mission spectra of the optimal,Ca&07:Eu
and Ce@Eu samples were recorded using a Fluordloglriba Scientific (Model FL3-22)
spectroscope. The excitation source was a 450 Waréelamp. The emission spectra were
corrected for detection and optical spectral respasf the spectrofluorometer and the excitation
spectra were corrected for the spectral distrilutd the lamp intensity using a photodiode
reference detector. The absolute emission quantaltisywere measured using the Quantaurus-

QY Plus C13534 (Hamamatsu) system with a 150 W xdamp coupled to a monochromator



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

for wavelength discrimination, an integrating sghas the sample chamber, and a multichannel
analyzer for signal detection. All the measuremergere carried out at room temperature.

The LED emission spectra, the Commission Internatiode I'Eclairage (CIE) color
coordinates, the radiant flux (W), the luminousxflim), the CRI Ra and CCT values were
measured using an integrating sphere ISP 150L-f@h fnstrument Systems. The integrating
sphere (BaS@ coating) has internal diameter of 150 mm and waspled to an array
spectrometer MAS 40 from Instrument Systems. Thaswmements are accurate within 5%

according to the manufacturer specification.

3. Results and discussion
3.1. Sructural Characterization

The XRD patterns of the undoped as-prepared powdegsshown in Fig. la. For
comparison purposes, the standard card data of (3p@ce group: Fm3m; JCPDS 01-081-0792)
[25] and LaOs (space group: P63/mmc; JCPDS 01-074-2430) [26hB@ displayed in Fig. 1a.
When only urea is used in the self-rising procassixture of Ce@and LaOs is observed, even
after the sintering process. When urea/glycine umétis used, however, the XRD pattern
corresponds to the previous reportedd@&0O; structure[24], with the main diffraction peaks at
28.1, 32.6, 46.6, 55.2, 57.9, 67.9 and 75n@lexed to thg111), (200), (220), (311), (222),
(400) and (331) crystallographic planes, respeltivehe LaCe0O; composite has a cubic
fluorite structure, which is almost the same as £ e&cept that of lattice parameter. Thus,
the use of urea/glycine mixture is beneficial te thrmation of the phase-pure phosphor.
The reason for this is due to the addition of gigciwhich acts not only as a leavening

agent but also as a surfactant [27,28]addition, the amount of glycine also plays a



203 crucial role in determining the sample purity amgstallinity. The molar ratio of glycine
204 to the total Ln amount has been optimized (0.Zhich can be clearly confirmed in the
205 XRD patterns (see Fig. S1). In the following paet,the Ed*-doped LaCe,O; samples
206 were prepared at this molar ratio

207 The XRD patterns of the k@exO7—2:XEu (x=0.0, 0.1, 0.3, 0.5, 0.7 and 0.9) phosplaves
208 given in Fig. 1b. The XRD peaks of all Ewdoped samples are similar to that o6Ce0,
209 implying that the Etf doping has little influence on the phosphor stiet In fact, the observed
210 left-shift of the XRD peaks after Elidoping is due to the ionic radius difference bemw&d*
211 ions (r = 1.21 A) and Céions (r =1.11 A) [29]demonstrating that the Euions have entered
212 into the host lattice and located at thé Gites.

213 The microstructure and the surface morphology @& fif*-doped LaCeO; phosphor,
214 La,Ce §06650.7EuU, were analyzed by SEM (Fig. 2a and 2b). piezursor powders (without
215 any heat treatment) are not well crystallized (R2g), but after the self-rising and subsequent
216 sintering process (95 for 2 h), the phosphors are crystalline (Fig., 2vagreement well with
217 the appearance of distinct diffraction peaks in Xpdadterns (Fig. 1a and 1b). Moreover, most of
218 the particles display a well-distributed round dlipgcal shapes, with an average diameter
219 around 5%10 nm (Fig. 2c). The spherical particle shape,arnif size and low agglomeration
220 degree are important factors to promote the apmicaf phosphor powder for WLEDs [30].

