
Universidade de Aveiro
2021

Ricardo Jorge

Mauŕıcio Dias

Actualização do Estado do Mundo para Equipas de

Robôs Cooperativos

World Model Integration for Cooperative Robotic

Teams

Universidade de Aveiro
2021

Ricardo Jorge

Mauŕıcio Dias

Actualização do Estado do Mundo para Equipas de

Robôs Cooperativos

World Model Integration for Cooperative Robotic

Teams

Tese apresentada à Universidade de Aveiro para cumprimento dos requisi-

tos necessários à obtenção do grau de Doutor em Engenharia Informática,

realizada sob a orientação cient́ıfica de José Nuno Panelas Nunes Lau, Pro-

fessor do Departamento de Electrónica, Telecomunicações e Informática da

Universidade de Aveiro

Este projecto foi parcialmente suportado por Fátima Dias e António

Dias; pela Universidade de Aveiro/DETI/IEETA; por fundos nacionais

através da Fundação para a Ciência e Tecnologia (FCT), no con-

texto do projecto UID/CEC/00127/2013 e da bolsa de doutoramento

SFRH/BD/116390/2016; e por fundos europeus FP7 no contexto da bolsa

EuRoC CP-IP 608849.

o júri / the jury

presidente / president Doutor António Manuel Rosa Pereira Caetano

Professor Catedrático da Universidade de Aveiro

vogais / examiners committee Doutor António Paulo Gomes Mendes Moreira

Professor Associado Com Agregação, Universidade do Porto

Doutor António Fernando Macedo Ribeiro

Professor Associado Com Agregação, Universidade do Minho

Doutor Luis Paulo Gonçalves dos Reis

Professor Associado, Universidade do Porto

Doutor José Nuno Panelas Nunes Lau

Professor Associado, Universidade de Aveiro (orientador)

Doutora Pétia Georgieva Georgieva

Professora Associada, Universidade de Aveiro

agradecimentos Obrigado pai, mãe, restante faḿılia, namorada, amigos, professores, colegas

e membros do laboratório de robótica e da equipa CAMBADA que tantas

vezes proferiram a frase “Então e essa tese?”. Todos os vossos empurrões

foram parte fundamental da força motriz necessária para finalizar este

projecto. O sentimento de gratidão é enorme perante todas as condições

favoráveis facilitadas pelo orientador Nuno Lau e restantes professores do

IRIS-Lab, em particular os professores Bernardo Cunha, José Luis Azevedo

e Artur Pereira, que mesmo não sendo oficialmente co-orientadores, sempre

senti ao longo destes anos que o eram. Um agradecimento também ao

professor Paulo Dias, que se disponibilizou para rever o documento.

Este projecto foi parcialmente suportado por Fátima Dias e António

Dias; pela Universidade de Aveiro/DETI/IEETA; por fundos nacionais

através da Fundação para a Ciência e Tecnologia (FCT), no con-

texto do projecto UID/CEC/00127/2013 e da bolsa de doutoramento

SFRH/BD/116390/2016; e por fundos europeus FP7 no contexto da bolsa

EuRoC CP-IP 608849.

acknowledgements This project was partially supported by Fátima Dias and António Dias;

by University of Aveiro/DETI/IEETA; by Portuguese National Funds

through Foundation for Science and Technology (FCT), in the con-

text of the project UID/CEC/00127/2013 and the PhD project grant

SFRH/BD/116390/2016; and by European Union’s FP7 under EuRoC grant

agreement CP-IP 608849.

Palavras-Chave robótica móvel, sistemas multi-agente, fusão sensorial, coordenação

Resumo Um sistema Multi-Robô pode beneficiar de uma atribuição cooperativa de

tarefas para atingir um objectivo comum, bem como da integração de

informação dos vários agentes para formar um melhor modelo do ambi-

ente envolvente (World Model). Ter uma percepção duplamente precisa e

responsiva é ainda um passo fundamental para uma efectiva cooperação

em equipas de robôs, especialmente em ambientes dinâmicos, estocásticos

e parcialmente observáveis, como é o caso das competições de futebol

robótico RoboCup.

Este projecto de investigação foi desenvolvido no contexto da equipa de fute-

bol robótico CAMBADA, da Universidade de Aveiro, e incluiu a participação

em diversas competições locais e internacionais em eventos RoboCup, na

liga MSL. Enquanto muita da literatura dispońıvel apresenta resultados

simulados, este projecto usou as competições MSL como uma plataforma

de teste e validação das novas soluções apresentadas neste documento. O

trabalho focou-se no desenvolvimento de novas soluções de fusão de dados

numa perspectiva distribúıda nesta equipa de futebol robótico, bem como

no melhoramento de estratégias de coordenação de alto-ńıvel.

Para tal, o projecto começa por consolidar a estimativa de estado (state

estimation) local dos robôs, providenciando uma base sólida para técnicas

mais avançadas - o ciclo de controlo principal foi revisto, as estimativas da

pose e velocidade do robô foram melhoradas e um novo método de tracking

de múltiplos objectos foi proposto. Com essa base, um método de tracking

com sensorização distribúıda foi desenvolvido, aprovisionando assim uma

representação unificada dos oponentes no campo de jogo, não só para os

jogadores de campo, mas também para o agente treinador, que não pode

usar sensores.

Em continuação, foram discutidas técnicas de coordenação de agentes e um

novo método para eleição de um agente foi proposto, testado e validado.

Com uma melhor representação do estado do mundo, um método de eleição

de um ĺıder e uma arquitectura de software modular madura em prática, foi

posśıvel desenvolver uma nova ferramenta de jogadas estudadas (CR7) que

é user-friendly, robusta e eficiente em ambientes de competição.

Com uma abordagem bottom-up, este projecto foi incrementalmente to-

cando uma vasta gama de áreas e assim cumpriu os objectivos inicialmente

propostos, bem como ajudou a CAMBADA a reafirmar a sua posição como

uma das melhores equipas da MSL a ńıvel mundial.

Keywords mobile robotics, multi-agent systems, sensor fusion, coordination

Abstract A Multi-Robot system can benefit from cooperative task assignments to

achieve a common goal, as well as from merging information from all agents

to form a better World Model. Highly accurate and responsive perception is

still a fundamental step for effective cooperative robotics teams, especially

in dynamic, stochastic and partially observable environments like the ones

provided by the RoboCup soccer competitions.

This research project was developed in the context of the CAMBADA

RoboCup Middle-Size League robotics soccer team, from University of

Aveiro, including the participation in local and international RoboCup com-

petitions. While most of the literature presents simulated results, this

project used the MSL competitions as a bench-marking and verification

test-bed for the new solutions proposed in this document. The work aimed

at developing new solutions for data fusion in a distributed approach in this

team, as well as improving the existing high-level coordination strategy.

In order to do so, the project starts by consolidating the robots local state

estimation, providing an essential solid baseline for more advanced tech-

niques - the main control cycle was revised, the robot pose and velocity

state estimation was enhanced, and a new method for multi-object tracking

has been proposed. A distributed sensing multi-object tracking module was

built on top of that, providing a unified representation of the opponents on

the soccer field, not only for the field players, but also for the coach agent,

that is not able to use any sensors.

Following, agent coordination techniques are discussed and a new method

for leader election is proposed, tested and validated.

With the enhanced world model, the leader election method and the ma-

tured modular software architecture in place, it was possible to develop a

new set-play engine (CR7) that is user-friendly, robust and performant in

competition environments.

In a bottom-up approach, this project has incrementally touched a wide

range of areas and has successfully met the initial objectives as well as

helped to reinforce CAMBADA’s position as one of the world-leading MSL

teams.

Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1

1.1 Multi-Agent Robotics Systems . 1

1.2 The RoboCup Initiative . 3

1.3 CAMBADA . 5

1.3.1 Distributed and Modular Architecture 6

1.3.2 The Vision System . 7

1.3.3 Communication Model . 8

1.3.4 Coordinate Systems Definition . 9

1.4 Project Motivation . 10

1.5 Objectives . 11

1.6 Thesis Structure . 11

2 State Estimation and Control 13

2.1 Common State Estimation Methodologies . 14

2.1.1 Discrete Kalman Filter . 14

2.1.2 Non-Linear Kalman Filters . 16

2.1.3 Particle Filters . 17

2.2 Perception and Sensor Fusion . 18

2.2.1 Distributed Sensor Fusion . 18

2.3 Process Synchronization In CAMBADA . 19

2.3.1 Design Choice Considerations . 20

2.4 Robot Position and Velocity Estimation . 22

2.4.1 Localisation Algorithm . 22

i

2.4.2 Robot Pose Estimation . 22

2.4.3 Robot Velocity Estimation . 23

2.5 Improving High Level Motion Control . 23

2.5.1 Proposed Solution . 25

2.5.2 Experimental Setup . 26

2.5.3 Results Discussion . 27

3 Multi-Object Tracking With Distributed Sensing 29

3.1 Perception . 30

3.1.1 Ball Detection . 31

3.1.2 Obstacles . 32

3.2 The Integrator . 34

3.3 Local Multi-Object Tracking . 35

3.3.1 Tracklet Definition . 35

3.3.2 General Algorithm . 35

3.3.3 Tracklet Sharing Criteria within a MAS 38

3.4 Distributed Sensing . 38

3.4.1 Observation Clustering . 39

3.4.2 Applying the Object Tracker . 40

3.4.3 Obstacle Validation . 40

3.5 Results and Discussion . 42

3.5.1 Lab Experiment . 43

3.5.2 Competition Environment Experiment 45

3.6 Summary . 47

4 Coordination in Robotic Soccer 49

4.1 Agents Communication . 49

4.2 Strategic Positioning . 50

4.2.1 Base Player Formation . 51

4.3 Distributed vs. Centralized Assignment . 52

4.3.1 Distributed Assignment . 52

4.3.2 Centralised Assignment . 52

4.3.3 Centralised Assignment With Leader Election 53

4.4 The Consensus Problem . 53

4.4.1 Paxos Algorithm . 54

4.4.2 Raft Algorithm . 54

4.5 Proposed Solution For Leader Election . 56

4.5.1 Timing Parameters . 56

4.5.2 The Backup State . 57

ii

4.5.3 Preferred Leader Agent . 57

4.5.4 Experimental Setup and Results . 58

4.6 Summary . 61

5 CR7 Setplay Engine 63

5.1 Motivation . 63

5.2 Library Software Architecture . 66

5.2.1 Types of Setplays . 67

5.2.2 Players Definition . 67

5.2.3 Actions Definition . 68

5.2.4 Positioning Options . 69

5.2.5 Architecture and Design Choices . 69

5.3 CR7Planner - Configuration Tool . 75

5.3.1 Extending CR7 classes for UI . 75

5.3.2 Layout Overview . 76

5.3.3 Initialization Conditions and Player Actions 77

5.4 Unit Testing . 78

5.5 Integration in the CAMBADA Architecture 78

5.6 Results . 79

5.7 Future Work . 80

6 Conclusion 81

6.1 Perception . 81

6.2 Multi-Object Tracking . 82

6.3 Leader Election . 83

6.4 CR7 Setplay Engine . 83

6.5 Final Considerations . 84

6.6 List of Contributions . 85

Bibliography 87

Appendices 99

A CR7 Documentation 100

A.1 Class Diagram - Overview . 100

A.2 CR7Manager Class Details . 101

A.3 CR7WSContext Class Details . 102

A.4 CR7Config Class Details . 103

A.5 CR7SetplayList Class Details . 104

A.6 CR7ZoneSetList Class Details . 105

iii

A.7 CR7ZoneSet Class Details . 105

A.8 CR7ZoneCellDefinition Class Details . 106

A.9 CR7Setplay Class Details . 107

A.10 CR7Step Class Details . 108

A.11 CR7Player Class Details . 109

A.12 CR7Action Class Details . 110

A.13 CR7PlayerInitCond Class Details . 110

A.14 CR7Transition Class Details . 111

A.15 CR7Utils Class Details . 112

A.16 CR7 Config JSON Schema . 113

iv

List of Figures

1.1 The Middle-Size League final match in RoboCup 2013. 4

1.2 The CAMBADA team robots. 5

1.3 The general architecture of a CAMBADA robot. 6

1.4 CAMBADA vision system and frame example. 7

1.5 Example of RtDB functionality with 3 agents. RtDB items can be shared

(broadcasted to all team members) or local (can be used in processes running

in the local agent). 8

1.6 Absolute and relative coordinates used in CAMBADA, as defined in the MSL

standard definition document . 9

2.1 The discrete Kalman Filter cycle. 15

2.2 The initial order of processes . 20

2.3 The proposed order of process execution . 21

2.4 Results of the process cycle re-ordering. 21

2.5 High-level motion controller. 23

2.6 Trade-off between maximum linear velocity and maximum angular velocity. . 24

2.7 Proposed solution based on the angle difference between the relative target

position and the estimated robot linear velocity in robot coordinates. 25

2.8 Proposed high-level motion controller. 25

2.9 Setup used to test the proposed high-level control solution. 26

2.10 Results of the proposed high-level control solution based on linear velocity

imposed limitation (new trajectory). 27

3.1 Ball Detection Fluxogram. 31

3.2 Partial ball occlusion example. 32

3.3 Obstacle detection with partial ball occlusion. 33

3.4 Illustration of the agent integrator module. 34

3.5 Summary of the tracking system using multiple agent shared observations,

adapted from [Dias et al., 2016]. 39

v

3.6 Example of the validation criteria using two robots, adapted from [Dias et al.,

2016]. Here, three observations are validated and two do not pass the validation

criteria. The image is not in scale. 41

3.7 Lab setup used to benchmark the solution. 43

3.8 Representation of a subset of frames in the third lab experiment. 44

3.9 Comparison of position error on the first lab experiment. 44

3.10 Merged obstacle (black wireframe) from two individual observations (cylinders) 46

3.11 Closer study on false-positive occurrences on the competition test 47

4.1 Timeline of example execution of Raft, adapted from [Ongaro and Ousterhout,

2014]. In three of the presented terms, a leader was elected after an election

period. Only in term i + 2, consensus was not reached during the election

process, so a new election stars. 55

4.2 State Machine of The Proposed Solution . 57

4.3 Experimental Setup . 58

4.4 Election Time Histogram . 59

4.5 Number of Candidates Histogram - y axis in logarithmic scale 60

4.6 Leadership attribution analysis . 60

5.1 The existing CAMBADA setpieces configurator 64

5.2 CR7 Classes Overview UML Diagram . 66

5.3 CR7 Zones Tab: shows a list of the Zone Sets and a visualisation for the selected

Zone Set in the field 2D visualiser. 76

5.4 CR7 Strategy Tab: displays the complete list of Setplays, grouped by type

(Freeplay, Kick-Off and the Zone Sets names). 76

5.5 CR7 Setplay Tab screenshot. 77

vi

List of Tables

3.1 Lab tests conditions for each run. 43

3.2 Results of the tests conducted on the lab. 44

3.3 Results of the tests conducted on the competition (lab results conveniently

included to help comparison). 46

5.1 Results of the CR7 framework in the Portuguese Robotics Open 2019 in free-

play setplays. 79

5.2 Reasons for the setplays to finish. 80

vii

viii

Acronyms

CAMBADA Cooperative Autonomous Mobile roBots with Advanced Distributed Architec-

ture. 5, 6, 8, 9, 11, 19, 20, 22, 23, 30, 34, 45, 47, 61, 63–65, 72, 78–80, 82

CAN Controller Area Network. 7

CR7 CAMBADA Cooperation fRamework 7. vi, 63, 65, 67, 69, 70, 75–80, 83, 84

FPR False-Positive Rate. 42, 44–46

KF Kalman Filter. 14–17, 22, 23, 35–37, 82

MAS Multi-Agent System. 2, 4, 10, 18, 19, 29, 61, 84

MSL Middle-Size League. 4, 6, 8, 9, 25, 31, 38, 40, 45, 50, 51, 79, 84

PID Proportional–Integral–Derivative. 23, 27

RANSAC Random Sample Consensus. 31, 32

RtDB Realtime Data Base. v, 8, 9, 56, 72

ix

x

Chapter 1

Introduction

1.1 Multi-Agent Robotics Systems

A software agent is a persistent and goal-oriented computer program capable of running

without continuous direct supervision. Based on sensed events, it decides and executes one

or more actions to achieve a stated goal. Agents may also be able to communicate with other

agents or people in order to achieve this goal.

One of the most famous and well-accepted definition of agent comes from Russell and

Norvig [Russell and Norvig, 2020]:

“An agent is anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through actuators.”

Autonomous robotic systems are systems equipped with sensors, a processing unit ca-

pable of running a software agent and physical actuators. This set of capabilities allows the

robot not only to sense, but also to act on the physical environment, with the capacity of

changing it. Dealing with physical objects actually creates a new set of challenges that need

to be taken into account when designing the software agent.

Usually, when designing agent-based systems for a certain target application, there are

two aspects that need to be balanced: reactive action and deliberative decision. Purely

reactive agents generate control signals directly in response to sensor measurements [Brooks,

1989], therefore the performance of these systems tends to degrade when the difficulty of the

task increases. On the other hand, deliberative agents maintain an internal state and typically

search through a space of possibilities (actions/behaviours), predicting the outcome of each

possible action. However, this search space can be so exhaustive that it takes too much time

to be used in some real-time applications.

As an example, a robotic arm in a factory may be able to behave in a deliberative way, if

it can stop to plan its motion and then execute it, but a soccer-playing robot must be able

to react to sudden changes in the environment and may not have so much time available to

1

plan an action. Once the target application requirements are settled, the trade-off between

optimisation and performance naturally arises - and this explains why most real-time systems

are designed with time efficiency as a critical aspect, sometimes overlapping complex or more

demanding algorithms in terms of priority.

In any case, to reach a near-optimal decision for an action, a mobile robotic system must

maintain a consistent internal representation of its environment, usually called the World

Model. It contains not only information about the robot self state (usually position, orienta-

tion, linear and angular velocities, etc.), but also relevant data about the robot surroundings.

This World Model building process is commonly called integration and consists in taking

not only raw and noisy data (usually coming from sensors), but also historical data and

turning them into higher order useful and filtered information. In real-world deployments

of mobile robotics applications, agents have to handle uncertainty, which can arise from dif-

ferent sources. First of all, the environment is only partially observable and usually also

non-deterministic, continuous and dynamic. Sensors have associated noise and physical limi-

tations. Moreover, robots are real-time systems, so most algorithms and models used during

computation have to comply with time restrictions, sacrificing accuracy, if needed, and, finally,

the actuators that directly interact with the environment can also be inaccurate.

Coping with all these restrictions while creating an accurate World Model representation

poses a problem, since computational resources are naturally limited in all real applications.

In a Multi-Agent System (MAS) [Wooldridge, 2009], a group of autonomous agents

interact with each other via a number of different interaction models for coordination [Jen-

nings, 1993, Durfee, 1999], collaboration [Levesque et al., 1990, Grosz and Kraus, 1996] and

negotiation [Davis and Smith, 1983, Parker, 1998]. The group activity should not be seen

only as a result of simultaneous individual behaviours, since the group goal, if it exists, should

be taken into account by each member [Cohen and Levesque, 1991].

It has already been demonstrated that distributed sensor fusion can enhance the belief

by synergistically merging data from different agents [Merino et al., 2005, Sun et al., 2017,

Battistelli and Chisci, 2016] to derive a better approximation of the World Model than would

be possible with each one individually [Elmenreich, 2002].

A remaining open challenge is how to efficiently make a team of autonomous agents

cooperate in a responsive and coherent way in a highly dynamic and stochastic environment.

Agents are expected to react to rapid changes in the domain and therefore robustness is

required against not only sensorial noise, but also individual agent or sensor failures and

unreliable communication means.

2

1.2 The RoboCup Initiative

RoboCup [Kitano et al., 1997] is an enormous commitment from scientific and research

groups from all around the world on developing robots that one day will help humans in their

daily lives. The RoboCup event is hosted by a different country every year1 since 1997 with a

series of competitions. This challenging environment not only gives teams extra motivation to

keep participating every year, showing new skills and other improvements, but also provides

a discussion forum for researchers in this robotics domain, the Symposium, in which teams

have the chance to share ideas, knowledge and implementations, in order to make scientific

process in the field of mobile autonomous robotics. By organising an annual event, RoboCup

creates opportunities for researchers to test their work and exchange technical and scientific

information, while entertaining and educating the audience at the same time, making the

general public more aware of the state of the art in robotics and its current problems.

Moreover, with the ambition of keeping a high level of interest and competitiveness, the

RoboCup Federation has created a challenging milestone for the RoboCup Soccer leagues:

“By the middle of the 21st century, a team of fully autonomous humanoid robot

soccer players shall win a soccer game, complying with the official rules of FIFA,

against the winner of the most recent World Cup.”

We are still far from this goal, but a significant progress has been made so far. The

competition is divided into several leagues, each one tackling different problems, whether

restricted to the software level only, or on both hardware and software, in a multi-agent or

single-agent environments, cooperative and/or competitive.

“RoboCup (Soccer) is an attempt to foster AI and intelligent robotics research

by providing a standard problem where wide range of technologies can be inte-

grated and examined. In order for a robot team to actually perform a soccer

game, various technologies must be incorporated including: design principles of

autonomous agents, multi agent collaboration, strategy acquisition, real-time rea-

soning, robotics, and sensor-fusion.” [Kitano et al., 1997]

Just like in human soccer, robot players must work as a team in order to score and defend

their own goal at the same time, while adapting to new situations and different opponents.

This makes soccer a rich domain for fundamental exploration and development of multi-agent

solutions related to perception, sensor fusion, world model representation, high-level decision

and coordination and communication.

1Except for 2020 - the event was cancelled due to the COVID-19 pandemic.

3

Figure 1.1: The Middle-Size League final match in RoboCup 2013.

From simulation to real robots, from anthropomorphic to wheeled robots, there are sev-

eral different soccer leagues in RoboCup, one of which is the Middle-Size League (MSL) -

Figure 1.1.

In this league, robots play soccer autonomously in a 22m × 14m field with a standard

Size-5 FIFA ball. The rules2 of the matches are based on the official FIFA rules, with a

few changes to adapt for the playing robots. While having a huge potential for a variety

of applications, MAS are extensively tested and benchmarked in RoboCup and this league

provides an excellent testbed for autonomous robotic teams in stochastic and highly dynamic

environments. A soccer match cannot be overlooked as a testbed, since it resembles more the

real world (complex and semi-structured) than a research lab. Agents must be resilient to

unexpected situations, since the opponent team actions can only be predicted up to a certain

point. Furthermore, the state of the ball and the opponent robots can change expeditiously

at any time.

Specifically in the RoboCup Middle-Size League (MSL) and regarding sensor fusion for

world modelling [Silva et al., 2011], teams have been applying Kalman Filters for the ball

position estimation [Lauer et al., 2006, Y. et al., 2006]. More recently, teams have also been

tackling problems such as visual information fusion from multiple cameras to get a better

estimation of the ball trajectory in the air [Neves et al., 2015], while integrating the Inertial

Measurement Unit (IMU) information to optimize the localisation process.

Regarding coordination, some interesting work has also been done on utility-maps based

approaches [Neves et al., 2015], coordination-aware architectures for multi-agents systems

[Skubch et al., 2009] and multi-robot cooperative perception for object tracking [Ahmad and

Lima, 2013]. Team coordination paradigms have been applied also in robotic soccer to select

roles in the game and define strategies [Spaan and Groen, 2003b, Lau et al., 2011].

2https://msl.robocup.org/rules

4

https://msl.robocup.org/rules

Multiple centralised direct supervision and decentralised mutual adjustment coordination

approaches have been proposed within the context of RoboCup leagues [Paquet et al., 2004].

Among these approaches, the decentralised approach is more flexible. These algorithms have

mainly been used in high-level decisions, to select roles or plan tasks to be performed by each

team member to achieve a goal. However, they can also be used when integrating information

from several agents [Olfati-Saber et al., 2007], in which consensus problems are applied to

distributed sensor fusion [Olfati-Saber and Shamma, 2005] and belief propagation [Stroupe

et al., 2001], for instance.

1.3 CAMBADA

Cooperative Autonomous Mobile roBots with Advanced Distributed Architecture (CAM-

BADA) [Neves et al., 2010] is the RoboCup Middle-Size League robotic soccer team from the

University of Aveiro, coordinated by the IEETA IRIS (Intelligent Robotics and Intelligent

Systems) group. The project involves people working on several different areas: mechanical

structure of the robot, hardware architecture and electronics, software on image analysis and

processing, sensor fusion and decision and cooperation architecture on the high-level software.

Figure 1.2: The CAMBADA team robots.

The team development started in 2003 and a steady progress was observed since then, with

the participation in several competitions, both national and international, including RoboCup

World Championships and the annual Portuguese Open Robotics Festival. The CAMBADA

team was world champion in 2008 and is the national champion since 2007, and, overall, has

achieved 9 1st places, 9 2nd places and 9 3rd places in all competition tournaments it

has participated in.

5

Apart from the soccer tournament, there are two additional challenges in RoboCup with

special requirements: the Scientific and Technical Challenges.

The Scientific Challenge requires teams to do a small pitch about relevant developed

work in the context of MSL for other teams to evaluate several criteria: presentation, novelty,

interest for the league, scientific/technical complexity, importance of experimental results and

relevance of the published results presented as a support for this challenge. In the end, all

weighted averages given by other teams are summed up and the score ranking determines the

places in this challenge.

