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Abstract

We investigate two density questions for Sobolev, Besov and Triebel–Lizorkin spaces on
rough sets. Our main results, stated in the simplest Sobolev space setting, are that: (i) for
an open set Ω ⊂ Rn, D(Ω) is dense in {u ∈ Hs(Rn) : suppu ⊂ Ω} whenever ∂Ω has zero
Lebesgue measure and Ω is “thick” (in the sense of Triebel); and (ii) for a d-set Γ ⊂ Rn
(0 < d < n), {u ∈ Hs1(Rn) : suppu ⊂ Γ} is dense in {u ∈ Hs2(Rn) : suppu ⊂ Γ} whenever
−n−d

2 −m− 1 < s2 ≤ s1 < −n−d
2 −m for some m ∈ N0. For (ii), we provide concrete exam-

ples, for any m ∈ N0, where density fails when s1 and s2 are on opposite sides of −n−d
2 −m.

The results (i) and (ii) are related in a number of ways, including via their connection to the
question of whether {u ∈ Hs(Rn) : suppu ⊂ Γ} = {0} for a given closed set Γ ⊂ Rn and
s ∈ R. They also both arise naturally in the study of boundary integral equation formulations
of acoustic wave scattering by fractal screens. We additionally provide analogous results in
the more general setting of Besov and Triebel–Lizorkin spaces.
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1 Introduction

Consider the following two density questions for the classical Hilbert Sobolev spaces Hs(Rn):

Q1: When does H̃s(Ω) equal Hs
Ω

for Ω ⊂ Rn a proper domain?

(Equivalently: when is D(Ω) = C∞0 (Ω) dense in Hs
Ω

?)

Q2: When is Hs1
Γ dense in Hs2

Γ for s1 > s2 and Γ ⊂ Rn a closed set with empty interior?

Here, following the notational conventions in [20], for an open set Ω ⊂ Rn and a closed set Γ ⊂ Rn

the spaces H̃s(Ω) and Hs
Γ are the closed subspaces of Hs(Rn), s ∈ R, defined in the following way:

H̃s(Ω) := the closure of D(Ω) in Hs(Rn);

Hs
Γ := {f ∈ Hs(Rn) : supp f ⊂ Γ}.

One can also consider the analogous questions in the much more general setting of Besov and
Triebel–Lizorkin spaces, which we shall do in the main body of the paper. But to make our
initial discussions as accessible as possible, we focus in this introductory section on the special
case of Hs(Rn). Our particular interest in this case stems from the second two authors’ recent
investigations into wave scattering by fractal screens [9, 11], in which questions Q1 and Q2 arise
quite naturally. We shall say more about the connection with this motivating application in §2.

The answer to questions Q1 and Q2 obviously depends on both the regularity parameter s
and the type of domain considered. One classical result relating to Q1, appearing for example in
McLean’s book [20, Thm. 3.29], is that H̃s(Ω) = Hs

Ω
for all s ∈ R whenever Ω is C0, in the sense

that for every point x ∈ ∂Ω there exists a neighbourhood U of x and a Cartesian coordinate system
in which Ω ∩ U coincides with the hypograph of some continuous function from Rn−1 to R. This
result was extended by Chandler-Wilde, Hewett and Moiola in [11, Thm. 3.24] to domains that are
C0 except at a countable set of points P ⊂ ∂Ω, such that P has a finite number of limit points in
each bounded subset of ∂Ω, albeit for a limited range of s, namely |s| ≤ 1 for n ≥ 2 and |s| ≤ 1/2
for n = 1. This includes domains formed as unions of polygons/polyhedra touching at vertices, the
“double brick” domain, curved cusp domains, spiral domains, and Fraenkel’s “rooms and passages”
domain — for illustrations see [11, Fig. 4].

Another general result one can state is that if H̃s(Ω
◦
) = Hs

Ω
then H̃s(Ω) = Hs

Ω
if and only if

H−sΓ = {0} for every closed Γ ⊂ Ω
◦ \ Ω [11, Lem. 3.17(v)]. This result extends previous work

of Maz’ya [19, Thm. 13.2.1] and Triebel [33], which concerned the case where Ω = Rn. It also
facilitates the construction of counterexamples for which the answer to Q1 is negative [11, §3.5].

Indeed, let Ω0 be a proper domain such that H̃s(Ω0) = Hs
Ω0

and Γ ⊂ Ω0 a compact set with empty

interior such that H−sΓ 6= {0}. Then Ω = Ω0 \ Γ satisfies H̃s(Ω) 6= Hs
Ω

. As a somewhat extreme
example, one can take Γ to be the “Swiss cheese” set defined by Polking in [23], for which Hs

Γ 6= {0}
for all s ≤ n/2, and Ω0 to be any open ball containing Γ. Then Ω = Ω0 \ Γ satisfies H̃s(Ω) 6= Hs

Ω
for all s ≥ −n/2. See also Lemma 4.15 below for a related result.

The main contribution of the current paper to the study of Q1, presented in §§4–5, is to extend
the classical C0 result in a different direction, to the case of thick domains, in the sense of Triebel [34,
§3] — see Definition 4.5 below. One of our main results is Corollary 4.18, which implies that

if Ω is thick and |∂Ω| = 0 then H̃s(Ω) = Hs
Ω

for all s ∈ R.
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This includes in particular the classical Koch snowflake domain and some of its generalisations (see
§5), which fail to be C0 at any of its boundary points. Our proof uses duality arguments and the
identification of Hs

Ω
with a certain space of distributions on Ω (see Lemma 4.4), for which a wavelet

decomposition is available (see Theorem 4.11, which follows from [34, Thm. 3.13]).
Regarding Q2, in certain special cases it is possible to give a complete answer using known results.

For instance, if Γ = Rn−1×{0} is a (n−1)-dimensional hyperplane then the standard decomposition
Hs

Γ =
∑

0≤j<−s−1/2H
s+j+1/2(Rn−1)⊗ δ(j), δ(j) being the jth derivative of the one-dimensional delta

function in the variable perpendicular to Γ, (see e.g. [20, Lem. 3.39]) implies that Hs1
Γ is non-trivial

and dense in Hs2
Γ if and only if −3/2 − m ≤ s2 ≤ s1 < −1/2 − m for some m ∈ N0 (for the

“only if” part, see a detailed proof of a related result in Remark 6.19). By standard arguments
involving coordinate charts, analogous results hold for smooth (n − 1)-dimensional submanifolds
of Rn. On the other hand, the only existing results we know of applicable to completely general Γ
are negative, coming from the fact that [15, Prop. 2.4] for every closed Γ ⊂ Rn with empty interior
there exists sΓ ∈ [−n/2, n/2] (termed the “nullity threshold” in [15]) such that Hs

Γ 6= {0} for s < sΓ

and Hs
Γ = {0} for s > sΓ. Hence if s < sΓ < t then H t

Γ = {0} cannot be dense in Hs
Γ 6= {0}.

Our main contribution in this paper to the study of Q2, presented in §6, is to generalise, except
for the limit case s2 = −3/2−m, the “if” part of the hyperplane result mentioned above to the case
where Γ is a d-set (intuitively, a closed set with the same Hausdorff dimension d in a neighbourhood
of each of its points, see Definition 3.9 below) for some 0 < d < n. In particular, Theorem 6.14
implies that

if Γ ⊂ Rn is a d-set for some 0<d<n

and − n− d
2
−m− 1 < s2 ≤ s1 < −

n− d
2
−m, for some m ∈ N0,

then Hs1
Γ is dense in Hs2

Γ .

A key tool used to prove this fact is Proposition 6.7, a consequence of a result due to Netrusov,
which states in particular that if n−d

2
+ m < s < n−d

2
+ m + 1, m ∈ N0, then H̃s(Γc) is the

kernel of a trace operator TrΓ,m (defined on Hs(Rn)) involving partial derivatives of order at most
m. Theorem 6.13 shows that, under the same conditions on s and m, the adjoint of the trace
operator TrΓ,m provides a natural identification of the space of distributions H−sΓ defined on Rn

and supported in the d-set Γ with the dual of the trace space TrΓ,m(Hs(Rn)). We also provide
counterexamples showing that the assumptions made on the indices (e.g. on s1 and s2 above) are
close to optimal; see Proposition 6.1 and Remarks 6.19–6.20.

As already mentioned, the results in the following sections will be presented in the wider gener-
ality of quasi-Banach Besov and Triebel–Lizorkin spaces.

2 Motivation: scattering by fractal screens

As mentioned above, our study is motivated by recent work by two of the authors into boundary
integral equation (BIE) formulations of wave scattering by fractal screens [9,11], where the questions
Q1 and Q2 arise naturally in the study of well-posedness and BIE solution regularity. To give
context to the current study we now briefly explain this connection.
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Consider the problem of time-harmonic acoustic scattering (governed by the Helmholtz equation
∆u + k2u = 0, k > 0) in Rn+1, n = 1, 2, by a planar screen, a bounded set S ⊂ Rn embedded
in the hyperplane {x ∈ Rn+1 : xn+1 = 0}. When S = Ω for Ω ⊂ Rn a bounded open set, it was
shown in [9] that the classical Dirichlet and Neumann scattering problems (as stated in [27], and
see [9, Defs. 3.10 and 3.11]) are well-posed (and equivalent to the weak formulations in [22, 36],

which view the screen as the closed set S = Ω) if and only if H̃s(Ω) = Hs
Ω

and H−s∂Ω = {0}, with
s = −1/2 for the Dirichlet case and s = +1/2 for the Neumann case. The unknown Cauchy data φ
satisfies an associated BIE Lφ = f , where the data f depends on the incident (source) wave field

and L is a bounded linear integral operator mapping bijectively between the space H̃s(Ω) = Hs
Ω

and the space H−s(Ω) ∼= (H−sΩc )⊥ (orthogonal complement in H−s(Rn)). One corollary of our results
in the current paper is that the classical Dirichlet screen problem is well-posed whenever Ω ⊂ Rn

is a thick domain with |∂Ω| = 0. In particular this holds for the Koch snowflake screen, for which
well-posedness was raised as an open question in [9, Examp. 8.7]. On the other hand, the classical

Neumann problem is not well-posed for the Koch snowflake since H
−1/2
∂Ω 6= {0} [9, Examp. 8.7].

When S = Γ for a compact set Γ ⊂ Rn with empty interior, it is also possible to formulate well-
posed scattering problems, with the associated BIE posed in the space Hs

Γ, with data in (H̃−s(Γc))⊥,
again with s = −1/2 for the Dirichlet case and s = +1/2 for the Neumann case [9,10]. Accordingly,
the BIE solution (and hence the corresponding scattered wavefield) is non-zero (for non-zero incident
data) if and only if the space Hs

Γ is non-trivial. Furthermore, when Hs
Γ is non-trivial and the BIE

solution φ is non-zero, it is important to know whether φ possesses any extra smoothness (beyond
membership of Hs

Γ) that can be exploited, for instance, to prove approximation error estimates
for numerical discretizations. A natural question is whether φ lies in H t

Γ for some t > s. To our
knowledge this question is almost completely open, with the only results we know of being negative,
namely that if s < sΓ (where sΓ is the nullity threshold defined at the end of §1) then a non-zero
BIE solution 0 6= φ ∈ Hs

Γ cannot lie in H t
Γ for any t > sΓ because H t

Γ = {0}. A satisfactory answer
to the question of solution regularity will necessitate a study of the relevant boundary integral
operators, which we do not want to go into here. The density question Q2, however, is a weaker
condition that can be investigated purely using function space theory. It represents a necessary
condition for increased solution regularity, in the sense that if the BIE solution were known to
lie in H t

Γ for all data f in some dense subspace of the range of L (for example, plane incident
waves, see [8]), then the boundedness of L−1 would imply that H t

Γ is dense in Hs
Γ. Question Q2

also provides a pathway to proving convergence of numerical discretizations: if approximation error
estimates can be proved for elements of H t

Γ for some t > s, and H t
Γ is dense in Hs

Γ, then one can
prove convergence of the numerical discretization, by first approximating φ ∈ Hs

Γ by some φ̃ ∈ H t
Γ

and then applying the numerical approximation theory to φ̃ ∈ H t
Γ — for details see [10].

3 Preliminaries

In this paper we are concerned with finding sufficient conditions under which the answers to Q1 and
Q2 are affirmative. While Q1 and Q2 were posed in the context of the Sobolev spaces Hs(Rn), the
approach to be used relies on results available in the more general framework of Triebel–Lizorkin
spaces F s

p,q(Rn) and Besov spaces Bs
p,q(Rn), where s ∈ R and 0 < p, q < ∞. Hence, whenever it

does not complicate the argument we work in this more general setting. Furthermore, we adopt
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the convention of using the letter A instead of F or B in our notation when we want to mention
both cases, so that statements can be read either by replacing A by F all over or by replacing A
by B all over. With this convention we define the spaces

Ãsp,q(Ω) := the closure of D(Ω) in Asp,q(Rn); (1)

Asp,q,Γ := {f ∈ Asp,q(Rn) : supp f ⊂ Γ}. (2)

for open Ω ⊂ Rn and closed Γ ⊂ Rn. We note that As
p,q,Ω

is denoted Ãsp,q(Ω) by Triebel in [34,

Def. 2.1(ii)]; our notation is an extension of that used in [9, 11,15].
As for the definition of the Triebel–Lizorkin and Besov spaces themselves, they are quite standard

and can be found in several reference works of Triebel, e.g. in [29, §2.3.1] or in the more recent
book [34, Def. 1.1] which we are going to refer to extensively. In [29, p. 37] the reader can also recall
the definition of the Bessel-potential spaces Hs

p(Rn), s ∈ R, 1 < p < ∞, and both in [29, §2.3.5]
and in [34, Rmk. 1.2] one can find the relation

Hs
p(Rn) = F s

p,2(Rn), s ∈ R, 1 < p <∞, (3)

between the Bessel-potential Sobolev spaces and the Triebel–Lizorkin spaces. The reader who is
not familiar with such spaces might also want to consult [29, §2.3.2, §2.3.3], where some of their
basic properties are presented, which we may use without further warning. We note that the spaces
Hs(Rn) considered above are, by definition, the same as Hs

2(Rn). We emphasize that the equality
relation in (3) indicates equality as sets but in general only equivalence of norms. In other words,
it says that the identity operator is a linear and topological isomorphism between the two spaces.

We will make frequent use of the following standard duality result1. Here and henceforth the
numbers p′ and q′ stand for the conjugate exponents of p and q respectively. We denote by S(Rn)
the Schwartz space and by S ′(Rn) its dual, the space of tempered distributions.

Proposition 3.1 ([29, Thm. 2.11.2]). Given any s ∈ R and 1 < p, q <∞, the operator

I−s,Ap′,q′ : A−sp′,q′(R
n) −→

(
Asp,q(Rn)

)′
defined by

(I−s,Ap′,q′ f)(g) = lim
k→∞
〈f, gk〉 , ∀f ∈ A−sp′,q′(R

n), ∀g ∈ Asp,q(Rn),

where 〈·, ·〉 is the dual pairing on S ′(Rn)× S(Rn) and (gk)k∈N ⊂ S(Rn) is any sequence converging
to g in Asp,q(Rn), is a linear and topological isomorphism.