221 FT-Raman spectra of k@e d0s.950.1Eu (low doping concentration) and,Ca 306.650.7EuU
222 (high doping concentration) are measured to haxtéduinsight on the internal structure of the
223 phosphors (Fig. 3). The strong Raman band betw86rafd 495 crhresults from the oxygen
224  breathing vibrations around the éns [31]whereas the weak peak between 495 to 678ism

225 due to the existence of oxygen vacancies [32,33]il&the maximum of the former band (at
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about 450 ci) does not change with the Ewoncentration, the weak peak is shifted from 565
to 583 cnt as the E¥ doping concentration increases from 0.1 to 0.7s Huite large shift
indicates that the amount of oxygen vacancies dsety related to the Bl concentration.
Moreover, with the increase of Eudoping concentration, the intensity of the strquegk at
around 450 ci dramatically decreases and in the meanwhile, #mkvpeak at around 583 ¢m
that ascribed to oxygen vacancies further increaseglying that the introduction of El

activators increases the oxygen vacancies amouheilattice.
3.2. Optical Characterization

The excitation and emission spectra 0fdeaO7—2:XEu (x=0.10.9) composites are
shown in Figs. 4a and 4b, respectively. The exoitaspectra were monitored within the
°Dy - 'F, transition. The spectra are almost independeth@Ed* concentration being formed
of a very low-intensity CTB between 330 to 380 remilarly to that previously observed in
Eu**-doped Ce®@ (O-Ce CTB) [34].The low-relative intensity of CTB in the case okth
La,Ce,0; compounds indicates that the probability of theO® charge transfer has been greatly
reduced due to a 50% La substituting in the Ce.ditee excitation spectra are dominated by the
Eu® sharp lines at 394, 416, 466 and 535 nm, correipgrio the'Fo— °Le, 'Fo— D3, "Fo— "D,
and "Fo—°D; transitions, respectively [35]t can be noted that the most inten$g - °D.
transition (466 nm) is resonant with the blue emrs®f commercial InGaN LED chips (Fig. 7a).
This means that the Eudoped LaCeO; red phosphors may be efficiently excited with aebl
emitting LED light, which has a significant poteitin solid-state lighting [36,37]. Fig. 4b shows
the emission spectra of 3@e 4O;—2:XEu (X=0.10.9) compound excited at 466 nm. The

samples can be effectively excited with 466 nm, @wedtypical sharp peaks are clearly observed

11
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within the range of 575725 nm. The strongest emission peaks locate aa6@%30 nm, which
result in the intrinsic red light emission domirdatey the Ed" °Dy—'F transition [38—40].

To demonstrate the ability of the 4JGe,0O; compounds as down-shifting phosphors for solid
state lighting, the emission features of a selectettentration (x=0.7) were compared to those of
the analogous Cexompound (CeyO.:yEu with y=0.18 to keep the same Eu doping coitent
The emission spectra excited at 466 nm are comparEy. 5a. Despite changes in the relative
intensity between the Stark components, the speewaal the typical intra-3f°Dg— ‘Fo4
transitions. The emission features were quantifigdthe calculus of the CIE chromaticity
coordinates (Fig. 5b) and the absolute emissiomtgua yield (QY) values, Table 1. Although
both phosphors have the same dominant emissionCHeecolor coordinates for Etidoped
La,Ce07 and CeQ@ samples are (0.654,0.345) and (0.620,0.379), réspbc and, then, the
coordinates of the former phosphor are closerécsthndard pure red color value (0.67,0.33). we
note that although analogous *Eactivated red phosphors involving:-Eu(MoOy)s,
BaEu(PQ)s, BaEu(PQ)s, CsGdEus(MnO,),, REUBsO1,, and EW(SOy); also display
efficient °Dy —'Fostransitions, the excitation wavelengths (355 nn§ 8én and 514.5 nm) do
not match the blue emitting LED chip at 466 nm 14338-40].

The QY obtained for L&e— O XEu (x=0.7), 0.229+0.023, is about 18-fold higher
relatively to that of the GgO,:yEu (y=0.18), 0.013+0.001. Furthermore, to moesadly clarify
the luminescence performance of,Ca-xOr—2:XEu (x=0.7) and Cg/Ox:yEu (y=0.18), the
corrected excitation and emission spectra of ttedamples are measured and shown in Fig. S2.
Further comparison between the two phosphors wesrpeed by the measurement of thi2y
emission decay curves (see Fig. S3). These cumeesvall described by a single-exponential

function, and it indicates the presence of a singlerage EY local coordination site

12
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(replacement of Cé& in the host), revealing a largePD, lifetime value for
LayCe—xOr-x2:XEu(x=0.7) (0.835+0.010 ms) compared to that fofmdCe-,O,:yEu (y=0.18)
(0.426+0.010 ms), Table 1.