On the other hand, the Technical Challenge has been an opportunity for teams to

test, improve and show their coordination abilities. With some variations over the years, this

challenge has been focused on a sequence of tasks that require multiple robots.

The CAMBADA team won 3 Technical Challenges (also, 1 second place) and 3 Scientific

Challenges (also, 3 second places and 1 third place).

1.3.1 Distributed and Modular Architecture

Throughout the years, the CAMBADA robot hardware platform has suffered changes to

accommodate the demands. The latest major redesign was performed in 2013, keeping the

positive aspects of the previous version, but with special detail to modularity. As the team

name conveys, the hardware architecture is distributed, meaning that there is a dedicated

controller for each component of the robot, as depicted in Figure 1.3.

Legend

Low Level

Hardware

Platform

High Level

Laptop

RGB
Camera

VisionAgent

HW Comm

Comm
WiFi

Interface

USB-CAN Gateway

IMU

Node

Kicker

Node

Kicking
device

Motor 1

Node

Enc. M1

Motor 2

Node

Enc. M2

Motor 3

Node

Enc. M3Acc. Gyro.

Ball Handling

Node

Grabber
Motors

Enc.

CAN Bus

RGBD
Camera

Front Vision
External Hardware

Software Processes

PCB Modules

Figure 1.3: The general architecture of a CAMBADA robot.

The main sensor of these robots is the camera - a catadioptric vision system composed

6

of an industrial camera and a mirror, which allows the robot to see 360 degrees around it.

The main processing unit (a 12-inch laptop) is used to process the images coming from the

camera at 50 Hz rate (Vision process), to receive information from team-mate agents and

also from sensors installed in the robot platform via the USB-CAN gateway.

The Agent process uses sensor fusion techniques to continuously integrate all the afore-

mentioned input information on a world model representation, which is then used to make a

decision on the next action.

The HWComm process is responsible for sending the targets calculated by the Agent to the

low-level hardware platform for execution, as well as for getting sensorial information from

the physical platform. HWComm communicates with a gateway [Pinto, 2020] that translates

the messages carrying the actions to CAN-bus messages, and also messages in the opposite

direction (from sensors to the laptop).

Lastly, the electronic modules listen to the respective CAN messages and execute the

actions accordingly - the Kicker board actuates on the solenoid that is used to kick the ball

and controls the energy storage in the 450V capacitor, Motor boards set the velocities for

the motors and provide feedback regarding odometry info, the Grabber board sets the ball

handling mechanism behaviour and also provides feedback on the current grabber “arms”

angle, etc.

1.3.2 The Vision System

(a) Catadioptric vision system (b) Example of an acquired frame

Figure 1.4: CAMBADA vision system and frame example.

With the technological improvements and increase in the affordability of image sensors and

video cameras, these are nowadays capable of acquiring high-resolution images at high frame

7

rates. Hence, this generates a great amount of visual information that has to be processed in

a well defined period of time. These real-time constraints pose a problem of efficiency, which

should have a minimum impact on accuracy.

The challenge of playing soccer autonomously requires real-time perception of the overall

environment in order to allow self localisation, team-mate and opponent position estimation

and, of course, determination of the ball position and its velocity. To achieve this, most robots

in the MSL use a catadioptric omni-directional vision system set composed of a regular video

camera pointed at a hyperbolic mirror. An image of the physical set-up of the digital camera

and the mirror on a CAMBADA robot can be seen in Figure 1.4a. The camera installed on

the robots can provide images with a resolution of 1280×1024 pixels at 50 FPS (Figure 1.4b).

This type of setup ensures an integrated perception of all major features of interest on the

robot surrounding area in each frame.

1.3.3 Communication Model

As the information must flow between these processes within a single robot, as well as some

information must be shared between robots, the need for a communication model naturally

follows. For inter-robot and inter-process communication, CAMBADA developed an open-

source3 middleware called Realtime Data Base (RtDB) [Almeida et al., 2004]. This library

provides a seamless access to the complete team state using a distributed database, partially

replicated to all team members, as depicted on Figure 1.5.

Agent 0

S
h
a
re

d

Agent 0

Agent 1

Agent 2

L
o
c
a
l

Agent 1

S
h
a
re

d

Agent 0

Agent 1

Agent 2

L
o
c
a
l

Agent 2

S
h
a
re

d

Agent 0

Agent 1

Agent 2

L
o
c
a
l

Communications
IEEE 802.11x

Figure 1.5: Example of RtDB functionality with 3 agents. RtDB items can be shared (broad-

casted to all team members) or local (can be used in processes running in the local agent).

In a multi-agent architecture perspective, information such as the pose of the players,

their velocity, intention, ball position, ball velocity and other relevant information for the

3https://github.com/CAMBADA/cambada-rtdb2

8

https://github.com/CAMBADA/cambada-rtdb2

team are included in the RtDB. This is particularly important, for example, when a certain

robot does not see the ball, as then it can use a team-mate’s information as a guide. The

modular structure of the RtDB (particularly of its second generation) [Silva, 2017] allows to

easily add, remove and modify the shared items dynamically at runtime.

As previously stated, this library is also intensively used as an inter-process communication

mean. This is achieved by defining RtDB local items that are not broadcasted to other robots,

but are still accessible by other processes running on the same agent environment. This local

information may include sensorial data from the vision system and the hardware platform

and also commands that are sent to the low-level control layer through a hardware gateway.

A software process called Comm, which is included in the RtDB suite, is responsible for

handling the Wi-Fi communication. It sends shared RtDB items to the team multicast group

and also receives data from other agents and updates the appropriate shared RtDB sections

[Santos et al., 2010]. Together, RtDB and Comm are used by CAMBADA (and several other

teams in MSL) to solve the issues of intra-robot and inter-robot communication at the same

time, in a flexible and modular way.

1.3.4 Coordinate Systems Definition

(a) Absolute (world) coordinates

x

y

(b) Relative (robot) coordinates

Figure 1.6: Absolute and relative coordinates used in CAMBADA, as defined in the MSL

standard definition document

The coordinate system adopted by the CAMBADA team follows the MSL standard defi-

nition [MSL Technical Committee, 2016] for the two types of coordinate systems mentioned

throughout this document: robot coordinates (Figure 1.6b) and world coordinates (Fig-

ure 1.6a). Robot coordinates (or relative coordinates) are defined with origin centred with

the robot, the y-axis pointing to the front of the robot and x-axis pointing to the right side

of the robot. When referencing world coordinates (or absolute coordinates), the origin lies

in the field center, and the system follows the right-hand rule with the y-axis points in the

direction of attack (to the opponent goal) and the z-axis point up to the ceiling.

9

1.4 Project Motivation

One of the main research goals on distributed autonomous agents in a Multi-Agent System

(MAS) is the development of mechanisms to improve cooperation and coordination techniques

in order to achieve a common goal.

When compared to centralised approaches, distributed systems present a major advantage:

they are usually more resilient to failures. However, it is much more difficult to implement a

real fully distributed system, when comparing with a centralised approach. In a centralised

approach, one “master“ agent has control over one or more “slaves“ and by giving direct or

indirect orders to them, based on a strategy, it is able to achieve the goal. The distributed

approach is different in the sense that there is usually no “master“ controlling the process.

Agents taking part in a MAS must have some sort of communication and/or negotiation skills,

whether it is explicit or implicit. The so-called team gain should not be merely seen as the

result of the combination of individual behaviours, since teamwork and the aforementioned

skills must be put into practice to efficiently achieve a common objective.

A software architecture for MAS should encompass a communication model that supports

agreement from World Model integration up to higher level team coordination. In fact, the

software architecture plays a major role in guaranteeing that the solution is robust, easy to

understand, to change and to tweak without compromising the final result.

While having a huge potential for a variety of applications, MAS are extensively tested and

benchmarked in robotic soccer competitions, and in RoboCup in particular. The RoboCup

Middle-Size League provides an excellent test-bed for autonomous robotic teams in stochastic

and highly dynamic environments. A soccer match cannot be overlooked as a test-bed,

since it resembles more the real world (complex and semi-unstructured) than a research lab.

Therefore, agents must be resilient to unexpected situations, since the opponent team actions

can only be predicted up to a certain point.

In this league, high-level coordination has been used for some years as an essential tool

for selecting which role each robot should play - being an attacker, defender, goal-keeper, etc.

However, being a networked Multi-Agent System, a robotic team can also perform a much

more efficient data integration if information from several agents is taken into account. In

order to achieve that, agents must communicate, not only to share their information, but

also to achieve an agreement regarding the World Model. As an example, if multiple ball

candidates are detected by robots, which one should be considered the “real” ball of the

game?

Some major challenges on this league are the real-time constraints, the need for accurate

vision calibration, dealing with outliers and accounting for perception and process noises.

When trying to merge information from different robots, new problems arise: sensorial data

may be collected at different moments by the multiple robots and they must deal with com-

munication problems such as delay and the possibility of intermittent connection.

10

1.5 Objectives

This research project aims at developing new methodologies for data fusion in a distributed

approach and its evaluation in the real robots of the robotics soccer team CAMBADA [Neves

et al., 2010] (acronym of Cooperative Autonomous Mobile roBots with Advanced Distributed

Architecture), from University of Aveiro. Moreover, the acquired know-how and a better

World Model representation will allow the exploitation of new solutions for team coordination

and cooperation to enable teams of autonomous robots to accomplish complex collective tasks.

This research project aims at developing new solutions for data fusion in a distributed ap-

proach in a real robotics soccer team, as well as improving the current high-level coordination

strategy with novel methodologies. Therefore, two main objectives were set:

1. Development of a new integration module, by applying cooperative sensor fusion tech-

niques to enhance the global perception of the environment;

2. Improvement of the high-level coordination strategy of the team.

While most of the literature presents simulated results, this project was developed over

a team of real robots and tested in a highly-dynamic, stochastic and partially observable

environment such as the one provided by the RoboCup soccer competitions.

This is particularly important because any proposed solutions must effectively and effi-

ciently work within the existing real scenario and not a conceptual (sometimes unrealistic)

simulated environment. Although not particularly detailed in this document, the fact that

the application is in actual robots (with inherent hardware specificities, handicaps and oc-

casional failures) posed some extra challenges throughout the development of this project.

The nature of the benchmark scenario (robotic soccer tournaments) in some cases did not

allow the extraction of extremely thorough results, nor the re-iteration of test scenarios with

different algorithms for comprehensive comparison.

1.6 Thesis Structure

This document is structured in six chapters, being the first this Introduction, which in-

cludes the motivation for this work and states the context and the objectives of the thesis.

Chapter 2 makes an overview of the most common methods for state estimation and

introduces the concept of sensor fusion, where a review over distributed sensor fusion methods

is also made. The process synchronization in CAMBADA is detailed and some improvements

on the robots pose and velocity estimation are performed, as well as improvements on the

robot motion control.

Chapter 3 expands on the problem of estimating the state of multiple objects to a dis-

tributed perspective, in which information from different agents is aggregated to improve the

global world model.

11

In Chapter 4, the main focus is on Multi-Robot Systems Coordination methods, including

review of existing models for strategic position and role assignment. A new method is proposed

for leader election that overcomes two limitations found on existing consensus algorithms.

Following, Chapter 5 introduces a new Coordination framework that makes use of all the

work devised in the previous chapters, resulting in a powerful yet easy-to-use setplay engine,

fully integrated with the existing software architecture, overcoming a number of identified

drawbacks of the existing solutions.

Finally, the last chapter, Chapter 6 closes the document with the major contributions of

this project and some final considerations.

12

Chapter 2

State Estimation and Control

In order for a robotic system to perform its tasks towards the predefined goal, it needs

information about itself and also its environment and, therefore, state estimation emerges

naturally as a common issue for agents running on robotics applications.

A state holds all information of the robot and its environment that was deemed to be

relevant for the agent to make a decision, hence influencing the future state. While there

are static state variables (variables that never change during the robot operation lifetime), in

real robotics applications the majority of the variables are prone to change over time for two

reasons: on one hand, the agent is expected to act on the environment, on the other hand,

the environment is usually dynamic itself. The state may comprise information regarding the

robot pose, velocity, hardware status, etc. but also information about the robot surrounding

environment.

In real mobile robotics applications, agents have to handle uncertainty, which can arise

from different sources. First of all, the environment is partially observable and usually also

non-deterministic, continuous and dynamic. Any sensor has an associated noise and physical

limitations and since robots are real-time systems, most algorithms and models used during

computation have to comply with time restrictions, sacrificing the accuracy, if needed.

Finally, the actuators that directly interact with the environment can also be inaccurate,

depending on many different factors.

The challenge of understanding the environment in the face of uncertainty is very impor-

tant in the field of robotics. The ability to cope with these uncertainties is critical to build

robots that can achieve their task in unpredictable environments. This was the motivation for

a new approach to robotics called probabilistic robotics [Thrun, 2000], which makes use of

probability theory to explicitly handle uncertainty. Probabilistic models provide a powerful

and consistent means of describing uncertainty and lead naturally into ideas of information

fusion. Information is represented by probability distributions over a space of possible hy-

potheses. The major advantage of probabilistic approaches is that they are typically more

resilient to uncertainty [Thrun et al., 1998].

13

“A robot that carries a notion of its own uncertainty and that acts accordingly is

superior to one that does not.“

– Sebastian Thrun [Thrun, 2000]

2.1 Common State Estimation Methodologies

In this section, an overview of the state-of-the-art in state estimation is performed, focusing

on methods widely used and validated in robotics applications.

2.1.1 Discrete Kalman Filter

The Kalman Filter [Kalman, 1960] (KF) is probably the most studied and implemented

technique for optimal state estimation in linear Gaussian systems, by modelling the state

variables with a mean x and a covariance P . Being a recursive filter, it is computationally

efficient and also supports estimation of states in a way that minimizes the mean of the

squared error (hence, it is called optimal). This filter is useful when the measurement can be

modelled as a linear combination of the state (with added Gaussian noise).

The Kalman Filter represents beliefs by a mean and a covariance and works under the

following assumptions:

• The state transition probability is linear in their arguments and with added Gaussian

noise:

xk = Akxk−1 + ε,where ε ∼ N (0, Q) (2.1)

• The measurement probability is also linear and with added Gaussian noise, with the

following observation model:

zk = Hxk + δ,where δ ∼ N (0, R) (2.2)

• The initial belief must be normally distributed with some mean x0 and covariance P0.

At the core of the KF lies a form of feedback control with two main types of operations:

predict and update (Figure 2.1). The predict step projects the current state estimate ahead

in time and the update adjusts the projected estimate by an actual (noisy) measurement at

that time.

Predict Step

The predict step models how the system evolves through a known and pre-defined linear

model, before incorporating the actual measurements.

14

Predict
(time update)

Update
(measurement update)

Figure 2.1: The discrete Kalman Filter cycle.

x′k = Akxk−1 +Bkuk (2.3)

P ′k = AkPk−1A
T
k +Qk (2.4)

In equation 2.3, the matrix Ak models the transition of the state between steps, while

Bk relates the new state with the control vector uk. Pk represents the covariance matrix

that models the state estimation uncertainty, which is affected by the state transition itself

(equation 2.4), with Qk representing the process noise covariance.

Note that the state transition probability is linear Gaussian since it is a linear function

with added Gaussian noise, in which xt and xt−1 are state vectors and ut is the control vector

at time t.

Update Step

For the update step, equation 2.2 is put in place, in which the H matrix models the

linear relation between a measurement and the state vector. The following equations rule the

update step of the KF:

Kk = P ′kH
T (HP ′kH

T +Rk)
−1 (2.5)

xk = x′k +Kk(zk −Hx′k) (2.6)

Pk = (I −KkH)P ′k (2.7)

In the update stage, noisy measurements zk are used to update the state xk. The first step

is to compute the Kalman gain Kk (equation 2.5), taking the measurement noise covarianceRk

into account, and then generate a posteriori state estimate by incorporating the measurement

zk (equation 2.6).

Kk is used to determine how much of the measurement goes into the new state estimation,

by multiplying it with the innovation - the difference between the actual measurement and

the expected measurement. Finally, the error covariance estimate is obtained (equation 2.7).

15

Practical Considerations in Robotics Applications

It is possible to conclude that the Kalman Filter method provides a very convenient way

for it to be applied to any kind of online real-time processing application. However, applying a

Kalman Filter to a real robot theoretically requires accurate knowledge about its sensors and

actuators models - it is often impossible to obtain a model of these entities to which the KF

can be applied directly. Due to this recurring gap between theoretical models and practical

applications, the current section describes the method used to tune the Kalman Filter used

throughout the following chapters.

Prior to the operation of the Kalman Filter, the measurement noise R can easily be

measured, since the process must be measurable in some way for the filter to be applied later.

It is then generally practical to take some off-line sample measurements in order to determine

the variance of the measurement noise.

In contrast, the process noise covariance Q is usually more difficult to obtain, since in

real applications, it is typically hard to directly observe the process of which state is to be

estimated.

In robotics applications, it is frequent to have a dynamic measurement error covariance

R, i.e. one that is not constant over time. For example, for a soccer playing robot, one of

the measurements taken might be the robot position on the field, given by the detection of

the field lines. When the robot is stopped this information is more reliable, but it tends to

degrade with the increase of robot velocity due to vibrations on the camera that occur when

the robot is moving. This extra noise might be integrated on the measurement covariance R.

When information is available from more than one sensor, after a single predict step,

several update steps can be performed, one for each sensor, with the respective measurement

noise covariances or, alternatively, a single update step with all measurements and an appro-

priate observation model matrix H. When a particular sensor is able to get information for a

sub-set of the variables that constitute the state, then a high (ideally infinite) measurement

covariance is given for any remaining variables.

In a final note, after performing off-line sampling on the process in order to reach an

approximation for the covariance matrix R, it is usually a good practice to use a groundtruth

system (whenever possible) to compare the state estimate with the “real” state to validate

any necessary fine-tuning on matrices R and Q.

2.1.2 Non-Linear Kalman Filters

In robotics applications, some systems do not meet the linear assumptions - their mea-

surements are not linear functions of the state and the next state is rarely a linear function

of the previous state. In fact, when the dynamics of the system are too complex to model

using linear assumptions, other filters can perform better.

The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF)

16

[Wan and Van Der Merwe, 2000] are other common approaches developed to deal with non-

linear systems but at higher computational costs.

The EKF, also called the First-Order Filter, uses the Taylor Series expansion to linearise

the model functions under certain conditions. However, it is only reliable for systems that

are almost linear on the time scale of the updates, as according to [Julier and Uhlmann,

2004]. This led the author to propose the UKF [Julier and Uhlmann, 1997] in 1997, that is

also a nonlinear Kalman filter which approximates the probability density function using a

deterministic sampling of points (called sigma points) around the mean.

Another strategy is to change the dimension of the state vector, based on changes of the

target object dynamics - the Variable State Dimension Filter (VSDF) [Bar-Shalom and

Birmiwal, 1982]. In this variation of the Kalman Filter, the size of the state vector estimated

by the filter is allowed to vary in an arbitrary way. For example, local states may be added

to or removed from the state vector at any time.

Interacting Multiple Models (IMM) filter [Bar-Shalom et al., 2002, 2005] can also be

used to mix different process models. The complex dynamics of the system is modeled using

a weighted blending of distinct models.

Multiple Hypothesis Tracking (MHT) [Reid, 1979] is a different approach, in which

multiple independent state estimators are used in parallel. Afterwards, a decision process

selects the most relevant, usually based on specific external domain knowledge.

2.1.3 Particle Filters

Monte-Carlo [Metropolis and Ulam, 1949] based approaches are currently the most used

when Kalman Filter assumptions are not met or when major discontinuities in the output

values are expected. These filters are usually called Particle Filters [Del Moral, 1996] and

use a genetic type mutation-selection sampling approach, in which each particle has a certain

likelihood weight that represents the probability of that particle being sampled from the

probability density function. In the resampling step, the particles with negligible weights are

eventually replaced by new particles in the proximity of the particles with higher weights.

In recent formulations [Cunningham et al., 2020], it is a common approach to duplicate

some particles and remove others, i.e. the same particle is selected more than once for the

new population.

This type of filters has been extensively used in robot localisation problems when the

map of the environment is previously known [Potthast et al., 2019, Doucet et al., 2001]. The

essence of this filter is that particles that are more consistent with the measurements are

more likely to survive, when compared to other particles. As a result, when applied to a

localisation problem, places of high probability will collect more particles and therefore will

be more representative of the robot posterior belief.

17

2.2 Perception and Sensor Fusion

Gathering information from the environment is one of the most important tasks for mobile

robots. Various measurements are taken from different sensors which can later be transformed

into useful information.

Siegwart defined two functional axes for sensors [Siegwart and Nourbakhsh, 2004]. In

one of the dimensions, proprioceptive (measure values from the robot itself) and exteroceptive

(gather data from the environment) sensors. On the other hand, sensors can be also classified

as active (these work by exciting the environment in some way in order to measure the

reaction) or passive (simply measure ambient energy entering the sensor).

The degree to which sensors can contribute to the World Model should not be over-

looked. Every sensor reading is influenced by some sort of noise or error and this is why,

whenever possible, multiple sensors are taken into account, their measurements are merged

using Sensor Fusion techniques through an Integration process.

“Data fusion is the process by which data from a multitude of sensors is used to

yield an optimal estimate of a specified state vector pertaining to the observed

system.“

– Richardson and Marsh [Richardson and Marsh, 1988]

Common Integration methodologies often use not only the most recent data from the

sensors, but also take history into account.

2.2.1 Distributed Sensor Fusion

In an attempt to improve world modelling on MAS, sensor fusion techniques have been

applied to multi-agent scenarios as well, usually by merging raw data or information gathered

by multiple agents.

The environment provided by the RoboCup competitions actively encourages the develop-

ments of distributed sensing solutions, once the robotic team is considered a distributed sensor

processing network. Fusion of information that comes from different sources and transmitted

through a WiFi network creates a challenge that starts with data timestamp synchronization.

A software agent for robotics applications must comply with strict time demands in a

potentially highly dynamic environment, therefore the data shared between robots must be

reduced to a minimum as well as the computational demands to combine their observations.

For example, sending every raw camera image frame to every other agent is an unfeasible so-

lution because it is not scalable and spreads the complexity to the neighbour agents, defeating

the purpose of having a distributed system (with distributed local processing). In an ideal

scenario, each agent should pre-process their raw sensor data in order to share only relevant

information extracted from it to its agent teammates.

These techniques have been already investigated over two main areas of interest in robotics:

18

• Object tracking:

The objective of object tracking is to pursue an object of interest with very little to no

information about its future move. In order to comply with the timing demands, point-

based object tracking is usually applied, while still using the term object tracking to

refer to it. As already stated in a previous section, Kalman Filters (and its extensions)

have been extensively applied to object tracking problems. A few examples include

real-time camera pose tracking [Wang et al., 1998, Erdem and Ercan, 2015], tracking

of objects for grasping [Petryk and Buehler, 1997, Ilonen et al., 2013] and prediction of

future object locations [Rembold et al., 1998].

Because they provide a good alternative for tracked objects of which motion either

has major discontinuities, is too random/unpredictable or can not be modelled at all,

particle filters have also been applied to this type of problems [Kim and Sim, 2010].

More recently, distributed object tracking techniques were also applied on wireless sensor

networks [Chen et al., 2016], with results showing improvements on the overall accuracy,

while reducing communications and the energy required when compared to a centralized

solution.

• Localisation and Mapping:

Kalman Filters have also been used to localise robots within mapped environments. This

approach is applied when several position estimates are available from multiple sources

(either synchronous or asynchronous) [Gutmann et al., 1999, Larsen et al., 1999, Moreno

et al., 1999, Sasiadek and Hartana, 2000].

While some approaches rely on having a map of the environment, some research has been

ongoing in SLAM (Simultaneous Localization and Mapping), not only in single-agent

scenarios [Thrun et al., 1998, Brown and Donald, 2000], but on MAS as well [Binns

et al., 2002, Cunningham et al., 2010].

2.3 Process Synchronization In CAMBADA

The efficiency of the state estimation algorithms is directly related to the quality of the

data provided for the filters to integrate. In this section, a review over the process execution

pipeline in CAMBADA is made and a proposed modification is presented, resulting in a

reduction of the time period jitter on the communications with the low-level/hardware, which

in turn results in a positive impact on the Integration process.

19

2.3.1 Design Choice Considerations

In CAMBADA there are mainly 3 processes running in sequence every cycle (at a frequency

of 50Hz): Vision, Agent and HWComm, in this order - in general terms, these processes mirror

the three common steps of robotic agents: perception, decision and action. Once a precedent

process finishes its task for that cycle, the subsequent process is awaken. This synchronisation

is achieved using the PMan (Process Manager) library [Pedreiras and Almeida, 2007].

