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We investigate the null geodesic flow and in particular the light rings (LRs), fundamental photon orbits
(FPOs) and shadows of a black hole (BH) immersed in a strong, uniform magnetic field, described by the
Schwarzschilld-Melvin electrovacuum solution. The empty Melvin magnetic Universe contains a tube of
planar LRs. Including a BH, for weak magnetic fields, the shadow becomes oblate, whereas the intrinsic
horizon geometry becomes prolate. For strong magnetic fields (overcritical solutions), there are no LRs
outside the BH horizon, a result explained using topological arguments. This feature, together with the light
confining structure of the Melvin universe yields panoramic shadows, seen (almost) all around the equator
of the observer’s sky. Despite the lack of LRs, there are FPOs, including polar planar ones, which define the
shadow edge. We also observe and discuss chaotic lensing, including in the empty Melvin universe, and
multiple disconnected shadows.
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I. INTRODUCTION

The bending of light rays due to a gravitational field is
one of the most important predictions of general relativity
(GR). For a body with the Sun’s mass, the deflection, first
predicted by Einstein, is less than two arcseconds. After
some frustrated attempts [1], the experimental measure-
ment of the bending of a light ray passing close to the Sun
was first accomplished during the 1919 total solar eclipse.
The deviation angle was measured to be approximately
1.75 arcseconds, and it was in agreement with the values
predicted by GR [2] (cf. Ref. [3] for a historical account).
Higher deflection angles (around ten arcseconds) are
obtained for the light emitted by quasars (active galactic
nuclei with high luminosity, discovered during the 1960s)
and deflected by galaxies along the line of sight.
The deflection angles for the Sun and quasars are

relatively small. For black holes (BHs), these angles can
be arbitrarily large, and light rays can even describe planar
circular closed orbits dubbed in the literature as light rings
(LRs). It has been proven that stationary, axisymmetric and
asymptotically flat BHs must have one “standard” LR
outside the event horizon for each rotation sense [4].1 Such
LRs are directly related to the shadows of BHs [8]. The
shadow of a BH [9] is the dark region formed when a BH is
illuminated by some light source, for instance by a celestial

sphere, as seen by an observer inside this celestial sphere.
The first proper analysis of the shadow cast by an isolated
spinning BH (described by the Kerr metric [10]) was
performed by Bardeen [11]. Over the last few years, in
particular motivated by the Event Horizon Telescope (EHT)
collaboration imaging of the shadow of M87* [12], the
computation of BH shadows has become an active area of
research, as the means to test GR and modified gravity, the
BH paradigm, and to also gain insight into strong gravity
features and into new physics, see, e.g., for some recent
work, Refs. [13–46].
In astrophysically realistic environments, BHs are not

isolated. Instead, they are surrounded by matter and fields
that can interact with the central BH, giving rise to
interesting phenomena. For instance, the magnetic field
generated due to matter accretion by the BH allows energy
extraction through the so-called Blandford-Znajek mecha-
nism [47]. Moreover, BHs may be subjected to an external
magnetic field coming from a neutron star companion close
to the BH. This has been observed to be the case of
Sagittarius A* (Sgr A*), in the center of the Milky Way,
which is surrounded by a magnetar known as SGR J1745-
29 [48–50]. The magnetic field of SGR J1745-29 is B ¼
1.6 × 1014 gauss, being among the strongest magnetic
fields observed so far [51]. A recently released EHT
analysis, moreover, corroborates the existence of strong
magnetic fields near the event horizon of M87* [52].
These environments, where an external strong magnetic

field surrounds a BH, can be modeled analytically with
the Schwarzschild-Melvin BH (SMBH) exact solution of
Einstein-Maxwell theory, obtainedbyErnst [53]. TheSMBH
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solution represents a SchwarzschildBH spacetime immersed
in a Melvin universe [54]. The latter is a self gravitating
“constant” magnetic field and it is not asymptotically flat,
since themagnetic field extends all theway to spatial infinity.
Despite this unphysical feature, in what concerns astrophysi-
cal BHs, the SMBH geometry can, nonetheless, be relevant
in describing the near horizon geometry of a BH subjected to
certain strong magnetic fields.
The SMBH spacetime presents interesting properties,

which have been extensively studied. For instance, the
motion of charged particles on the equatorial plane of the
SMBH spacetime was studied in Refs. [55–58], while
the motion of timelike and null geodesics on the equatorial
plane was analyzed in Refs. [59–61], and it was noticed
that the SMBH spacetime can have no LR at all outside
the event horizon. One of the goals of this paper is to
explore this intriguing result from the viewpoint of the
topological arguments provided in [4], that guarantee that
asymptotically flat BHs must have LRs. Another goal is to
understand how this result impacts on the shadow of
these BHs.
Rotating Kerr BHs in the presence of a magnetic field