The distinct’Dy lifetime values are in good agreement with theatim of the activator Ei
local coordination in the two lattices. In orderdain deeper insights into such differences, the
radiative k) and nonradiative emission decay rateg (vere calculated by the Ln luminescence
software package (LUMPAC) [41T,able 1. Accordingly, théDoquantum efficiencyd) was
calculated through [42]:

o=k (krt+kar) 1)

wherek, andk, denote the radiative and non-radiative probaégdittonstants, respectively. As
shown in Table 1, the enhanced performance of tHédoped LaCe0; compound in reference
to that of Ed*-doped Ce®@(q values of 0.315 and 0.081, respectively) is dugaéohighetk, and
lower k., values. This can be further rationalized via thlative intensity ratio (R) between the
°Dy - 'Frand the’Dy - "F1 transitions. It is known that th®, - ‘F; transition is a forced-electric
dipole transition, which is quite sensitive to theal environment around the Euions.
Contrarily, the’Do— ‘F; transition is allowed through the magnetic dip@kestion rule and, thus,
its intensity is relatively independent of the sigmmetry and surroundings of the*Eions
[42,43]. Therefore, the intensity ratio R is usually conside as a probe to El local
environment variations in the lattice. In genethe higher the R value, the more’Ewould
occupy sites without an inversion centre [44,4%)eTR values for Eti-doped LaCe0; and
CeQ are 5.40 and 1.99, respectively (Table 1). Degpigesame Eli doping content, the two
samples show quite different R values (and, thestindt chromaticity coordinates), which

means that the crystal field environment of Eis greatly changed and more*Eions have
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occupied the asymmetry centre sites in@&0;. The obvious variation of the Eigrystal field
environment is closely related with the existentdéacge amounts of oxygen vacancies in the

lattice, as shown in the Raman spectra (Fig. 3).

Taking advantage of the intriguing emission prdpsrof the Eti’-doped LaCe0O;, a selected
concentration (x=0.7) was used to produce a putesreitting device by coating a commercial
blue LED chip emitting at 465 nm (Fig. 6). The dsiitblue- and downshifted red-light (inset in
Fig. 7a) are characterised by pure blue and redrccobordinates, (0.131,0.060) and
(0.669,0.330), respectively (Fig. 7b). Typicallgetperformance of an LED is characterized by
the wall-plug efficiency (WPE), which accounts tbe ratio between the luminous flux (Im) and
the electric power (W). A WPE di0.4 Im/W was measured in the coated LED demonstati
that the proposed approach has the potential tappéed as a suitable red component in the

fabrication of WLEDSs.

As the Ed*-doped LaCe,O;pure red emission is attained under analogous tionslifound
in commercial WLEDs (fabricated combining a bluépcand the YAG:C& commercial yellow
phosphor), we can use it to increase the amourgcbémission in current WLEDs, which is the
principal factor limiting the CCT performance. TAMWLEDs prototypes (S1 to S5) were
fabricated coating a commercial blue chip (465 with blends formed by distinct proportions of
YAG:Ce** and Ed*-doped LaCe0 (Fig. 7a). As the relative amount of *Fdoped LaCe,0O
increases, the CCT and CRI parameters of the WL&Bsuned to yield warm white light (Table
2).The corresponding chromaticity coordinates &i@\s in Fig. S4 (ESIT), which results from
the balance between the blue emissiof5@ nm) ascribed to the blue LED chip, the yellow

component (5680 nm) due to YAG:Céphosphor and the red emission peaks (612 and 637 nm

attributed to°Dg— ‘F transition of Ed*-doped LaCeO;red phosphor. Thus, compared to the
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333

334
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337

338

commercial InGaN blue chip and YAG:Eédased WLEDs, the blend-based WLEDs have CCT
values adjusted from 7119 K (cool white light) 842 K (warm white light) and CRI values

modulated from 83.9 to 73.0 (Fig. 7b) that are vablbve the existing figure of merit.