Each process has a task to accomplish:

• Vision: communication with the camera and computer vision processing

• Agent: main decision process

• HWComm: communication with the hardware/low-level to send new orders for the actua-

tors and collect hardware sensor data

Time (ms)

Vision

Agent

HWComm

camera
frame

camera
frame

camera
frame

0 20 40 60

send to
low-level

send to
low-level

send to
low-level

Figure 2.2: The initial order of processes

When this work started, the processes ran in the sequence represented in Figure 2.2. In

this pipe-lined execution chain, the HWComm process execution timing is naturally conditioned

by the sum of all processing times of all previous processes (Vision and Agent) - and these

are not fixed. Therefore, this results in a temporal jitter on the execution of the low-level

communication step, which has severe impact on the information reported by the hardware

that is integrated during the period between consecutive executions (such as wheel odometry

measurements).

Although this results in a relatively low impact for the orders sent to the low level (velocity

set-points, for example), the case of the information gathered from sensors is more critical,

because the introduced jitter results in a dynamic time span (and thus, impacting the preci-

sion) of the low-level measurement. As an example, with this kind of jitter, the information

can be integrated over a longer period of time in one particular cycle than on the consecutive

one. This has the potential to negatively affect the upper layers of high-level motion control.

A proposed solution to this problem is presented in Figure 2.3. The HWComm cycle runs

each time a new frame is received from the camera, an event that occurs each 20± 2 ms. The

values sent to the low-level are the ones calculated by the Agent in the previous cycle. In

20

Time (ms)

Vision

Agent

HWComm

camera
frame

0 20 40

camera
frame

camera
frame

60

send to
low-level

send to
low-level

send to
low-level

Figure 2.3: The proposed order of process execution

parallel, the Vision process could potentially take control of a different CPU core and start

analysing and processing the new image frame.

However, one constraint is introduced when compared with the previous solution: the

total time of Vision and Agent together should not exceed the cycle period in order for the

HWComm to send new values for the low-level hardware every cycle, whereas in the pipeline

approach it was possible to have temporal overlapping on the processes, i.e. a new frame

could arrive while the Agent was still processing the previous frame.

(a) Before changing the order of processes. (b) After changing the order of processes.

Figure 2.4: Results of the process cycle re-ordering.

Figure 2.4 shows a comparison of the vision cycle time (used as the main cycle time)

before (Figure 2.4a) and after (Figure 2.4b) the proposed change. By comparing both figures,

it is possible to conclude the time jitter has been significantly reduced, which resulted in a

great positive impact on the robot high-level control.

21

2.4 Robot Position and Velocity Estimation

In CAMBADA, position and velocity estimations are achieved using Linear Kalman Fil-

ters, integrating both previous orders sent to the low-level/hardware and sensor measurements

(namely odometry data from wheel encoders and information processed from the image cap-

tured by the video camera). In this work, motion data from the Inertial Measurement Unit

(IMU) was also integrated to improve the estimation.

2.4.1 Localisation Algorithm

Although not part of the work developed in this project, before the position estimation

integration process is described, it is important to understand how a position measurement is

generated. Using computer vision techniques and a previous calibration process, the Vision

process is able to produce a set of points that lie at the center of the field white lines (in a

Cartesian System in robot coordinates).

Inferring the global robot position in field coordinates from relative line points is possible

through an optimisation process originally created by a former Middle-Size League team

Brainstormer Tribots, called “Perfect Match” [Lauer et al., 2006], which uses the RPROP

algorithm [Riedmiller and Braun, 1993] to solve the minimisation task.

This algorithm is able to provide a measurement vector zv loc that includes the estimated

pose of the robot (position in 2D absolute coordinates xv loc and yv loc, and orientation θv loc)

based on this optimization process ran against the detected white lines.

zv loc = [xv loc, yv loc, θv loc] (2.8)

2.4.2 Robot Pose Estimation

In order to estimate the pose of the robot, a sensor fusion step is performed using a linear

Kalman Filter (KF). The state vector xpose is defined as in Equation 2.9 below:

xpose = [x, y, θ] (2.9)

In order to estimate the (xpose) state, the odometry sensors delta data (change since

the last cycle, projected in absolute coordinates) is used as the control vector uk for the

KF predict step. These sensors provide information for x, y and θ. For the update step,

the aforementioned vision localisation optimisation estimation zv loc is included - used as a

measurement vector here.

22

2.4.3 Robot Velocity Estimation

A similar approach is used for the robot velocity estimation, also making use of a Linear

Kalman Filter, but incorporating extra measurements that are available from the hardware

platform. The robot velocity state vector is defined as in Equation 2.10 below:

xvel = [vx, vy, wθ] (2.10)

For the predict step, the velocities previously sent to the platform are used, taking into

account the action-delay of the platform. From the specification of the CAMBADA hardware

platform, there is a delay between a command sent by the agent and its actual execution of

80ms, which, taking the cycle time of 20ms into account, translates into a buffer of 4 cycles.

So, in practice, the predict step control vector are the target velocities calculated 4 cycles

before the current cycle.

On the KF update step, several sensors on the robot provide relevant information for the

velocity estimation, namely:

• Odometry deltas: contributes to vx, vy and wθ;

• Vision flow: contributes to vx, vy and wθ;

• Gyroscope angular velocity: contributes directly to wθ;

• Gyroscope yaw estimation deltas: contribute to wθ.

The KF update step is repeated for each sensor above, using a measurement noise covari-

ance matrix tuned according to the considerations on Section 2.1.1.

2.5 Improving High Level Motion Control

The robots high-level motion control is based on Proportional–Integral–Derivative (PID)

controllers - one for the linear velocity, and a different one for the angular velocity, as depicted

in Figure 2.5.

PID

(Linear Velocity)

PID

(Angular Velocity)

vx

vy

vw

posErrorx

posErrory

angError

SPM1

SPM2

SPM3

Decoupled

Motion

Transfer

Function

(Velocities to Motor

Set-Points)

Motor 1

Motor 2

Motor 3

Figure 2.5: High-level motion controller.

23

The problem with this approach is that due to the inter-dependency of the different motor

set-points with the requested linear and angular velocities and with the added acceleration

constraints, sometimes the tuple {vx, vy, wθ} calculated by the controllers is impossible to

achieve, resulting in an undefined sub-optimal final robot motion.

Linear

Velocity

Max Linear

Velocity

Angular

Velocity

Max Angular

Velocity

Unknown

Function

Figure 2.6: Trade-off between maximum linear velocity and maximum angular velocity.

Therefore, these limitations need to be taken into account to achieve the desired motion

path. Due to the nature of the holonomic motion system, it is (empirically) known from the

experience with the platform that when the robot is doing a rotation around its axis with

the motors at their maximum speed, there is no margin left to add linear velocity since we

reached the saturation level. A similar situation occurs when the robot is driving linearly at

maximum speed - there is no extra speed left for the motors to add rotation on top of that

(Figure 2.6). Modelling that function is a challenging problem - it depends on factors such

as the static and dynamic friction with the field surface, which changes with the robot rigid

body momentum and even with the relative direction to which the robot is moving (due to

the way the wheels are disposed, there are several variables that effectively depend on the

linear motion relative angle).

Although several attempts have been made to model this function, none has achieved the

desired results, since the resulting linear velocity was too conservative for the application,

which limits the robot to slow speeds that are unpractical for a dynamic competition environ-

ment. The main conclusion of those attempts was that it was possible to achieve predictable

motion paths, provided that the saturation point is not reached. The process is explained in

the following sections.

24

2.5.1 Proposed Solution

Although it might not obvious, depending on the desired direction and robot transient

orientation, motors can quickly transition from a fully saturated state to a complete stop.

These extreme situations happen frequently in the MSL matches, as the ball changes direction

regularly, shifting the focus and positioning of the robots.

y

x

rVellinear

Target
Position

?curMotion

?target

?diff

(a) Representation of some relevant angles.

Linear

Velocity

!diff!1

LimVmax

LimVmin

!2

(b) Limitation applied to the linear velocity.

Figure 2.7: Proposed solution based on the angle difference between the relative target posi-

tion and the estimated robot linear velocity in robot coordinates.

As part of this project, a new solution has been proposed that takes into account the

current robot motion and uses the angle difference θdiff = abs(θtarget − θcurMotion) between

the relative target position and the estimated robot linear velocity in robot coordinates (Fig-

ure 2.7a).

The maximum linear speed is then modelled as a clipped linear function of θdiff. The

smaller this value, the higher the allowed linear speed, and vice-versa, as depicted in Fig-

ure 2.7b. This approach forces the rotation to take precedence over linear motion, by limiting

the latter if the robot is not moving towards the target.

Figure 2.8 shows the updated version of the controller with the limiter block.

PID

(Linear Velocity)

PID

(Angular Velocity)

vx

vy

vw

posErrorx

posErrory

angError

SPM1

SPM2

SPM3

Decoupled

Motion

Transfer

Function

(Velocities to Motor

Set-Points)

Motor 1

Motor 2

Motor 3

Limiter

Current

Velocity

Vector

Target

Position

Vector

v’x

v’y

vw

Figure 2.8: Proposed high-level motion controller.

25

2.5.2 Experimental Setup

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-2

-1

0

1

2

3

4

 T
3

 T
1

CP
1

 T
2

 Ball

Figure 2.9: Setup used to test the proposed high-level control solution.

A setup according to Figure 2.9 has been devised to test the proposed high-level control

solution. The robot will move through a set of predefined way-points, starting on point T1,

moving to T2 and quickly changing to T3 as soon as it crosses CP1 - this ensures that a

sudden target change occurs while the robot is close to its maximum linear velocity, which is

a common situation during soccer matches.

The ball is placed in the middle of the way-points and is used as the robot orientation

target.

To run the solution validation tests, the following parameters have been used, as a result

of some on background knowledge, but also after some manual tuning with a trial-and-error

approach:

LimVmin = 0.5 m/s

LimVmax = 3.5 m/s

θ1 = 15 deg

θ2 = 45 deg

26

2.5.3 Results Discussion

For the sake of visualization, this discussion will focus on a single round-trip in one of the

tests (Figure 2.10a).

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-2

-1

0

1

2

3

4

 T
3

 T
1

CP
1

 T
2

 Ball

Previous trajectory

New trajectory

(a) Comparison with the previous solution.

0 100 200 300 400 500 600

-800

-600

-400

-200

A
n

g
le

 [
d

e
g

] Current Motion

Motion Target

0 100 200 300 400 500 600
0

45

90

135

180

A
n

g
le

 [
d

e
g

] Angle difference

0 100 200 300 400 500 600

Sample

0

2

4

V
e

lo
c
it
y
 [

m
/s

]

Limit Lin. Vel.

Actual Lin. Vel.

(b) Time-series representation of angles and velocities

in the test.

Figure 2.10: Results of the proposed high-level control solution based on linear velocity

imposed limitation (new trajectory).

The dotted line represents the trajectory of the robot with the previous method, and the

solid line the new trajectory. Note that the “overshoot” that can be seen in the bottom-left

corner of the figure on the “Previous Trajectory” is not due to an improperly tuned high-level

control (such as PID). In reality, it is the result of the acceleration limits imposed by the

low-level control at the Motor level, beyond the control of the high level software.

On the other hand, using the same PID and the same acceleration and speed limits on the

motor-level, the new solution is able to control the robot position to a much more desirable

and expected path, by preventing motor saturation. Moreover, the new solution reduced the

total round-trip time from 8.8s to 8.3s, which is a notable time gain.

Figure 2.10b shows a time-series representation of the angles θdiff, θtarget and θcurMotion, as

well as the velocities (actual velocity and the output of the velocity limiter, which is based on

θdiff). This figure also shows the moments where the velocity limit is applied, as well as the

natural delay between the application of the limit and the actual velocity drop perception.

27

28

Chapter 3

Multi-Object Tracking With

Distributed Sensing

An accurate representation of the environment is very important for any robotic system

that has to interact with its surroundings. Detection and tracking of multiple moving objects

are particularly important if the environment is highly dynamic: the ability to correctly

estimate the state of these objects around the robot can aid in the anticipation of its actions,

by planning ahead and thus improving the overall robot efficiency towards the goal.

One of the main challenges concerns a trade-off between accuracy and performance, which

is automatically imposed when dealing with applications defined by real-time constraints.

Furthermore, when dealing with Multi-Agent Systems, the development of mechanisms to

form a better world model by merging information from different agents is also a relevant

research topic.

This chapter presents a real-time compliant multi-object tracking solution for multi-agent

systems that operate on stochastic and highly dynamic environments, using information gath-

ered by various agents over time. The proposed solution is detailed from the detection and

feature extraction phase to the general problem of efficiently tracking objects in the environ-

ment.

In Chapter 1, section 1.1, some of the major aspects about sensor fusion in MAS were

already introduced and in section 1.4, the motivation for a distributed approach was also

described.

When addressing distributed sensing in MAS, much of the literature focuses on area cover-

age optimisation through active sensing using gradient based methods [Kantaros et al., 2015]

or Voronoi cells [Abbasi et al., 2017]. In contrast, in the method we propose, the main focus

was on passive sensing of multiple moving objects that may be seen by more than one sensing

agent, which poses a data association problem [Kamal et al., 2016]. However, some well-known

distributed estimation approaches are usually designed based on an implicit assumption of

unlimited computation resources, non-delayed sensing, unlimited bandwidth and/or perfect

29

communication environments. To cope with the communication problems, some solutions

resort to a moving-horizon estimation [Ahmad and Bülthoff, 2016], but still require system

clock synchronisation which would potentially fail under unreliable communication channels.

The solution presented in this chapter was specially designed for applications with real-

time constraints and sub-optimal communication conditions - being able to cope with con-

strained resources is fundamental to actually implement a solution in a real robotics environ-

ment.

The major contributions of this approach are as follows:

• Cost-effective (in terms of performance vs. resources used) solution for detection of

objects of interest using visual information;

• Novel solution for real-time multiple object tracking, which takes background knowledge

into account;

• Integration of multiple local tracking to generate a unified multi-object tracking mech-

anism using agents as sensorial network;

• Implementation, testing and benchmarking of this solution in a real application environ-

ment, which is highly stochastic and dynamic, showing the compliance of this solution

with strict real-time constraints.

Taking a robotic soccer competition as an example application and benchmarking scenario,

the process taken will be detailed with the sensorial hardware used, how feature detection

and local tracking were achieved, the inter-robot communication framework and finally how

a distributed sensing approach enabled any agent (even agents without sensors) to get an

overview of moving opponent robots (or obstacles for navigation) spread around the field.

An important note is that although robotic soccer is presented as an example application

domain, the main ideas expressed in this chapter are not limited to this application area.

3.1 Perception

In Section 1.3.2, the hardware of the CAMBADA vision system was described, upon which

the perception process relies. It starts with the detection of the objects of interest that need to

be tracked. One important issue is that the quality of information provided by the perception

system directly impacts the tracking performance.

In our target application, one of the main problems is that those robots can drive at

top-speeds that can go as high as 4 m/s. This creates a mechanical shaking effect in the

vision system, which induces a lot of noise in the observations performed by the robot, and

therefore results in several false-positive observations as well.

30

However, as in every other application domain, there are specific conditions that can

be taken into account to enhance the perception of the environment. For this particular

application, the objects of interest are the ball and the obstacles (which can either be team-

mate robots or opponent robots). This section describes the vision processing algorithms that

are used to detect these two different types of objects. Each frame captured by the camera

is processed independently, generating a list of observations. The integrator (Section 3.2) is

then responsible to correlate these observations with previous ones.

3.1.1 Ball Detection

At the time the work was conducted, in the MSL, the ball has a preponderant well-

defined color, so robots can take advantage of color segmentation to detect the ball. However,

supporting ball detection solely on color segmentation and heuristics for blob validation (based

on the blob size on the 2D image) has obvious shortcomings: low resilience to changes in

ambient lighting and easy failure of heuristics when the ball is partially occluded - the blob

size is reduced, producing an offset in the center of the ball with respect to the center of the

blob.

Color
Segmentation

Blob
Detection

Edge
Detection

RANSAC
Circle Fitting

Camera
Frame

Ball
Candidates

Figure 3.1: Ball Detection Fluxogram.

Therefore, two extra steps were introduced to further improve the perception of the ball:

Edge Detection and RANSAC Circle Fitting

Edge Detection

To detect the edges of the ball in the 2D image, a set of radial scan-lines is dynamically

created in the center of each detected blob. Each scan-line is analysed individually, starting

on the center of the blob, and moving outwards, while a set of heuristics is used to select the

edge point: it starts by finding the ball color on that line and then the edge point is defined

as the transition of the ball color to green, white or black.

RANSAC Circle fitting

The points (pixels on the image) extracted in the previous step are then used by a

RANSAC algorithm to fit a circle, in a similar fashion as in [Mironov, 2017]. At each it-

eration i, the RANSAC algorithm works by fitting a circle ci that is created by randomly

sampling 3 edge points.

31

Afterwards, the sum of all Euclidian distances (function D) between the remaining edge

points pk and the circle candidate ci is used as the score (si), as in equation 3.1.

si =
1

N∑
k=1

D(pk, ci)

(3.1)

Finally, the highest scoring circle candidate is picked as the circle that best fits the ball

position in the image.

(a) Raw image frame. (b) Detected Edges. (c) RANSAC Fitting.

Figure 3.2: Partial ball occlusion example.

Figure 3.2 shows a situation where a partially occluded ball is detected with a promising

accuracy using this method. The circle fitting using RANSAC performs well when there are

ball edge outliers, like in the example above.

The center of the circle is then assumed to be the center of the ball in the 2D image.

An offline-created look-up table is next used to efficiently convert distances from pixels to

meters, based on the configuration of the catadioptric system and the characteristics of the

mirror [Cunha et al., 2008]. This ball detection process generates a list of ball observation

candidates, that is sent to the integrator process (Section 3.2).

3.1.2 Obstacles

Reliable and fast detection of obstacles is also a critical issue to ensure safety and integrity

of robots and humans. By correctly identifying obstacles around it, each robot is able to plan

a trajectory and move around the field while avoiding any physical contact.

To cope with the highly dynamic scenario provided by soccer, robots need to perceive the

other robots around them, both opponents and team-mates. This will allow them to move

around the field, either for re-positioning or dribbling the ball, while avoiding contact with

any other obstacle. Furthermore, from a tactical and strategic point of view, knowing the

opponents position can provide an additional advantage in terms of planning.

32

(a) Detected obstacle edges. (b) Partial occlusion by the ball.

Figure 3.3: Obstacle detection with partial ball occlusion.

Obstacle detection is based on radial scan-lines, starting in the center of the robot (near

the center of the image) to the outer part of the mirror. Since the bottom part of the robots

must be dark, color segmentation is used to detect transitions such as “green-black” or “white-

black” - Figure 3.3a. These detected points are assumed to be on the ground, and are then

transformed from pixels to the local coordinate system of the robot (in meters), using the

same look-up table discussed in the previous section.

However, when the ball passes in front of an obstacle, it occludes the lower part of the

obstacle and the detected edge obstacle points are above the ground (Figure 3.3b), which

violates the previous assumption. The (undesired) result is that after clustering all points,

the obstacle position is erratically projected further away from the observer robot, inducing

an error in the position estimation. This can be minimised if this particular situation is

taken into consideration. In order to deal with this special case, the points that are detected

above a ball are marked by the detection algorithm and the relative distance of the obstacle

is adjusted according to the median of the distances of the other points (not above the ball).

At the detection stage, no differentiation is made between opponent robots and team-

mates, since all of them must comply with the previously described rule. The decision as to

whether an obstacle is a team-mate or not, is left to the Integrator module (Section 3.2). The

detection result is a set of points belonging to the periphery of the obstacle.

To aggregate points that belong to the same obstacle, a clustering algorithm was imple-

mented, based on the COP-Kmeans method [Wagstaff et al., 2001], to take advantage of the

background knowledge, that can be expressed as a set of instance-level constraints on the

clustering process. Namely, in this clustering algorithm implementation, instances that are

too close to each other (in this implementation, closer than 0.4 m) are merged into a single in-

stance and instances that are too big (of which farthest points are distanced more than 0.7 m

in this case) are split into two instances. These values were selected sensibly considering the

size of the robots, which is around 0.5 m wide.

33

3.2 The Integrator

Values provided by any sensor are inevitably noisy and usually not very usable in their

raw form. This is why the integration of the information available to the robot is a crucial

step.

Integrator

Vision Data
(local)

Team Data
(shared)

Robot state
Obstacles state
Ball state
...

Odom Data
(local)

Figure 3.4: Illustration of the agent integrator module.

In the case of the CAMBADA software architecture, this is the function of the Integrator

module, which takes values from different sources (camera, wheel encoders, team-mates shared

info, etc.) and properly handles them so that a relevant and trustworthy database is built to

represent the current World Model (Figure 3.4).

The ball is one of the most important objects on the field, since the objective in the

considered scenario is to play soccer. Just like in the case of obstacles, it is also common to

have spurious ball detections for various reasons, including occlusions by other robots, lighting

conditions, high speeds (causing motion blur on the image), self occlusion while dribbling,

etc.

An accurate estimation of the ball state (position and velocity) is crucial to be able to

intercept a pass, to catch the ball, etc. Additionally, if a correct representation of the opponent

obstacles can be achieved, then the team can evolve from simple reactive obstacle avoidance

to more complex strategies such as opponent modelling and coercive behaviour [Biswas et al.,

2014].

For the case of state estimation of the ball and obstacles around the robot, the new

Multi-Object Tracking module (Section 3.3) was used. One of the main problems is the fact

that robots move very fast (up to 4 meters per second), which introduces a lot of noise in

its measurements, thus inducing a lot of false detections. Therefore, a set of heuristics are

applied to validate these detections.

Taking into account that the current robots in this league have omni-directional drive, it

is not useful to estimate the obstacles orientation. On the other hand, in some situations,

knowing the opponent positioning may allow the team to act quicker, anticipate their actions

and even prevent dangerous situations like forward passes by covering an opponent from the

ball perspective. Therefore, it is crucial that this information is as accurate as possible.

34

3.3 Local Multi-Object Tracking

In this Section, the novel Object Tracking software module is introduced and its applica-

bility in both obstacle tracking and ball tracking is also discussed.

3.3.1 Tracklet Definition

Tracklets are essentially paths along which a particular object is perceived to have travelled

and constitute the core of most object tracking techniques.

In this work, the tracklets are assumed to be consistent with a Gaussian process model

in the 2D space, therefore each one is associated with a Kalman Filter (KF) with 4 state

variables: x, y, ẋ, ẏ - position and velocity in x and y axis. As previously mentioned, the

orientation was not considered, because in this league omni-directional motion capabilities

are widely used, although it may be included in the future if needed.

Furthermore, some extra properties were included to allow the tracker to monitor each

tracklet consistency and to purge invalid tracklets:

• age - integer counter that starts at zero and is incremented at each agent cycle;

• visibleCount - total number of cycles this tracklet has been visible (an observation

was matched) since it was created;

• invisibleCount - how many consecutive cycles this tracklet has not been matched with

an observation.

3.3.2 General Algorithm

For each new agent cycle, the object tracker algorithm is updated with the observations

on that cycle. This algorithm can be summarized in 7 steps, as shown in Algortihm 1.

Algorithm 1: Object tracker update algorithm

1 Predict new tracklet positions;

2 Assign observations to tracklets;

3 Update assigned tracklets;

4 Update unassigned tracklets;

5 Purge old tracklets;

6 Create new tracklets;

7 Sorting;

35

Step 1 - Predict new tracklet positions

This step consists in running the predict step in each tracklet’s KF. It will not only update

the covariance matrices, but also the state estimate, predicting the position of each object

one cycle ahead, using the estimated velocity and assuming uniform motion.

Step 2 - Assign observations to tracklets

This step represents a data association problem, since some of the observations of the

present cycle belong to objects which are already being tracked, others are newly detected

objects that will originate the creation of new tracklets and finally some tracklets might not

match with any observation.

To solve this pairwise association problem, the Hungarian method [Kuhn and Yaw, 1955]

was used, that finds an optimal assignment for a given cost matrix C ′ in polynomial time, if

we assume that only one observation exists per object.

The cost matrix that was used is a padded square matrix - it has additional columns/rows

to account for the possibility of not matching any of the observations with the current track-

lets. If there are T tracklets and N observations, the dimension of the cost matrix C ′ will be

(T + N) × (N + T). The rows of this matrix represent tracklets and the columns represent

observations, hence the C matrix has the dimension (T ×N). The δ factor represents a bias

factor in the same order of magnitude as the cost matrix C. For example, if the cost matrix C

is calculated with euclidian distances, in meters, between trackets and observations, δ should

be sensibly assigned a value for a distance that we want to consider a non-match (lower values

will create more new tracklets, while higher values will tend to match existing tracklets as

much as possible).

C ′ =



C

δ ∞ · · · ∞
∞ δ
...

. . .

∞ δ

δ ∞ · · · ∞
∞ δ
...

. . .

∞ δ

0


In the C ′ matrix above, the horizontal dashed line appears after the T tracklets, and the

vertical dashed line appears after the N observations.

36

After running the Hungarian algorithm over the cost matrix C ′, there will be three main

groups in the posteriori logical matrix C ′′: matched tracklets (M), unmatched tracklets (U)

and unmatched detections (V). The lower-right part of the matrix C ′′ is ignored.

C ′′ =

(
M U

V 0

)

Step 3 - Update assigned tracklets

For each match (sub-matrix M), the tracklet’s KF is updated with the respective obser-

vation, age and visibleCount counters are incremented and invisibleCount is reset.