Remark 3.2. It follows from the proof of [29, Thm. 2.11.2] that there exists c > 0 such that for
each f ∈ A−sp′,q′(Rn) and ϕ ∈ S(Rn),

|〈f, ϕ〉| ≤ c ‖f |A−sp′,q′(R
n)‖‖ϕ|Asp,q(Rn)‖. (4)

1In this paper, dual spaces consist of bounded linear functionals. In previous work by the second two authors
(e.g. [11,15]), they are assumed to consist of bounded anti-linear functionals, for reasons of notational convenience.
Complex conjugation provides an isometric anti-linear bijection between the two types of dual space: if l is a bounded
linear (resp. antilinear) functional then l defined by l(u) := l(u) is a bounded antilinear (resp. linear) functional with
the same norm as l.
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This, together with the density of the embedding S(Rn) ↪→ Asp,q(Rn), guarantees that the construction

of I−s,Ap′,q′ f above makes sense (in particular, does not depend on the choice of approximating sequence

(gk)k∈N), and defines an element of (Asp,q(Rn))′. That I−s,Ap′,q′ is a linear and topological isomorphism
is then precisely the content of [29, Thm. 2.11.2].

Corollary 3.3. Given any s ∈ R and 1 < p, q <∞, any f ∈ A−sp′,q′(Rn) and any g ∈ Asp,q(Rn),

(I−s,Ap′,q′ f)(g) = (Is,Ap,q g)(f). (5)

Proof. Consider (fk)k∈N ⊂ S(Rn) converging to f in A−sp′,q′(Rn) and (gk)k∈N ⊂ S(Rn) converging to
g in Asp,q(Rn), and write

|(I−s,Ap′,q′ f)(g)− (Is,Ap,q g)(f)|
≤ |(I−s,Ap′,q′ f)(g)− 〈f, gk〉 |+ | 〈f, gk〉 − 〈fk, gk〉 |+ | 〈gk, fk〉 − 〈g, fk〉 |+ | 〈g, fk〉 − (Is,Ap,q g)(f)|.

The first and last terms on the right-hand side clearly tend to 0 when k goes to ∞, by definition
of the operators I−s,Ap′,q′ and Is,Ap,q . That the same happens to the middle terms follows from (4)
and the hypotheses considered here. Of course, we are using the facts −(−s) = s, (p′)′ = p and
(q′)′ = q.

Remark 3.4. The operator I−s,Ap′,q′ is by construction an extension of the dual pairing 〈·, ·〉, in the

sense that if f ∈ A−sp′,q′(Rn) and g ∈ S(Rn) then (I−s,Ap′,q′ f)(g) = 〈f, g〉. Therefore it is common

to continue writing 〈f, g〉 instead of (I−s,Ap′,q′ f)(g) even when g 6∈ S(Rn). In particular, with this
convention the identity (5) can be written as 〈f, g〉 = 〈g, f〉.

The following proposition provides an important connection between the “tilde” and “subscript”
spaces introduced in (1) and (2). Here, and henceforth, the superscript “a” stands for annihilator.
We note that this result was proved for the special case of Hs(Rn) in [11, Lem. 3.2].

Proposition 3.5. Given a closed set Γ ⊂ Rn, s ∈ R and 1 < p, q <∞,(
Ãsp,q(Γ

c)
)a

= I−s,Ap′,q′ (A−sp′,q′,Γ) and (Asp,q,Γ)a = I−s,Ap′,q′

(
Ã−sp′,q′(Γ

c)
)
.

Proof. For the first identity, by the continuity of 〈·, ·〉 and the density of D(Γc) in Ãsp,q(Γ
c) we have(

I−s,Ap′,q′

)−1
((
Ãsp,q(Γ

c)
)a)

=
{
ψ ∈ A−sp′,q′(R

n), 〈ψ, u〉 = 0 ∀u ∈ Ãsp,q(Γc)
}

=
{
ψ ∈ A−sp′,q′(R

n), 〈ψ, u〉 = 0 ∀u ∈ D(Γc)
}

= A−sp′,q′,Γ.

For the second identity, replacing (s, p, q) by (−s, p′, q′) in the first identity gives (Ã−sp′,q′(Γ
c))a =

Is,Ap,q (Asp,q,Γ), and then applying a left annihilator to both sides we have by [21, Prop. 1.10.15(c)]

(noting that Ã−sp′,q′(Γ
c) is closed) and Corollary 3.3 that

Ã−sp′,q′(Γ
c) = a

(
(Ã−sp′,q′(Γ

c))a
)

= a
(
Is,Ap,q (Asp,q,Γ)

)
=
{
ψ ∈ A−sp′,q′(R

n), 〈u, ψ〉 = 0 ∀u ∈ Asp,q,Γ
}

=
{
ψ ∈ A−sp′,q′(R

n), 〈ψ, u〉 = 0 ∀u ∈ Asp,q,Γ
}

=
(
I−s,Ap′,q′

)−1(
(Asp,q,Γ)a

)
.
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A key concept arising in our study of both Q1 and Q2 is that of “Asp,q-nullity”.

Definition 3.6. A closed set Γ ⊂ Rn is said to be “Asp,q-null” if Asp,q,Γ = {0}.

Conditions for Hs
p-nullity were studied in detail in [15] using classical potential theoretic results

on capacities [1]. Combining the results in [15, Thm. 2.12] with the standard embeddings in [29,
Prop. 2.3.2.2, Thm. 2.7.1] and some knowledge about delta functions leads to the following general
statements concerning sets Γ with zero Lebesgue measure.

Proposition 3.7. Let Γ ⊂ Rn be non-empty and closed with |Γ| = 0, and define d := dimH(Γ) ∈
[0, n], where dimH(·) denotes the Hausdorff dimension. Then, for any 0 < q <∞,

(i) Γ is Asp,q-null (i.e. Asp,q,Γ = {0}) if either

1 < p <∞ and s >
d− n
p′

= (n− d)

(
1

p
− 1

)
or 0 < p ≤ 1 and s > n

(
1

p
− 1

)
≥ 0;

(ii) Γ is not Asp,q-null (i.e. Asp,q,Γ 6= {0}) if either

1 < p <∞ and s <
d− n
p′

= (n− d)

(
1

p
− 1

)
≤ 0 or 0 < p ≤ 1 and s < n

(
1

p
− 1

)
.

Proof. (i) Let 1 < p < ∞ and s > (d − n)/p′, and choose s̃ satisfying s > s̃ > (d − n)/p′. Then
by [15, Thm. 2.12] we have that F s̃

p,2,Γ = H s̃
p,Γ = {0}, and by [29, Prop. 2.3.2.2(iii)] it follows that

also B s̃
p,min{p,2},Γ = {0}. Since s > s̃ we can use [29, Prop. 2.3.2.2(ii)] to deduce that Bs

p,q,Γ = {0}
and F s

p,q,Γ = {0} for all 0 < q <∞, as claimed.
Now let 0 < p ≤ 1 and s > n(1/p− 1), and choose 1 < p̃ <∞ satisfying

s >
d

p̃′
+ n

(
1

p
− 1

)
≥ n

(
1

p
− 1

)
.

(If d = 0 this is trivially true for all 1 < p̃ <∞.) Then s̃ := s+ n
(

1
p̃
− 1

p

)
satisfies

s > s̃ >
d

p̃′
+ n

(
1

p
− 1

)
+ n

(
1

p̃
− 1

p

)
=
d− n
p̃′

,

and, arguing as above, we have that B s̃
p̃,q,Γ = {0} and F s̃

p̃,q,Γ = {0} for 0 < q < ∞. Furthermore,
using [29, Thm. 2.7.1] we deduce that Bs

p,q,Γ = {0} and F s
p,q,Γ = {0} for 0 < q <∞, as claimed.

(ii) Let 1 < p < ∞ and s < (d − n)/p′, and choose s̃ satisfying s < s̃ < (d − n)/p′. Then
by [15, Thm. 2.12] we have that F s̃

p,2,Γ = H s̃
p,Γ 6= {0}, and by [29, Prop. 2.3.2.2(iii)] it follows that

B s̃
p,max{p,2},Γ 6= {0}. Since s < s̃ we can use [29, Prop. 2.3.2.2(ii)] to deduce that Bs

p,q,Γ 6= {0} and

F s
p,q,Γ 6= {0} for all 0 < q <∞, as claimed.

Now let 0 < p ≤ 1 and s < n(1/p − 1). Since there is at least one point a ∈ Γ, from [24,
Rmk. 2.2.4.3] and [29, Prop. 2.3.8] it follows that δa ∈ Bs

p,q,{a} ⊂ Bs
p,q,Γ for any 0 < q < ∞.

Using [29, Prop. 2.3.2.2(iii)] we get that Asp,q,Γ 6= {0} for 0 < q <∞, as claimed.

7



Remark 3.8. The excluded cases (1 < p <∞ with s = (d−n)/p′ and 0 < p ≤ 1 with s = n(1/p−1))

are delicate and are not discussed here. For 1 < p <∞ and H
(d−n)/p′
p -nullity, all possible behaviours

are detailed and exemplified in [15, Cor. 2.15 and Thm. 4.5]. In particular we note that if 0 < d < n
and Γ is a compact d-set (see Definition 3.9 below) or a d-dimensional hyperplane (with d ∈ N)

then H
(d−n)/p′

p,Γ = {0} for all 1 < p <∞ [15, Thm. 2.17].

The concept of a “d-set”, already mentioned in the previous remark, will play an important role
in our later considerations. We give a definition here.

Definition 3.9. Let Γ be a non-empty closed subset of Rn and 0 ≤ d ≤ n. Γ is said to be a d-set
if there exist c1, c2 > 0 such that

c1r
d ≤ Hd

(
B(γ, r) ∩ Γ

)
≤ c2r

d, γ ∈ Γ, 0 < r ≤ 1,

where B(γ, r) is the closed ball of radius r with centre at γ and Hd stands for the d-dimensional
Hausdorff measure on Rn.

As we shall show in Propositions 5.3 and 5.6, the boundaries of the snowflake domains considered
in §5 are all examples of (compact) d-sets in R2 with 0 < d < 2. For less exotic but nonetheless
important examples, given d ∈ {1, 2, . . . , n}, every d-dimensional closed Lipschitz manifold is a
d-set in Rn. For more information about d-sets, see, e.g., [17, II.1] and [31, I.3]. In particular
(see [31, Cor. 3.6]), for a d-set Γ with 0 < d < n one has that |Γ| = 0 and dimH(Γ) = d.

4 Equality between Ãs
p,q(Ω) and As

p,q,Ω

Our aim in this section is to determine conditions under which

Ãsp,q(Ω) = As
p,q,Ω

, (6)

where Ω ⊂ Rn is a domain (non-empty open set) and Ãsp,q(Ω) and As
p,q,Ω

are defined as in (1)–(2).

Since (6) holds trivially when Ω = Rn, our interest is in the case where Ω is a proper domain, i.e.
Ω 6= Rn. We start by remarking that the inclusion

Ãsp,q(Ω) ⊂ As
p,q,Ω

is clear, since D(Ω) ⊂ As
p,q,Ω

and the latter is a closed subspace of Asp,q(Rn). Therefore, to prove

(6) we shall be merely concerned with proving that As
p,q,Ω
⊂ Ãsp,q(Ω).

We deal first with the simplest case where A = F , s = 0, 1 < p < ∞ and q = 2. By (3) this
means the setting of H0

p (Rn), 1 < p <∞, or, to put it simpler, Lp(Rn), 1 < p <∞. Actually, since

the proof works also when p = 1, we include this case in the following proposition. Here L̃p(Ω) and
Lp,Ω are defined in the obvious way, and

◦
Lp(Ω) := {f ∈ Lp(Rn) : f = 0 a.e. in Ωc}. (7)
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Proposition 4.1. Let Ω be a domain in Rn and let 1 ≤ p <∞. Then L̃p(Ω) =
◦
Lp(Ω). If |∂Ω| = 0

then also L̃p(Ω) = Lp,Ω.

Proof. Since D(Ω) ⊂
◦
Lp(Ω) and the latter is a closed subspace of Lp(Rn), then L̃p(Ω) ⊂

◦
Lp(Ω).

Let now f ∈
◦
Lp(Ω). Then ‖f |Ω|Lp(Ω)‖ = ‖f |Lp(Rn)‖, which, together with the fact that D(Ω)|Ω

is dense in Lp(Ω) (e.g., [20, Cor. 3.5]), proves that also f ∈ L̃p(Ω). If |∂Ω| = 0 then obviously

Lp,Ω =
◦
Lp(Ω), so that also Lp,Ω = L̃p(Ω) by the first part.

As mentioned above, we shall make frequent reference to some results of Triebel in [34]. However,
there is an an unfortunate clash between the notation in [34] and some of the notation introduced
above, which follows the conventions adopted in the second two authors’ previous papers [9,11,15].

We already pointed out immediately after (2) that the space we call As
p,q,Ω

is denoted Ãsp,q(Ω)

in [34, Def. 2.1(ii)]. In [34, Def. 2.1(ii)] Triebel introduces another space that will be important for

our purposes, defined in Definition 4.2 below. Triebel denotes this space Ãsp,q(Ω), but since we are

already using the notation Ãsp,q(Ω) (see (1)), we instead denote this new space RAs
p,q,Ω

, with the

“R” highlighting the fact that RAs
p,q,Ω

is a space of restrictions of distributions in As
p,q,Ω

.

Definition 4.2 ([34, Def. 2.1(ii)]). Let Ω be a domain in Rn. Let s ∈ R and 0 < p, q <∞.

RAs
p,q,Ω

:= {f ∈ D′(Ω) : f = g|Ω for some g ∈ As
p,q,Ω
};

‖f |RAs
p,q,Ω
‖ := inf ‖g|Asp,q(Rn)‖,

where the infimum is taken over all g ∈ As
p,q,Ω

with g|Ω = f .

Remark 4.3. The norm on RAs
p,q,Ω

defined above is in general stronger than that inherited from

the usual restriction space Asp,q(Ω) := {f ∈ D′(Ω) : f = g|Ω for some g ∈ Asp,q(Rn)}, where the
norm involves an infimum over all g ∈ Asp,q(Rn) such that g|Ω = f .

It is mentioned in [34, Rmk. 2.2] that there is a one-to-one correspondence between As
p,q,Ω

and

RAs
p,q,Ω

if, and only if,

Asp,q,∂Ω = {0}, (8)

i.e. ∂Ω is Asp,q-null. Indeed, using standard arguments from the theory of distributions we can be
more precise and state the following:

Lemma 4.4. Let Ω be a domain in Rn. Let s ∈ R and 0 < p, q <∞. If ∂Ω is Asp,q-null (i.e., (8)
holds), then the restriction operator

|Ω : As
p,q,Ω
−→ RAs

p,q,Ω

is an isometric isomorphism; in particular,

‖f |Ω|RAsp,q,Ω‖ = ‖f |Asp,q(Rn)‖ for all f ∈ As
p,q,Ω

. (9)
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The importance of this result is the following: there are some results for RAs
p,q,Ω

in [34] that we

would like to transfer to As
p,q,Ω

; this is possible whenever the above lemma applies. In particular,

by Proposition 3.7 this holds for Ω 6= Rn whenever |∂Ω| = 0 and either

1 < p <∞ and s >
dimH∂Ω− n

p′
or 0 < p ≤ 1 and s > n(1/p− 1) ≥ 0.