4. Conclusions

LaCe-«Or—2:XEu  (x=0.10.9) red-emitting phosphors have been synthesizgd b
hydrothermal self-rising process using mixed urgaige as leavening agents. The phosphors,
aspherical/elliptical particles with a diameter ab65:10 nm, are effectively excited at 466 nm
presenting for the optimal Bidoping concentration (x=0.7) a maximum absolute ssion
quantum vyield of 0.2280.023. By combining a commercial blue LED chip dnhe Ed*-doped
La,CeO; phosphor, the efficient pure red emission was eadd with color coordinates of
(0.669,0.330) and a wall-plug efficiency ob.4 Im/W. WLEDs were fabricated combining a
blue InGaN LED chip with blends formed by distipebportions of YAG:C& and Ed*-doped
La,Ce0;. As the relative amount of Eludoped LaCe0 increases, the CCT of the WLEDS is
tuned to yield warm white light (from 7119 K, cowehite light, to 3242 K, warm white light),
whereas the Ra is modulated from 83.9 to 73.0. &hesults are well-above the existing figure
of merit, indicating that these new JG& O;y2:XEu (x=0.}0.9) red phosphors are an

alternative to Eti-based phosphors to enhance the Ra and CCT vdloesymercial LEDs.
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Figure captions

Fig. 1. XRD patterns of the a) samples prepared with singéa (black color pattern), mixed
urea/glycine as leavening agent (red color), as agethe standard references of Gad LaOs;

b) LaxCe,O72:XEU** (x=0-0.9) composite powders prepared by a hydrotherraiirising
reaction (with mixed urea/glycine as leavening agand a subsequent sintering process.

Fig. 2. SEM images of the a) Blsdoped LaCeO; precursor and b) composite powders after a

sintering process. c) Particle size distributiom)n

Fig. 3. FT-Raman spectra of k@e,—xO7—x2:XEu(x=0.1, 0.7).

Fig. 4. Room-temperature a) excitation spectra monitote@1& nm and b) emission spectra
excited at 466 nm of L&, O7—2:XEu(x=0.2-0.9).

Fig. 5. a) Emission spectra of k@e,xO7-w2:XEu (x=0.7) and Cg,O,:yEu (y=0.18) excited at
466 nm and b) CIE chromaticity diagram (1931) shmwvihe (Xx,y) emission chromaticity
coordinates.

Fig. 6. @) Emission spectra, and photographs, of the comialdtED and of the Eli-doped
La,Ce0; red-emitting LEDs operating under forward-bias rent of 2<10° A; b) CIE
chromaticity diagram (1931) showing the (x,y) enuaschromaticity coordinates of original and
coated LEDs.

Fig. 7. Room temperature a) emission spectra of S1 to BEI. The inset shows photographs
of the devices. b) Relationship between CCT and &Rl the amount of blend phosphors used

(the lines are visual guides).
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Table legends

Table 1 Photophysical data of k@e-xO7-x2:XEu (x=0.7) and Cg,O2:yEu (y=0.18).
Table 2 Optical parameters of WLEDs (S1 to S5) and blup €80).

Tablel
Composite T K, Kor R o} QY
(ms) %) (s
La,Ce,0;:Eu 0.835+0.010 377.0 820.7 5.40 0.315 0.229+0.023
CeQ:Eu 0.42740.010 190.2 2157.2 1.99 0.081 0.01340.001
Table2
LEDs Luminous flux LE Color coordinates  CRI CCT Coating phosphor
(mlm) (Im/W) (%, y) (K) (mg)

SO 405.36 31.18 (0.131, 0.060) 0

S1 346.65 22.22 (0.204, 0.118) 0.7

S2 235.04 18.08 (0.311, 0.289) 83.9 7119 1.2

S3 125.67 9.67 (0.318, 0.289) 86.0 6533 3.0

S4 69.47 5.34 (0.381, 0.352) 76.7 3778 3.8

S5 61.79 4.75 (0.432, 0.425) 73.0 3242 4.0
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Highlights

«  Eu**-activated La,Ce,O; phosphors can be efficiently excited by blue light LED

*  Phosphors can emit strong red colour with quantum yield of 0.229

«  WLEDs were fabricated by coating blue LED with YAG:Ce* and Eu**-activated
LaCeOy

*  Colour rendering index and correlated colour temperature can be easily adjusted