Step 4 - Update unassigned tracklets and purge old tracklets

For the unassigned tracklets (sub-matrix U) The age and invisibleCount counters are

incremented and a factor f < 1.0 is applied to the velocities, to avoid that tracklets which

will remain unassigned for some cycles (and eventually removed later) remain with the same

speed during that period. These factors are adjusted based on the dynamics of the opponent

team and our team frame-rate. Example values for this particular application are presented

along with the results in section 3.5.

Step 5 - Purge old tracklets

A validation is performed to check if the tracklet should remain or be removed. Here, two

heuristics were applied: a tracklet is deleted if either the invmax = invisibleCount counter

is higher than a threshold or the visibility ratio (v = visibleCount/age) goes below a certain

threshold. The first heuristic purges tracklets that are not observed for a period of time. The

second one allows spurious detections to be deleted on the next cycle (even if the invisible

threshold was still not reached).

Step 6 - Create new tracklets

A new tracklet is created for each unassigned detection (sub-matrix V), which represent

observations not matched with any prior tracklet.

Step 7 - Sorting

The sorting criteria depends on the object to be tracked and objective of the tracker in

each case.

37

In the case of obstacles, the sorting is done by descending visibility - meaning that tracklets

with higher visibility ratio will be first on the list. This criteria is important for the decision

of which tracklets should be shared with the team-mates, since there is a limit on the number

of tracklets that can be shared, imposed by MSL rules as a bandwidth usage limit.

Ball tracking differs from obstacle tracking in the fact that there should be just one ball

inside the field, but the agent should be able to handle situations where it perceives more than

one ball candidate. Therefore, the agent keeps track of multiple balls, using this method, but

sorting is done by age and the oldest tracklet is selected.

3.3.3 Tracklet Sharing Criteria within a MAS

Agents should integrate the maximum available observations (local and shared by their

team-mates), so that their World Model is as rich as possible. An agent shared information

comes as a result of its local observations. However, these are never free of noise and can

possibly include false positives. Therefore, knowing that a team-mate agent is likely to incor-

porate one’s shared information, the sharing criteria of each agent should aim at maximizing

the information other agents can extract from what is being shared. Ideally, these should not

include false-positives and should be as accurate as possible.

Therefore, a set of rules were defined to decide whether a particular tracklet should be

shared with the team-mates:

• The maximum number of shared tracklets must be pre-defined sensibly and according

to the target application and its specificities;

• Obstacle tracklets with higher visibility have a higher priority to be shared;

• Tracklets must have a pre-defined minimum age;

• Tracklets must have a pre-defined minimum visibleCount and visibility ration;

• Tracklets distance to the observing agent must not exceed a pre-defined threshold (to

prevent false positive detections on large distances);

• Shared tracklets can only be un-shared if they are explicitly deleted or if the position

lies outside a pre-defined region-of-interest.

3.4 Distributed Sensing

In this Section, the methodology used to merge information from multiple agents to gen-

erate a unified representation of the obstacles spread around the field is presented.

38

In the context of the Middle-Size League, although also useful for the robots, this is

particularly important for the coach, which is a computer allowed to communicate with the

robots, but not allowed to have any attached sensors. The objective of the coach is to give

high-level coordination instructions for the team - strategy, formation, attitude, etc. Using

the information shared by the robots, the coach is able to create a representation of the

opponents positions, which can be used to anticipate opponent gameplay, such as forward

passes and set-plays.

Clustering

Robot 1
Obstacles

Robot N
Obstacles

...

Robot 2
Obstacles

Unified
Observations

Object
Tracker

Obstacle
Validation

Unified Obstacle List

Figure 3.5: Summary of the tracking system using multiple agent shared observations, adapted

from [Dias et al., 2016].

Figure 3.5 shows an overview of the global tracker. It considers the various agents shared

obstacle tracks as observations. Although this shared information is not made of raw obser-

vations, but rather processed observations that have been associated together as a track and

met the previously discussed criteria to be shared among the team, they can be considered

observations for the purpose of creating this unified obstacle list.

3.4.1 Observation Clustering

In the last Section, we already demonstrated how the Hungarian Algorithm can be used to

match observations with tracks. However, by solving a global minimisation problem, it can not

account for situations where there are multiple observations for the same object. Therefore,

a clustering algorithm was implemented, based on the COP-Kmeans method [Wagstaff et al.,

2001], to take advantage of the background knowledge, that can be expressed as a set of

instance-level constraints on the clustering process.

39

In the case of the MSL, the maximum size of the obstacles is limited by the rules

(50 × 50cm), which implies that an obstacle that occupies the maximum allowed size can

be perceived as a 70.7cm-wide obstacle (when seen from the diagonal). Despite this theoret-

ical value, on this league, at the time of writing this thesis, most teams opt for a triangular

configuration on their platforms, meaning that such a size is not reached. Moreover, their

sides do not measure less than 30cm.

Using this background knowledge, the COP-Kmeans method has been applied with the

following constraints:

• if width(centroidi) > 0.7m, split in two centroids;

• if distance(centroidi, centroidj) < 0.3m, merge centroidi with centroidj .

3.4.2 Applying the Object Tracker

The output of the previous clustering stage is a unified observation list, which is the

input for the distributed object tracker module. Its implementation was already described in

Section 3.3.2.

3.4.3 Obstacle Validation

To avoid sharing unreliable information with the team-mates, the unified tracklets are

subject to validation and once a tracklet has been validated, it will remain valid until it

disappears.

Essentially, the relative position from track to the team robots defines three different

zones:

• Zone 1 - any position closer than d1 from a team-mate. In this zone, only tracks

observed by the closest team-mate robot can be validated. It is such a small distance

that the closest robot must be able to see it directly. This prevents using detections of

spurious obstacles close to other team-mate positions;

• Zone 2 - any position closer than d2 and further than d1 from a team-mate. Any track

lying on one of these zones is validated;

• Zone 3 - any position closer than d3 and further than d2 from a team-mate. A track

lying on this zone requires at least two observing robots to be validated;

• Any tracked obstacle for which the distance from the closest team-mate is more than

d3 is not validated, since it is outside the maximum detection distance boundary.

40

d1

d2

d3

Valid Obstacle

Invalid Obstacle

A

B

C

D

E

Figure 3.6: Example of the validation criteria using two robots, adapted from [Dias et al.,

2016]. Here, three observations are validated and two do not pass the validation criteria. The

image is not in scale.

Figure 3.6 shows an illustration of the implemented validation methodology.

In this example, there are 5 obstacles:

• Obstacle A - Valid - its position lies inside Zone 1 of the robot on the left;

• Obstacle B - Not Valid - the obstacle is inside Zone 3 of one robot, but not the

other robot;

• Obstacle C - Valid - it is inside Zone 3 of both robots;

• Obstacle D - Not Valid - It is outside all zones of all robots;

• Obstacle E - Valid - it is inside Zone 2 of a team-mate.

These criteria are used to validate new obstacle observations into the unified obstacles

list. Once a track has been validated it will remain valid in that list until it is cleared: for

example, a track may be validated in zone 3 for being seen by two different robots and then

leave this zone (even going further than d3), it will remain in the obstacles list during all this

period.

41

3.5 Results and Discussion

To benchmark the performance of this solution, we used four different metrics:

• Precision: ratio between the number of correctly identified obstacles and the number

of detections in each frame;

• Recall: ratio between the number of correctly identified obstacles and the number of

obstacles in groundtruth in each frame;

• False-Positive Rate (FPR): ratio between the number of outliers and the number of

obstacles in groundtruth in each frame;

• Position Accuracy Gain (PAG): ratio gain between the individual observations po-

sition error and the merged obstacles position error.

To test the Multi-Object Tracking techinque described in section 3.3, the experiments ran

with the following set of parameters:

• Zone 1 distance d1 = 1.0m

• Zone 2 distance d2 = 2.5m

• Zone 3 distance d3 = 5.0m

• Unassigned track velocity factor f = 0.8

• Bias for cost matrix C ′, δ = 30.0m

• Max. number of invisible frames invmax = 20frames

• Visibility ratio v = 0.2

In the following sections, the results will be presented for both lab and competition envi-

ronments.

42

3.5.1 Lab Experiment

To benchmark this solution in the lab, a setup has been devised according to Figure 3.7:

in the middle (in black), four obstacles have been placed on the field - three of which are

static throughout the experiment, while a fourth is constantly moving in a square shape.

1 m

Figure 3.7: Lab setup used to benchmark the solution.

Two teammate robots (in blue) are asynchronously following their respective paths around

this set of obstacles, while observing and tracking them in real-time (one following an L-shape

path and the other a linear path).

A total of 3 runs were conducted in the lab and in order to test some hypothesis, the

linear velocity of the robots was increased in the second test and a constant angular velocity

was introduced in the third test, as in Table 3.1.

Linear

Vel.

[m/s]

Angular

Vel.

[rad/s]

Lab Run 1 1.5 0.0

Lab Run 2 2.5 0.0

Lab Run 3 1.5 2.0

Table 3.1: Lab tests conditions for each run.

With the lack of a better groundtruth system in place, the result of the localization process

of the moving robot obstacle (in black) was used as the groundtruth. The static obstacles

were manually placed in the pre-defined depicted positions.

43

-1 0 1 2 3 4

-1

0

1

2

3

4

5

Groundtruth vs. Robot Observations

Groundtruth
R1 Path
R1 Obst.
R2 Path
R2 Obst.

(a) The obstacles observations by the two robots.

-1 0 1 2 3 4

-1

0

1

2

3

4

5

Groundtruth vs. Merged Obstacles

Groundtruth
R1 Path
R2 Path
Merged Obst.

(b) Merged obstacles in the corresponding samples.

Figure 3.8: Representation of a subset of frames in the third lab experiment.

100 200 300 400
0

0.1

0.2

0.3

A
v
g
.
R

o
b
o
t
E

rr
o
r

(m
)

 Average: 0.17 m

100 200 300 400
0

0.1

0.2

0.3

A
v
g
.
C

o
a
c
h
 E

rr
o
r

(m
)

 Average: 0.14 m

Figure 3.9: Comparison of position error on the first lab experiment.

Linear

Vel.

[m/s]

Angular

Vel.

[rad/s]

Avg.

Precision

[%]

Avg.

Recall

[%]

Avg.

FPR

[%]

Avg. Accuracy

Gain

[%]

Lab Run 1 1.5 0.0 98.11 98.11 1.89 17.65

Lab Run 2 2.5 0.0 95.72 96.84 4.76 17.65

Lab Run 3 1.5 2.0 97.37 98.03 3.05 6.25

Table 3.2: Results of the tests conducted on the lab.

44

Figure 3.8 shows a small subset of frames from the third lab experiment. Figure 3.8a

shows the obstacle position as reported by each robot individually after running the Obstacle

Tracking algorithm locally. This is the information that is then combined using the method

described in Section 3.4.1 that results in the merged obstacles depicted in Figure 3.8b.

Figure 3.9 shows a comparison between the position error (in meters) of individual obser-

vations (on the left) and the merged observations (on the right) in the first lab experiment.

The plot shows the absolute value for each cycle as well as the average for the whole experi-

ment run.

As can be seen on Figure 3.9 and Table 3.2, not only was the average error reduced

considerably, but very interesting results were also achieved for the Precision, Recall and

FPR.

3.5.2 Competition Environment Experiment

In the Middle-Size League, since 2016, teams are encouraged to supply, their world model

information during the matches (only for logging purposes, this information cannot be used by

the opponent team during the match). The objective is to provide the other team a reference

to benchmark solutions after the match ends. In this case, knowing the reported location

of the opponents after the match, allows us to use it as a “groundtruth” to match with our

obstacle detection and tracking algorithm. Here we are assuming the opponent is able to have

a better estimate of its position than the one we are able to detect, which is generally the

case for the top-teams in this league. Unfortunately, due to restrictions imposed by the MSL

rules, there is no groundtruth available for the ball position in the competition dataset.

The proposed solution was tested during the first half (15 minutes) of the final match of

CAMBADA in the RoboCup 2016 World Championship (3rd/4th place match). The obstacle

detection and tracking was analysed offline against the “groundtruth” (provided by the other

team). For this purpose, only free-play situations considered (because in other situations,

humans may be inside the field repositioning the ball, and therefore inducing extra obstacles

in the perception of the robots). Under these conditions, a dataset with 3245 frames sampled

at 10 Hz was considered. This dataset includes data that allows the calculation of average

precision, recall and false-positive rate.

The results of all tests are presented in Table 3.3 and prove that most spurious detections

occur when the robots are moving faster (in competition, robots can reach velocities of 4

meters per second) and the distance between the obstacles and the perceiving robot increases

- this explains the drop in precision and recall and increase of FPR in competition. One

idea for a future improvement is to model the threshold distances as a function of the robot

velocity.

45

Linear

Vel.

[m/s]

Angular

Vel.

[rad/s]

Avg.

Precision

[%]

Avg.

Recall

[%]

Avg.

FPR

[%]

Avg. Accuracy

Gain

[%]

Lab Run 1 1.5 0.0 98.11 98.11 1.89 17.65

Lab Run 2 2.5 0.0 95.72 96.84 4.76 17.65

Lab Run 3 1.5 2.0 97.37 98.03 3.05 6.25

Competition N/A N/A 92.39 86.82 7.61 N/A

Table 3.3: Results of the tests conducted on the competition (lab results conveniently included

to help comparison).

Moreover, by visual inspection we also noticed that sometimes the false-positive detections

occur near our robots in the competition experiment. Taking our validation criteria into

account, this means that the robots sometimes wrongly identify obstacles in their vicinity.

These situations can occur, for example, after the robot vision system is hit by a ball and

needs re-calibration or in cluttering situations, where strong shadows appear on the field,

because our obstacle detection relies mostly on color - the robots design is required to be

mostly black, which can easily be confused with a dark shadow on the green field.

Figure 3.10: Merged obstacle (black wireframe) from two individual observations (cylinders)

A Position Accuracy Gain (PAG) is achieved by clustering multiple observations of the

same obstacle, as an example on Figure 3.10. By taking two averages - the agents observations

error and the merged obstacles error with respect to the groundtruth - it is possible to calculate

a ratio and the results show that the merged position was always better in all the tests.

As an example, Figure 3.9 shows a comparison between average position error of the

individual obstacle perception of the robots (on the left) and the error of merged obstacles

(on the right), during the second lab experiment.

A thorough study on the false-positive occurrences per frame was performed in the com-

petition dataset (Figure 3.11): a maximum of 7 false-positive obstacles were detected, but in

the majority of the frames the number does not go above 2, which is acceptable, given the

environment characteristics.

46

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

1600

1800
False−Positive Occurrences

Number of false−positives per frame

C
o

u
n

t

Figure 3.11: Closer study on false-positive occurrences on the competition test

3.6 Summary

In this section, a new solution for real-time multi-object tracking with distributed sensing

on a stochastic and highly dynamic environment was presented. The results on the testbed

show the efficiency of the solution and its compliance with the real-time constraints of the

robotic soccer context under benchmark. This solution was implemented on a RoboCup

Middle-Size League agent integrator and also tested during the RoboCup 2016 competitions,

with the results shown for the last match in that year’s World Championship competition in

Leipzig, Germany and it is still the method currently in use to track obstacles by CAMBADA.

Unfortunately, no quantitative direct comparison can be made with other techniques pro-

posed in the literature, as they were not implemented in our experimental setup. Although

some approaches [Ahmad and Bülthoff, 2016] present solutions for the Middle-Size League,

they do not show any results on actual real-world scenarios or do not perform under the

20ms real-time constraint with on-board processing, while others present results under lab

conditions or based on offline processing [Ahmad and Lima, 2013].

47

48

Chapter 4

Coordination in Robotic Soccer

In Multi-Agent Systems, several interacting intelligent agents pursue a common goal by

performing a set of tasks and one of the most important aspects is the ability for the agents

to select and initiate behaviours in a given context in order to help the team achieve a

common goal. To do so, they need to share information and coordinate to maximize the

group gain. Among different topics that orbit around multi-agent coordination [Reis, 2003],

a major one is task assignment. In particular, when dealing with homogeneous teams, where

agents with similar characteristics can assume any available role, fixing the role per agent

may not be the wisest decision, since it would limit the ability to dynamically change roles

between team members, therefore decreasing the overall performance. On the other hand,

dynamically assigning roles in a team can have some associated costs, namely processing

time and computing power, as well as the potential for conflicting assignments (for example,

exclusive roles with double assignments, essential roles without assignment, etc.), which are

usually a consequence of dynamic and distributed assignment and the fact that each agent

can have a slightly different world model from the rest. Although the team attitude could

potentially be seen as the mere conjunction of all individual behaviours, more advanced

coordination techniques can improve the overall team performance as will be seen in this

Chapter.

4.1 Agents Communication

Team coordination becomes impossible without some sort of communication - either

implicit (little or no communication) or explicit.

In a stochastic, dynamic and partially observable environment such as the one in the

RoboCup Middle-Size League, team communication plays a major role maintaining an ac-

curate World Model representation across all team members, supported by the field players

beliefs, since, as previously stated, all sensors must be installed on-board of the robots. There

are, for example, several situations where the ball can be occluded from one robot at a given

49

time, but the ball position and velocity information can be transmitted from another team-

mate that is able to see it. This constitutes one of the simplest, yet effective, forms of

communication among a robotic soccer team.

The 2019 Middle-Size League rules enforce that teams communicate through an IEEE

802.11a/b/n network link via unicast or multicast - an official Access Point is provided for

each field during competitions. Communication is allowed between the player robots and an

additional computer (often called basestation or coach computer), but there are bandwidth

and transmission power restrictions to ensure a fair use of the network to promote favourable

conditions during matches - as of today, 2.2Mbit/sec for each team and −40dBm at 9meter

distance.

These restrictions also exist to serve as an incentive to implement fully distributed so-

lutions and prevent teams from using the basestation computer as a centralised “master”,

directly controlling the “slave” robots. Furthermore, the basestation computer is not allowed

to have any sensors, so all information regarding the world model must be collected from

team players. If a team wants to use a coach in the MSL in their basestation computer, in

order to make a decision, it needs information that can only be communicated by the players

on the field.

Additionally, as mentioned in the previous Chapter, since 2016, MSL teams are encouraged

to supply their worldstate information during the matches for offline-analysis purposes. This

is particularly useful to cross-compare different solutions for, for example, obstacle tracking

among different teams, as localization data from one team can serve as groundtruth for

analysing the other team’s obstacle tracking performance.

In the case of the RoboCup-Soccer 2D Simulation league, there are strict bandwidth lim-

itations [Almeida et al., 2010], which lead teams to develop solutions for smarter information

sharing, such as the Advanced Communications framework [Reis, 2003], in which each player

maintains a separate world model from its perceived one. By comparing both states, the

agent selects the most useful items to share, based on an assessment of the estimated interest

by its teammates.

Motivated by the same restrictions, other solutions that require little or no communication

were proposed based on assigned roles [Kok et al., 2005], player’s beliefs [Isik et al., 2007] and

prediction models trained offline [Stulp et al., 2006]. Simulation challenges also demonstrated

how the combination of implicit coordination with beliefs exchange can perform better than

explicit communication [Isik et al., 2007].

4.2 Strategic Positioning

As teams began solving basic tasks such as localization, locomotion and ball handling,

the need for a strategy quickly arose and this explains why strategic positioning is a relevant

topic within the RoboCup community. Generally, the target position of an agent is called its

50

strategic position and in order to play soccer in an effective way, agents have to coordinate

their positioning on the field and their actions. A good strategic positioning can make a

difference, both in defensive situations by blocking passes from the opponent, and in attacking

situations to create opportunities to pass the ball and progress on the field towards the

opponent goal.

4.2.1 Base Player Formation

One of the first efforts to achieve coordination in multi-agent soccer was Strategic Posi-

tioning with Attraction and Repulsion (SPAR) [Stone, 2000]. This method takes into account

the positions of other agents and the ball. Then, some attraction and repulsion forces are

evaluated regarding opponents, team-mate robots, the ball and the goal to decide the target

position for each agent.

One of the most popular strategic method for positioning in Robocup Soccer Simulation

is the Situation-Based Strategic Positioning (SBSP) [Reis et al., 2001, Lau et al., 2008],

which can be used to calculate target actions for agents on the field. The positioning of an

agent takes into consideration the current team formation, tactic, game situation (attacking,

defending, etc.) and ball position.

A method for dynamic positioning based on Voronoi Cells (DPVC) [Dashti et al., 2006]

was also proposed, which places robotics agents based on attraction vectors. These vectors

represent attraction forces towards objects and take into account each agent role and the

current game state.

Delaunay Triangulation (DT) formations [Akiyama and Noda, 2008] split the soccer pitch

into several triangles, of which vertexes correspond to ball positions on the field and are

associated with a set of target agent positions. In runtime, the estimated ball position is used

to calculate the target positioning of the agents, based on the given training data.

Grid-based approaches have also been applied to robotics to represent and manipulate

different kinds of spacial information, providing a simplified way of perception and modelling

[Rosenblatt, 1998]. This type of representation is often oriented to a specific goal, such as

identifying cells that are occupied by other robots to plan a motion trajectory.

Utility functions (also commonly called utility maps) have been presented [Chaimowicz

et al., 2004, Spaan and Groen, 2003a] as a tool for role selection within multi-agents system

and have recently been introduced in the MSL [Neves et al., 2015] as a method for positioning

of soccer robots in defensive and offensive set pieces, as well as in freeplay pass situations.

The use of utility maps is extremely relevant in the context of this league, specially due to

its unpredictable nature and the need to react to opponent attempts to create opportunities

to pass the ball to a more advantageous position.

51

4.3 Distributed vs. Centralized Assignment

4.3.1 Distributed Assignment

In multi-agent systems, a common distributed approach is to dynamically assign roles

locally (on each agent) based on a set of pre-defined policies that depend on their world

model belief. These policies must be defined in a way that guarantees convergence and avoid

conflicts between intentions and/or actions [Groen et al., 2007]. This is often achieved using

policy reconstruction methods, which make explicit predictions about an agent action, by

explicitly running the decision-making algorithm of that agent, using shared plans [Grosz

et al., 1999] or by using a learned model of the other agent behaviour [Hsieh and Sun, 2008,

Farouk et al., 2017]. Some related work can achieve coordination when in low-communication

and time-critical environments, provided that agents can periodically have full connectivity

[Stone and Veloso, 1999].

However, each agent has a slightly different world model belief at a given time. It was

possible to, in a real application, take an instant snapshot of all agents beliefs simultaneously,

when inspeciting them we would find (slight) differences. This is due to the fact that the

information residing on the agent world model is affected by many disturbances (starting

on the measurement itself, partial observance, unideal modelling, noise, integration errors

and even network delays). Therefore, the obvious drawback of the distributed approach is

that agents are basing their decisions upon different beliefs, which can easily lead to lack of

consensus and conflicting decisions. Most distributed policies designed to reach a consensus

on task assignment are based on the fact that there is a common world model belief for all

agents, which in real time-constrained highly dynamic applications is rare.

To overcome this problem the agents can, instead of deciding locally and instantly com-

mitting to a given decision, broadcast the intention and then use distributed negotiation

algorithms to deal with any conflicts [de Weerd et al., 2017]. However, this approach is

dependent on the network conditions and negotiation is not practical when the application

demands a high level of responsiveness/reactivity.

4.3.2 Centralised Assignment

As opposed to fully distributed approaches, centralised architectures rely on a single agent

to control and monitor the action plans of all other agents. Since this coordinator agent gets

to decide on the final plan (which includes all agents partial plans), any conflicts between

agents’ plans can be taken into account during the planning process.

Centralising the decision to achieve consensus has some advantages over a distributed

approach:

• Centrally solves the problem of tightly-coupled coordination that arises whenever there

are one or more actions of one agent that affect the optimal action choice of another

52

team member, since the decisions are based on a single belief of the world model.

• From a software architecture point of view, it is simpler to implement and maintain.

Albeit these positive aspects, a completely centralised approach has three main drawbacks

with respect to decentralised solutions:

• No redundancy. The coordinator agent constitutes a single point of failure - if it fails,

the whole team may fail due to lack of coordination.

• Network delays can propagate to actions. Decisions need to be communicated to

the agents, which take time that may be critical in some applications, depending on the

authority level of the coordinator agent and the network delays.

• Limited scalability. A higher number of agents will require higher computational

power on the coordinator agent to process and to devise a plan for the complete team

of agents.

4.3.3 Centralised Assignment With Leader Election

When scalability is not a priority, some systems rely on centralised decision taken by one

of the participating agents. However, network delays make it unfeasible for the leader to

make realtime decisions when the environment requires a high level of reactivity. Therefore,

the leader has to provide the team high-level coaching hints that will work towards a group

consensus, while leaving low-level decisions (the fast-paced action that needs to be taken

locally) to the other team-members.

The election of the coordinator agent is a fundamental part of this type of architecture

to overcome a possible faulty coordinator. In case the coordinator fails, the agents need to

recognise that failure and then communicate among them to find consensus on which agent

should become the next leader.

4.4 The Consensus Problem

The consensus algorithms described below were designed to achieve consensus between

processes or between server clusters, but in this section the more inclusive term node will be

used to refer to either an agent or a server in a cluster. Consensus is a general term used

to describe a state where participating nodes on a system agree on something, bound under

certain conditions.