In order to state the main results of this section later on, we shall need the following notions
from [34, Def. 3.1(ii)–(iv), Rmk. 3.2]. Here, and henceforth, for a set S ⊂ Rn, we denote by Q(S)
the set of the (open) cubes contained in S and with the edges parallel to the Cartesian axes; and
for any Q ∈ Q(S) we denote by l(Q) the length of its edges.

Definition 4.5. Let Ω be a proper domain in Rn.

(i) Ω is said to be E-thick (exterior thick) if for any choice of c1, c2, c3, c4 > 0 and j0 ∈ N there
are c5, c6, c7, c8 > 0 such that for any j ∈ N, j ≥ j0, and any interior cube Qi ∈ Q(Ω) with

c12−j ≤ l(Qi) ≤ c22−j and c32−j ≤ dist(Qi, ∂Ω) ≤ c42−j,

there exists an exterior cube Qe ∈ Q(Ωc) with

c52−j ≤ l(Qe) ≤ c62−j and c72−j ≤ dist(Qe, ∂Ω) ≤ dist(Qi, Qe) ≤ c82−j.

(ii) Ω is said to be I-thick (interior thick) if for any choice of c1, c2, c3, c4 > 0 and j0 ∈ N there
are c5, c6, c7, c8 > 0 such that for any j ∈ N, j ≥ j0, and any exterior cube Qe ∈ Q(Ωc) with

c12−j ≤ l(Qe) ≤ c22−j and c32−j ≤ dist(Qe, ∂Ω) ≤ c42−j,

there exists an interior cube Qi ∈ Q(Ω) with

c52−j ≤ l(Qi) ≤ c62−j and c72−j ≤ dist(Qi, ∂Ω) ≤ dist(Qe, Qi) ≤ c82−j.

(iii) Ω is said to be thick if it is both E-thick and I-thick.

Remark 4.6. It is easily seen that:

1. Once the definition of E-thickness (or I-thickness) has been checked for some j0 ∈ N then it
automatically holds for all j0;

2. The definitions of E-thickness and I-thickness can be equivalently stated with 2−j replaced
throughout by ξj for any 0 < ξ < 1.

In [34, Prop. 3.6(i)–(iv), Prop. 3.8(i),(iii)], some relations with well-known concepts are presented:

Proposition 4.7.

(i) Any (ε, δ)-domain [16] Ω in Rn is I-thick with |∂Ω| = 0.

(ii) Any bounded Lipschitz domain [34, Def. 3.4(iii)] in Rn, n ≥ 2, is thick.
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(iii) The classical Koch snowflake domain as per [34, Fig. 3.5] in R2 is a thick (ε, δ)-domain.

(iv) Let Ω be a domain in Rn. Then Rn = Ω∪∂Ω∪Ω
c

and ∂(Ω
c
) ⊂ ∂Ω. Furthermore, ∂Ω = ∂(Ω

c
)

if, and only if, (Ω)◦ = Ω.

(v) If Ω is an E-thick domain in Rn, then (Ω)◦ = Ω and Ω
c

is I-thick.

(vi) If Ω is an I-thick domain in Rn and Ω 6= Rn, then Ω
c

is E-thick.

We shall also need to use wavelet representations of some spaces, needing in particular to consider
so-called orthonormal u-wavelet basis in L2(Ω). However, we don’t want to go into details, so we
shall keep things at the bare minimum.

Definition 4.8 ([34, Def. 2.31]). Let Ω be a proper domain in Rn. Let u ∈ N. A collection (of real
functions)

{Φj
r : j ∈ N0, r = 1, . . . , Nj} with Nj ∈ N ∪ {∞}

is called an orthonormal u-wavelet basis in L2(Ω) if it is both an u-wavelet system according to [34,
Def. 2.4] and an orthonormal basis in L2(Ω).

Remark 4.9. We do not go deeper into the long definition of what an u-wavelet system is because,
in addition to what we are going to write down below, we shall only need the following two properties:
for all j and r as above,

(i) Φj
r belongs to Cu(Rn);

(ii) supp Φj
r ⊂ Ω .

From these two properties it follows that Φj
r ∈ Ãsp,q(Ω) when u > s: that Φj

r ∈ Asp,q(Rn) follows
from the fact that then Φj

r is essentially an atom in Asp,q(Rn) — see, e.g., [2, Cor. 4.11], read in
the constant exponents case; that it can be approximated in Asp,q(Rn) by functions in D(Ω) follows
from the density of S(Rn) in Asp,q(Rn) with the help of a suitable cut-off function and pointwise
multiplier properties (see, e.g., [29, §2.8.2]), since the second property above guarantees that there
is some room between supp Φj

r and Ωc.

Theorem 4.10 ([34, Thm. 2.33]). Let Ω be a proper domain in Rn. For any u ∈ N there exist
orthonormal u-wavelet bases in L2(Ω).

The next result, which will be crucial for our intentions, follows from [34, Def. 3.11, Thm. 3.13]:

Theorem 4.11. Let Ω be an E-thick domain in Rn. Let 0 < p, q <∞ and

s > n

(
1

min{1, p, q}
− 1

)
if A = F, s > n

(
1

min{1, p}
− 1

)
if A = B.

Let u > s be a natural number and {Φj
r : j ∈ N0, r = 1, . . . , Nj} with Nj ∈ N ∪ {∞} be an

orthonormal u-wavelet basis in L2(Ω). Then {Φj
r} is an unconditional basis in RAs

p,q,Ω
.

We can now prove one of the main results in this section:
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Theorem 4.12. Let Ω be an E-thick domain in Rn with |∂Ω| = 0. Let p, q and s be as in

Theorem 4.11. Then Ãsp,q(Ω) = As
p,q,Ω

.

Proof. The hypotheses on p, q and s, and the fact that |∂Ω| = 0, together imply by Proposi-
tion 3.7(i) that ∂Ω is Asp,q-null, so that Lemma 4.4 applies. Given any f ∈ As

p,q,Ω
, we have that

f |Ω ∈ RAs
p,q,Ω

, which, by the preceding theorem, is the limit in RAs
p,q,Ω

, when the natural N

tends to ∞, of finite linear combinations fN of functions Φj
r. From Remark 4.9 it follows that

f̃N ∈ Ãsp,q(Ω) ⊂ As
p,q,Ω

, where f̃N is the extension of fN to Rn by zero. Hence from (9) we get that

‖f − f̃N |Asp,q(Rn)‖ = ‖f |Ω− fN |RAsp,q,Ω‖, which tends to 0 when N goes to ∞, so we conclude that

f is in the closure of Ãsp,q(Ω) in Asp,q(Rn), that is, f ∈ Ãsp,q(Ω) too.

Corollary 4.13. Let Ω be an E-thick domain in Rn with |∂Ω| = 0. Then H̃s
p(Ω) = Hs

p,Ω
whenever

s ≥ 0 and 1 < p <∞.

Proof. The case s > 0 follows from (3) and the above theorem. The case s = 0 follows from
Proposition 4.1 (and in this case we don’t even need the domain Ω to be E-thick).

For completeness we remark that for some parameters p and q and with some extra conditions on
∂Ω it is possible to get the conclusion of Theorem 4.12 for some negative values of s. This follows by
conjugating [34, Def. 3.11, Thm. 3.13, Prop. 3.19 and Rmk. 3.20]. And once we have the conclusion
of Theorem 4.12 both for some positive and for some negative values of s, under even more stringent
conditions interpolation techniques can be applied to get the conclusion for some parameters p and
q when s = 0 — see [34, Def. 3.11, Prop. 3.19, Rmk. 3.20 and Prop. 3.21]. However, we shall not
pursue the above avenue of research here. For the example of Hs(Rn) motivating our studies, the
case s = 0 is already covered by Corollary 4.13. And we shall reach negative values of s under
somewhat different conditions using duality.

Lemma 4.14. Let Ω be a domain in Rn. Let s ∈ R and 1 < p, q <∞. Then

Ãsp,q(Ω) = As
p,q,Ω

if and only if Ã−sp′,q′(Ω
c
) = A−sp′,q′,Ωc .

Proof. Ãsp,q(Ω) = As
p,q,Ω

iff (Ãsp,q(Ω))a = (As
p,q,Ω

)a, since Ãsp,q(Ω) and As
p,q,Ω

are closed subspaces of

Asp,q(Rn). On the other hand, the latter identity is equivalent to A−sp′,q′,Ωc = Ã−sp′,q′(Ω
c
), as follows by

applying Proposition 3.5 with Γ = Ωc in its first identity and Γ = Ω in its second identity.

If we specialize the above result to the case A = F and p = q = 2 we recover [11, Lem. 3.26].
One immediate corollary of Lemma 4.14 is the second part of the following lemma, which provides

another connection between density results and Asp,q-nullity.

Lemma 4.15. Let Ω ⊂ Rn be a proper domain, and let s > 0 and 1 < p <∞.

(i) If Ãsp,q(Ω) = As
p,q,Ω

and 0 < q <∞ then Asp,q,∂Ω = {0}.

(ii) If Ã−sp′,q′(Ω) = A−s
p′,q′,Ω

and 1 < q <∞ then Asp,q,∂Ω = {0}.
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Proof. (i) First note that the assumptions on s, p and q imply that Asp,q(Rn) ↪→ Lp(Rn). Suppose

that Ãsp,q(Ω) = As
p,q,Ω

. Then by Proposition 4.1 (recall (7) for the definition of
◦
Lp(Ω)) we have

Asp,q,∂Ω = Asp,q,∂Ω ∩ Asp,q,Ω = Asp,q,∂Ω ∩ Ãsp,q(Ω) ↪→ Lp,∂Ω ∩ L̃p(Ω) = Lp,∂Ω ∩
◦
Lp(Ω) = {0}.

(ii) Since Ω
c ⊂ Ωc, we have the inclusions Asp,q,Ωc ⊃ As

p,q,Ω
c ⊃ Ãsp,q(Ω

c
). If Ã−sp′,q′(Ω) = A−s

p′,q′,Ω
and

1 < q < ∞, then Lemma 4.14 implies that Asp,q,Ωc = Ãsp,q(Ω
c
), so in fact the previously mentioned

inclusions are all equalities, i.e. Asp,q,Ωc = As
p,q,Ω

c = Ãsp,q(Ω
c
). But then

Asp,q,∂Ω = Asp,q,∂Ω ∩ Asp,q,Ωc = Asp,q,∂Ω ∩ Ãsp,q(Ω
c
) ↪→ Lp,∂Ω ∩ L̃p(Ω

c
) = Lp,∂Ω ∩

◦
Lp(Ω

c
) = {0}.

Note that the statement of Lemma 4.15 does not extend to s < 0; counterexamples for n = 2
include the thick domains considered in §5.1, for which Ãsp,q(Ω) = As

p,q,Ω
for all s ∈ R \ {0},

1 < p, q < ∞; indeed, given any s < 0, following Remark 5.4 we can pick a domain of that class
whose boundary has Lebesgue measure zero and Hausdorff dimension d such that s < d−2

p′
= d−n

p′
,

in which case Asp,q,∂Ω 6= {0} by Proposition 3.7.
We now proceed to another of the main results in this section.

Theorem 4.16. Let Ω be an I-thick domain in Rn with (Ω)◦ = Ω and |∂Ω| = 0. Given any s < 0

and 1 < p, q <∞, Ãsp,q(Ω) = As
p,q,Ω

.

Proof. According to Lemma 4.14, it is enough to show that

Ã−sp′,q′(Ω
c
) = A−sp′,q′,Ωc . (10)

Since Ω 6= Rn, the assumption (Ω)◦ = Ω implies that also Ω 6= Rn. Then since Ω is I-thick,
from Proposition 4.7(vi) it follows that Ω

c
is E-thick. Furthermore, since |∂Ω| = 0 it follows by

Proposition 4.7(iv) that |∂(Ω
c
)| = 0. We can then apply Theorem 4.12 with (−s, p′, q′,Ωc

) in place

of (s, p, q,Ω) to obtain Ã−sp′,q′(Ω
c
) = A−s

p′,q′,Ω
c , from which (10) follows using Ωc \ Ω

c
= (Ω)◦ \ Ω = ∅,

the last identity being true by hypothesis.

The next two corollaries follow immediately from Definition 4.5, Proposition 4.7, Theorem 4.16
and either Theorem 4.12 or Corollary 4.13.

Corollary 4.17. Let Ω be a thick domain in Rn with |∂Ω| = 0. Given any s ∈ R \ {0} and

1 < p, q <∞, Ãsp,q(Ω) = As
p,q,Ω

.

Corollary 4.18. Let Ω be a thick domain in Rn with |∂Ω| = 0. Given any s ∈ R and 1 < p <∞,

H̃s
p(Ω) = Hs

p,Ω
.

Due to Proposition 4.7, both corollaries above apply to the case when Ω is the classical Koch
snowflake domain in R2. We shall consider some further examples in the next section.
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Remark 4.19. Thickness is not necessary to ensure H̃s
p(Ω) = Hs

p,Ω
. Indeed, for n = 2 the domain

Ω = {x2 < |x1|1/2} is not E-thick and Ω
c

is not I-thick, but H̃s(Ω) = Hs
Ω

and H̃s(Ω
c
) = Hs

Ωc = Hs

Ω
c

for all s ∈ R by [20, Thm. 3.29].

Remark 4.20. As suggested after Corollary 4.13, the conclusion of Corollary 4.17 can also be
obtained for s = 0 if we are willing to restrict appropriately the range of domains to be considered.
But we shall not pursue this here.

Remark 4.21. Since by definition the Ãsp,q(Ω) spaces all share a common dense subspace D(Ω),

whenever As1p1,q1(R
n) ⊂ As2p2,q2(R

n) it follows that the Ãs1p1,q1(Ω) is dense in Ãs2p2,q2(Ω) for all open sets
Ω. Therefore, one consequence of Corollary 4.18 is that if Ω is a thick domain in Rn with |∂Ω| = 0,
then Hs1

p,Ω
is dense in Hs2

p,Ω
for all s2 < s1 ∈ R and 1 < p <∞. This complements the results in §6,

where we study conditions under which Hs1
p,Γ is dense in Hs2

p,Γ for Γ a closed set with empty interior.

5 Examples of thick domains

In the previous section we proved that a sufficient condition for the equality H̃s
p(Ω) = Hs

p,Ω
is that

Ω is a thick domain with |∂Ω| = 0. In this section we prove thickness for a general class of domains
(possibly with fractal boundaries) formed as the limit of a sequence of smoother (“prefractal”)
domains. This includes a family of generalisations of the classical Koch snowflake domain, for
which a proof of thickness was sketched in [34, Prop. 3.8(iii)], and the “square snowflake” domain
considered in [25].

Our general result is Proposition 5.1. Before stating this result we need to describe the framework
we have in mind. Suppose we have a nested increasing sequence (Γ−j )j∈N0 of bounded open sets

Γ−0 ⊂ Γ−1 ⊂ . . . ⊂ Γ−j ⊂ Γ−j+1 ⊂ . . . ,

and a nested decreasing sequence (Γ+
j )j∈N0 of compact sets

Γ+
0 ⊃ Γ+

1 ⊃ . . . ⊃ Γ+
j ⊃ Γ+

j+1 ⊃ . . . ,

such that Γ−j is non-empty for all except a finite number of j and

Γ−j ⊂ Γ+
j for all j ∈ N0.