were studied by Wald [62], where the rotation axis is
aligned to the magnetic field. Interestingly, this rotating
Kerr BH surrounded by an external magnetic field acquires
a net electric charge Q ¼ 2BJ, where B is the strength of
the magnetic field and J is the angular momentum of the
BH.Moreover the absorption and scattering of planar scalar
waves in the SMBH in the limit of weak magnetic field
[63], the quasinormal modes of the static and rotating BHs
in external magnetic fields [64–66] as well as stationary
scalar clouds [67] were also studied.
As the mass parameter of the SMBH goes to zero, the

spacetime reduces to the Melvin magnetic Universe [54],
which was originally proposed as an example of pure
electromagnetic geon, i.e., an electromagnetic field held
together by its own gravitational field [68]. The properties
of the motion of charged and uncharged massive particles,
as well as photons, in the Melvin spacetime were also
investigated in [69–71], which was generalized to Einstein-
nonlinear electrodynamics in [72].
In this paper we shall analyze the LRs and shadows of

static chargeless BHs surrounded by a strong external
magnetic field, modeled by the SMBH spacetime. As a
particular (vanishing mass parameter) case, we study the
LRs and the gravitational lensing of the Melvin magnetic
Universe. The remainder of this paper is organized as
follows. In Sec. II we review the properties of the SMBH
spacetime. In Sec. III we define a 2D effective potential,
study the motion of null geodesics and the LRs in the
SMBH spacetime, as well as in the Melvin solution. In
Sec. IV we study the shadows cast by the SMBH, the
gravitational lensing of the Melvin spacetime and present a
selection of our backwards ray-tracing results. Our final
remarks are presented in Sec. V.

II. THE SPACETIME

The geometry of the SMBH spacetime, which is a static
and axially symmetric BH solution of the Einstein-
Maxwell equations, is described by the following line
element [53]:

ds2 ¼ −Λ2ðr; θÞ
�
1 −

2M
r

�
dt2 þ Λ2ðr; θÞ

ð1 − 2M
r Þ

dr2

þ r2Λ2ðr; θÞdθ2 þ r2 sin2 θ
Λ2ðr; θÞ dϕ

2; ð1Þ

where

Λðr; θÞ ¼ 1þ B2r2 sin2 θ
4

; ð2Þ

M is the mass of the BH and B determines the strength of
the external magnetic field.2 The electromagnetic potential
1-form is given by [58]

A ¼ Br2 sin2 θ
2Λ

dϕ: ð3Þ

Due to the external “constant” magnetic field, the SMBH
geometry with B ≠ 0 does not approach the Minkowski
spacetime in the asymptotic region. For B ¼ 0, the SMBH
spacetime reduces to the (vacuum) Schwarzschild solution,
while for M ¼ 0 it reduces to the Melvin magnetic
Universe [54].
The line element (1) exhibits singularities at r ¼ 0 and

r ¼ 2M. The former corresponds to an irremovable singu-
larity, since the Kretschmann scalar

K ¼ Pðr; θÞ
r6Λ8

; ð4Þ

diverges at r ¼ 0, regardless of the value of the angular
coordinate θ. In Eq. (4), Pðr; θÞ is a long and non-
enlightening function of the coordinates ðr; θÞ, obeying

lim
r→0

Pðr; θÞ ¼ 48M2: ð5Þ

The singularity at r ¼ 2M is merely a coordinate one. This
can be confirmed by writing the SMBH line element (1) in
terms of the Eddington-Finkelstein-like coordinate u,
defined through

du ¼ dtþ dr
1 − 2M

r

; ð6Þ

obtaining that

2In this paper we assume that B ≥ 0. This choice does not
imply in any loss of generality.
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ds2 ¼ −Λ2