When applied to Multi-Agent Systems, consensus algorithms allow a group of agents to

work coherently, enabling the system as a whole to survive in the event of sporadic failures

of one or more of its members. For example, consensus algorithms have been successfully

implemented for distributed storage on server clusters using log replication [Oki and Liskov,

1988], as well as in robotic networks [Montijano and Sagüés, 2015].

53

4.4.1 Paxos Algorithm

Over the last decade, Paxos [Lamport, 1998] has dominated the subject of consensus

algorithms for software systems. Paxos has either been applied to or influenced many systems

to solve a consensus problem on nodes clusters. Multi-Paxos [Van Renesse and Altinbuken,

2015] is also proposed in the literature, as an optimisation to Paxos - it essentially skips one

step, which has no impact on coherence, for scenarios where the leader remains the same and

online for a long period of time.

However, the (Multi-)Paxos algorithm, which was conceived upon a complex theoretical

model, makes it less convenient to implement in real-world systems: in order to properly run

it on practical systems, significant changes to its architecture are required [Chandra et al.,

2007].

4.4.2 Raft Algorithm

As a response to the concerns mentioned above, Diego Ongaro and John Ousterhout have

developed the Raft algorithm [Ongaro and Ousterhout, 2014], with understandability and

implementability as a primary goal, but without compromising the correctness or efficiency

of the (Multi-)Paxos. Using techniques such as decomposition and state space reduction, the

authors have not only been able to separate leader election, log replication and safety, but

also reduce the possible states of the protocol to a minimal functional subset.

Assumptions

The following three assumptions are made by Raft:

• Machines run asynchronously: there is no clock synchronisation between different

systems and there are no upper bounds on message delays or computation times.

• Unreliable links: possibility of indefinite networks delays, packet loss, partitions,

reordering, or duplication of messages.

• Unreliable nodes: processes may crash, may eventually recover, and in that case

rejoin the protocol. Byzantine failures [Lamport et al., 1982] are assumed not to occur.

Consensus by Strong Leadership

Raft achieves the consensus by a strong leadership approach. In steady-state, a node in

a Raft cluster is either a LEADER or a FOLLOWER. There can only be one leader in the

cluster and when the leader becomes unavailable, an election occurs, and nodes can become

CANDIDATE s.

In the original Raft system applied to log replication, the LEADER is fully responsible

for managing log replication to the followers (the remaining nodes) and regularly informs the

54

time

term
i

term
i+1

term
i+2

term
i+3

Election

Normal Operation

Legend

Figure 4.1: Timeline of example execution of Raft, adapted from [Ongaro and Ousterhout,

2014]. In three of the presented terms, a leader was elected after an election period. Only in

term i+ 2, consensus was not reached during the election process, so a new election stars.

followers of its existence by sending heartbeat messages. Upon receiving this heartbeat, a

FOLLOWER node resets a timer - whenever this timer reaches a timeout value the node can

initiate a new election by becoming a CANDIDATE.

Each leader is elected for a term - a discrete temporal identifier (counter). At most, one

leader can be elected in a given term and the event of a new election marks the start of a

new term, as depicted in Figure 4.1. When a node enters the CANDIDATE state, it sends a

packet to the other nodes informing them about the new term ID and its intention to become

the leader - the other nodes then vote for or against it.

During an election, three situations can occur:

1. The majority of the nodes vote for the CANDIDATE, meaning this node can switch

to the LEADER state and start sending heartbeat messages to others in the cluster to

establish authority.

2. If a CANDIDATE receives any packet with higher term number than its own, they fall

back to FOLLOWER state and vote for the sender candidate. When the term number

is smaller than its own, the packet is ignored the node remains a CANDIDATE.

3. The CANDIDATE neither loses nor wins. If more than one node becomes a CANDI-

DATE at the same time, the vote can be split with no clear majority. In this case, a

new election begins after one of the CANDIDATE s times out.

Limitations

Two main limitations have been identified in the Raft protocol:

• 1 and 2 active nodes corner-cases: when there are less than 3 nodes available, Raft

will fail to elect a leader, because it is impossible to achieve the majority of votes in

either of the cases.

• No prioritisation: nodes are equally probable of becoming the leader. In some het-

erogeneous clusters, the user might want to defer the leadership to a node that has more

computing power available.

55

4.5 Proposed Solution For Leader Election

In this work, a new leader election solution is proposed, based on the ideas of Raft al-

gorithm for that purpose, but including some adaptations to overcome the identified and

aforementioned limitations. Furthermore, we have integrated it in the RtDB middle-ware as

an asynchronous service. By doing so, the information from the current leader is available for

all agents at any time with no need for application-level re-configuration.

4.5.1 Timing Parameters

Three crucial aspects to consider when implementing this solution are the parameterisa-

tion of the sending frequency of heartbeat packets (fHB = 1/∆THB), the heartbeat timeout

(Tmax,HB) and the election timeout (Tmax,E). Despite Raft originally suggesting times in the

order of tens or hundreds of milliseconds, the selection of these times depends a lot on the

application, fail-frequency and the communication medium between nodes.

In most mobile robotic teams, the robots communicate with each other in one or more

of the many different available forms of radio communication. In this particular application,

robots are using the Wi-Fi (IEEE 802.11a standard) in a spectrally dense environment, with

strict bandwidth limitations (currently 2.2Mbit/s).

To select the heartbeat frequency fHB, a trade-off between delay in the start of a new

election and bandwidth expense has to be considered, while accounting for the actual role

of the leader and the frequency at which he produces new information for the team. This is

important because the robots will follow the latest available order while a new leader is being

elected.

The heartbeat timeout Tmax,HB should be selected in line with the packet loss experienced

in the test-bed environment. For example, when selecting an heartbeat timeout that is more

than twice the maximum heartbeat packet period, then a new election will occur when two

consecutive heartbeats are not received from the leader.

The election timeout Tmax,E accounts for the time we allow the exchange of vote packets

and is important whenever no majority of votes is achieved by any of the candidates.

Based on these assumptions, the values were empirically selected as follows based on

background knowledge about the communication problems, with the ranges defining the limits

of random uniform distributions.

40ms ≤ ∆THB ≤ 60ms (4.1)

250ms ≤ Tmax,HB ≤ 400ms (4.2)

Tmax,E = 100ms (4.3)

56

CANDIDATEFOLLOWER LEADER

times out,
starts election

receives votes from
majority of servers

times out,
new election

starts up

discovers node
with higher term

discovers current leader
or new term

BACKUP

number of
nodes < 3

number of
nodes < 3

number of
nodes < 3

number of
nodes >= 3

Figure 4.2: State Machine of The Proposed Solution

4.5.2 The Backup State

To tackle the first Raft limitation identified in section 4.4.2 (failure to achieve majority

in an election with less than 3 active nodes), apart from LEADER, FOLLOWER and CAN-

DIDATE states in the original Raft algorithm, the BACKUP state was introduced, which

is triggered whenever there is only 1 or 2 active nodes in the system. The complete state

machine is presented in Fig. 4.2.

Each node maintains a dynamic dictionary of timers, indexed by the peer ID. The timer

belonging to a peer node is reset whenever a packet is received. The active nodes list is

determined by the peer IDs in the dictionary that have an elapsed timer lower than the

heartbeat timeout. The LEADER, FOLLOWER and CANDIDATE states indirectly force the

nodes to send packets periodically (either actively or as a reply/vote), but not the BACKUP.

Therefore, a new type of packet (keepalive) was introduced, which is sent periodically by

nodes in the BACKUP state to keep the active nodes list up-to-date.

It was also defined that when in a BACKUP state, the leader is determined by the lowest

ID among the active nodes.

4.5.3 Preferred Leader Agent

In our particular application, in order to free computational resources from the robots, it

is wise to give preference to a coach computer to be the leader, whenever it is available, while

keeping the leader election functionality active as a redundancy mechanism for failures.

In order to achieve this priority for the coach agent, while keeping harmony and consistency

among the voting agents and the voting process, we skip the heartbeat timer reset on the

57

3

2 4
5

Experiment
Coordinator

0

Wi-Fi 802.11a
Access-Point

Wi-Fi
(14m distance)

Wi-Fi
(2m distance)

6

Figure 4.3: Experimental Setup

coach agent. When joining the network, the coach agent will start as a follower and will start

receiving the heartbeat packets from the current leader, updating its term accordingly, but

ignoring the heartbeat timer reset step. When reaching the heartbeat timeout, the coach

agent will start a new election in a higher term and the previous leader will retreat. This

constitutes the only situation when an agent intentionally takes over the team leadership, but

a solution to solve the lack of prioritization leadership attribution of Raft.

4.5.4 Experimental Setup and Results

To test this solution, an experimental setup has been devised with 5 computers running

the communication process with the leader election algorithm described in the previous sec-

tion and an experiment coordinator. The coach agent was disconnected. The coordinator was

impaired from becoming the leader, but participates in the voting phase and is responsible

for monitoring the leader selection evolution, measuring times and forcing periodic communi-

cation failures (each 5 seconds, approximately) on the elected leader, hence triggering a new

election, and logging data for offline analysis. The setup is depicted in Fig. 4.3.

The system has been setup and worked for 16 hours and 37 minutes, producing a total

number of 11970 terms. From this dataset it is possible to statistically analyse the performance

of the proposed solution with respect to term period, election time, occurrence of simultaneous

multiple candidates in an election, leader attribution distribution and also the number of

failed elections due to lack of majority in the voting process. Among all samples, the average

measured term time was 5000.15± 92.73ms, which is consistent with our experimental setup

described above.

58

200 300 400 500 600 700
Time (ms)

0

200

400

600

800

1000
Fr

eq
ue

nc
y

Election Time Histogram

Figure 4.4: Election Time Histogram

Failed Elections

Having the coordinator participating in the voting rounds, makes it possible to tie a voting,

because the total population consists of 6 agents. A failed election occurs whenever none of

the candidates receives the majority of votes. From the total number of 11970 terms, there

were 2 registered failed elections.

Election Time

Election times were inspected (Fig. 4.4) showing that they follow a distribution that is

consistent with the selected heartbeat timeout time Tmax,HB ∈ [250 − 400]ms, picked by a

random uniform distribution on that range.

It is also important to mention that apart from the results presented on Fig. 4.4, there

were 5 other samples with higher election times, namely: 1.1, 2.2, 2.6, 2.7 and 2.8 seconds.

Because these account for 0.04% of all samples, they can safely be treated as outlier samples

(of which cause can be related to external factors, such as the WiFi), therefore these were

not included in the Figure to improve visibility of most samples in the plot.

Simultaneous Multiple Candidates

The occurrence of multiple candidates for election was also analysed. These results are

shown in Fig. 4.5 (with the y axis in a logarithmic scale), were we can see that in 97.4% of

the samples there is only one candidate, 2.5% two candidates and 0.03% (only 3 times in

the whole run) three candidates, which was the maximum count for multiple candidates in a

single round.

59

1 2 3
Number of candidates in a term

101

102

103

104

Oc
cu

rre
nc

es

Number of Candidates Histogram

Figure 4.5: Number of Candidates Histogram - y axis in logarithmic scale

Leadership Attribution

A uniform distribution of leaders among the eligible agents was expected, however there

are small differences between the agents, as shown in Fig. 4.6a. Since agent 3 (the laptop

closer to the access-point) showed the maximum number of wins in elections, we wanted to

investigate further if this was merely a coincidence or if the relative position to the access-point

would affect the priority of being selected as a leader when there are multiple candidates.

2 3 4 5 6
Agent Number

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Leader Attribution

(a) Global attribution

2 3 4 5 6
Agent Number

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Elected Agent With 2 Candidates

(b) Multiple candidates attribution

Figure 4.6: Leadership attribution analysis

To test that hypothesis, we analysed the leader attribution in the terms for which there

were more than one candidate (Fig. 4.6b). These results do not show a clear higher chance of

agent 3 to become a leader in conflict situations. Because in this setup many external factors

can influence the communication medium, further tests must be performed with laptops’

positions shuffled between runs.

60

4.6 Summary

In this section, a new solution was proposed to coordinate multiple agents in a MAS in a

hybrid fashion - decisions can be centralized in an agent, but a new leader is elected using a

distributed voting system based on Raft in case the current leader fails. Tests were conducted

on a lab experiment that forced leader re-elections periodically.

This solution solves a corner-case of the original Raft algorithm for few agents running,

while adding the possibility of having a preferred leader among the team, which is useful

when resources are not evenly distributed.

The results showed the expected results and therefore, this solution has been successfully

integrated and adopted into the CAMBADA agent architecture to be used as an integral part

in the following Chapter 5.

61

62

Chapter 5

CR7 Setplay Engine

In the context of robotic soccer, once a solid baseline of skills is established, teams usually

focus on higher-level features.

In 2014, the CAMBADA agent software architecture has been redesigned [Dias, 2014]

to address this issue and turn the CAMBADA architecture into one that could be easily

modified without compromising the final result - something that the previous architecture

failed in providing, since it was based on overly complex state machines with manually-

defined transitions. In order to achieve the best results in the competitions, it is utterly

important that the software architecture is modular and flexible to allow the deployment of

different strategies for different teams.

With a matured modular software architecture in place and making use of the enriched

world model with the features detailed in the previous chapters, it was possible to develop a

new setplay engine - the CAMBADA Cooperation fRamework 7 (CR7) engine.

5.1 Motivation

CAMBADA has been using an existing tool (Figure 5.1) to configure the robots positioning

in setpiece situations (Freekick, Kick-Off, Corner, etc.). The field was divided into 10 zones

and this tool allowed the user (defined as the human team member that uses the available

tools) to setup a single-step (one pass) setplay for each zone. This simple, yet effective, tool

provides a few features that should be highlighted:

• Robot Availability Flexibility: all the defined robot positions have a priority and,

at run-time, robots are assigned in order to these priorities. When not all the robots

are playing in the field, positions with lower precedence are not used.

• Pass priority: Among the available receivers, the pass-line is evaluated in an order

that can be different than the receiver assignment order above. The pass will be made

to the first available pass line to a receiver.

63

Figure 5.1: The existing CAMBADA setpieces configurator

• Options per receiver: There are a few check-boxes that slightly change how the

robots behave when executing the set-piece. These allow to set a robot position as

relative to the ball, to enter a “cover” stance (that relates to a specific CAMBADA

behaviour), to enable and disable check for line-clear, to dynamically align with the

opponent goal when facing the ball (more on this later in this chapter).

However, this workflow does not account for multi-step setplays nor free-play situations.

One solution to overcome this could be the integration of the third-party setplay engine from

the FC Portugal team (Simulation 3D league) [Mota et al., 2011] into CAMBADA, for which

a couple of attempts were performed. This setplay engine is highly flexible with a few features

to be highlighted:

• Multi-Step Execution: the setplays can have multiple available steps, which are

executed in sequence;

• User-Defined Conditions: all the conditions to initiate a setplay and also transition

from one step to another are completely defined by the user, with a set of helper con-

ditions available to the user, which include, but are not limited to, ball possession, ball

position, player position and alike;

• Configuration UI: The setplays and the respective steps can be visualized and edited

in a configuration tool called “SPlanner”.

64

However, a few issues were raised by the team in the latest attempt to integrate this

engine in the CAMBADA architecture, namely the cost of flexibility - the FC Portugal en-

gine makes no assumptions about any conditions: the user is therefore required to input all

invocation conditions, all conditions to transition between steps and also abort conditions.

Failing to input all the correct conditions would result in an unexpected behaviour or even

dead-locks. Moreover, the actions to be executed during a setplay (pass, move, etc.) had to

be implemented in a class that most of the times replicates the regular team play behaviours.

Maintaining an extensive codebase with duplicate behaviours was also pointed out as a major

drawback.

Additionally, using independent solutions for stop-game setpieces and free-play setplays

would imply having different configuration tools, which is not desirable nor scalable - apart

from the obvious multiple configuration tools and files, there is no relationship between the

two, so there was no elegant solution to force a setplay to initiate after a setpiece situation.

The aforementioned drawbacks of the two solutions were the main motivation to create

the CR7 engine. This proposed solution, built from scratch, makes use of a few of the

FC Portugal engine components as baseline (mainly the configuration UI and the ideas of

setplays composed of multiple steps and transitions between steps) and some concepts of the

existing setpieces tool in order to provide an integrated way to configure planned setplays

execution. In order to achieve that, a set of requirements was settled:

• Valid for Free-play and Setpiece situations: the solution must account for setplays

that are initiated in the middle of a match in free-play, but also setpiece situations that

must account for the status of the game in a special way (the robots should position

themselves prior to a referee start);

• Flexible Dynamic Positioning: it is possible that, at runtime, during the match, a

target position for a robot is already occupied by an opponent. However, the play should

continue if the robot can find another valid position nearby the pre-defined position.

Therefore, all target positions should be assigned a radial margin (which could also be

infinite);

• High-Level Abstraction: the user should not be required to input all conditions, as

most of the times the engine can infer those conditions from the defined actions. For

example, for a pass action, the condition to start the transition would be a robot with

the ball possession and a receiver within the target area (position + margin) with line

clear for the pass. Similarly, the transition ends when the receiver grabs the ball;

• Distributed Coordination: the execution of a setplay usually requires a “conductor”

and the previous integration of the engine in CAMBADA used the coach for that pur-

pose. It is possible to eliminate this single point of failure, as setplays should continue

to operate with the Leader Election mechanism (Section 4.5);

65

• Tight integration with the existing architecture: this includes reusing existing

behaviours (for ball protection, pass, receive, etc.) and an execution engine that fits

with the existing BDI architecture [Dias, 2014];

• Drag-and-drop UI Interaction: it should be possible to define the simplest proper-

ties of setplays actions with just the mouse in a drag and drop fashion. For example,

dragging from one robot to another one should assume a pass action, or dragging to

a free position in the field should assume a move action, etc. Additional fine-tuning

configurations should also be possible;

• Configurable Zones: the zones in the previous tool were fixed and hard-coded, which

sometimes was limiting. The team requires a flexible way to define field regions (called

“Zones”).

The CR7 software package is composed of two main components: a library and a config-

uration tool. Both will be detailed in the following sections 5.2 and 5.3, respectively, along

with the design choices discussion.

5.2 Library Software Architecture

The library was implemented in C++, making extensive use of the object oriented pro-

gramming paradigm.

CR7Step

CR7Config

CR7Transition

CR7Player

CR7WSContext

CR7Manager

CR7Setplay

1..*

0..*

1..2

1

1..*

1

0..*

1

CR7Action

1..*

1

1

1

1

1

CR7PlayerInitCond

1..*

1

CR7SetplayList
1

1

CR7ZoneSetList

1

1

CR7ZoneSet
0..*

1
CR7ZoneCellDefinition

1

1

1..*

1

Figure 5.2: CR7 Classes Overview UML Diagram

66

Figure 5.2 shows an overview of the framework classes. In the following sections, the

architecture will be thoroughly described along with explanations for some of the design

choices. Full class documentation is available in the Appendix A.

5.2.1 Types of Setplays

The CR7 Engine divides the Setplays in 3 different types: Freeplay, Kick-Off and

Setpieces. This separation comes from the fact that each of these three situations must be

handled in a different way in terms of activation, release and transition evaluation conditions:

• Freeplay: setplays to be executed during regular operation, assuming one robot player

has the ball possession. Initialization conditions depend on the participating players

availability and their absolute positions on the field.

• Setpieces: setplays for setpiece situations other than Kick-offs (mainly Free-kicks,

Throw-ins, Goal-Kicks and Corner-kicks). The initialization conditions depend on the

participating players availability, on the game state being a setpiece one and the ball

position being inside a zone in the field that is associated with the setplay.

• Kick-Off : special setplays tailored at kick-off situations. Initialization conditions de-

pend on the participating players availability and on the game-state being Kick-off.

This type of setpiece is isolated from the remaining ones because it has special con-

straints - the ball position is previously known and the robots initial positions must be

constrained to the team own field.

By separating the Setplays in these three groups, the user is not required to take any

special considerations about initialization conditions specificities, since the engine can assume

the aforementioned conditions for each case based on the setplay type.

5.2.2 Players Definition

Team players are assumed to take roles (such as attacker, defender, midfielder, etc.) that

are unique among the team and robots can change roles dynamically during the match, but

each role can only be assigned to one robot at a time. The only assumption made is that the

Striker (also known as “attacker”) is the one that has the ball in free-play or is the one to get

the ball and perform the first pass in kick-offs and other setpiece situations.

The Player IDs defined in CR7 by default are: Striker, Supporter, Midfielder and Defender.

Because this has a strong correlation with the team architecture, the management of available

player IDs is performed by configuring the SETPLAYS PLAYER enumerator in the CR7Defines.h

header file.

67

5.2.3 Actions Definition

In each transition between steps, each participant player has an associated explicit action,

which can be one of the following:

• Wait: The player does nothing in this transition.

• Move: The player moves to a defined position (with margin). If the player is the ball

holder, a dribble is performed.

• Pass: Action only available for the ball holder, make a pass to another player.

• Get Ball: only available in Kick-Off and SetPiece situations, until the ball is grabbed

by one of the participants.

Any references to the SETPLAYS ACTION enum in this chapter are related to the actions

above. It is important to note that each Action above does not translate directly into an agent

Behaviour because there are also implicit actions that arise from the defined interactions. For

example:

• Ball Protect: The ball holder is expected to protect the ball from opponents while

the Setplay is executing - it is not acceptable that it stays still waiting for the receiver

team-mate to find a position with a clear pass-line. Therefore, when a ball holder has

a Wait action, it will protect the ball from the opponents. It will also protect the ball

while executing a Move action and even when its action is Pass, but it is waiting for a

clear pass-line.

• Receive Ball: Receiving the ball is not an explicit action for a player - the receiver

can either have a Wait action (and receive the ball in the position where it is already)

or a Move action (and receive the ball in a different position - if the situation allows, a

forward pass can be achieved). This Receive Ball action is triggered whenever another

player has the Pass action for the target player of the pass.

• Recover Ball: Real systems fail. Failing to correctly receive the ball after a pass could

lead to a Setplay abortion. However, it is sometimes possible to recover the ball within a

relatively small time frame. It is probably wiser to allow the receiver to recover the ball

and try to continue with the Setplay instead of aborting it. While the ball possession

is evaluated to be on our team’s side and the execution is within the time limit, the

players will keep executing the Setplay.

68

5.2.4 Positioning Options

All positions defined in a Setplay have an associated margin. The Players position in the

first step serve as the initialization conditions for the setplay. Freeplay Setplays, among other

conditions, can be executed if, during the match, the players happen to be in the positions

defined in the first step, within the given margin. For setpieces, these positions serve as hint

positions for the players - the receivers use the are within the margin to position themselves

in a place where a pass is possible.

When a Setplay is executing, any positions have an associated margin to allow players to

dynamically react and adapt to the opponent team while thriving to finish the execution of

the Setplay.

Specifically for Setpieces, it is possible to define positions in absolute field coordinates or

relative to the ball position. Additionally, also exclusively for Setpieces, it is possible to

define a boolean option to dynamically align a player with the opponent goal. It is important

that both players are aligned with the goal before the initial pass, to be able to make the pass

and kick as quickly as possible to the opponent goal.

5.2.5 Architecture and Design Choices

In this section, some of the most relevant classes are presented, along with their most

important methods, including brief explanation of the functionality and their interaction.

The main purpose of this section is to justify some design choices, and it is roughly organized

in a bottom-up approach following their interaction model - refer to Figure 5.2 for an overview

of the framework classes and the Appendix A for a complete class reference.

Config

Reference C++ class: CR7Config.

This class is responsible for reading from and writing to configuration files. The CR7

configuration file is a JSON file that follows a pre-defined schema (Appendix A.16). JSON

was chosen because it is human-readable and there are already many libraries for all platforms

that allow operations on JSON objects, therefore it is scalable for future updates, namely

integration with other tools.

Most relevant methods:

• void LoadConfigFile(const std::string& filepath)

Reads the file passed in the filepath argument and parses its contents into internal

configuration variables. Throws an exception with a description of the failure.

• void SaveConfigFile(const std::string& filepath)

Dumps the contents of the internal configuration variables into a properly formatted

69

JSON file in the specified filepath. Throws an exception with a description of the

failure.

• CR7ZoneSetList* GetZoneSetsList()

Returns the list of Zone Sets.

• CR7SetplayList* GetSetplayList()

Returns the list of Setplays.

World State Context

Reference C++ class: CR7WSContext.

The World State Context class serves as the interface class for the application architecture

world model. The application that is going to integrate CR7 needs to instantiate and feed a

CR7WSContext with live data from its world model regarding the game state, the players pose

and velocty, the ball position and velocity, evaluation of clear pass lines, etc.

Management of running setplays during runtime is highly dependent on this class, as it

provides all the information required to trigger, release and manage setplays.

All methods

• std::vector<SETPLAYS PLAYER> CR7 getAvailablePlayers()

Returns a list of the currently available players.

• Vec CR7 getPlayerPosition(SETPLAYS PLAYER playerId)

Returns the absolute position of a player.

• int CR7 getPlayerAgentIdx(SETPLAYS PLAYER playerId)

Returns an unique ID of a player. Unlike roles, the unique ID does not change for a

robot.

• Vec CR7 getPlayerTargetPosition(SETPLAYS PLAYER playerId)

Returns the absolute target position of a player (position in the field the robot is moving

to).