Define

Γ− :=
∞⋃
j=0

Γ−j and Γ+ :=
∞⋂
j=0

Γ+
j .

Then Γ− is non-empty and open and Γ+ is non-empty and compact, with

Γ− ⊂ Γ+.

Furthermore, defining the compact set

∆j := Γ+
j \ Γ−j ,
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it holds that
∂Γ− ⊂ ∆j and ∂Γ+ ⊂ ∆j, for each j ∈ N0.

We are now ready to state our general result concerning thickness. Note that conditions (11),
(12) and (13) in Proposition 5.1 are statements about fixed order approximations Γ±j , and do not
involve the limiting objects Γ±. One can think of (12) and (13) as “j-uniform” thickness estimates
on the sequence of approximations Γ±j . We remark that a necessary condition for (11) to hold is
that dH(∂Γ−j , ∂Γ+

j ) ≤ cξj, where dH is the Hausdorff distance.

Proposition 5.1. Let Γ−j ,Γ
+
j ,Γ

−,Γ+,∆j, for j ∈ N0, be as above. Suppose that there exists
constants 0 < ξ < 1, j∗ ∈ N0 and c, c±1 , c

±
2 , c

±
3 , c

±
4 > 0 such that, for each j ≥ j∗, using the Q(S)

and l(Q) notation introduced before Definition 4.5,

∀x ∈ ∆j, dist(x, ∂Γ−j ) ≤ cξj and dist(x, ∂Γ+
j ) ≤ cξj; (11)

∀x− ∈ ∂Γ−j , ∃Qi ∈ Q(Γ−j ) s.t. c−1 ξ
j ≤ l(Qi) ≤ c−2 ξ

j and

c−3 ξ
j ≤ dist(Qi, ∂Γ−j ) ≤ dist(Qi, x−) ≤ c−4 ξ

j; (12)

and ∀x+ ∈ ∂Γ+
j , ∃Qe ∈ Q

(
(Γ+

j )c
)

s.t. c+
1 ξ

j ≤ l(Qe) ≤ c+
2 ξ

j and

c+
3 ξ

j ≤ dist(Qe, ∂Γ+
j ) ≤ dist(Qe, x+) ≤ c+

4 ξ
j. (13)

Then Γ− is thick, with Γ− = Γ+ and Γ− = (Γ+)◦. Moreover, if |∂Γ−| = 0, then Ãsp,q(Γ
−) =

As
p,q,Γ−

= Asp,q,Γ+ for all s ∈ R \ {0} and 1 < p, q <∞, and H̃s
p(Γ

−) = Hs
p,Γ−

= Hs
p,Γ+ for all s ∈ R

and 1 < p <∞.

Proof. The fact that Γ− = Γ+ is an obvious consequence of (11), since if x ∈ Γ+ \ Γ− then x ∈ ∆j

for every j, and by (11) there exists a sequence of points xj ∈ ∂Γ−j ⊂ Γ− converging to x, so that

x ∈ Γ−. Similarly, it’s easy to check that ∂Γ− = ∂Γ+ =
⋂∞
j=0 ∆j and hence that Γ− = (Γ+)◦.

In proving thickness we recall from Remark 4.6 that it is enough to verify the conditions of
Definition 4.5 for a single value of j0 and with 2−j replaced by ξj throughout.

To prove I-thickness for Γ−, fix c1, c2, c3, c4 > 0 and let j ≥ j0 := j∗. Let Qe ∈ Q((Γ−)c)
satisfy c1ξ

j ≤ l(Qe) ≤ c2ξ
j and c3ξ

j ≤ dist(Qe, ∂Γ−) ≤ c4ξ
j, and let x ∈ ∂Γ− be such that

dist(Qe, ∂Γ−) = dist(Qe, x). Since x ∈ ∂Γ− ⊂ ∆j there exists x− ∈ ∂Γ−j such that |x− x−| ≤ cξj.
By condition (12), there exists Qi ∈ Q(Γ−j ) ⊂ Q(Γ−) such that c−1 ξ

j ≤ l(Qi) ≤ c−2 ξ
j and c−3 ξ

j ≤
dist(Qi, ∂Γ−j ) ≤ dist(Qi, x−) ≤ c−4 ξ

j. Then, since dist(Qi, ∂Γ−) ≥ dist(Qi, ∂Γ−j ) and dist(Qi, Qe) ≤
dist(Qi, x−) + |x−x−|+ dist(Qe, x), we see that the definition of I-thickness for Γ− is satisfied with
c5 = c−1 , c6 = c−2 , c7 = c−3 and c8 = c4 + c+ c−4 .

To prove E-thickness for Γ−, fix c1, c2, c3, c4 > 0 and let j ≥ j0 := j∗. Let Qi ∈ Q(Γ−)
satisfy c1ξ

j ≤ l(Qi) ≤ c2ξ
j and c3ξ

j ≤ dist(Qi, ∂Γ−) ≤ c4ξ
j, and let x ∈ ∂Γ− be such that

dist(Qi, ∂Γ−) = dist(Qi, x). Since x ∈ ∂Γ− ⊂ ∆j there exists x+ ∈ ∂Γ+
j such that |x − x+| ≤ cξj.

By condition (13), there exists Qe ∈ Q((Γ+
j )c) ⊂ Q((Γ−)c) such that c+

1 ξ
j ≤ l(Qe) ≤ c+

2 ξ
j and

c+
3 ξ

j ≤ dist(Qe, ∂Γ+
j ) ≤ dist(Qe, x+) ≤ c+

4 ξ
j. Then, since dist(Qe, ∂Γ−) ≥ dist(Qe, ∂Γ+

j ) and
dist(Qi, Qe) ≤ dist(Qe, x+) + |x−x+|+ dist(Qi, x), we see that the definition of E-thickness for Γ−

is satisfied with c5 = c+
1 , c6 = c+

2 , c7 = c+
3 and c8 = c4 + c+ c+

4 .
The final assertions of the proposition then follow easily from Corollaries 4.17 and 4.18.

We now apply Proposition 5.1 to prove thickness for some concrete examples.
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5.1 The classical snowflakes

We first consider the family of “classical snowflakes” studied in [12], which generalise the standard
Koch snowflake. These snowflakes are open subsets of R2, defined as limits of nested (increasing)
sequences of open polygonal prefractals. In order to apply Proposition 5.1 and deduce thickness,
we need to introduce a sequence of nested (decreasing) closed prefractals, which generalise those
considered in [3] for the standard Koch snowflake. The interior and exterior prefractals for three
examples (including the Koch snowflake) are shown in Figure 1.

Figure 1: The first 6 prefractals Γ±0 , . . . ,Γ
±
5 of the classical snowflakes for β = π

3
(top), β = π

6

(centre), β = π
20

(bottom). The inner prefractals Γ−j are the black shapes, the outer ones Γ+
j are

the union of the red and the black shapes, and the differences ∆j are the red parts.

The snowflakes are parametrised by a number 0 < β < π/2, which represents half the width of
each convex angle of the interior prefractals (except possibly the three angles of the first interior
prefractal). Given 0 < β < π

2
we define ξ := 1

2(1+sinβ)
, which satisfies 1

4
< ξ < 1

2
and represents the

ratio of the side lengths of two successive prefractals. The standard Koch snowflake corresponds to
the choice β = π/6, so that ξ = 1/3. We note that ξ is denoted α−1 in [12, §1.1].

We define an increasing sequence of nested polygons Γ−j , j ∈ N0, as follows. Each Γ−j is an open
polygon with M−

j := 3 · 4j edges of length ξj. Let Γ−0 be the equilateral triangle with vertices

(0, 0), (1, 0), (1
2
, 1

2

√
3). Then Γ−j is the union of Γ−j−1 and M−

j−1 identical disjoint isosceles triangles

(together with their bases) with basis length ξj−1(1− 2ξ), side length ξj, height ξj−1
√
ξ − 1

4
, apex

angle 2β, disjoint from Γ−j−1 and placed in such a way that the midpoint of the basis of the kth
such triangle coincides with the midpoint of the kth side of Γ−j−1, for k = 1, . . . ,M−

j−1.
The external closed polygons Γ+

j , j ∈ N0, are defined as follows. Each Γ+
j is a closed polygon

with M+
j := 6 · 4j edges of length ξj+

1
2 . The first one Γ+

0 is the convex hexagon obtained as union
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of Γ−0 and the three isosceles closed triangles with base the three sides of Γ−0 , respectively, and

height
√
ξ − 1

4
(Γ+

0 is a regular hexagon only if β = π
6
). Then Γ+

j is the difference of Γ+
j−1 and M+

j−1

identical disjoint isosceles triangles (together with their bases) with basis length ξj−
1
2 (1− 2ξ), side

length ξj+
1
2 , height ξj−

1
2

√
ξ − 1

4
, apex angle 2β, contained in Γ+

j−1 and placed in such a way that

the midpoint of the basis of the kth such triangle coincides with the midpoint of the kth side of
Γ+
j−1, for k = 1, . . . ,M+

j−1.
The prefractals satisfy Γ−j ⊂ Γ+

j , Γ−j ⊂ Γ−j+1 and Γ+
j+1 ⊂ Γ+

j , as required in the framework for
Proposition 5.1. The limit snowflakes are defined as Γ− :=

⋃
j∈N0

Γ−j and Γ+ :=
⋂
j∈N0

Γ+
j and the

boundary approximations are ∆j := Γ+
j \ Γ−j (the red parts in Figure 1).

Proposition 5.2. For every 0 < β < π
2
, the classical snowflake domain Γ− is thick, with Γ− = Γ+,

and Ãsp,q(Γ
−) = As

p,q,Γ−
= Asp,q,Γ+ for all s ∈ R\{0} and 1 < p, q <∞, and H̃s

p(Γ
−) = Hs

p,Γ−
= Hs

p,Γ+

for all s ∈ R and 1 < p <∞.

Proof. We prove that the sequences Γ±j satisfy the assumptions of Proposition 5.1. We first note

that since ∂Γ− ⊂ ∆j and |∆j| = 4ξ2|∆j−1| = (2ξ)2j|∆0| = 3
2
(2ξ)2j

√
ξ − 1

4

j→∞−−−→ 0 by ξ < 1
2
, we

have |∂Γ−| = 0. Next we verify the three conditions (11), (12) and (13). To that end we choose ξ
in (11)–(13) to be the ξ in the definition of Γ±j , and fix j0 = 1.

To prove (11), take any x ∈ ∆j. By definition of the prefractals, x ∈ T , where T is an isosceles

triangle with base length ξj, height ξj
√
ξ − 1

4
, base contained in ∂Γ−j and legs in ∂Γ+

j . Thus

dist(x, ∂Γ−j ) ≤ ξj
√
ξ − 1

4
and dist(x, ∂Γ+

j ) ≤ 1
2
ξj and so (11) holds with c = 1

2
.

Γ−j

Γ+
j

T+

Qe

x+

x−

T−
Qi

x̃−
ξj ξj+1/2

Figure 2: A schematic representation of the proof of conditions (12) and (13) for the classical
snowflake Γ− in the proof of Proposition 5.2. Given x− ∈ ∂Γ−j we construct Qi ∈ Q(Γ−j ); given
x+ ∈ ∂Γ+

j we construct Qe ∈ Q((Γ+
j )c). In this example j = 1, β = π/20 and x̃+ = x+.

Now take x− ∈ ∂Γ−j . Since j ≥ j0 = 1 there exists a connected component T− of Γ−j \Γ−j−1 and a
point x̃− ∈ ∂T− such that |x−−x̃−| ≤ ξj. By the construction of Γ−j , T− is an open isosceles triangle
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T− ⊂ Γ−j with leg length ξj and apex angle 2β. (In particular if x− ∈ ∂Γ−j \∂Γ−j−1 then we can take
x̃− = x−.) For an illustration see Figure 2. The triangle T− contains an open disc of radius ρβξ

j

(whose boundary is the inscribed circle) where ρβ := sin β tan(π
4
− β

2
) > 0 depends only on β, and

inside this disc we can construct a square Qi ∈ Q(Γ−j ) of side length
ρβ√

2
ξj sharing the same centre

as the disc. Then
ρβ
2
ξj ≤ dist(Qi, ∂T−) ≤ dist(Qi, ∂Γ−j ) ≤ dist(Qi, x−) ≤ |x−− x̃−|+dist(Qi, x̃−) ≤

2ξj, so that (12) holds with c−1 = c−2 =
ρβ√

2
, c−3 =

ρβ
2

and c−4 = 2.

Similarly, for any x+ ∈ ∂Γ+
j there exists an open isosceles triangle T+ ⊂ (Γ+

j−1)◦ \ Γ+
j ⊂ (Γ+

j )c

with leg length ξj+
1
2 and apex angle 2β and a point x̃+ ∈ ∂T+ such that |x+ − x̃+| ≤ ξj+1/2.

Again, for an illustration see Figure 2. The same reasoning as above permits the construction of
Qe ∈ Q((Γ+

j )c) such that (13) holds with c+
m = ξ

1
2 c−m for m = 1, . . . , 4.

The next result will be useful in section 6, where we deal with d-sets (cf. Definition 3.9).

Proposition 5.3. The boundaries of the classical snowflakes introduced above and parametrized by
β ∈ (0, π

2
) are d-sets for d = − log 4

log ξ
, where ξ = 1

2(1+sinβ)
as before.

Proof. Let β, ξ and d be as in the statement of the proposition.
Step 1. Since a finite union of d-sets is clearly still a d-set, it is enough to prove that the part

of the boundary built over each one of the three legs of the initial equilateral triangle is a d-set.
And since the Hausdorff measure is invariant under translations and rotations, we shall do the
forthcoming analysis after a rigid motion has been performed in such a way that each leg of the
initial triangle coincides with the segment [(0, 0), (1, 0)] in R2 and the corresponding part of the
boundary lies above it. Our objective is then to prove that this is a d-set.

Step 2. We shall use the same notation as before, except that we prepend the fraction 1
3

to it.
So, the part of the boundary to be considered is denoted 1

3
∂Γ− and equals

⋂∞
j=0

1
3
∆j (as in the

first paragraph of the proof of Proposition 5.1), where 1
3
∆j stands for the part of the boundary

approximation ∆j built only over the segment [(0, 0), (1, 0)]. From the way (11) is proved in
Proposition 5.2, we see that also the following holds:

∀x ∈ 1
3
∆j, dist(x, 1

3
∂Γ−j ) ≤ 1

2
ξj and dist(x, 1

3
∂Γ−) ≤ 1√

2
ξj.