�
1 −

2M
r

�
du2 þ 2Λ2drduþ r2Λ2dθ2

þ r2 sin2 θ
Λ2

dϕ2; ð7Þ

which is regular at r ¼ 2M. In the Schwarzschild geometry,
r ¼ 2M corresponds to the location of the BH event
horizon. The event horizon for asymptotically flat geo-
metries is a well-defined teleological concept: the boundary
of the causal past of future null infinity. Identifying it
requires knowledge of the global structure of the spacetime
[73]. However, the formulation for nonasymptotically flat
spacetimes may introduce conceptual and technical diffi-
culties. The existence of a BH region in the SMBH
spacetime may, nonetheless, be justified by the identifica-
tion of an apparent horizon, which requires only local
knowledge [73]. To show r ¼ 2M delimits a BH region, in
this sense, let us denote the tangent vectors of a congruence
of outgoing and ingoing null geodesics by lμ and nμ,
respectively. These geodesic congruences are not neces-
sarily affinely parametrized, i.e.,

lμ∇μlν ¼ kllν; ð8Þ

nμ∇μnν ¼ knnν; ð9Þ

where kl, kn are some functions. The expansion Θ of these
null congruences are given by

ΘðlÞ ¼ ∇μlμ − kl; ð10Þ

ΘðnÞ ¼ ∇μnμ − kn: ð11Þ

The apparent horizon is defined as the outer boundary of a
trapped region, where the following condition holds
[73–75]:

ΘðlÞ ¼ 0: ð12Þ

For radially outgoing and ingoing null geodesic congruen-
ces along the equatorial plane, we have

lμ ¼ ðlu; lr; lθ; lϕÞ ¼
�
2; 1 −

2M
r

; 0; 0

�
; ð13Þ

nμ ¼ ðnu; nr; nθ; nϕÞ ¼ ð0;−2; 0; 0Þ; ð14Þ

respectively. Using Eqs. (13) and (14) together with
Eqs. (8) and (9), we find that

kl ¼
2M
r2

þ B2 sin θ2

Λ
ðr − 2MÞ; ð15Þ

kn ¼ −
2Br sin θ2

Λ
: ð16Þ

Moreover, from Eqs. (10), (13), and (15), we have

ΘðlÞ ¼
2ðr − 2MÞ

r2
; ð17Þ

which vanishes at r ¼ 2M, as required for an apparent
horizon. For the sake of completeness, we can also show
that the expansion of null ingoing geodesics is negative

ΘðnÞ ¼ −
4

r
< 0: ð18Þ

Therefore, we conclude that rh ¼ 2M is the radial coor-
dinate of an apparent horizon in the SMBH spacetime,
since at this point the expansion (17) is zero and for r < 2M
it is negative.
The surface area of the apparent horizon is

Ah ¼
Z

2π

0

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgϕϕ

p
dθdϕ

����
r¼rh

¼ 4πr2h; ð19Þ

which is equal to that of the vacuum Schwarzschild geom-
etry. Although the radial coordinate and the surface area of
the apparent horizon are equal in the SMBH and vacuum
Schwarzschild case, the geometry of the apparent horizon is
different, since the SMBH spacetime is not spherically
symmetric. To illustrate this point, in Fig. 1 we show the
isometric embedding in Euclidean 3-space of the SMBH
apparent horizon geometry [76–78]. The apparent horizon
keeps a Z2 north-south symmetry with a well-defined

FIG. 1. Embedding of the apparent horizon geometry in
Euclidean 3-space for the SMBH spacetime with several values
of B. ForB ¼ 0, it reduces to the vacuum Schwarzschild case. For
B > 0, the apparent horizon geometry becomes increasingly
prolate.
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equator, but becomes increasingly prolate and flattened near
the equator, asBM is increased. In the next sections, we shall
explore the properties of null geodesics on and outside the
equatorial plane.

III. NULL GEODESICS

A. LRs in the SMBH (and Melvin) spacetimes

The motion of null geodesics can be described by
Hamilton’s equations:

_xμ ¼ ∂H
∂pμ

; ð20Þ

_pμ ¼ −
∂H
∂xμ ; ð21Þ

where the Hamiltonian is given by

H ¼ 1

2
gμνpμpν ¼ 0: ð22Þ

Since the metric components of the SMBH do not depend
on the t and ϕ coordinates, we have two conserved
quantities, namely

pt ¼ −E; ð23Þ

pϕ ¼ L: ð24Þ

The quantities fE; Lg are usually interpreted as the energy
and angular momentum of the light ray. However, due to
nontrivial Melvin asymptotics, we remark that E is not
generically equal to the energy measured by an observer at
spatial infinity (nor should such an observer be regarded as
preferential). For instance, the energy measured by a static
observer at a radius r and colatitude θ is given by