• bool CR7 playerHasBall(SETPLAYS PLAYER playerId)

Returns true if given player has the ball, false otherwise.

• bool CR7 playerPassedBall(SETPLAYS PLAYER playerId)

Returns true if given player has passed the ball, false otherwise.

• bool CR7 isBallVisible()

Returns true if the ball position is known, false otherwise.

• Vec CR7 getBallPosition()

Returns the absolute ball position.

70

• Vec CR7 getBallVelocity()

Returns the absolute ball velocity.

• bool CR7 ballInOurPossession()

Returns true if the ball is in team’s posession, false otherwise.

• bool CR7 ballInTheirPossession()

Returns true if the ball is in opponent’s posession, false otherwise.

• bool CR7 isInsideField(Vec testPos, float outMargin)

Returns true if the testPos position lies inside the field (augmented by a margin defined

by outMargin), false otherwise.

• bool CR7 passLineClear(Vec p1, Vec p2)

Returns true if there is a clear pass line between two absolute points defined by p1 and

p2, false otherwise.

• bool CR7 GameState Changed()

Returns true if a game state change occurred between the last cycle and the current

one, false otherwise.

• bool CR7 GameState Stopped()

Returns true if the current game state is Stop, false otherwise.

• bool CR7 GameState KickOff()

Returns true if the current game state is KickOff, false otherwise.

• bool CR7 GameState Setpiece()

Returns true if the current game state is Setpiece (Free-kick, Corner, Throw-in, etc.),

false otherwise.

• bool CR7 GameState Freeplay()

Returns true if the current game state is Freeplay, false otherwise.

Manager

Reference C++ class: CR7Manager.

The Manager is the entity responsible for managing the execution of Setplays (Sec-

tion 5.2.5). The list of available Setplays is given by a Config (Section 5.2.5) instance - the

manager goes through this list to check if any Setplay execution can be initialised. The Man-

ager constitutes the entry point for every agent that participates in the Setplays (all robots

agents and also the coach). Internally, the Manager uses the Leader Election mechanism to

decide if it should lead the Setplay management or follow a leader.

71

The setplay execution state is synchronised between all agents using a new shared item

in the CAMBADA RtDB, which includes two fields: the executing (if any) Setplay identifier

and the corresponding currently executing Step.

Most relevant methods

• void update()

Must be called every cycle. If the caller is the current leader, it manages the setplay

execution; if not, it synchronises local information with the information shared by the

current leader.

• bool isRunningSetplay()

Returns true if executing any Setplay, false otherwise.

• CR7Setplay* getRunningSetplay()

If running a Setplay, returns a pointer to its object, or NULL otherwise.

Setplay

Reference C++ class: CR7Setplay.

This is the main container of a Setplay, with properties that include the name, Setplay

type, enable status, zone definition (when type is Setpiece), maximum execution time and

cooldown time (the time during which the setplay is temporarily disabled after it was exe-

cuted). It also contains methods and properties for runtime operation that serve as helpers

for the Manager.

Most relevant methods

• bool IsRunning()

Returns true if the Setplay is running, false otherwise.

• bool HasFinished()

Returns true when an end-step (a step without exit transitions) is reached, false other-

wise.

• bool CanExecute(CR7WSContext* world)

Returns true if all the conditions for execution are met. If the Setplay is not running,

it checks if all the invocation conditions are met to start execution. If the Setplay is

already running, it checks if the next transition is still valid.

• void UpdateExecution(CR7WSContext* world)

This method is called by the Manager to update the execution based on an updated

new World State Context. It updates internal variables and is responsible for checking

if a transition has ended to move to the next step or abort the Setplay.

72

• CR7Step* GetCurrentStepPtr()

Returns a pointer to the currently executing Step.

Step

Reference C++ class: CR7Step.

Step objects contain participant Players and associated Transitions.

Player

Reference C++ class: CR7Player.

This class holds information about a Player state, namely its configured target position

and margin, the ball holding status and other flags for specific situations (such as setplays).

Most relevant methods

• SETPLAYS PLAYER getPlayerID()

Returns the player ID associated with this Player.

• bool getBallHolder()

Returns true if this player is the ball holder in the respective Step.

• Vec getPosition()

Returns the configured target position.

• double getPositionMargin()

Returns the configured target position margin.

• SETPLAYS REL TYPE getRelType()

Returns the type of relative positioning (if any) to be considered.

• bool getAlignWithGoal()

Returns true if the player should align with the opponent goal. This flag can be used

in setplays for receiving Players, to have them position themselves aligned with the ball

and the opponent goal, regardless of the actual ball position.

Transition

Reference C++ class: CR7Transition.

A Transition is established between Steps and defines the actions for each Player.

Most relevant methods

• CR7Step* getSource()

Returns a pointer to the source Step of this transition.

73

• CR7Step* getDest()

Returns a pointer to the destination Step of this transition.

• std::map<SETPLAYS PLAYER, CR7Action*>& getActions()

Returns a map with the Actions for all Players.

• CR7Action* getPlayerAction(SETPLAYS PLAYER playerID)

Returns a pointer to the Action of the given Player.

Action

Reference C++ class: CR7Action.

The action holds information about an action to perform and its associated parameters.

Most relevant methods

• SETPLAYS ACTION getType()

The action type, as described in Section 5.2.3.

• SETPLAYS PLAYER getReceiver()

Returns the player ID when the type is Pass.

• Vec getToAbsPoint()

Returns the target position when type is Move.

• Vec getMargin()

Returns the target position margin when type is Move.

• bool getOptPassIgnoreLineClear()

Returns true when the user configured this step to ignore the check for a clear pass-line

when type is Pass.

Zone Sets and Zones

A Zone Set constitutes a way of dividing the field into smaller cells. In order to keep

the divisions agnostic to field size variations over time, these are defined in a normalised and

tree-like way. Starting with a full field, it can be divided either in the x-axis direction or the

y-axis direction, with division thresholds being defined between -1 (field left or bottom) and

1 (field right or top). Then, each resulting cell of the division, can again be divided into other

sub-cells with the same or a different direction, using the same normalisation technique.

After all the divisions and sub-divisions, field Zones are defined as the resulting end-cells

(cells that are not sub-divided). This can also be seen as a branching model, where the Zones

are defined as the leaves on this tree.

Several different ZoneSets can be included in the configuration file and be referenced by

Setpiece type of Setplays.

74

5.3 CR7Planner - Configuration Tool

The CR7Planner is the configuration tool with a user interface to manage the CR7 con-

figuration file in a visual way. It has been developed in C++ and Qt5, with some UI widgets

and the layout adapted from the FC Portugal SPlanner [Cravo et al., 2014].

5.3.1 Extending CR7 classes for UI

One very important aspect of this configuration tool is that it uses the Config class to

load and save the JSON configuration file into CR7 classes objects - this is utterly important

to maintain the coherence between the JSON file generation from the CR7Planner and the

parsing done by the agents.

For UI manipulation, Qt expects that each object inherits from the QGraphicsItem class.

Instead of making Qt a dependency of the CR7 library, the proposed solution is to have

separate classes for the CR7Planner that inherits both the QGraphicsItem and the CR7 base

class, which will hereby be referenced to as “CR7 Qt classes”.

A possible alternative would be to maintain two separate sets of objects (one set loaded

and created by the CR7Config, and another of “CR7 Qt classes” created by the tool with a

copy of the attributes from the first set) - but it would use more RAM than what is necessary

and it would result in the same consistency problem that we were avoiding before by requiring

the user to copy all attributes from and to the base classes for saving the config file using the

CR7Config object in the end.

The proposed solution consists in making this transparent for the user, by performing a

three-step operation on load:

• Step 1. Load CR7Config: The configuration file is loaded by the CR7Config and all

objects are created in their CR7 base class form.

• Step 2. Populate “CR7 Qt” objects: The CR7Planner goes through the structure

of the config (setplays, child steps, transitions, actions, players, etc.) and creates cor-

responding objects of the corresponding types that inherit the QGraphicsItem and the

CR7 base class. The contents of the objects are copied by making use of the serialization

and de-serialization methods that exist in the base classes - i.e. the objects are exported

to JSON and then imported in the Qt objects.

• Step 3. Pointer substitution: This step consists in going through the base objects,

free them and replace the pointers by the pointer to the Qt object that corresponds to

the deleted base object. This works because the CR7 Qt classes extend the respective

CR7 base classes (thus, they also contain the methods from the CR7 base class), they

can be manipulated both by other CR7 base classes or by the configuration tool - this

makes it highly transparent for the programmer.

75

After running this process, any “get” operation on the CR7 classes can be seamlessly

upcast to a corresponding CR7 Qt class at any time in order to make use of the extended

class methods.

5.3.2 Layout Overview

The CR7 Planner layout is tab-based, with two fixed main tabs: Zones (Figure 5.3) and

Strategy (Figure 5.4).

Figure 5.3: CR7 Zones Tab: shows a list of the Zone Sets and a visualisation for the selected

Zone Set in the field 2D visualiser.

Figure 5.4: CR7 Strategy Tab: displays the complete list of Setplays, grouped by type

(Freeplay, Kick-Off and the Zone Sets names).

It is possible to enable and disable a Setplay by double-clicking the “Enabled” column.

The toolbar above allows the user to add and remove Setplays.

76

Figure 5.5: CR7 Setplay Tab screenshot.

When double-clicking on a setplay (or selecting it and clicking on the Edit button), a new

(closable) editor tab opens for that Setplay. The Setplay editor tab is depicted on Figure 5.5

and its layout is divided into the following sections:

• Top-left - Setplay global preferences: maximum setplay execution time and cool-

down time (can be expanded with further options in the future);

• Bottom-left - Setplay Steps graph: the Steps and their linked Transitions. It is

possible to click each Step or Transition to select it for editing;

• Center: the field 2D visualisation with drawn robots, their actions and field Zone when

applicable. Players Actions are set by interacting visually in this widget (explained in

section 5.3.3).

• Right sidebar: properties for the selected Player. Depending on the situation, it may

allow the user to set the positioning type relative to the ball instead of absolute in

the field, the position margin, shows the Action data (like position and travel distance

when in Move, receiver Player when in Pass, etc.) and allows to set the action options

(margin, ignore line-clear flag, etc.).

5.3.3 Initialization Conditions and Player Actions

The user can edit the Setplay initialization conditions by dragging the players out of the

“bench” with left mouse button, when in Step 0 (always the first step). Setting their posi-

tion and respective margin defines the initialization condition based on the Players position.

77

Players in bench do not participate in the Setplay. For participant Players, when a margin of

zero is applied to its start position, it is interpreted as infinite (i.e., the player is only required

to be available, independently of its position on the field).

When editing Setplays of the Setpiece type, it is also possible to move the ball inside the

selected field Zone and see the robots which position is defined as relative to the ball moving

along with the ball. This is useful to check for conflicting Players positions.

Setting or editing Actions for Players can be achieved by dragging with the right mouse

button starting on that Player:

• Drag to itself: sets a Wait Action (default);

• Drag to a field position: sets a Move Action to that position;

• Drag to another Player: sets a Pass Action to that Player;

• Drag to the ball: sets a Get Ball Action (only available in Kick-Off and Setpiece posi-

tions).

5.4 Unit Testing

In order to test the Setplay engine before integrating it with the CAMBADA agent, a

unit testing framework has been devised using the Boost test library. A Dummy World State

class has been created, which allows the user to manually set the positions for the players,

their velocity, the ball position and velocity, ball possession, etc.

The test cases use a Manager that is plugged into an instance of the Dummy World State

and manually force world state conditions between Manager update() calls and check for

expected conditions. This proved to be a very useful tool to keep the coherence of the engine

throughout development and has been included in the library to help on further development.

5.5 Integration in the CAMBADA Architecture

The CAMBADA software architecture is also implemented in C++ and already has a

World State object, which is able to feed the CR7 World State Context object. Therefore,

the integration started by making the existing World State class a child of the CR7WSContext

class. The CR7WSContext class virtual methods were then implemented by calling existing

methods of the CAMBADA World State.

A CR7 Manager was then added to the CAMBADA agent (which is a process running in

every robot, as explained in Section 1.3) and the coach (process running in the basestation

computer). Because of the way the previously presented Leader Election (Section 4.5) algo-

rithm works in CAMBADA, the coach is selected as the leader by default and the robots will

synchronise with the coach Setplay Manager execution state, as explained in Section 5.2.5

78

Manager subsection (page 71). The leader election algorithm ensures that if the coach process

fails or is not running, one of the robots will assume the leadership and manage the Setplays

for the whole team.

A Zone Set has been created that resembles the previous set of zones that CAMBADA

used for the setpieces execution and multiple setplays for multiple situations have been added

to the configuration file.

The CAMBADA Basestation [Figueiredo et al., 2009] tool has also been updated to display

a preview of the running Setplay while the robots are executing it, showing target positions,

margins, pass-line clear status and other relevant information in realtime.

5.6 Results

Following its successful integration within the CAMBADA architecture, the CR7 Frame-

work has been thoroughly tested during an MSL competition, the Portuguese Robotics Open

2019, which follows the official RoboCup rules. Table 5.1 shows an overview of the results

achieved by the CR7 framework in free-play during the tournament.

Stage Match Executed

Setplays

Success

Rate

Lost Ball

Possession

Round-Robin 1

CAMBADA - Falcons 8 25% 0%

CAMBADA - Tech 10 40% 17%

CAMBADA - VDL 7 29% 0%

Round-Robin 2

CAMBADA - 5DPO 6 50% 0%

CAMBADA - Falcons 6 50% 0%

CAMBADA - Tech 9 0% 33%

CAMBADA - VDL 6 50% 0%

Semi-Final CAMBADA - VDL 5 40% 0%

Final CAMBADA - Tech 3 33% 50%

Table 5.1: Results of the CR7 framework in the Portuguese Robotics Open 2019 in free-play

setplays.

The Success Rate column represents the average success of all the setplays executed on

the respective match. Considering that creating a opportunity to kick to the opponent goal

is the ultimate objective of a setplay, it was considered to be successful in two situations:

• The setplay plan was executed until the last step without interruptions

• The setplay was interrupted because there was a chance to kick to the opponent goal

The Lost Ball Possession column represents the percentage of occurrences where our

team has lost possession of the ball to the opponent team on unsuccessful setplay executions,

excluding setplays that were aborted due to a game stop issued by the referee.

79

The actual list of configured setplays has changed multiple times throughout the com-

petition (sometimes even between the first and second halves of the same match), while

CAMBADA tried to adapt to the opponent team strategies. This also proves that the team

can modify, create and disable CR7 setplays in an expeditious way.

Table 5.2 includes a summary of the causes for the setplays to finish throughout the same

tournament.

Reason to finish setplay Occurrences

Successful

Kick and Goal 12

Finished plan 5

Kick 3

Aborted

Pass-line blocked (before pass) 21

Lost ball control 11

Ball intercepted by opponent after pass 5

Game stopped by the referee 4

Ball pass reception failed 3

Table 5.2: Reasons for the setplays to finish.

5.7 Future Work

There are a few ideas to enhance the current implementation of the CR7 engine.

The current version of the engine does not allow branching from steps (i.e. a setplay step

can only transition into another step). This will require some kind of order prioritization

regarding the condition evaluation of the multiple options, as well as the respective editor in

the GUI tool.

One important feedback from the team was the possible need for additional options for

setplays and steps. For example, an option to allow and disallow the interruption of the

setplay on a certain step, due to an opportunity to kick to the goal. Another possible global

setplay option would be a maximum number of executions per match/half. Options such as

these are expected to be added according to the strategic needs of the team.

Another feature for future development is the ability to visually edit zones in the CR7

Planner. Currently, they have to be defined in the JSON file directly.

In terms of the strategic capabilities it provides, it would be interesting to add statistics

digestion to the setplays, allowing these to be updated continuously and thoroughly. With

such statistics, it would be possible to add long-time learning capabilities to the CR7 engine,

training a model to maximize the success-rate based on the attempts made during the matches.

80

Chapter 6

Conclusion

In this Chapter, the main conclusions are drawn regarding the work devised and the

resulting major contributions in the thesis topics: perception, multi-object tracking,

leader election and finally the CR7 setplay engine.

6.1 Perception

This thesis work initiated with some improvements on the robots proprioceptive percep-

tion. By rearranging the main processes execution pipeline, it was possible to guarantee a

significant jitter reduction in communication with the low-level. Furthermore, by incorpo-

rating extra information in the integration step (which included vision-flow, gyroscope and

yaw measurements), the robot pose and velocity estimations were improved. Moreover, the

high-level motion control was also improved by incorporating a new solution that takes into

account some of the physical constraints related to the CAMBADA robots hardware, by us-

ing the angular difference between the relative target position and the estimated robot linear

velocity. The maximum allowed linear velocity is then modulated in terms of this angular

difference, which resulted in a more predictable robot path in some movements (a lot closer

to the expected motion path), but also significantly optimizes the total trajectory time and

thus faster motion transitions.

In terms of environment perception through vision processing, the ball detection algorithm

was also improved by introducing two extra steps in the previous process: an edge detection

and a RANSAC fitting, which results in a more precise estimate of the ball position, especially

when the ball is partially occluded by another robot.

Finally, the obstacle identification algorithm was also improved for situations where the

obstacle is partially occluded by the ball.

Although this work on perception might seem a bit off the remaining work, it provided a

solid baseline for the following higher level developments.

81

6.2 Multi-Object Tracking

A solution for real-time multi-object tracking on a stochastic and highly dynamic envi-

ronment was presented. The results on the testbed show the efficiency of the solution and

its compliance with the real-time constraints of the robotic soccer context under benchmark.

However, it should be stressed that the solution presented for distributed multiple object

tracking is general and not limited to this specific application domain. While experiments

were conducted under both lab conditions and real competitions, the lack of groundtruth data

in the competition tests required the use the opponent localization as a groundtruth for the

obstacles position.

This multi-object tracking solution can be applied in different scenarios which require

some sort of efficient tracking of multiple objects of interest in real-time applications with

strict timing constraints. With no prejudice on the general algorithm itself, the employed

state estimation method (Kalman Filter (KF) in this case) can be adapted to the application

whenever the KF does not provide satisfactory results, and there are computational resources

available to do so - for example, the KF can be swapped by an Extended or Unscented

Kalman Filter [Julier and Uhlmann, 2004], Interacting Multiple Models [Bar-Shalom et al.,

2002], Multi-Hypothesis Tracking [Reid, 1979], etc. An additional important consideration is

that each tracklet on the tracking system has an associated state estimator and, depending

on the application, the number of tracklets can be low or high. Therefore, the selection of

the state estimator should take the computational power availability into account.

This solution was implemented on a RoboCup Middle-Size League agent integrator and

tested during the RoboCup 2016 competitions, with the results shown for the last match in

that year’s World Championship competition in Leipzig, Germany and it is still the method

currently in use to track obstacles by CAMBADA.

The results show that a high detection rate can be achieved, with some room for im-

provement concerning the false-positive rate, and that merging obstacle observations from

multiple robots improve the position accuracy when compared to the individual observations.

Maximizing both precision and recall should be a priority while minimizing the false-positive

rate. However, there is always a trade-off between these two metrics, since it is always pos-

sible to be less conservative in the heuristics used to validate obstacles and tracklets, but

not without sacrificing the false-positive rate. The solutions presented in this thesis were

specially designed for applications with real-time constraints and sub-optimal communica-

tion conditions, which proved to perform consistently under a real-world scenario within this

application specifications.

In the considered scenario for the conducted experiment, cycles of up to 20ms are used to

perceive, plan and execute an action. The high efficiency of this method is proved by showing

that it is able to perform along with all the remaining tasks required by the robot to function

(although those other tasks are beyond the scope of this work).

82

Because real data collection is performed by both teams on field and shared at the end of

the competition, in the future it should be possible to use the opponent position information

matched with our perception to run an optimization procedure to fine-tune the zones distances

parameters that were manually set. Eventually, Machine Learning techniques could also be

applied to avoid fixed zones definition, at the cost of having a more opaque implementation

with small room for manual tuning during the competition.

6.3 Leader Election

After discussing the original Raft approach to achieve consensus on networked machine

clusters, two main limitations have been identified - an open-issue regarding the corner-case

when there are only 1 or 2 active nodes and also the lack of prioritisation among agents to be-

come a leader. A solution that is based on the Raft leader election protocol has been proposed,

described and successfully implemented to overcome the two aforementioned limitations.

An experimental setup has been created to test our leader election solution, by continu-

ously forcing a new election by killing the running leader agent. The results obtained are in

line with the timings set for the asynchronous activity of this mechanism, set accordingly to

the requirements of the application - in this case, a robotic soccer team.

In a nutshell, the proposed leader election solution is suitable to select a leader among the

team agents, as it accounts for the possibility of having a preferred leader agent, providing a

fault-tolerant and reliable redundancy mechanism whenever the leader becomes inactive.

6.4 CR7 Setplay Engine

Taking advantage of all the previous devised work on perception, multi-object tracking

and also the leader election mechanism, a setplay engine was developed and implemented into

the tested application.

Taking a previous framework by FCPortugal as a baseline, the CR7 Setplay Engine uses

even higher-level instructions to allow for a much easier, user-friendly and reliable configura-

tion. The end-user can use a GUI to configure a setplay: essentially a sequence of steps and

select actions (wait, pass, move, etc.) for the robots based on these steps. The team strategy

is defined as a set of setplays that can be configured prior to the robotic soccer matches.

The CR7 Manager (automatically assigned using the leader election mechanism) is then

responsible for assessing the current game situation in real-time and deciding whether it is

possible to initiate a setplay or abort a currently running setplay. This is based on the

actions defined for the players - for example, a setplay can be aborted due to invalid pass-line

between two players. The pass-line evaluation is performed by the manager using a unified

representation of the obstacles using the distributed multi-object tracking solution presented.

83

6.5 Final Considerations

In a bottom-up approach, this project has incrementally touched a wide range of areas.

Starting on the individual robotic agent perception regarding its own state estimation and also

the state estimation of other assets of interest around it, including the ball and other robots.

Following, the main focus has shifted to the MAS component of the benchmark application

(a multi-agent robotics soccer team), with a new proposed distributed sensing technique and

an efficient leader election algorithm based on Raft methodologies, providing an hybrid way

to achieve consensus - decisions are centralized in the leader, but the leader election process

(whenever it needs to take place) is distributed. Finally, all the previous work was brought

together as foundations for the proposed CR7 setplay engine, a strategic planner for the MSL

that focused particularly on both usability and flexibility.

From low-level development of new integration modules, that apply distributed sensor fu-

sion techniques to enhance the global perception of the team, to high-level strategy improve-

ments, the solutions proposed in this thesis were implemented and evaluated in a highly-

dynamic, stochastic and partially observable environment provided by the MSL RoboCup

robotic soccer competitions. When comparing to the original project objectives, it is possible

to say that they have been successfully achieved.

84

6.6 List of Contributions

Publications

Multi-Robot Fast-Paced Coordination With Leader Election

Ricardo Dias, B. Cunha, J. L. Azevedo, A. Pereira, N. Lau

RoboCup Symposium, Canada, 2018

Real-time multi-object tracking on highly dynamic environments

Ricardo Dias, B. Cunha, E. Sousa, J. L. Azevedo, J. Silva, F. Amaral, N. Lau

IEEE International Conference on Autonomous Robot Systems and Competitions

(ICARSC), Coimbra, 2017

Multi-object tracking with distributed sensing

Ricardo Dias, N. Lau, J. Silva, G. H. Lim

IEEE International Conference on Multisensor Fusion and Integration for Intel-

ligent Systems (MFI), Baden-Baden, 2016

Improving the Kicking Accuracy in a Soccer Robot

Ricardo Dias, J. Silva, J. L. Azevedo, B. Cunha, A. Neves, N. Lau

ACM Symposium on Applied Computing (SAC), Salamanca, 2015

A New Approach for Dynamic Strategic Positioning in RoboCup

Middle-Size League

Antonio J.R. Neves, F. Amaral, Ricardo Dias, J. Silva, N. Lau

17th Portuguese Conference on Artificial Intelligence (EPIA), Lisbon, 2015

Content distribution emulation for vehicular networks

Goncalo Pessoa, Ricardo Dias, T. Condeixa, J. Azevedo, L. Guardalben, S. Sar-

gento

Wireless Days (WD), Porto, 2017

85

Other Contributions / Dissemination

• Nov 2018 – Organizing Comittee of the VIII Intl. MSL Workshop (Aveiro, Portugal)

• Oct 2018 – Demo in TechDays 2018 (Aveiro, Portugal)

• Jul 2018 – Demo in FCT Ciência 2018 (Lisbon, Portugal)

• Mar 2018 – Presentation for MAP-i Doctoral Programme (IEETA)

• Nov 2017 - Presentation in IEETA Symposium

• Nov 2017 – Presentation in the VII Intl. MSL Workshop (Eindhoven, Netherlands)

• Nov 2017 – Presentation in Data Science Portugal 18th Meetup (Altice Labs, Aveiro)

• Oct 2017 – Demo in TechDays 2017 (Aveiro, Portugal)

• Jul 2017 – Presentation in MSL Scientific Challenge RoboCup 2017

• Jul 2017 – Activity Monitor for “Academia de Verão UA”

• Jul 2017 - Demo and Presentation in FCT Ciência 2017 (Lisbon, Portugal)

• Jun 2017 – Presentation at Students@DETI

• Nov 2016 – Presentation at the VI Intl. MSL Workshop (Kassel, Germany)

• Nov 2016 – Demo and Presentation at “Jornadas da Informática” (UBI, Covilhã)

• Oct 2016 – Demo and Presentation at “ENEI” 2016 (Aveiro)

• Oct 2016 – Demo in TechDays 2016 (Aveiro, Portugal)

• Jul 2016 – Activity Monitor for “Academia de Verão UA”

• Jun 2016 – Presentation in Scientific Challenge RoboCup 2016

• Other demos and presentations on IRIS-Lab/IEETA/DETI/UA for UA students, high-

school students, companies and other institutional visitors

• Collaboration in supervising some Master Thesis and other DETI student projects

86

Bibliography

Farshid Abbasi, Afshin Mesbahi, and Javad Mohammadpour Velni. A team-based approach

for coverage control of moving sensor networks. Automatica, 81:342 – 349, 2017. ISSN

0005-1098. doi: 10.1016/j.automatica.2017.04.019.