The second inequality is due to the fact that in the isosceles triangle T mentioned in the proof
the end points of the base belong to 1

3
∆j′ for every j′, and therefore to 1

3
∂Γ−. Then, similarly as

observed just before Proposition 5.1, dH(1
3
∂Γ−j ,

1
3
∂Γ−) ≤ 1√

2
ξj, therefore

1
3
∂Γ−j −−−→

j→∞
1
3
∂Γ− (14)

in the Hausdorff metric in the space of non-empty compact subsets of R2.
Step 3. We are going to show now that 1

3
∂Γ− is also the fractal (invariant set) determined by

four contractions ψi, i = 1, . . . , 4, in R2 according to [31, Thm. 4.2] and that these contractions are
indeed similarities (similitudes) with contraction ratio equal to ξ and satisfy the open set condition
of [31, Def. 4.5(ii)]. Afterwards, by [31, Thm. 4.7] we can conclude that 1

3
∂Γ− is a compact D-set

with D ≥ 0 determined by
∑4

i=1 ξ
D = 1, from which it follows that D = d, finishing the proof.
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The mentioned contractions are defined as follows, where H(ξ) denotes the homothety with
centre at the origin and ratio ξ, R(θ) denotes counterclockwise rotation through angle θ about the
origin, and T (x, y) denotes translation by a vector (x, y):

ψ1 = H(ξ), ψ2 = T (ξ, 0) ◦R(π
2
− β) ◦H(ξ),

ψ3 = T (1− ξ − ξ sin β, ξ cos β) ◦R(β − π
2
) ◦H(ξ), ψ4 = T (1− ξ, 0) ◦H(ξ).

These are, clearly, similarities of ratio ξ and determine, according to [31, Thm. 4.2], the unique
non-empty compact set K in R2 such that

K = ψ(K) :=
4⋃
i=1

ψi(K).

Still according to [31, Thm. 4.2], K can be obtained as

K = lim
j→∞

ψj(Λ) := lim
j→∞

(ψ ◦ . . . ◦ ψ︸ ︷︷ ︸
j

)(Λ) (15)

for any non-empty compact subset Λ of R2, the limit being taken in the metric space of all non-
empty compact sets in R2 equipped with the Hausdorff metric.

Since each ψi maps an edge of 1
3
∂Γ−j−1 to one of 1

3
∂Γ−j , choosing Λ = [(0, 0), (1, 0)], it is easy to

see that
ψj(Λ) = 1

3
∂Γ−j , j ∈ N.

Combining this with (14) and (15), we get that

K = 1
3
∂Γ−.

In order to finish the proof, it only remains to exhibit a non-empty open set O in R2 such that

ψ(O) =
4⋃
i=1

ψi(O) ⊂ O and ψi(O) ∩ ψk(O) = ∅ for i 6= k.

It is easily seen that we can take for O the interior of 1
3
∆0.

Remark 5.4. Combining the above result with the information given after Definition 3.9, we have
that the Hausdorff dimension of ∂Γ− is − log 4/ log ξ, with the boundary of the standard Koch
snowflake (β = π

6
, ξ = 1

3
) having dimension − log 4/ log(1/3). Moreover, since ξ ranges over

all values in (1
4
, 1

2
), we have produced a class of domains in R2 whose boundaries have Hausdorff

dimensions ranging over all values in (1, 2).

5.2 The square snowflake

We now consider the “square snowflake” studied in [25] (see also [14, §7.6] and the references
therein). Like the classical snowflakes studied in the previous section, this is an open set Γ− ⊂ R2
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Figure 3: The first five prefractals Γ0, . . . ,Γ4 of the square snowflake.

with fractal boundary. The starting point for the definition of Γ− is a sequence of non-nested
polygonal prefractals Γj, j ∈ N0, the first five of which are shown in Figure 3.

The sequence of prefractals Γj ⊂ R2, j = 0, 1, . . . is defined as follows. Each prefractal Γj is
a polygon whose boundary is the union of Nj := 4 · 8j segments of length `j := 4−j aligned to
the Cartesian axes. Let Γ0 = (0, 1)2 be the unit open square. For j ∈ N, ∂Γj is constructed by
replacing each horizontal edge [(x, y), (x+ `j−1, y)] and each vertical edge [(x′, y′), (x′, y′ + `j−1)] of
∂Γj−1 respectively by the following polygonal lines composed of 8 edges each:

[
(x,y)

(x+ `j−1,y)

]
 

 



(x,y)

(x+ `j,y)

(x+ `j,y + `j)

(x+ 2`j,y + `j)

(x+ 2`j,y)

(x+ 2`j,y − `j)
(x+ 3`j,y − `j)
(x+ 3`j,y)

(x+ `j−1,y)


,

[
(x′,y′)

(x′,y′ + `j−1)

]
 

 



(x′,y′)

(x′,y′ + `j)

(x′ − `j,y′ + `j)

(x′ − `j,y′ + 2`j)

(x′,y′ + 2`j)

(x′ + `j,y
′ + 2`j)

(x′ + `j,y
′ + 3`j)

(x′,y′ + 3`j)

(x′,y′ + `j−1)


. (16)

(Note that the fourth and the fifth segments obtained are aligned; in the following however we count
them as two different edges of Γj.) Each polygonal path ∂Γj constructed with this procedure is the
boundary of a simply connected polygon Γj of unit area, composed of 16j squares of side length `j.
We note that the closures of the prefractals tile the plane:

⋃
(k1,k2)∈Z2(Γj + (k1, k2)) = R2 for any j

and (Γj + (k′1, k
′
2)) ∩ (Γj + (k1, k2)) = ∅ for all (k′1, k

′
2), (k1, k2) ∈ Z2 such that (k′1, k

′
2) 6= (k1, k2).

The resulting sequence of prefractals (Γj)j∈N0 is not nested: for each j ∈ N neither Γj ⊂ Γj−1 nor
Γj ⊃ Γj−1. Indeed, the two set differences Γj \Γj−1 and Γj−1\Γj are made of 4 ·8j−1 = 23j−1 disjoint
squares of side length `j. Thus the limit set Γ− cannot be defined simply as the infinite union or
intersection of the prefractals defined above. However, we are going to construct, as before, two
nested sequences (Γ±j )j of open and closed prefractals approximating monotonically an open set
Γ− and its closure, as in Proposition 5.1, such that the boundary ∂Γ− of Γ− is the limit, in the
Hausdorff metric, of the non-nested prefractal boundaries (∂Γj)j (cf. eq. (17) and Proposition 5.6).

We first denote by Ej,k, k = 1, . . . , Nj, the sides of ∂Γj, each of which has length `j. Then let Sj,k,
k = 1, . . . , Nj, be the closed squares with diagonals Ej,k, respectively; they have disjoint interiors
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and are tilted at 45 degrees to the Cartesian axes. We then define the set ∆j :=
⋃Nj
k=1 Sj,k, which

is compact with Lebesgue measure equal to 4 · 8j · 1
2
`2
j = 21−j. The relevance of this construction

is the following: given an edge Ej,k = [(x, y), (x + `j, y)] (or E ′j,k = [(x, y), (x, y + `j)]) of ∂Γj, its
“evolution”, i.e. all the segments obtained from the successive applications of the rules in (16), are
contained in the closed square Sj,k with vertices (x, y), (x+ 1

2
`j, y− 1

2
`j), (x+`j, y), (x+ 1

2
`j, y+ 1

2
`j)

(or (x, y), (x+ 1
2
`j, y + 1

2
`j), (x, y + `j), (x− 1

2
`j, y + 1

2
`j), respectively), which is one of the squares

composing ∆j. This implies that these sets are nested and contain the boundaries of the prefractals
of higher order: ∂Γj′ ⊂ ∆j′ ⊂ ∆j for all j′ ≥ j.

Figure 4: The non-monotonic square snowflake prefractals Γj (union of the blue and red parts),
the boundary approximations ∆j (union of the blue and pink parts), the inner prefractals Γ−j (red
part only), and the outer prefractals Γ+

j (union of the red, blue and pink parts), for j = 0, 1, 2, 3.

We now define two sequences of open and closed polygons, respectively:

Γ−j := Γj \∆j, Γ+
j := Γj ∪∆j, j = 0, 1, 2 . . . .

The open inner prefractals Γ−j are nested and increasing, the closed outer prefractals Γ+
j are nested

and decreasing, and they approximate from inside and outside the non-monotonic prefractals Γj:

Γ−j ⊂ Γ−j+1, Γ+
j ⊃ Γ+

j+1, Γ−j ⊂ Γj ⊂ Γ+
j , ∂Γj ⊂ ∆j = Γ+

j \ Γ−j .

This monotonicity implies that we can define two limits Γ− :=
⋃
j∈N0

Γ−j ⊂ Γ+ :=
⋂
j∈N0

Γ+
j and

that they are open and closed, respectively. The inner prefractals Γ−j , the outer prefractals Γ+
j and

the boundary approximations ∆j are shown in Figure 4. (Note that Γ−0 = ∅.)
Having defined Γ−, we are now in a position to prove that it is thick using Proposition 5.1.

Proposition 5.5. The square snowflake domain Γ− is thick, with Γ− = Γ+ and Ãsp,q(Γ
−) =

As
p,q,Γ−

= Asp,q,Γ+ for all s ∈ R \ {0} and 1 < p, q < ∞, and H̃s
p(Γ

−) = Hs
p,Γ−

= Hs
p,Γ+ for all

s ∈ R and 1 < p <∞.

Proof. Again, we show that the sequences Γ±j satisfy the assumptions of Proposition 5.1. First we
note that since ∂Γ− ⊂ ∆j and |∆j| = 21−j for all j ∈ N, we have |∂Γ−| = 0. Next we verify the
three conditions (11), (12) and (13). To that end we set ξ = 1/4 and j0 = 1.
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x+

Qe

Qi

`j

x−

Γ−jΓj
Γ+
j

Figure 5: A schematic representation of the proof of conditions (12) and (13) for the square
snowflake Γ− in the proof of Proposition 5.5. Given x− ∈ ∂Γ−j we construct Qi ∈ Q(Γ−j ); given
x+ ∈ ∂Γ+

j we construct Qe ∈ Q((Γ+
j )c). This illustration shows the case j = 1.

To prove (11), take any x ∈ ∆j. By the definition of ∆j, x ∈ Sj,k, for some k ∈ {1, . . . , Nj}. At
least one vertex of the tilted square Sj,k belongs to ∂Γ−j and at least one to ∂Γ+

j , so max{dist(x, ∂Γ−j ),
dist(x, ∂Γ+

j )} ≤ ξj, which is the length of the diagonal of Sj,k. Thus condition (11) holds with c = 1.

Now take x− ∈ ∂Γ−j . Since Γ−j is the union of tilted squares of side 1√
2
ξj, x− lies on the boundary

of one of these squares. Denote by Qi ∈ Q(Γ−j ) the square with side length 1
4
ξj (aligned to the

Cartesian axes) centred at the centre of this tilted square. For an illustration see Figure 5. Then
it is elementary to check that condition (12) holds with c−1 = c−2 = 1

4
, c−3 = 1

4
√

2
and c−4 = 3

8
.

Similarly, any x+ ∈ ∂Γ+
j lies on the boundary of a tilted square contained in (Γ+

j )c, so the
same reasoning permits the construction of Qe ∈ Q((Γ+

j )c) such that (13) holds with c+
m = c−m for

m = 1, . . . , 4. Again, for an illustration see Figure 5.

As with Proposition 5.3, the following result will be useful in section 6.

Proposition 5.6. The boundary of the square snowflake introduced above is a d-set for d = 3
2
.

Proof. The structure of the proof is similar to that of Proposition 5.3, so we shall be briefer here.
Let d = 3

2
and ξ = 1

4
.

Step 1. By similar reduction arguments as in Step 1 of the proof of Proposition 5.3, it is enough
to prove that the part of the boundary built around the segment [(0, 0), (1, 0)] in R2 is a d-set. To
that effect, we intersect ∂Γ− and all sets involved in the definition of Γ− with the quarter plane
Π := {y ≤ x, y < 1− x} ∪ {(1, 0)}.

Step 2. We shall use the notation that has been used already in this subsection, except that we
prepend the fraction 1

4
to it. In particular, 1

4
∆j := ∆j ∩ Π and the part of the boundary to be

considered is 1
4
∂Γ− := ∂Γ− ∩Π, so that clearly 1

4
∂Γ− =

⋂∞
j=0

1
4
∆j. From the way (11) is proved in

Proposition 5.5, we see that also the following holds:

∀x ∈ 1
4
∆j, dist(x, 1

4
∂Γj) < ξj and dist(x, 1

4
∂Γ−) ≤ ξj.
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The first inequality comes from the fact that, in the square Sj,k mentioned in the proof, the whole
diagonal Ej,k belongs to 1

4
∂Γj. The second inequality is due to the fact that the endpoints of Ej,k

belong to 1
4
∆j′ for all j′, and therefore to 1

4
∂Γ−. Then dH(1

4
∂Γj,

1
4
∂Γ−) ≤ ξj, so that

1
4
∂Γj −−−→

j→∞
1
4
∂Γ− (17)

in the Hausdorff metric in the space of non-empty compact subsets of R2.
Step 3. We are going to show now that 1

4
∂Γ− is also the fractal determined by eight contractions

ψi, i = 1, . . . , 8, in R2 and that these contractions are indeed similarities with contraction ratio
equal to ξ and satisfy the open set condition. Then we can conclude, as in Step 3 of the proof of
Proposition 5.3, that 1

4
∂Γ− is a compact D-set with D ≥ 0 determined by

∑8
i=1 ξ

D = 1, from which
it follows that D = d, finishing the proof.

The mentioned contractions are defined in the following way, using the notation from the proof
of Proposition 5.3:

ψ1 = H(ξ), ψ2 = T (ξ, 0) ◦R(π
2
) ◦H(ξ),

ψ3 = T (ξ, ξ) ◦H(ξ), ψ4 = T (2ξ, ξ) ◦R(−π
2
) ◦H(ξ),

ψ5 = T (2ξ, 0) ◦R(−π
2
) ◦H(ξ), ψ6 = T (2ξ,−ξ) ◦H(ξ),

ψ7 = T (3ξ,−ξ) ◦R(π
2
) ◦H(ξ), ψ8 = T (3ξ, 0) ◦H(ξ).

These are, clearly, similarities of ratio ξ. They determine the unique non-empty compact set K in
R2 such that K = ψ(K) :=

⋃8
i=1 ψi(K) and which can be obtained as (15) (with ψ as just defined)

for any non-empty compact Λ ⊂ R2, the limit being taken in the sense of the Hausdorff metric.
Choosing Λ = [(0, 0), (1, 0)], it is easy to see from (16) that ψj(Λ) = 1

4
∂Γj, j ∈ N. Combining

this with (17) and (15) (with ψ as defined above), we get that K = 1
4
∂Γ−.

The proof finishes by observing that the similarities above satisfy the open set condition, for
which we can take the interior of 1

4
∆0 as the required open set.

5.3 Interior regular domains

Since in Corollary 6.10 below we give a result concerning interior regular domains (see Definition
5.7) the boundary of which are d-sets with 0 < d < n (see Definition 3.9), we would like to show
here that all the snowflakes considered in this section 5 are examples of such domains. And since
we have already proved in Propositions 5.3 and 5.6 that their boundaries are d-sets with 0 < d < n,
it only remains to show that such domains are interior regular.

Actually, we are going to prove something more general, namely that any I-thick domain whose
boundary satisfies the ball condition (see Definition 5.8) is interior regular. This applies to our
snowflakes because, on the one hand, we have already proved in Propositions 5.2 and 5.5 that they
are I-thick (and even thick) domains and, on the other hand, all d-sets with 0 ≤ d < n satisfy the
ball condition (cf. [6, Prop. 4.3] for the case d 6= 0; the case d = 0 is trivial).

Definition 5.7. A domain Ω ⊂ Rn is said to be interior regular2 if there is a constant c > 0 such
that |Ω ∩Q| ≥ c |Q| for any cube Q with side length at most 1 centered at any point in ∂Ω.