Aamir Ahmad and Heinrich H. Bülthoff. Moving-horizon nonlinear least squares-based mul-

tirobot cooperative perception. Robotics and Autonomous Systems, 83:275 – 286, 2016.

ISSN 0921-8890. doi: 10.1016/j.robot.2016.06.002.

Aamir Ahmad and Pedro Lima. Multi-robot cooperative spherical-object tracking in 3D space

based on particle filters. Robotics and Autonomous Systems, 61(10):1084 – 1093, 2013. ISSN

0921-8890. doi: 10.1016/j.robot.2012.12.008.

Hidehisa Akiyama and Itsuki Noda. Multi-agent Positioning Mechanism in the Dynamic

Environment. In Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and Frank Del-

laert, editors, RoboCup 2007: Robot Soccer World Cup XI, volume 5001, pages 377–

384, Berlin, Heidelberg, 2008. Springer Heidelberg. ISBN 978-3-540-68847-1. doi:

10.1007/978-3-540-68847-1 38.

F. Almeida, N. Lau, and L. P. Reis. A Survey on Coordination Methodologies for Simulated

Robotic Soccer Teams. In Olivier Boissier, Amal El Fallah-seghrouchni, Salima Hassas, and

Nicolas Maudet, editors, CEUR Workshop Proceedings, volume 627 of CEUR Workshop

Proceedings, 2010.

L. Almeida, F. Santos, T. Facchinetti, P. Pedreiras, V. Silva, and L. S. Lopes. Coordinating

distributed autonomous agents with a real-time database: The CAMBADA project. In

Proc. of the 19th International Symposium on Computer and Information Sciences, ISCIS

2004, volume 3280 of Lecture Notes in Computer Science, pages 878–886. Springer, 2004.

doi: 10.1007/978-3-540-30182-0 88.

Y. Bar-Shalom and K. Birmiwal. Variable dimension filter for maneuvering target tracking.

IEEE Transactions on Aerospace and Electronic Systems, AES-18(5):621–629, Sep. 1982.

doi: 10.1109/TAES.1982.309274.

87

Y. Bar-Shalom, S. Challa, and H. A. P. Blom. IMM estimator versus optimal estimator for

hybrid systems. IEEE Transactions on Aerospace and Electronic Systems, 41(3):986–991,

July 2005. ISSN 0018-9251. doi: 10.1109/TAES.2005.1541443.

Yaakov Bar-Shalom, Thiagalingam Kirubarajan, and X.-Rong Li. Estimation with Applica-

tions to Tracking and Navigation. John Wiley & Sons, Inc., New York, USA, 2002. ISBN

0471221279.

Giorgio Battistelli and Luigi Chisci. Stability of consensus extended kalman filter for dis-

tributed state estimation. Automatica, 68:169 – 178, 2016. ISSN 0005-1098. doi:

10.1016/j.automatica.2016.01.071.

Lewis A. Binns, Dimitris Valachis, Sean Anderson, David W. Gough, David Nicholson, and

Phil Greenway. Distributed SLAM. In Proc. of the XI Conference on Signal Processing,

Sensor Fusion and Target Recognition, volume 4729, pages 62–68, July 2002. doi: 10.1117/

12.477628.

Joydeep Biswas, Juan Pablo Mendoza, Danny Zhu, Benjamin Choi, Steven Klee, and Manuela

Veloso. Opponent-driven planning and execution for pass, attack, and defense in a multi-

robot soccer team. In Proc. of the 2014 International Conference on Autonomous Agents

and Multi-agent Systems (AAMAS ’14), pages 493–500, January 2014. ISBN 978-1-4503-

2738-1.

Rodney A. Brooks. A Robot That Walks; Emergent Behaviors from a Carefully Evolved

Network. Neural Comput., 1(2):253–262, June 1989. ISSN 0899-7667. doi: 10.1162/neco.

1989.1.2.253.

G. R. Brown and R. B. Donald. Mobile Robot Self-Localization without Explicit Landmarks.

Algorithmica, 26(3):515–559, 2000. ISSN 1432-0541. doi: 10.1007/s004539910023.

Luiz Chaimowicz, Vijay Kumar, and Mario F. M. Campos. A Paradigm for Dynamic Coor-

dination of Multiple Robots. Autonomous Robots, 17(1):7–21, 2004. ISSN 1573-7527. doi:

10.1023/B:AURO.0000032935.30271.a5.

Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: An engineer-

ing perspective. In Proceedings of the Twenty-sixth Annual ACM Symposium on Principles

of Distributed Computing, PODC ’07, pages 398–407, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-616-5. doi: 10.1145/1281100.1281103.

Tzung-Shi Chen, Jen-Jee Chen, and Cheng-Han Wu. Distributed object tracking using moving

trajectories in wireless sensor networks. Wireless Networks, 22(7):2415–2437, Oct 2016.

ISSN 1572-8196. doi: 10.1007/s11276-015-1107-9.

88

Philip R. Cohen and Hector J. Levesque. Teamwork. Special Issue on Cognitive Science and

Artificial Intelligence, 25(4):487–512, September 1991.

João Cravo, Fernando Almeida, Pedro Henriques Abreu, Lúıs Paulo Reis, Nuno Lau, and

Lúıs Mota. Strategy planner: Graphical definition of soccer set-plays. Data & Knowledge

Engineering, 94:110 – 131, 2014. ISSN 0169-023X. doi: 10.1016/j.datak.2014.10.001.

Bernardo Cunha, José Azevedo, Nuno Lau, and Luis Almeida. Obtaining the inverse dis-

tance map from a non-svp hyperbolic catadioptric robotic vision system. In Ubbo Visser,

Fernando Ribeiro, Takeshi Ohashi, and Frank Dellaert, editors, RoboCup 2007: Robot

Soccer World Cup XI, volume 5001 of Lecture Notes in Computer Science, pages 417–

424, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-68847-1. doi:

10.1007/978-3-540-68847-1.

A. Cunningham, M. Paluri, and F. Dellaert. DDF-SAM: Fully distributed SLAM using

Constrained Factor Graphs. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ

International Conference on, pages 3025–3030, Oct 2010. doi: 10.1109/IROS.2010.5652875.

N. Cunningham, J.E. Griffin, and D.L. Wild. ParticleMDI: particle Monte Carlo methods

for the cluster analysis of multiple datasets with applications to cancer subtype iden-

tification. Advances in Data Analysis and Classification, 14:463–484, Jun 2020. doi:

10.1007/s11634-020-00401-y.

HesamAddin Torabi Dashti, Nima Aghaeepour, Sahar Asadi, Meysam Bastani, Zahra De-

lafkar, Fatemeh Miri Disfani, Serveh Mam Ghaderi, Shahin Kamali, Sepideh Pashami,

and Alireza Fotuhi Siahpirani. Dynamic Positioning Based on Voronoi Cells (DPVC). In

RoboCup 2005: Robot Soccer World Cup IX, pages 219–229. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006. ISBN 978-3-540-35438-3. doi: 10.1007/11780519 20.

Randall Davis and Reid G. Smith. Negotiation as a metaphor for distributed problem solving.

Artificial Intelligence, 20(1):63–109, 1983. ISSN 0004-3702. doi: 10.1016/0004-3702(83)

90015-2.

Harmen de Weerd, Rineke Verbrugge, and Bart Verheij. Negotiating with other minds: the

role of recursive theory of mind in negotiation with incomplete information. Autonomous

Agents and Multi-Agent Systems, 31(2):250–287, Mar 2017. ISSN 1573-7454. doi: 10.1007/

s10458-015-9317-1.

Pierre Del Moral. Nonlinear Filtering: Interacting Particle Solution. Markov Processes and

Related Fields, 2(4):555–580, 1996.

R. Dias, N. Lau, J. Silva, and G. H. Lim. Multi-object tracking with distributed sensing. In

2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent

89

Systems (MFI), pages 564–569, Baden-Baden, Germany, Sept 2016. doi: 10.1109/MFI.

2016.7849548.

Ricardo Dias. Agent architecture of the cambada robotics soccer team. Master’s thesis,

University of Aveiro, 2014.

Arnaud Doucet, Nando de Freitas, and Neil Gordon. An introduction to sequential monte

carlo methods. In Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors, Sequential

Monte Carlo Methods in Practice, pages 3–14, New York, NY, 2001. Springer New York.

ISBN 978-1-4757-3437-9. doi: 10.1007/978-1-4757-3437-9 1.

Edmund H Durfee. Practically coordinating. AI Magazine, 20(1):99–116, 1999.

Wilfried Elmenreich. Sensor Fusion in Time-Triggered Systems. PhD thesis, Institut fur

Technische Informatik, Vienna, Austria, 2002.

A. T. Erdem and A. Ö. Ercan. Fusing inertial sensor data in an extended kalman filter for

3d camera tracking. IEEE Transactions on Image Processing, 24(2):538–548, 2015.

G. M. Farouk, I. F. Moawad, and M. M. Aref. A machine learning based system for mostly

automating opponent modeling in real-time strategy games. In 12th International Confer-

ence on Computer Engineering and Systems (ICCES), pages 337–346, December 2017. doi:

10.1109/ICCES.2017.8275329.

Nuno M. Figueiredo, António J. R. Neves, Nuno Lau, Artur Pereira, and Gustavo Cor-

rente. Control and monitoring of a robotic soccer team: The base station application. In

Lúıs Seabra Lopes, Nuno Lau, Pedro Mariano, and Lúıs M. Rocha, editors, Progress in

Artificial Intelligence, pages 299–309, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

ISBN 978-3-642-04686-5. doi: 10.1007/978-3-642-04686-5 25.

Frans C. A. Groen, Matthijs T. J. Spaan, Jelle R. Kok, and Gregor Pavlin. Real world multi-

agent systems: Information sharing, coordination and planning. In Balder D. ten Cate

and Henk W. Zeevat, editors, Logic, Language, and Computation, pages 154–165, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-75144-1.

Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action. Artificial

Intelligence, 86(2):269–357, 1996. ISSN 0004-3702. doi: 10.1016/0004-3702(95)00103-4.

Barbara J Grosz, Luke Hunsberger, and Sarit Kraus. Planning and acting together. AI

magazine, 20(4):23, 1999. doi: 10.1609/aimag.v20i4.1476.

Jens-Steffen Gutmann, Wolfgang Hatzack, Immanuel Herrmann, Bernhard Nebel, Frank Rit-

tinger, Augustinus Topor, and Thilo Weigel. Reliable Self-Localization, Multirobot Sensor

Integration, Accurate Path-Planning and Basic Soccer Skills: Playing an Effective Game of

90

Robotic Soccer. In Proceedings of the Ninth International Conference on Advanced Robotics,

pages 289–296, 1999.

J. L. Hsieh and C. T. Sun. Building a player strategy model by analyzing replays of real-

time strategy games. In 2008 IEEE International Joint Conference on Neural Networks

(IEEE World Congress on Computational Intelligence), pages 3106–3111, June 2008. doi:

10.1109/IJCNN.2008.4634237.

J. Ilonen, J. Bohg, and V. Kyrki. Fusing visual and tactile sensing for 3-d object reconstruction

while grasping. In 2013 IEEE International Conference on Robotics and Automation, pages

3547–3554, 2013.

Michael Isik, Freek Stulp, Gerd Mayer, and Hans Utz. Coordination without negotiation

in teams of heterogeneous robots. In Gerhard Lakemeyer, Elizabeth Sklar, Domenico G.

Sorrenti, and Tomoichi Takahashi, editors, RoboCup 2006: Robot Soccer World Cup X,

volume 4434 of LNAI, pages 355–362, Berlin, Heidelberg, 2007. Springer. ISBN 978-3-540-

74024-7. doi: 10.1007/978-3-540-74024-7 33.

Nick R. Jennings. Commitments and conventions: The foundation of coordination in multi-

agent systems. The Knowledge Engineering Review, 8(3):223–250, September 1993.

S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings of

the IEEE, 92(3):401–422, Mar 2004. ISSN 0018-9219. doi: 10.1109/JPROC.2003.823141.

Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to nonlinear

systems. In Signal processing, sensor fusion, and target recognition VI, volume 3068, pages

182–193. International Society for Optics and Photonics, 1997.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal

of Fluids Engineering, 82(1):35–45, 1960.

A. T. Kamal, J. H. Bappy, J. A. Farrell, and A. K. Roy-Chowdhury. Distributed multi-

target tracking and data association in vision networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 38(7):1397–1410, July 2016. ISSN 0162-8828. doi:

10.1109/TPAMI.2015.2484339.

Yiannis Kantaros, Michalis Thanou, and Anthony Tzes. Distributed coverage control for con-

cave areas by a heterogeneous robot–swarm with visibility sensing constraints. Automatica,

53:195 – 207, 2015. ISSN 0005-1098. doi: 10.1016/j.automatica.2014.12.034.

Hyung-Bok Kim and Kwee-Bo Sim. A particular object tracking in an environment of mul-

tiple moving objects. In Control Automation and Systems (ICCAS), 2010 International

Conference on, pages 1053–1056, Oct 2010.

91

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa. Robocup:

The robot world cup initiative. In The First International Conference on Autonomous

Agent (Agents-97), pages 340–347, 1997. doi: 10.1.1.50.5425.

Jelle R. Kok, Matthijs T.J. Spaan, and Nikos Vlassis. Non-communicative multi-robot co-

ordination in dynamic environments. Robotics and Autonomous Systems, 50(2-3):99–114,

2005. ISSN 0921-8890. doi: 10.1016/j.robot.2004.08.003. Multi-Robots in Dynamic Envi-

ronments.

H. W. Kuhn and Bryn Yaw. The hungarian method for the assignment problem. Naval

Research Logistics Quarterly, pages 83–97, 1955.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May

1998. ISSN 0734-2071. doi: 10.1145/279227.279229.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM

Trans. Program. Lang. Syst., 4(3):382–401, July 1982. ISSN 0164-0925. doi: 10.1145/

357172.357176.

T.D. Larsen, K.L. Hansen, N.A. Andersen, and O. Ravn. Design of Kalman filters for mobile

robots; evaluation of the kinematic and odometric approach. In Control Applications, 1999.

Proceedings of the 1999 IEEE International Conference on, volume 2, pages 1021–1026,

1999. doi: 10.1109/CCA.1999.801027.

Nuno Lau, Luis Seabra Lopes, and Gustavo Corrente. CAMBADA: information sharing

and team coordination. In Proc. of the 8th Conference on Autonomous Robot Systems

and Competitions, Portuguese Robotics Open - ROBOTICA 2008, pages 27–32, Aveiro,

Portugal, April 2008.

Nuno Lau, Luis Seabra Lopes, Gustavo Corrente, Nelson Filipe, and Ricardo Sequeira. Robot

team coordination using dynamic role and positioning assignment and role based setplays.

Mechatronics, 21(2):445 – 454, 2011. ISSN 0957-4158. doi: 10.1016/j.mechatronics.2010.

05.010. Special Issue on Advances in intelligent robot design for the Robocup Middle Size

League.

Martin Lauer, Sascha Lange, and Martin Riedmiller. Calculating the Perfect Match: An

Efficient and Accurate Approach for Robot Self-localization. In Ansgar Bredenfeld, Adam

Jacoff, Itsuki Noda, and Yasutake Takahashi, editors, RoboCup 2005: Robot Soccer World

Cup IX, pages 142–153, Berlin, Heidelberg, 07 2006. Springer Berlin Heidelberg. ISBN

978-3-540-35438-3. doi: 10.1007/11780519 13.

Hector J Levesque, Philip R Cohen, and José HT Nunes. On acting together. In AI Magazine,

volume 90, pages 94–99, June 1990.

92

L. Merino, F. Caballero, J.R.M.-d. Dios, and A. Ollero. Cooperative Fire Detection using

Unmanned Aerial Vehicles. In Robotics and Automation, 2005. ICRA 2005. Proceedings of

the 2005 IEEE International Conference on, pages 1884–1889, April 2005. doi: 10.1109/

ROBOT.2005.1570388.

Nicholas Metropolis and Stanislaw Ulam. The Monte Carlo Method. Journal of the American

Statistical Association, 44(247):335–341, 1949.

K. Mironov. Transport by robotic throwing and catching: Accurate stereo tracking of the

spherical object. In 2017 International Conference on Industrial Engineering, Applications

and Manufacturing (ICIEAM), pages 1–6, May 2017. doi: 10.1109/ICIEAM.2017.8076490.

Eduardo Montijano and Carlos Sagüés. Robotic Networks and the Consensus Problem, pages

9–19. Springer International Publishing, Cham, 2015. ISBN 978-3-319-15699-6. doi: 10.

1007/978-3-319-15699-6\ 2.

L. Moreno, J. M. Armingol, A. De La Escalera, and M. A. Salichs. Global integration of ultra-

sonic sensors information in mobile robot localization. In Proc. of the Ninth International

Conference on Advanced Robotics, pages 283–288, 1999.

Lúıs Mota, Lúıs Paulo Reis, and Nuno Lau. Multi-robot coordination using setplays in the

middle-size and simulation leagues. Mechatronics, 21(2):434 – 444, 2011. ISSN 0957-4158.

doi: 10.1016/j.mechatronics.2010.05.005. Special Issue on Advances in intelligent robot

design for the Robocup Middle Size League.

MSL Technical Committee. Data structure for World Model sharing in MSL. Technical

report, RoboCup, Mar 2016.

A. Neves, J. Azevedo, N. Lau B. Cunha, J. Silva, F. Santos, G. Corrente, D. A. Martins,

N. Figueiredo, A. Pereira, L. Almeida, L. S. Lopes, and P. Pedreiras. CAMBADA soccer

team: from robot architecture to multiagent coordination. In Robot Soccer, pages 19–45,

Vienna, Austria, January 2010. I-Tech Education and Publishing.

A. J. R. Neves, A. Trifan, P. Dias, and J. L. Azevedo. Detection of aerial balls in robotic soccer

using a mixture of color and depth information. In 2015 IEEE International Conference

on Autonomous Robot Systems and Competitions, pages 227–232, 2015. doi: 10.1109/

ICARSC.2015.13.

António J. R. Neves, Filipe Amaral, Ricardo Dias, João Silva, and Nuno Lau. A New Ap-

proach for Dynamic Strategic Positioning in RoboCup Middle-Size League. In Francisco

Pereira, Penousal Machado, Ernesto Costa, and Amı́lcar Cardoso, editors, Progress in

Artificial Intelligence, volume 9273 of Lecture Notes in Computer Science, pages 433–

444. Springer International Publishing, 2015. ISBN 978-3-319-23484-7. doi: 10.1007/

978-3-319-23485-4 43.

93

Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy method

to support highly-available distributed systems. In Proceedings of the Seventh Annual ACM

Symposium on Principles of Distributed Computing, PODC ’88, pages 8–17, New York, NY,

USA, 1988. ACM. ISBN 0-89791-277-2. doi: 10.1145/62546.62549.

R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and Cooperation in Networked Multi-

Agent Systems. Proceedings of the IEEE, 95(1):215–233, January 2007. ISSN 0018-9219.

doi: 10.1109/JPROC.2006.887293.

Reza Olfati-Saber and Jeff S Shamma. Consensus filters for sensor networks and distributed

sensor fusion. In Decision and Control, 2005 and 2005 European Control Conference. CDC-

ECC’05. 44th IEEE Conference on, pages 6698–6703. IEEE, 2005.

Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In

Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,

USENIX ATC’14, pages 305–320, Berkeley, CA, USA, 2014. USENIX Association. ISBN

978-1-931971-10-2.

Sébastien Paquet, Nicolas Bernier, and Brahim Chaib-draa. Comparison of different coor-

dination strategies for the RoboCup rescue simulation. In Int’l Conf. on Industrial &

Engineering Applications, volume LNAI 3029, pages 987–996. Springer-Verlag, 2004.

L.E. Parker. ALLIANCE: an architecture for fault tolerant multirobot cooperation. Robotics

and Automation, IEEE Transactions on, 14(2):220–240, April 1998. ISSN 1042-296X. doi:

10.1109/70.681242.

Paulo Pedreiras and Luis Almeida. Task management for soft real-time applications based

on general purpose operating systems. In Pedro Lima, editor, Robotic Soccer, Rijeka, 2007.

IntechOpen. doi: 10.5772/5134.

G. Petryk and M. Buehler. Robust Estimation of Pre-Contact Object Trajectories. In Robot

Control, volume 2, pages 793–799, 1997.

Francisco Pinto. Ethernet gateway design for the cambada robots. Master’s thesis, University

of Aveiro, 2020.

Roland Potthast, Anne Walter, and Andreas Rhodin. A localized adaptive particle filter

within an operational nwp framework. Monthly Weather Review, 147(1):345–362, 2019.

D. Reid. An algorithm for tracking multiple targets. IEEE Transactions on Automatic

Control, 24(6):843–854, Dec 1979. ISSN 0018-9286. doi: 10.1109/TAC.1979.1102177.

L. P. Reis. Coordination in Multi-Agent Systems: Applications in University Management

and Robotic Soccer. PhD thesis, Faculty of Engineering of the University of Porto, July

2003.

94

Luis Paulo Reis, Nuno Lau, and Eugenio Costa Oliveira. Situation Based Strategic Positioning

for Coordinating a Team of Homogeneous Agents. In Balancing Reactivity and Social

Deliberation in Multi-Agent Systems, volume 2103 of Lecture Notes in Computer Science,

pages 175–197. Springer Berlin Heidelberg, 2001.

D. Rembold, U. Zimmermann, T. Langle, and Heinz Worn. Detection and handling of moving

objects. In Proceedings of the 24th Annual Conference of the IEEE Ind. Electron. Soc.,

IECON ’98, volume 3, pages 1332–1337, Aug 1998. doi: 10.1109/IECON.1998.722843.

J. M. Richardson and K. A Marsh. Fusion of Multisensor Data. Int. J. Rob. Res., 7(6):78–96,

December 1988. ISSN 0278-3649.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning:

the rprop algorithm. In IEEE International Conference on Neural Networks, pages 586–591

vol.1, March 1993. doi: 10.1109/ICNN.1993.298623.

Julio K. Rosenblatt. Utility Fusion: Map-Based Planning in a Behavior-Based System.

In Alexander Zelinsky, editor, Field and Service Robotics, pages 411–418, London, 1998.

Springer London. ISBN 978-1-4471-1273-0. doi: 10.1007/978-1-4471-1273-0 62.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson series

in artificial intelligence. Pearson, 4th edition, 2020. ISBN 9780134610993.

Frederico Santos, Luis Almeida, Luis Seabra Lopes, José Lúıs Azevedo, and Manuel Bernardo

Cunha. Communicating among robots in the robocup middle-size league. In Jacky Baltes,

Michail G. Lagoudakis, Tadashi Naruse, and Saeed Shiry Ghidary, editors, RoboCup 2009:

Robot Soccer World Cup XIII, pages 320–331, Berlin, Heidelberg, 2010. Springer Berlin

Heidelberg. ISBN 978-3-642-11876-0.

J.Z. Sasiadek and P. Hartana. Sensor data fusion using Kalman filter. In Proc. of the Third

International Conference on Information Fusion, volume 2, pages 19–25, July 2000. doi:

10.1109/IFIC.2000.859866.

R. Siegwart and I.R. Nourbakhsh. Introduction to Autonomous Mobile Robots. MIT Press,

2004. ISBN 9780262195027.

Diogo Silva. RTDB2 : a flexible distributed blackboard. Master’s thesis, University of Aveiro,

2017.

João Silva, Nuno Lau, António J.R. Neves, João Rodrigues, and José Lúıs Azevedo. World

modeling on an MSL robotic soccer team. Mechatronics, 21(2):411–422, 2011. ISSN 0957-

4158. doi: 10.1016/j.mechatronics.2010.05.011. Special Issue on Advances in intelligent

robot design for the Robocup Middle Size League.

95

Hendrik Skubch, Michael Wagner, and Roland Reichle. A Language for Interactive Coopera-

tive Agents. ALICA is a behaviour specification language for teams of agents. It provides

modeling elements to describe team behaviours and strategies from a global perspective.,

February 2009.

Matthijs T. J. Spaan and Frans C. A. Groen. Team Coordination among Robotic Soccer

Players. In Gal A. Kaminka, Pedro U. Lima, and Raúl Rojas, editors, RoboCup 2002:

Robot Soccer World Cup VI, pages 409–416, Berlin, Heidelberg, 2003a. Springer Berlin

Heidelberg. ISBN 978-3-540-45135-8. doi: 10.1007/978-3-540-45135-8 36.