2This notion is taken from [34, eq. (4.95)], except that we don’t require Ω to be bounded nor to satisfy (Ω)◦ = Ω.
Note that if we replace the requirement of closedness in the Definition 3.9 of d-set by openness, then being interior
regular is equivalent to being an n-set.
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Definition 5.8. ( [31, Def. 18.10]) A non-empty closed set S in Rn is said to satisfy the ball
condition if there is η ∈ (0, 1) such that, for any ball B(x, r) centered at x ∈ S and with radius
r ∈ (0, 1), there exists a ball B(y, ηr) such that

B(y, ηr) ⊂ B(x, r) and B(y, ηr) ∩ S = ∅.
Remark 5.9. If necessary replacing η by η/2, we can always assume that S satisfying the ball
condition also satisfies

dist(B(y, ηr), S) ≥ ηr.

A set that satisfies the ball condition is also called porous, e.g. in [34, Def. 3.4, Rmk. 3.5].

Proposition 5.10. If Ω is an I-thick domain in Rn and ∂Ω satisfies the ball condition, then Ω is
interior regular.

Proof. From the η ∈ (0, 1) coming from the ball condition satisfied by ∂Ω, fix j0 = 1, c1 = 2η/
√
n,

c2 = 4η/
√
n, c3 = η and c4 = 2 in the definition of I-thickness applied to Ω. Consider then the

constants c5, c6, c7 and c8 that come out from that definition and set c = 1/(2(
√
n c6 + c8 + 1)).

Let x be any point of ∂Ω and let Q(x, `/2) be a cube centered at x with side length ` ≤ 1.
Consider the ball B(x, c`) and observe that B(x, c`) ⊂ Q(x, `/2). By the ball condition satisfied
by ∂Ω and Remark 5.9 there exists B(y, ηc`) such that

B(y, ηc`) ⊂ B(x, c`) and dist
(
B(y, ηc`), ∂Ω

)
≥ ηc`.

One of the following two situations must happen:

B(y, ηc`) ⊂ Ω or B(y, ηc`) ⊂ Ω
c
.

In the first case we have that

|Q(x, `/2) ∩ Ω| ≥ |B(y, ηc`)| ≥ |Q(y, ηc`/
√
n)| = (2ηc/

√
n)n|Q(x, `/2)|,

as required. In the second case, start by considering a cube Q(y, ηc`/
√
n) ∈ Q(B(y, ηc`)) ⊂ Q(Ωc)

and j ∈ N such that 2−j < c` ≤ 2−(j−1) and observe that

c12−j ≤ l
(
Q(y, ηc`/

√
n)
)
≤ c22−j and c32−j ≤ dist

(
Q(y, ηc`/

√
n), ∂Ω

)
≤ c42−j

for the constants c1, c2, c3 and c4 given above. Then such Q(y, ηc`/
√
n) is an exterior cube with

respect to the I-thick domain Ω, therefore there exists an interior cube Qi ∈ Q(Ω) such that

c5c`/2 ≤ l(Qi) ≤ c6c` and c7c`/2 ≤ dist(Qi, ∂Ω) ≤ dist
(
Q(y, ηc`/

√
n), Qi

)
≤ c8c`.

For z ∈ Qi it holds by the choice of c that

|x− z| < diam(Qi) + dist
(
Q(y, ηc`/

√
n), Qi

)
+ sup

w∈Q(y,ηc`/
√
n)

|w − x| ≤ (
√
n c6 + c8 + 1)c` =

`

2
,

so that Qi ⊂ B(x, `/2) ⊂ Q(x, `/2). Hence

|Q(x, `/2) ∩ Ω| ≥ |Qi| ≥ (c5c`/2)n = (c5c/2)n|Q(x, `/2)|,
which finishes the proof. A sketch of the construction of the cubes and the balls involved in the
proof is shown in Figure 6.

To summarise: all snowflakes introduced in this section, either classical or square, are interior
regular, thick domains whose boundaries are compact d-sets satisfying the ball condition.
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Q(x, `/2)

x

B(x, c`)

y

B(y, ηc`) Q(y, ηc`/
√
n)

Qi

`

Ω

Ωc

Figure 6: A schematic representation of the proof of Proposition 5.10. Here the case B(y, ηc`) ⊂ Ω
c

is depicted.

6 Density of As1
p1,q1,Γ

in As2
p2,q2,Γ

for s1 > s2

In this section we give sufficient conditions under which As1p1,q1,Γ is dense in As2p2,q2,Γ for Γ a closed
set with empty interior. Recall that the spaces Asp,q,Γ were defined in (2), and that Proposition 3.7
provides necessary and sufficient conditions on s, p, q and Γ for Asp,q,Γ to be non-trivial. Our main
focus is on the case where Γ is a d-set for some 0 < d < n, which allows us to connect the spaces
Asp,q,Γ to certain trace spaces on Γ. We remind the reader that d-sets were defined in Definition 3.9.

Before tackling the density question for the Asp,q,Γ spaces on d-sets with 0 < d < n, it is in-
structive to consider the limit case d = 0, for which the spaces Asp,q,Γ have a simple and explicit
characterization. This allows us to give a rather complete answer to the density question, which
provides a foretaste of the results obtained for the case 0 < d < n later in the section. In particular,
we note that, for d = 0, As+1

p,q,Γ is never dense in Asp,q,Γ provided the latter is non-trivial.

Proposition 6.1. Let Γ ⊂ Rn be a non-empty compact d-set for d = 0. Then Γ is a finite set and,
for all 0 < p1, p2, q1, q2 <∞ and s1, s2 ∈ R, with b·c denoting the integer part,

(i) if s1 + n
(

1− 1
p1

)
≥ 0 and s2 + n

(
1− 1

p2

)
≥ 0 then As1p1,q1,Γ = As2p2,q2,Γ = {0};

(ii) if
⌊
s1 + n

(
1− 1

p1

)⌋
=
⌊
s2 + n

(
1− 1

p2

)⌋
< 0 then As1p1,q1,Γ = As2p2,q2,Γ 6= {0}, with equivalent

quasi-norms;

(iii) if
⌊
s2 + n

(
1− 1

p2

)⌋
< 0 and

⌊
s1 + n

(
1− 1

p1

)⌋
>
⌊
s2 + n

(
1− 1

p2

)⌋
then As1p1,q1,Γ $ As2p2,q2,Γ

and the inclusion is not dense.

Proof. The fact that any compact 0-set is finite follows trivially from the fact that H0 is the
counting measure. Without loss of generality it suffices to consider a set containing a single point,
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e.g. Γ = {0}, for which Asp,q,Γ = Asp,q,{0}, the subspace of Asp,q(Rn) of the elements supported

at the origin. It is a standard result in distribution theory (see e.g. [20, Thm. 3.9]) that the
only elements of S ′(Rn) supported in {0} are finite linear combinations of the delta function δ
and its derivatives. Reasoning for higher order derivatives of δ similarly as in [24, Rmk 2.2.4.3]
and afterwards applying [29, Prop. 2.3.2.2], one can see that for any multi-index β ∈ Nn

0 , Dβδ ∈
A
−n(1− 1

p)−ε−|β|
p,q (Rn)\A

−n(1− 1
p)−|β|

p,q (Rn) for all 0 < p, q <∞ and ε > 0. So Asp,q,{0} = span{Dβδ, |β| <
−s − n(1 − 1

p
)}, from which the basic statements of parts (i) and (ii) of the proposition follow

immediately. The statement about equivalent quasi-norms in (ii) follows because As1p1,q1,Γ = As2p2,q2,Γ
is finite-dimensional. For part (iii), density fails because the two spaces As1p1,q1,Γ and As2p2,q2,Γ are
finite dimensional with different dimension. (From an analytical perspective, this corresponds to
the fact that it is not possible to approximate Dβδ with lower-order derivatives of δ centred at the
same point.)

To study the case 0 < d < n we need to consider traces on d-sets. The following proposition is
a consequence of [31, §18.5 and Cor. 18.12(i)] and the fact that any d-set with 0 < d < n satisfies
the ball condition (recall Definition 5.8) — see, e.g., [6, Prop. 4.3]. We mention also the important
monograph [17], which contains many further results about traces on d-sets. Here, and henceforth,
given p ∈ (0,∞), we denote by Lp(Γ) := Lp(Rn,Hd|Γ) the complex Lp space with respect to the
restriction measure Hd|Γ defined by Hd|Γ(M) := Hd(M ∩ Γ) for all Hd-measurable subsets M of
Rn, equipped with the quasi-norm (norm if p ≥ 1)

‖f |Lp(Γ)‖ :=

(∫
Rn
|f(x)|pHd|Γ(dx)

)1/p

=

(∫
Γ

|f(γ)|pHd(dγ)

)1/p

,

where the last identity holds because the support of Hd|Γ is exactly Γ. It is standard that Lp(Γ) is
a quasi-Banach space (Banach space if p ≥ 1).

Proposition 6.2. Let Γ be a d-set in Rn with 0 < d < n. Let 0 < p <∞. Then there exists c > 0
such that

‖ϕ|Γ|Lp(Γ)‖ ≤ c ‖ϕ|B
n−d
p

p,min{1,p}(R
n)‖ for all ϕ ∈ S(Rn),

and hence by completion there exists a unique continuous linear operator trΓ : B
n−d
p

p,min{1,p}(R
n) →

Lp(Γ) such that trΓf = f |Γ whenever f ∈ S(Rn). Moreover, trΓ is surjective and there exist
c1, c2 > 0 such that

c1‖f |Lp(Γ)‖ ≤ inf ‖g|B
n−d
p

p,min{1,p}(R
n)‖ ≤ c2‖f |Lp(Γ)‖ for all f ∈ Lp(Γ),

where the infimum runs, for each fixed f ∈ Lp(Γ), over all g ∈ B
n−d
p

p,min{1,p}(R
n) such that trΓg = f .

Having defined trΓ on B
n−d
p

p,min{1,p}(R
n), for each m ∈ N0 we can define on B

n−d
p

+m

p,min{1,p}(R
n) the

vector-valued trace operator

TrΓ,mf := (trΓD
βf)0≤|β|≤m,
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consisting of the traces of all distinct partial distributional derivatives of order ≤ m. This defines
a continuous linear operator (not surjective in general)

TrΓ,m : B
n−d
p

+m

p,min{1,p}(R
n)→

(
Lp(Γ)

)Nm
,

where Nm = |{|β| ≤ m}| =
(
n+m
n

)
is the number of distinct partial distributional derivatives of

order ≤ m. When m = 0, N0 = 1 and TrΓ,0 coincides with trΓ.
For s > n−d

p
+m and 0 < p, q <∞ we have the embedding

Asp,q(Rn) ↪→ B
n−d
p

+m

p,min{1,p}(R
n), (18)

so the restriction of TrΓ,m to such Asp,q(Rn) gives a continuous linear operator TrΓ,m|Asp,q from

Asp,q(Rn) into (Lp(Γ))Nm . The range space TrΓ,m(Asp,q(Rn)) is then linearly isomorphic to the quo-
tient space Asp,q(Rn)/ ker(TrΓ,m|Asp,q), which motivates the following:

Definition 6.3. Let Γ be a d-set in Rn with 0 < d < n. Let 0 < p, q < ∞, m ∈ N0 and

s > n−d
p

+ m. Define A
s−n−d

p
p,q,m (Γ) to be the vector space TrΓ,m(Asp,q(Rn)) ⊂ (Lp(Γ))Nm endowed

with the quasi-norm inherited from the quotient quasi-norm in Asp,q(Rn)/ ker(TrΓ,m|Asp,q), i.e. for

(fβ)0≤|β|≤m ∈ A
s−n−d

p
p,q,m (Γ)

‖(fβ)0≤|β|≤m|A
s−n−d

p
p,q,m (Γ)‖ := ‖[g]|Asp,q(Rn)/ ker(TrΓ,m|Asp,q)‖ = inf

g∈[g]
‖g|Asp,q(Rn)‖, (19)

where [g] stands for the equivalence class containing all g ∈ Asp,q(Rn) such that TrΓ,mg = (fβ)0≤|β|≤m.

Naturally, when A = B or A = F , A should be replaced by B or F respectively, and Hs
p,m(Γ)

stands for Fsp,2,m(Γ).

Since Asp,q(Rn) is complete and ker(TrΓ,m|Asp,q) is closed, A
s−n−d

p
p,q,m (Γ) is also complete (see [28,

Thm. II.5.1] for the case of normed spaces, but the proof can be adapted to quasi-normed spaces).
Furthermore, by standard arguments it follows that the restricted operator

TrΓ,m|Asp,q : Asp,q(Rn) −→ A
s−n−d

p
p,q,m (Γ) (20)

is continuous and surjective, and by the density of the embedding (18) (which follows because
S(Rn) is dense in both spaces),

A
s−n−d

p
p,q,m (Γ) ↪→ TrΓ,m

(
B

n−d
p

+m

p,min{1,p}(R
n)
)

with dense image in the
(
Lp(Γ)

)Nm
quasi-norm. (21)

In the following remark, and henceforth, the notation ‖f‖ . ‖g‖′ indicates that there exists a
constant c > 0 (independent of f, g) such that ‖f‖ ≤ c‖g‖′.

Remark 6.4. Here we show the connection with the trace spaces defined by Jonsson and Wallin
in [17]. Let Γ be a d-set in Rn with 0 < d < n. Let 1 ≤ p, q < ∞ in the case of B spaces and

27



1 < p <∞, q = 2 in the case of F spaces. Let m ∈ N0 and n−d
p

+m < s ≤ n−d
p

+m+ 1. For each

f ∈ Lloc
1 (Rn) let f̄ denote the strictly defined function given (a.e. in Rn) by

f̄(x) := lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y) dy.

It was proved by Jonsson and Wallin — see the statements in [17, Thms. VI.1 and VII.1, pp. 141
and 182] — that

TΓ,m : f 7−→ (Dβf |Γ)0≤|β|≤m

establishes a continuous linear operator from Bs
p,q(Rn) onto a so-called Besov space B

s−n−d
p

p,q (Γ), a

subspace of
(
Lp(Γ)

)Nm
, and from Hs

p(Rn) = F s
p,2(Rn) onto B

s−n−d
p

p,p (Γ). And, moreover, that these
operators admit bounded right inverses which are linear and acting in the same way as long as
s − n−d

p
stays strictly between m and m + 1. Comparing with the way we have defined TrΓ,m and

A
s−n−d

p
p,q,m (Γ), a density argument as in [17, VIII.1.3, p. 211] shows that TrΓ,m and TΓ,m act in the

same way in the mentioned domains and that B
s−n−d

p
p,q,m (Γ) and B

s−n−d
p

p,q (Γ), as well as H
s−n−d

p
p,m (Γ) and

B
s−n−d

p
p,p (Γ), coincide as sets. We claim that, besides coinciding as sets, in each of these pairs the

norms are equivalent. Given any g ∈ B
s−n−d

p
p,q (Γ) = B

s−n−d
p

p,q,m (Γ) and any f ∈ Bs
p,q(Rn) such that

g = TrΓ,mf = TΓ,mf , the continuity of TΓ,m|Bsp,q(Rn) gives ‖g|B
s−n−d

p
p,q (Γ)‖ . ‖f |Bs

p,q(Rn)‖, so that,
by (19),

‖g|B
s−n−d

p
p,q (Γ)‖ . ‖g|B

s−n−d
p

p,q,m (Γ)‖.

On the other hand, the existence of a bounded right inverse of TΓ,m|Bsp,q(Rn) implies that there exists

h ∈ Bs
p,q(Rn) such that g = TΓ,mh = TrΓ,mh and ‖h|Bs

p,q(Rn)‖ . ‖g|B
s−n−d

p
p,q (Γ)‖, so that, using the

continuity of (20),

‖g|B
s−n−d

p
p,q,m (Γ)‖ . ‖g|B

s−n−d
p

p,q (Γ)‖.

Similar arguments prove the equivalence of the H
s−n−d

p
p,m (Γ) and B

s−n−d
p

p,p (Γ) norms.

Remark 6.5. Under suitable regularity assumptions, the trace spaces of Definition 6.3 coincide
with classical trace spaces arising in PDE theory. For example, when Γ is either the graph of a
Ck−1,1 function ζ : Rn−1 → R, k ∈ N, or the boundary of a Ck−1,1 domain (both special cases
of a d-set with d = n − 1), McLean [20, pp. 98–99] defines the Hilbert space Hs(Γ) ⊂ L2(Γ) for
0 ≤ s ≤ k as the push-forward of Hs(Rn−1) under suitable coordinate charts. By [20, Thm. 3.37],
for 0 < s ≤ k− 1

2
the space Hs(Γ) is the range of the classical trace operator γ : Hs+1/2(Ω)→ L2(Γ),

which is defined by γu := U |Γ for u = U |Ω ∈ D(Rn)|Ω, and by density for general u ∈ Hs+1/2(Ω),
and γ : Hs+1/2(Ω) → Hs(Γ) has a bounded right inverse. Hence, for such Γ and 0 < s ≤ k − 1

2
,

one can prove, using a similar argument to that employed in Remark 6.4, that our space Hs
2,0(Γ)

and the space Hs(Γ) defined in [20] are linearly and topologically isomorphic.

If we now restrict ourselves to the case 1 < p, q < ∞ then we can deduce by standard Banach
space results the following density result, which will be important later.
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Proposition 6.6. Let Γ be a d-set in Rn with 0 < d < n. Let 1 < p, q < ∞, m ∈ N0 and

s > n−d
p

+m. Then
(
TrΓ,m(B

n−d
p

+m

p,1 (Rn))
)′
↪→
(
A
s−n−d

p
p,q,m (Γ)

)′
with dense image.

Proof. This is a consequence of the following general fact: if X and Y are Banach spaces such that
X is continuously embedded in Y with dense image and X is reflexive, then Y ′ is densely embedded
in X ′. To prove this, let E : X → Y be the embedding of X into Y . Since E(X) is dense in Y ,
the “if” part of [21, Thm. 3.1.17(b)] implies that the adjoint E ′ : Y ′ → X ′ is injective. To show
that E ′(Y ′) is dense in X ′, by the “only if” part of [21, Thm. 3.1.17(b)] it suffices to show that
E ′′ : X ′′ → Y ′′ (the adjoint of the adjoint) is injective. But, since X is reflexive, E ′′ = φY ◦E ◦ φ−1

X

where φX : X → X ′′ and φY : Y → Y ′′ are the canonical embeddings, so the required injectivity of
E ′′ follows from that of E, φY and φ−1

X .

To prove Proposition 6.6 we apply this result with X = A
s−n−d

p
p,q,m (Γ) and Y = TrΓ,m

(
B

n−d
p

+m

p,1 (Rn)
)
.

The required dense embedding of X in Y is provided by (21) (specialised to the case 1 < p <∞),
and the reflexivity of X follows from the reflexivity of Asp,q(Rn) (see [30, §2.6.1–2]), the surjectivity
of (20), and [21, Cor. 1.11.22].

We now aim to establish a connection between the dual space
(
A
s−n−d

p
p,q,m (Γ)

)′
and the space of

distributions A−sp′,q′,Γ. For this, we turn again to (20), and note that since TrΓ,m|Asp,q is surjective

onto A
s−n−d

p
p,q,m (Γ) by the definition of this space, by [4, Thm. 2.19, Rmk. 20] the adjoint operator(

TrΓ,m|Asp,q
)′

:
(
A
s−n−d

p
p,q,m (Γ)

)′ → (
Asp,q(Rn)

)′
= I−s,Ap′,q′

(
A−sp′,q′(R

n)
)

is injective and a linear and topological isomorphism onto its range, which satisfies

R
(
(TrΓ,m|Asp,q)

′) =
(
ker(TrΓ,m|Asp,q)

)a
, s >

n− d
p

+m, 1 < p, q <∞. (22)

The following proposition, which identifies ker(TrΓ,m|Asp,q), is a generalisation of Triebel’s [32,
Prop. 19.5], which considered only the case m = 0 and Γ compact. Our arguments here, even
in the case m = 0, differ in some parts from Triebel’s, since we consider that Triebel’s proof does
not provide enough evidence for the statement of [32, Prop. 19.5]. Specifically, it appears to pre-
sume that Dβf(x) = 0 µ-a.e. on Γ implies that Dβf(x) = 0 (s−|β|, p)-q.e. on Γ for 0 ≤ |β| ≤ m (cf.
Eqns (28) and (30) below), which a priori is not obvious to us (though it comes as a consequence
for the functions f in the spaces Hs

p(Rn) or Bs
p,q(Rn) under the conditions of the proposition below

after this has been proved).

Proposition 6.7. Let Γ be a d-set in Rn with 0 < d < n. Let 1 < p < ∞, 1 ≤ q < ∞, m ∈ N0

and n−d
p

+ m < s < n−d
p

+ m + 1. Then D(Γc) is dense in ker(TrΓ,m|F sp,2) and in ker(TrΓ,m|Bsp,q).
That is,

ker(TrΓ,m|F sp,2) = F̃ s
p,2(Γc) = H̃s

p(Γ
c) and ker(TrΓ,m|Bsp,q) = B̃s

p,q(Γ
c).

Proof. Since the inclusion ⊃ is clear, we concentrate on proving the reverse one.
Step 1. ker(TrΓ,m|Hs

p
) ∩ Cm(Rn) approximates ker(TrΓ,m|Hs

p
) in Hs

p(Rn).
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Let f ∈ ker(TrΓ,m|Hs
p
). Then there exists (fj)j∈N ⊂ D(Rn) such that

fj −−−→
j→∞

f in Hs
p(Rn), (23)

and, by the continuity of TrΓ,m|Hs
p

(Eqn. (20)),

TrΓ,m|Hs
p
fj −−−→

j→∞
TrΓ,m|Hs

p
f = 0 in H

s−n−d
p

p,m (Γ). (24)

By Remark 6.4, and denoting by EΓ,m the appropriate bounded right inverse mentioned there,

gj := EΓ,m(TrΓ,m|Hs
p
fj) ∈ Hs

p(Rn) (25)

is such that ‖gj|Hs
p(Rn)‖ . ‖TrΓ,m|Hs

p
fj|H

s−n−d
p

p,m (Γ)‖ and

TrΓ,mgj = TrΓ,mfj, (26)

and by (24) it follows that
gj −−−→

j→∞
0 in Hs

p(Rn). (27)

Define now, for any j ∈ N, hj := fj − gj ∈ Hs
p(Rn). We have, by (23), (27) and (26), that

hj −−−→
j→∞

f in Hs
p(Rn) and hj ∈ ker(TrΓ,m|Hs

p
).

So, our claim above will be proved if we show that hj ∈ Cm(Rn). Clearly, it is enough to prove
that this is the case for the functions gj. And we shall prove this by combining the definition (25)
of gj with the properties of EΓ,m.

We recall, from the discussion in Remark 6.4, that EΓ,m comes from [17]; more precisely it is the
operator named E in [17, Thm. VII.3, p. 197], taking k there equal to our m here. As is explicitly
mentioned in [17, p. 197], it is the same operator as that considered in [17, Thm. VI.3, p. 155],
and it is defined in [17, pp. 156–157]. For s − n−d

p
∈ (m,m + 1), it acts in exactly the same way.

Since fj ∈ D(Rn) ⊂ B
s−n−d

p
∞,∞ (Rn), with s − n−d

p
− n−d

∞ ∈ (m,m + 1), then, by [17, Thms. VI.1

and VI.3, pp. 141 and 155], TrΓ,m|Hs
p
fj = (Dβfj|Γ)0≤|β|≤m = TΓ,m|

B
s−n−dp
∞,∞

fj ∈ B
s−n−d

p
∞,∞ (Γ) and

gj ∈ B
s−n−d

p
∞,∞ (Rn) = Cs−

n−d
p (Rn), the last identity coming from [17, p. 8] or [29, (2.3.5.1), p. 51], the

space Cs−
n−d
p (Rn) being called a Lipschitz type space in [17, p. 2] or a Zygmund space in [29, p. 36].

In any case, what matters for us is that the elements of Cs−
n−d
p (Rn) belong to Cm(Rn).

Step 2. D(Γc) approximates ker(TrΓ,m|Hs
p
) ∩ Cm(Rn) in Hs

p(Rn).
Let f ∈ ker(TrΓ,m|Hs

p
) ∩ Cm(Rn). We shall use Netrusov’s theorem [1, Thm. 10.1.1, p. 281],

which, in particular, states that the desired approximability by elements of D(Γc) holds provided

Dβf(x) = 0 (s− |β|, p)-q.e. on Γ, 0 ≤ |β| < s, (28)
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where (σ, p)-q.e. means up to a set of zero capacity Cσ,p (cf. [1, Def. 2.2.6, p. 20] for the definition).
Recall that the bar over the function stands for the corresponding strictly defined function as in
Remark 6.4 above. From [1, Thm. 5.1.9] it follows that

Cσ,p(Γ) = 0 when 1 < p <∞ and 0 < σ <
n− d
p

. (29)

Applying this to σ = s−|β| for m+1 ≤ |β| < s, we have that Cs−|β|,p(Γ) = 0 when m+1 ≤ |β| < s,
so that (28) holds trivially for these values of β. For the remaining values of β, the assumption
that f ∈ ker(TrΓ,m|Hs

p
) implies that

Dβf(x) = Dβf(x) = 0 Hd-a.e. on Γ, 0 ≤ |β| ≤ m (30)

(cf. also the discussion in Remark 6.4 above). We claim that from this and the continuity of Dβf
it follows that

Dβf(x) = 0 everywhere on Γ, 0 ≤ |β| ≤ m,

which proves (28) for the remaining values of β. To prove this claim, observe that if there were
a point x ∈ Γ with Dβf(x) 6= 0, then there would exist r > 0 such that Dβf(y) = 0 for all
y ∈ B(x, r). But since 0 < rd . µ(Γ ∩B(x, r)), we would then have a contradiction with (30).

This finishes the proof of the proposition for the Hs
p spaces.

Step 3. Extension to Bs
p,q spaces.

The result can be extended to the Bs
p,q spaces by interpolation from Hs

p as in Triebel’s proof

in [32, pp. 262–263], using here, for each m, the s-independent (for s ∈ (n−d
p

+ m, n−d
p

+ m + 1))
bounded linear right inverses mentioned in Remark 6.4 above.

Remark 6.8. The technique used in the above proof, of reduction to functions with enough regular-
ity, is taken from [13, Step 1 of proof of Prop. 3.5], with a reference to [18, (i) of proof of Thm. 1].
In both [13] and [18], for the crucial part corresponding to verifying that gj has the appropriate
regularity, the reader is invited to check a related proof in [26]. By contrast, in our proof above we
give a complete (and short) justification of this step using a result readily available in [17]. In the
case m = 0 a more direct proof can also be seen in [7, proof of Prop. 2.26].

Remark 6.9. It is an open problem whether the result of Proposition 6.7 holds also when s =
n−d
p

+ m + 1. If this were the case, we could update several of the results which follow by the
inclusion of a corresponding limiting situation. See Remark 6.15.

From Proposition 6.7 it is straightforward to prove the following result — which may be of
independent interest — regarding a characterization of Hs

p,0(Ω), the closure of C∞0 (Ω) in Hs
p(Ω), in

terms of the kernel of a trace operator.

Corollary 6.10 (Traces from Ω 6= Rn to ∂Ω). Let Γ, d, p, m and s be as in Proposition 6.7, and
suppose further that Γ = ∂Ω with Ω an interior regular domain (recall Definition 5.7). Then

Hs
p,0(Ω) = ker(TrΩ

Γ,m),

where, given any f ∈ Hs
p(Ω),

TrΩ
Γ,mf := TrΓ,mu for any u ∈ Hs

p(Rn) such that u|Ω = f, (31)
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this definition being independent of the choice of u due to the assumption of interior regularity [5,
Prop. 3.3].

Remark 6.11. Corollary 6.10 extends, e.g., [20, Thm. 3.40] (which considers only p = 2, and

requires that Ω is of class Cdse−1,1, and in the Lipschitz case that s is restricted to n−(n−1)
2

+ 0 =
1
2
< s ≤ 1 < n−(n−1)

2
+ 0 + 1) and [13, Thm. 3.5] (which assumes Ω is a bounded (ε, δ) domain, and

considers only m = 0, with s restricted to n−d
p

+ 0 = n−d
p
< s ≤ 1 < n−d

p
+ 0 + 1). This is because

the traces in these two references also satisfy (31) (cf. Remarks 6.5 and 6.4 and [13, Thm. 3.2]),
McLean’s Lipschitz domains are assumed to have compact boundaries, so clearly are interior regular
domains, and (ε, δ) domains are special cases of interior regular domains (cf. [35, Prop. 1, p. 119]).
Similar results hold for Bs

p,q spaces fitting the hypotheses of Proposition 6.7, thus also extending
corresponding results known in more restricted settings (cf., e.g., [18, Thm. 1, p. 49]). See also a
related result in [35, Thm. 3]. We recall that all the snowflakes considered in §5 are examples of
(bounded) interior regular domains whose boundaries are d-sets with 0 < d < n — cf. §5.3.

Remark 6.12. We shall use the shortcut Asp,(q)(Rn) to deal simultaneously with both Hs
p(Rn) and

Bs
p,q(Rn) in the above context, and adapt similarly the other notation.

We can now make the connection with the spaces we want to consider. Combining Proposition 6.7
with (22) and Proposition 3.5 reveals that

R
(
(TrΓ,m|As

p,(q)
)′
)

= I−s,Ap′,(q′)(A
−s
p′,(q′),Γ),

and this completes the proof of one of the major results of this section.

Theorem 6.13. Let Γ be a d-set in Rn with 0 < d < n. Let 1 < p, q < ∞, m ∈ N0 and
n−d
p

+m < s < n−d
p

+m+ 1. Then, with the notation set above, the operator

(I−s,Ap′,(q′))
−1 ◦ (TrΓ,m|As

p,(q)
)′ :

(
A
s−n−d

p

p,(q),m(Γ)
)′ → A−sp′,(q′),Γ (32)

is a linear and topological isomorphism.