Matthijs T. J. Spaan and Frans C. A. Groen. Team Coordination among Robotic Soccer

Players. In RoboCup 2002: Robot Soccer World Cup VI, volume 2752 of Lecture Notes

in Computer Science, pages 409–416. Springer Berlin Heidelberg, 2003b. ISBN 978-3-540-

40666-2. doi: 10.1007/978-3-540-45135-8 36.

Peter Stone. Layered learning in multiagent systems: A winning approach to robotic soccer.

MIT Press, 2000.

Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment, and low-

bandwidth communication for real-time strategic teamwork. Artificial Intelligence, 110(2):

241 – 273, 1999. ISSN 0004-3702. doi: 10.1016/S0004-3702(99)00025-9.

Ashley W Stroupe, Martin C Martin, and Tucker Balch. Distributed sensor fusion for object

position estimation by multi-robot systems. In Robotics and Automation, 2001. Proceedings

2001 ICRA. IEEE International Conference on, volume 2, pages 1092–1098. IEEE, 2001.

F. Stulp, M. Isik, and M. Beetz. Implicit coordination in robotic teams using learned pre-

diction models. In Proc. of the 2006 IEEE International Conference on Robotics and Au-

tomation (ICRA 2006), pages 1330–1335, May 2006. doi: 10.1109/ROBOT.2006.1641893.

Shuli Sun, Honglei Lin, Jing Ma, and Xiuying Li. Multi-sensor distributed fusion estimation

with applications in networked systems: A review paper. Information Fusion, 38:122 – 134,

2017. ISSN 1566-2535. doi: 10.1016/j.inffus.2017.03.006.

Sebastian Thrun. Probabilistic algorithms in robotics. Ai Magazine, 21(4):93–109, 2000.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A Probabilistic Approach to Concurrent

Mapping and Localization for Mobile Robots. Machine Learning, 31(1):29–53, April 1998.

ISSN 1573-0565. doi: 10.1023/A:1007436523611.

Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately complex. ACM Comput.

Surv., 47(3):42:1–42:36, February 2015. ISSN 0360-0300. doi: 10.1145/2673577.

96

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means clustering

with background knowledge. In Proceedings of the Eighteenth International Conference on

Machine Learning, ICML ’01, pages 577–584, San Francisco, CA, USA, 2001. Morgan

Kaufmann Publishers Inc. ISBN 1-55860-778-1.

Eric A Wan and Rudolph Van Der Merwe. The unscented Kalman filter for nonlinear estima-

tion. In Adaptive Systems for Signal Processing, Communications, and Control Symposium

2000. AS-SPCC. The IEEE 2000, pages 153–158. IEEE, 2000.

Han Wang, Choon Seng Chua, and Ching Tong Sim. Real-time object tracking from corners.

Robotica, 16:109–116, 1 1998. ISSN 1469-8668. URL http://journals.cambridge.org/

article_S0263574798000198.

Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.

Xu Y., Jiang C., and Tan Y. SEU-3D 2006 soccer simulation team description. In CD Proc.

of RoboCup Symposium 2006, Bremen, Germany, 2006.

97

http://journals.cambridge.org/article_S0263574798000198
http://journals.cambridge.org/article_S0263574798000198

98

Appendices

99

Appendix A

CR7 Documentation

A.1 Class Diagram - Overview

CR7Step

CR7Config

CR7Transition

CR7Player

CR7WSContext

CR7Manager

CR7Setplay

1..*

0..*

1..2

1

1..*

1

0..*

1

CR7Action

1..*

1

1

1

1

1

CR7PlayerInitCond

1..*

1

CR7SetplayList
1

1

CR7ZoneSetList

1

1

CR7ZoneSet
0..*

1
CR7ZoneCellDefinition

1

1

1..*

1

100

A.2 CR7Manager Class Details

CR7Manager

+ playerAgentMap : std::map<int, SETPLAYS_PLAYER>

- config : CR7Config*
- world : CR7WSContext*
- runningSetplay : CR7Setplay*

+ update()
+ updateMaster()
+ updateSlave()
+ isMaster() : bool
+ getMasterID() : int

+ isRunningSetplay() : bool
+ getRunningSetplay() : CR7Setplay*
+ getActionForAgentIdx(agentIdx : int) : CR7Action*
+ getMyAction() : CR7Action*
+ getMyInitConditions() : CR7PlayerInitCond*
+ getReceiverAgentIdx() : int
+ getBallHolderAgentIdx() : int
+ isDribbleAllowed() : bool
+ getWorldContext() : CR7WSContext*

101

A.3 CR7WSContext Class Details

<<interface>>
CR7WSContext

+ CR7_getAvailablePlayers() : std::vector<SETPLAYS_PLAYER>
+ CR7_getPlayerPosition(playerId : SETPLAYS_PLAYER) :
cambada::geom::Vec
+ CR7_getPlayerAgentIdx(playerId : SETPLAYS_PLAYER) : int
+ CR7_getPlayerTargetPosition(playerId : SETPLAYS_PLAYER) :
cambada::geom::Vec
+ CR7_playerHasBall(playerId : SETPLAYS_PLAYER) : bool
+ CR7_playerPassedBall(playerId : SETPLAYS_PLAYER) : bool
+ CR7_isBallVisible() : bool
+ CR7_getBallPosition() : cambada::geom::Vec
+ CR7_getBallVelocity() : cambada::geom::Vec
+ CR7_ballInOurPossession() : bool
+ CR7_ballInTheirPossession() : bool
+ CR7_isInsideField(testPos : cambada::geom::Vec, outMargin : float) : bool
+ CR7_passLineClear(p1 : cambada::geom::Vec, p2 : cambada::geom::Vec) :
bool
+ CR7_GameState_Changed() : bool
+ CR7_GameState_Stopped() : bool
+ CR7_GameState_KickOff() : bool
+ CR7_GameState_Setpiece() : bool
+ CR7_GameState_Freeplay() : bool

102

A.4 CR7Config Class Details

CR7Config

- zoneSetsList : CR7ZoneSetList*
- setplayList : CR7SetplayList*
- configFilePath : boost::filesystem::path;
- lastWrite : std::time_t;

+ LoadConfigFile(filepath : const std::string&)
+ SaveConfigFile(filepath : const std::string&)

+ void LoadConfig(config : const boost::property_tree::ptree&)
+ SaveConfig() : boost::property_tree::ptree
+ HasValidZoneID(zoneSetName : const std::string&, zoneId :
unsigned int) : bool
+ GetZoneRect(zoneSetName : const std::string&, zoneId :
unsigned int) : cambada::geom::XYRectangle

+ LoadZones(zones : const boost::property_tree::ptree&) : int
+ SaveZones() : boost::property_tree::ptree
+ GetZoneSetsList() : CR7ZoneSetList*
+ GetSetplayList() : CR7SetplayList*

+ LoadSetplays(setplaysData : const boost::property_tree::ptree&)
: int
+ SaveSetplays() : boost::property_tree::ptree

+ CheckModifiedConfig() : bool

103

A.5 CR7SetplayList Class Details

CR7SetplayList

- list : std::map<std::string, CR7Setplay*>

+ clear()
+ contains(name : std::string) : bool
+ append(name : std::string, setplay : CR7Setplay*)
+ Delete(name : std::string)
+ Rename(oldName : std::string, newName : std::string)
+ GetNames() : std::vector<std::string>
+ GetNamesOfZoneSet(zoneSetName : std::string) : std::vector<std::string>
+ CountSetplaysOfZoneSet(zoneSetName : std::string) : int
+ GetNamesOfKickOff() : std::vector<std::string>
+ CountKickOffSetplays() : int
+ GetNamesOfFreekick() : std::vector<std::string>
+ CountFreeplaySetplays() : int
+ GetData(name : std::string) : CR7Setplay*
+ GetList() : std::map<std::string, CR7Setplay*>&

104

A.6 CR7ZoneSetList Class Details

CR7ZoneSetList

- list : std::map<std::string, CR7ZoneSet>

+ clear()
+ exists(name : std::string) : bool
+ append(name : std::string, zoneSet : const CR7ZoneSet&)
+ GetNames() : std::vector<std::string>
+ GetData(name : std::string) : CR7ZoneSet*
+ GetList() : std::map<std::string, CR7ZoneSet>

A.7 CR7ZoneSet Class Details

CR7ZoneSet

- name : std::string
- rootCell : CR7ZoneCellDefinition*

- AppendZone(list : std::vector<std::tuple<CR7ZoneCellDefinition*,
cambada::geom::XYRectangle>>&, cellDef :
CR7ZoneCellDefinition*, scope : const
cambada::geom::XYRectangle&)
- AppendCell(std::vector<CR7ZoneCellDefinition*>& list,
CR7ZoneCellDefinition* cellDef)

+ getName() : const std::string&
+ GetAllAbsoluteZoneRectangles() :
std::vector<cambada::geom::XYRectangle>
+ GetZone(zoneID : unsigned int) : cambada::geom::XYRectangle
+ GetAllAbsoluteZonesTuple() :
std::vector<std::tuple<CR7ZoneCellDefinition*,
cambada::geom::XYRectangle>>
+ hasZoneId(zoneID : unsigned int) : bool

+ Import (zoneData : const boost::property_tree::ptree&)
+ Export() : boost::property_tree::ptree

105

A.8 CR7ZoneCellDefinition Class Details

CR7ZoneCellDefinition

- name : std::string
- rootCell : CR7ZoneCellDefinition*

- AppendZone(list : std::vector<std::tuple<CR7ZoneCellDefinition*,
cambada::geom::XYRectangle>>&, cellDef : CR7ZoneCellDefinition*, scope : const
cambada::geom::XYRectangle&)
- AppendCell(std::vector<CR7ZoneCellDefinition*>& list, CR7ZoneCellDefinition*
cellDef)

+ setCellId(id : unsigned int)
+ setCellData(split : ZoneCellSplit, children : const
std::vector<CR7ZoneCellDefinition*>&, divisions : const std::vector<double>&)

+ split(splitType : ZoneCellSplit, nChildren : int)
+ isEndCell() : bool
+ getSplitType() : ZoneCellSplit
+ setSplitType(split : ZoneCellSplit)
+ getChildren() : const std::vector<CR7ZoneCellDefinition*>&
+ getDivisions() : const std::vector<double>&
+ getCellId() : unsigned int
+ clear()
+ CountChildrenCells() : unsigned int
+ GetChildRect(childID : unsigned int, parentScope : cambada::geom::XYRectangle)
: cambada::geom::XYRectangle
+ GetChildCell(childID : unsigned int) : CR7ZoneCellDefinition*
+ FindCellID(cellID : unsigned int) : CR7ZoneCellDefinition*

+ Export() : boost::property_tree::ptree

106

A.9 CR7Setplay Class Details

CR7Setplay

+ parentConfig : CR7Config*
+ spName : std::string
+ spType : SETPLAYS_TYPE
+ zoneSetName : std::string
+ zoneId : int
+ maxExecutionTime : float
+ cooldownTime : float
+ spEnabled : bool
+ abortReason : std::string
+ participants : std::vector<SETPLAYS_PLAYER>
+ initConditions : std::map<SETPLAYS_PLAYER, CR7PlayerInitCond>
+ steps : std::map<int, CR7Step*>
- rt_LastTrigger : std::time_t
- rt_LastRelease : std::time_t
- rt_Running : bool
- rt_AbortRequested : bool
- rt_BallPassed : bool
- rt_LastBallPass : std::time_t
- rt_CurrentStep : int
- rt_CheckRequiredPlayers(world : CR7WSContext*) : bool
- rt_CheckInitialConditions(world : CR7WSContext*) : bool
- rt_TimeSinceLastTrigger() : double
- rt_TimeSinceLastRelease() : double
- rt_TimeSinceBallPass() : double
- rt_CheckValidTransition(world : CR7WSContext*) : bool
- rt_CheckTransitionHasEnded(world : CR7WSContext*) : bool
- rt_CheckRequiredGamestate(world : CR7WSContext*) : bool

+ getName() : std::string
+ setName(newName : std::string)
+ getEnabled() : bool
+ getType() : SETPLAYS_TYPE
+ getZoneSetName() : std::string
+ int getZoneID() : int
+ setZoneSetName(name : std::string)
+ setZoneID(zoneID : int)
+ hasStepNumber(stepNumber : int) : bool
+ getStep(stepNumber : int) : CR7Step*
+ newStep(stepNumber : int) : CR7Step*
+ removeStep(stepToRemove : CR7Step*)
+ HasFinished() : bool
+ CanExecute(world : CR7WSContext*) : bool
+ RegisterTrigger()
+ RegisterRelease()
+ UpdateExecution(world : CR7WSContext*)
+ GetCurrentStep() : int
+ SetCurrentStep(stepNum : int)
+ GetCurrentStepPtr() : CR7Step*
+ Import (setplayData : const boost::property_tree::ptree&)
+ Export() : boost::property_tree::ptree

107

A.10 CR7Step Class Details

CR7Step

- setplay : CR7Setplay* = NULL;
- stepNumber : int;
- active : bool = false;
- parentTransition : CR7Transition* = NULL;
- players : std::vector<CR7Player*>
- transitions : std::vector<CR7Transition*>

+ getStepNumber() : int
+ setStepNumber(newstepnumber : int)
+ getActiveSet() : bool
+ getPreviousStep() : CR7Step*
+ getNextStep() : CR7Step*
+ getTransition(transNumber : int) : CR7Transition*
+ getTransitionList() : std::vector<CR7Transition*>
+ getPreviousTransition() : CR7Transition*
+ getActiveTransition() : CR7Transition*
+ setParentTransition(parent : CR7Transition*)
+ addTransition(dest : CR7Transition*)
+ removeTransition(trans : CR7Transition*)
+ countTransitions() : unsigned int
+ isEndStep() : bool
+ getPlayerIdx(playerindex : int) : CR7Player*
+ getPlayer(playerName : std::string) : CR7Player*
+ getPlayer(playerID : SETPLAYS_PLAYER) : CR7Player*
+ getPlayers() : std::vector<CR7Player*>
+ getPlayerWithBall() : CR7Player*
+ setActiveStep(isactive : bool)
+ setPlayers(playerslist : std::vector<CR7Player*>)

+ Import (stepData : const boost::property_tree::ptree&, setplay : CR7Setplay*)
+ Export(includePlayerData : bool) : boost::property_tree::ptree

- findPlayer(playerName : std::string) : int
- findPlayer(playerID : SETPLAYS_PLAYER) : int

108

A.11 CR7Player Class Details

CR7Player

- playerID : SETPLAYS_PLAYER
- active : bool
- ballholder : bool
- position : cambada::geom::Vec
- relative: SETPLAYS_REL_TYPE
- alignWithGoal : bool
- positionMargin : double

+ playerNameToID(playerName : std::string) : SETPLAYS_PLAYER
+ playerIDToName(playerID : SETPLAYS_PLAYER) : std::string
+ playerIDToShortName(playerID : SETPLAYS_PLAYER) : std::string

+ getPlayerID() : SETPLAYS_PLAYER
+ getName() : std::string
+ getShortName() : std::string
+ getActivePlayer() : bool
+ getBallHolder() : bool
+ getPosition() : cambada::geom::Vec
+ getRelType() : SETPLAYS_REL_TYPE
+ getAlignWithGoal() : bool
+ getPositionMargin() : double

+ setActivePlayer(isactive : bool)
+ setBallHolder(isballholder : bool)
+ setPosition(pos : cambada::geom::Vec)
+ setRelType(type : SETPLAYS_REL_TYPE)
+ setAlignWithGoal(v : bool)
+ setPositionMargin(v : double)

109

A.12 CR7Action Class Details

CR7Action

- playerID : SETPLAYS_PLAYER
- type : SETPLAYS_ACTION
- receiverID : SETPLAYS_PLAYER
- toAbsPoint : cambada::geom::Vec
- opt_pass_ignoreLineClear : bool
- opt_margin : double

+ getPlayer() : SETPLAYS_PLAYER
+ getType() : SETPLAYS_ACTION
+ getReceiver() : SETPLAYS_PLAYER
+ getToAbsPoint() : cambada::geom::Vec
+ getOptPassIgnoreLineClear() : bool
+ getMargin() : double
+ setToAbsPoint(cambada::geom::Vec newToPoint)
+ setType(SETPLAYS_ACTION newtype)
+ setReceiver(SETPLAYS_PLAYER newReceiverID)
+ setOptPassIgnoreLineClear(bool ignore)
+ setMargin(double v)
+ reset()

+ Import (stepData : const boost::property_tree::ptree&, setplay : CR7Setplay*)
+ Export(includePlayerData : bool) : boost::property_tree::ptree

A.13 CR7PlayerInitCond Class Details

110

CR7PlayerInitCond

+ position : cambada::geom::Vec
+ margin : float
+ absolute : bool
+ alignWithGoal : bool

+ Import (stepData : const boost::property_tree::ptree&, setplay : CR7Setplay*)
+ Export(includePlayerData : bool) : boost::property_tree::ptree

A.14 CR7Transition Class Details

CR7Transition

- transitionNumber : int
- active : bool
- src : CR7Step*
- dst : CR7Step*
- actions : std::map<SETPLAYS_PLAYER, CR7Action*>

+ getTransitionNumber() : int
+ getActive() : bool
+ getSourceStep() : CR7Step*
+ getDestinationStep() : CR7Step*
+ getActions() : std::map<SETPLAYS_PLAYER, CR7Action*>&
+ getPlayerAction(playerID : SETPLAYS_PLAYER) : CR7Action*
+ setTransitionNumber(newTransitionNumber : int)
+ setActive(isactive : bool)
+ setPlayerAction(action : CR7Action*)

111

A.15 CR7Utils Class Details

<<utility>>
CR7Utils

+ setplayTypeEnumToName(p : SETPLAYS_TYPE) : std::string
+ setplayTypeNameToEnum(p : std::string) : SETPLAYS_TYPE
+ actionEnumToName(a : SETPLAYS_ACTION) : std::string
+ actionNameToEnum(a : std::string) : SETPLAYS_ACTION
+ relTypeEnumToName(p : SETPLAYS_REL_TYPE) : std::string
+ relTypeNameToEnum(p : std::string) : SETPLAYS_REL_TYPE
+ playerEnumToName(p : SETPLAYS_PLAYER) : std::string
+ playerNameToEnum(p : std::string) : SETPLAYS_PLAYER
+ vecToPTree(vec : const cambada::geom::Vec&) : boost::property_tree::ptree
+ pTreeToVec(ptree : const boost::property_tree::ptree&) : cambada::geom::Vec

112

A.16 CR7 Config JSON Schema

{

"$schema": "http://json-schema.org/draft-07/schema#",

"$id": "http://robotica.ua.pt/cambada/cr7.schema.json",

"title": "CR7 Config",

"description": "The schema for a CR7 configuration",

"type": "object",

"properties": {

"setplays": {

"$ref": "#/definitions/setplays"

},

"zones": {

"$ref": "#/definitions/zones"

}

},

"required": ["setplays", "zones"],

"definitions": {

"setplays": {

"description": "A list of setplays",

"type": "array",

"items": { "$ref": "#/definitions/setplay" },

},

"setplay": {

"title": "Setplay",

"description": "Definition of a setplay",

"type": "object",

"required": ["name", "enabled", "max_exec_time", "cooldown_time",

"type", "participants", "init_conditions", "steps"],↪→

"properties": {

"name": {

"type": "string"

},

"enabled": {

"type": "boolean"

},

"max_exec_time": {

113

"type": "integer",

"minimum": 0

},

"cooldown_time": {

"type": "number",

"minimum": 0

},

"type": {

"type": "string",

"enum": ["KickOff", "SetPiece", "Freeplay"]

},

"participants": {

"type": "array",

"items": {

"type": "string"

}

},

"init_conditions": {

"$ref": "#/definitions/init_conditions"

},

"steps": {

"$ref": "#/definitions/steps"

}

}

},

"init_conditions": {

"description": "Definition of the setplay initialization conditions for

each participant (the participant IDs should be used as keys in

this object)",

↪→

↪→

"patternProperties": {

".*": {

"type": "object",

"properties": {

"absolute": {

"type": "boolean"

},

"position": {

"type": "array",

114

"minItems": 2,

"maxItems": 2

},

"margin": {

"type": "number",

"minimum": 0

},

"align_with_goal": {

"type": "boolean"

}

}

}

}

},

"steps": {

"type": "array",

"items": { "$ref": "#/definitions/step" }

},

"step": {

"type": "object",

"properties": {

"id": {

"type": "integer",

"minimum": 0

},

"end_step": {

"type": "boolean"

},

"actions": {

"type": "array",

"items": { "$ref": "#/definitions/actions" }

},

"ball_owner": {

"type": "string"

}

},

"required": ["id", "end_step", "actions", "ball_owner"]

115

},

"actions": {

"description": "the participant IDs should be used as keys in this

object to define individual actions",↪→

"type": "object",

"properties": {

"to_step": {

"type": "integer",

"minimum": 0

}

},

"required": ["to_step"],

"patternProperties": {

".*": { "$ref": "#/definitions/action" }

}

},

"action": {

"type": "object",

"properties": {

"action": {

"type": "string",

"enum": ["GetBall", "Wait", "Pass"]

}

},

"allOf": [

{

"if": {

"properties": { "action": { "const": "Pass" } }

},

"then": {

"properties": {

"params": { "$ref": "#/definitions/action_pass_params" }

}

}

}

]

},

116

"action_pass_params": {

"type": "object",

"properties": {

"receiver": {

"type": "string"

},

"ignore_line_clear": {

"type": "boolean"

}

},

"required": ["receiver", "ignore_line_clear"]

},

"zones": {

"type": "array",

"items": { "$ref": "#/definitions/zone" }

},

"zone": {

"type": "object",

"properties": {

"name": {

"type": "string"

},

"cells": {

"type": "array",

"items": { "$ref": "#/definitions/zone-cell" }

}

},

"required": ["name", "cells"]

},

"zone-cell": {

"type": "object",

"properties": {

"id": {

"type": "integer"

},

117

"end-cell": {

"type": "boolean"

},

"split": {

"type": "string",

"enum": ["X", "Y"]

},

"divs": {

"type": "array",

"items": {

"type": "number",

"minimum": 0,

"maximum": 1

}

},

"cells": {

"type": "array",

"items": {

"type": "integer"

}

}

},

"required": ["id", "end-cell"]

}

}

}

118

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Multi-Agent Robotics Systems
	The RoboCup Initiative
	CAMBADA
	Distributed and Modular Architecture
	The Vision System
	Communication Model
	Coordinate Systems Definition

	Project Motivation
	Objectives
	Thesis Structure

	State Estimation and Control
	Common State Estimation Methodologies
	Discrete Kalman Filter
	Non-Linear Kalman Filters
	Particle Filters

	Perception and Sensor Fusion
	Distributed Sensor Fusion

	Process Synchronization In CAMBADA
	Design Choice Considerations

	Robot Position and Velocity Estimation
	Localisation Algorithm
	Robot Pose Estimation
	Robot Velocity Estimation

	Improving High Level Motion Control
	Proposed Solution
	Experimental Setup
	Results Discussion

	Multi-Object Tracking With Distributed Sensing
	Perception
	Ball Detection
	Obstacles

	The Integrator
	Local Multi-Object Tracking
	Tracklet Definition
	General Algorithm
	Tracklet Sharing Criteria within a MAS

	Distributed Sensing
	Observation Clustering
	Applying the Object Tracker
	Obstacle Validation

	Results and Discussion
	Lab Experiment
	Competition Environment Experiment

	Summary

	Coordination in Robotic Soccer
	Agents Communication
	Strategic Positioning
	Base Player Formation

	Distributed vs. Centralized Assignment
	Distributed Assignment
	Centralised Assignment
	Centralised Assignment With Leader Election

	The Consensus Problem
	Paxos Algorithm
	Raft Algorithm

	Proposed Solution For Leader Election
	Timing Parameters
	The Backup State
	Preferred Leader Agent
	Experimental Setup and Results

	Summary

	CR7 Setplay Engine
	Motivation
	Library Software Architecture
	Types of Setplays
	Players Definition
	Actions Definition
	Positioning Options
	Architecture and Design Choices

	CR7Planner - Configuration Tool
	Extending CR7 classes for UI
	Layout Overview
	Initialization Conditions and Player Actions

	Unit Testing
	Integration in the CAMBADA Architecture
	Results
	Future Work

	Conclusion
	Perception
	Multi-Object Tracking
	Leader Election
	CR7 Setplay Engine
	Final Considerations
	List of Contributions

	Bibliography
	Appendices
	CR7 Documentation
	Class Diagram - Overview
	CR7Manager Class Details
	CR7WSContext Class Details
	CR7Config Class Details
	CR7SetplayList Class Details
	CR7ZoneSetList Class Details
	CR7ZoneSet Class Details
	CR7ZoneCellDefinition Class Details
	CR7Setplay Class Details
	CR7Step Class Details
	CR7Player Class Details
	CR7Action Class Details
	CR7PlayerInitCond Class Details
	CR7Transition Class Details
	CR7Utils Class Details
	CR7 Config JSON Schema