The significance of Theorem 6.13 is that it identifies, via the adjoint of the restricted trace
operator TrΓ,m|As

p,(q)
, a space of distributions A−sp′,(q′),Γ defined on Rn and supported in Γ, with the

dual
(
A
s−n−d

p

p,(q),m(Γ)
)′

of a trace space on Γ. (The nature of this identification is discussed further in

Remark 6.16 below.) As a result, we can deduce density results for the A−sp′,(q′),Γ spaces from the

corresponding density results for the
(
A
s−n−d

p

p,(q),m(Γ)
)′

spaces. Indeed, by combining Theorem 6.13
with Proposition 6.6, we obtain another of our main results. Note that in the following theorem
we have switched (s, p, q)↔ (−s, p′, q′) compared to Theorem 6.13, to put the focus on the Asp,(q),Γ
spaces. We highlight that we have given the positive answer to Q2 promised at the beginning of
the section.
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Theorem 6.14. Let Γ be a d-set in Rn with 0 < d < n. Let

1 < p, q1, q2 <∞, m ∈ N0 and − n− d
p′
−m− 1 < s2 ≤ s1 < −

n− d
p′
−m.

Then
Bs1
p,q1,Γ

is dense in Bs2
p,q2,Γ

and Hs1
p,Γ is dense in Hs2

p,Γ.

Proof. First recall that, by [29, Prop. 2.3.2.2] and (2), Bs1
p,q1,Γ

⊂ Bs2
p,q2,Γ

and Hs1
p,Γ ⊂ Hs2

p,Γ. The density

assertion follows from Theorem 6.13, combined with the fact that
(
B
−s1−n−dp′
p′,q′1,m

(Γ)
)′
↪→
(
B
−s2−n−dp′
p′,q′2,m

(Γ)
)′

and
(
H
−s1−n−dp′
p′,m (Γ)

)′
↪→
(
H
−s2−n−dp′
p′,m (Γ)

)′
with dense image, which holds because by Proposition 6.6 all

these spaces contain
(
TrΓ,m

(
B

n−d
p′ +m

p′,1 (Rn)
))′

as a dense subspace. We note that all the embeddings

and identifications involved are compatible, e.g. Is1,Bp,q1
= Is2,Bp,q2

|Bs1p,q1 , TrΓ,m|B−s2
p′,q′2

= (TrΓ,m|B−s1
p′,q′1

)|
B
−s2
p′,q′2

and similarly for the Hs
p spaces. The basic structure underlying the proof is summarised in Figure 7.

Asp,q(Rn)
ds
⊂ B

n−d
p

p,1 (Rn)

A
s−n−d

p
p,q (Γ)

ds
⊂ Lp(Γ)

trΓ|Asp,q trΓ

B
−n−d

p
,Γ

p′,∞
cl
⊂ B

−n−d
p

p′,∞ (Rn)
ds
⊂ A−sp′,q′(Rn)

cl
⊃ A−sp′,q′,Γ

(
B

n−d
p

p,1 (Rn)
)′ ds
⊂

(
Asp,q(Rn)

)′

Lp′(Γ)
ds
⊂

(
A
s−n−d

p
p,q (Γ)

)′
trΓ|′Asp,qtr′Γ

ds
⊂

I
−n−d

p
,B

p′,∞
I−s,Ap′,q′

(I − n−
dp
,B

p ′,∞

) −
1
◦
tr ′
Γ

Figure 7: Diagram summarising the main relations between the function spaces described in §6, in

the case m = 0, n−d
p
< s < n−d

p
+1 and 1 < p, q <∞. Here

ds
⊂ and

cl
⊂ denote embeddings with dense

and closed ranges, respectively, and ↪→ and � denote injective and surjective bounded mappings,

respectively. The space B
−n−d

p
,Γ

p′,∞ is defined in Remark 6.17. The density of the embeddings for the

spaces on Rn (i.e. Asp,q(Rn)
ds
⊂B

n−d
p

p,1 (Rn)) implies the same for the trace spaces (A
s−n−d

p
p,q (Γ)

ds
⊂Lp(Γ)),

their duals (Lp′(Γ)
ds
⊂ (A

s−n−d
p

p,q (Γ))′) and their identifications (B
−n−d

p
,Γ

p′,∞
ds
⊂A−sp′,q′,Γ) via tr′Γ. Then The-

orem 6.14 follows from the fact the latter density holds for different values of s (and q).

33



Remark 6.15 (Limiting case). If the result of Proposition 6.7 could be extended to include the
limiting case s = (n− d)/p+m+ 1 (which seems to be an open problem — see Remark 6.9), then
the density result of Theorem 6.14 would extend to the limiting case s2 = −(n− d)/p′ −m− 1, as
holds for the case of an (n− 1)-dimensional hyperplane and the Hs spaces, as discussed in §1.

Remark 6.16 (The adjoint of the trace operator is the identification operator). To give a more

concrete description of the identification of A−sp′,(q′),Γ and (A
s−n−d

p

p,(q),m(Γ))′ provided by Theorem 6.13,

we point out that, as discussed by Triebel in [32, §9.2] (in the case A = F ), for m = 0 the adjoint

operator (TrΓ,0|Asp,q)′ = (trΓ|Asp,q)′ :
(
As−(n−d)/p
p,q,0 (Γ)

)′ → (Asp,q(Rn))′ = I−sp′,q′(A
−s
p′,q′(Rn)) appearing in

Theorem 6.13 can be viewed as an extension (by density) of the standard identification operator
idΓ identifying Lp′ functions on Γ with tempered distributions on Rn (see e.g. [32, §9.2] and [31,
Eqn. (18.6)]).

In more detail, it is well-known that the dual space of Lp(Γ) can be realised as Lp′(Γ) using
the identification Ip′ : Lp′(Γ) → (Lp(Γ))′ defined for f ∈ Lp′(Γ) and g ∈ Lp(Γ) by (Ip′f)(g) :=∫

Γ
f(γ)g(γ)Hd(dγ). Also, by [29, Thm. 2.11.2] the duality result in Proposition 3.1 extends to the

case A = B, 1 < p <∞ and q = 1 (q′ =∞), giving an isomorphism

I−s,Bp′,∞ : B−sp′,∞(Rn)→
(
Bs
p,1(Rn)

)′
,

which extends by density the action of tempered distributions on elements of S(Rn). Recalling that

trΓ : B
n−d
p

p,1 (Rn)→ Lp(Γ) is surjective, the adjoint

tr′Γ :
(
Lp(Γ)

)′
= Ip′

(
Lp′(Γ)

)
→
(
B

n−d
p

p,1 (Rn)
)′

= I
−n−d

p
,B

p′,∞
(
B
−n−d

p

p′,∞ (Rn)
)

is an isomorphism onto its image, and acts by

tr′Γ(l)(g) = l(trΓg) =

∫
Γ

fl(γ)(trΓg)(γ)Hd(dγ), l ∈
(
Lp(Γ)

)′
, g ∈ B

n−d
p

p,1 (Rn),

where fl = (Ip′)
−1(l) ∈ Lp′(Γ). In particular, taking g ∈ S(Rn) and replacing trΓg by g|Γ (as per the

definition of trΓ) we recover Triebel’s identification operator (cf. [32, §9.2] and [31, Eqn. (18.6)])

(idΓf)(g) = tr′Γ
(
Ip′(f)

)
(g) =

∫
Γ

f(γ)(g|Γ)(γ)Hd(dγ), f ∈ Lp′(Γ), g ∈ S(Rn).

Remark 6.17 (The kernel of the trace operator and the range of its adjoint). In [31, 32], Triebel
describes in some detail the mapping properties of trΓ and tr′Γ. In particular, in [31, Thm. 18.2] it
is proved that the range of tr′Γ satisfies

R(tr′Γ) = I
−n−d

p
,B

p′,∞ (B
−n−d

p
,Γ

p′,∞ ),

where

B
−n−d

p
,Γ

p′,∞ :=
{
g ∈ B

−n−d
p

p′,∞ (Rn) : 〈g, ϕ〉 = 0 for all ϕ ∈ S(Rn) such that ϕ|Γ = 0
}
.
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Obviously we have the inclusion

B
−n−d

p
,Γ

p′,∞ ⊂ B
−n−d

p

p′,∞,Γ. (33)

and, since (
B̃

n−d
p

p,1 (Γc)
)a

= I
−n−d

p
,B

p′,∞ (B
−n−d

p

p′,∞,Γ)

(as is easily proved by the same argument used to prove Proposition 3.5), we recover another obvious
inclusion:

ker trΓ = a
(
R(tr′Γ)

)
= a
(
I
−n−d

p
,B

p′,∞
(
B
−n−d

p
,Γ

p′,∞
))
⊃ a
(
I
−n−d

p
,B

p′,∞
(
B
−n−d

p

p′,∞,Γ
))

= B̃
n−d
p

p,1 (Γc). (34)

If d > n − 1 then we have equality in (33) (and hence in (34)) — see [32, §9.34(viii)]. But for
0 < d ≤ n − 1 the inclusions in (33) and (34) may be strict (cf. the discussion in [31, §17.3,
p. 126]).

The following is a simple corollary of Proposition 6.7, relating to properties of the Ãs2p,(q) spaces.

Corollary 6.18. Let Γ, p, q, and m be as in Proposition 6.7. Then for n−d
p

+ m < s2 ≤ s1 <
n−d
p

+m+ 1 it holds that

Ãs2p,(q)(Γ
c) ∩ As1p,(q)(R

n) = Ãs1p,(q)(Γ
c).

In particular,

H̃s2
p (Γc) ∩Hs1

p (Rn) = H̃s1
p (Γc).

Proof. It suffices to prove the inclusion Ãs2p,(q)(Γ
c)∩As1p,(q)(Rn) ⊂ Ãs1p,(q)(Γ

c), since the reverse inclusion

is obvious. So let u ∈ Ãs2p,(q)(Γc)∩A
s1
p,(q)(R

n), which implies that TrΓ,m|As2
p,(q)

u = 0. Then since As1p,(q)
is continuously embedded in As2p,(q) and TrΓ,m|As1

p,(q)
= (TrΓ,m|As2

p,(q)
)|As1

p,(q)
we have that TrΓ,m|As1

p,(q)
u =

TrΓ,m|As2
p,(q)

u = 0, which by Proposition 6.7 implies that u ∈ Ãs1p,(q)(Γc).

Remark 6.19. The condition on the regularity exponents s1 and s2 in Theorem 6.14 cannot in
general be dispensed with. For brevity we focus on the Hs

p,Γ spaces, but the Bs
p,q,Γ case is analogous.

We first recall that for any d-set Γ with 0 < d < n, we have by Proposition 3.7 that if s1 >
−n−d

p′
> s2 then Hs1

p,Γ = {0} and Hs2
p,Γ 6= {0}, so Hs1

p,Γ is not dense in Hs2
p,Γ in this case. If moreover Γ

is either compact or a d-dimensional hyperplane, by Remark 3.8 this holds also for s1 ≥ −n−d
p′

> s2.
For a counterexample to density when both Hs1

p,Γ and Hs2
p,Γ are non-trivial, let 0 < d < n be an

integer and let Γ = {(x1, . . . , xn) : x2
1+· · ·+x2

d ≤ 1, xd+1 = · · · = xn = 0} be the unit d-dimensional
closed disc embedded in Rn. We shall show that, with sM := n−d

p′
+M , the inclusion

H−sM+ε
p,Γ ⊂ H−sM−ε

′

p,Γ is not dense, for all ε, ε′ > 0, M ∈ N, 1 < p <∞. (35)

To prove (35) for a given M ∈ N, 1 < p < ∞ and ε, ε′ > 0, it suffices to exhibit ξM ∈ H−sM−ε
′

p,Γ

and uM ∈ D(Rn) such that 〈ξM , uM〉 6= 0 but 〈v, uM〉 = 0 for all v ∈ H−sM+ε
p,Γ , since then it cannot

35



be possible to find a sequence of elements of v ∈ H−sM+ε
p,Γ approximating ξM . Explicitly, we define

ξM ∈ S ′(Rn) to be the “M th derivative in the nth Cartesian coordinate of a d-dimensional delta”:

ξM(ϕ) =
∫

Γ
∂Mϕ
∂xMn

(γ)Hd(dγ) for ϕ ∈ S(Rn). Then ξM ∈ H−sM−ε
′

p,Γ (Rn), e.g. by [15, Prop. A.1], noting

that ξM is — up to a constant factor (depending on the Hausdorff measure normalisation) — an
M th distributional derivative of the tensor product (χ{|x|≤1}⊗δ0) between the characteristic function

of the unit disc in Rd (χ{|x|≤1} ∈ Lp(Rd)) and a delta function in Rn−d (δ0 ∈ H
−n−d

p′ −ε
′

p (Rn−d) by [24,
Rmk. 2.2.4.3]). Next we define uM ∈ D(Rn) to be the cut-off polynomial uM(x) := χ(x)xMn , for some
χ ∈ D(Rn) taking the constant value 1 in a neighbourhood of Γ. Clearly 〈ξM , uM〉 = M !Hd(Γ) > 0.
Furthermore, uM ∈ Asp,q(Rn) for all 0 < p, q < ∞ and all s ∈ R, and uM ∈ ker TrΓ,m if and only

if m < M , so that in particular, by Proposition 6.7, uM ∈ H̃sM−ε
p′ (Γc). But by Proposition 3.5 this

implies that 〈v, uM〉 = 0 for all v ∈ H−sM+ε
p,Γ , and hence (35) is proved.

We note that the function uM constructed above satisfies uM ∈ H̃sM−ε
p′ (Γc) ∩ HsM+ε′

p′ (Rn) \
H̃sM+ε′

p′ (Γc), showing that the conditions on s1, s2 in Corollary 6.18 also cannot in general be dis-
pensed with.

The above analysis holds, with appropriate modifications, with Γ replaced by a d-dimensional
hyperplane or any sufficiently smooth d-dimensional manifold. However, to our knowledge, whether
the conditions on the regularity exponents are as close to optimal in the case of d-sets with d /∈ N0

is an open problem.

Remark 6.20. Without the assumption that Γ is a d-set, the density of the subscript spaces into
one another can fail completely. Let d1, d2, . . . be a sequence spanning all rational numbers in the
interval (0, n), and let K1, K2, . . . be a sequence of compact subsets of [0, 1]n such that each Kj is a
dj-set; an explicit construction of these sets in terms of “Cantor dusts” is given in [15, Thm. 4.5],

where Kj is denoted F
(n)
dj ,∞. Define Γ := {0} ∪

⋃
j∈N 2−j−1(Kj + 3e1), i.e. the union of translated

and scaled copies of all the Kj in such a way that they lie at positive distance from one another.
(Here the point 0 is added to make Γ compact, and e1 is the unit vector along the first Cartesian
axis.) Fix 1 < p <∞ and − n

p′
≤ s2 < s1 ≤ 0. Then by Proposition 3.7 there is 0 6= u ∈ Hs2

p,Kj
for j

such that s2 < −n−dj
p′

< s1, while Hs1
p,Kj

= {0}. Thus û, obtained from scaling and translating u to

be supported in 2−j−1(Kj + 3e1), belongs to Hs2
p,Γ but cannot be approximated by elements of Hs1

p,Γ.
Hence Γ is a compact set such that Hs

p,Γ = {0} for all s ≥ 0 and Hs
p,Γ 6= {0} for all s < 0, and

Hs1
p,Γ is not dense in Hs2

p,Γ for all 1 < p <∞ and − n

p′
≤ s2 < s1 ≤ 0.
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