Eobs ¼ −pμuμ ¼
E

ð1þ B2r2sin2θ
4

Þð1 − 2M
r Þ

1
2

; ð25Þ

where uμ is the 4-velocity of the observer. When B ≠ 0 and
the observer lies outside the symmetry axis, θ ≠ 0; π,
Eobs → 0 as r → ∞. If the observer lies along the axis
of symmetry, however, Eobs ¼ E at spatial infinity. Hence,
one may describe E as the energy of the photon as
measured by an observer lying on the axis of symmetry,
i.e., along the direction of the magnetic field lines,
at r → ∞.
Since the SMBH spacetime is not (generically) spheri-

cally symmetric, the general motion cannot be reduced to
the equatorial plane. Moreover the Hamilton-Jacobi equa-
tion for the SMBH is not known to be separable; hence one
is not able (in general) to write the equations of motion as
four first order differential equations, as, for instance, in the
Kerr case [79]. The case M ¼ 0 (Melvin solution),

however, admits separability due to an extra Killing vector
related to the translation symmetry along the z direc-
tion [69].
The HamiltonianH can be rewritten as a sum of a kinetic

term and a potential term, namely:

H ¼ Tðr; θÞ þ Vðr; θ; E; LÞ; ð26Þ

where

Tðr; θÞ ¼ grrðprÞ2 þ gθθðpθÞ2; ð27Þ

Vðr; θ; E; LÞ ¼ −
E2

Λ2ð1 − 2M
r Þ

þ Λ2L2

r2 sin2 θ
: ð28Þ

Since the potential Vðr; θ; E; LÞ depends on E and L, we
define a new effective potential, Hðr; θÞ, which is inde-
pendent of E and L, given by

Hðr; θÞ≡ Λ2ð1 − 2M
r Þ

1
2

r sin θ
; ð29Þ

so that we can write

Vðr; θ; E; LÞ ¼ L2

Λ2ð1 − 2M
r Þ

�
Hðr; θÞ þ 1

η

��
Hðr; θÞ − 1

η

�
;

ð30Þ

where η≡ L=E. Since T ≥ 0 and V ≤ 0, the null geodesics
in the SMBH spacetime obey the following inequality:

1

jηj ≥ Hðr; θÞ; ð31Þ

where the equality holds at turning points. When B ≠ 0, as
r → ∞, the effective potential diverges (away from the
symmetry axis),Hðr; θÞ → ∞. Thus, Eq. (31) implies that a
generic light ray (not necessarily restricted to the equatorial
plane) can only escape to infinity if η ¼ 0. This property
holds for the whole SMBH family, with B ≠ 0, including
the M ¼ 0 Melvin universe.
Let us now turn our attention to LRs, i.e., planar circular

photon orbits, by analyzing the properties of the effective
potential (29). LRs are defined by pr ¼ pθ ¼ 0 and
_pr ¼ _pθ ¼ 0.3 They correspond to the critical points of
V, i.e.:

V ¼ 0; ð32Þ

3As we shall see later, in the SMBH spacetime there are planar
null (but geometrically noncircular) orbits which are polar, rather
than equatorial—Fig. 10(c)—, with pθ ≠ 0 e η ¼ 0. These are not
LRs and they do not appear as critical points of Hðr; θÞ. The
tangent vector to these arbits is not a combination of the Killing
vector fields ∂t and ∂ϕ, which is the case for LRs [5].
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∇V ¼ 0; ð33Þ

which may be rewritten in terms of Hðr; θÞ as

Hðr; θÞ ¼ 1

η
; ð34Þ

∇Hðr; θÞ ¼ 0: ð35Þ

Consider first the Melvin spacetime, by choosingM ¼ 0
in Eq. (29). From Eq. (35) it is straightforward to identify
one equatorial (θ ¼ π=2) LR at

r ¼ 2ffiffiffi
3

p
B
: ð36Þ

This LR, however, is not unique due to the existence of an
additional spacelike Killing vector in the Melvin universe.
This can be best seen by writing the Melvin solution in (t, ρ,
z, ϕ) coordinates, where

ρ ¼ r sin θ; ð37Þ

z ¼ r cos θ: ð38Þ

The line element (1) becomes

ds2 ¼ Λ2ðρÞð−dt2 þ dρ2 þ dz2Þ þ ρ2

Λ2ðρÞ dϕ
2; ð39Þ

ΛðρÞ ¼ 1þ B2ρ2

4
; ð40Þ

which is independent of t, z and ϕ. The LR (36), in the
(t; ρ; z;ϕ) coordinates, is determined by

ρ ¼ 2ffiffiffi
3

p
B
; ð41Þ

z ¼ 0: ð42Þ

Since the Melvin universe has a translation symmetry along
the z direction, there is a LR at each z ¼ constant plane
with a cylindrical radius given by (41). Hence, we conclude
that the Melvin universe admits a tube of planar LRs. This
means that, instead of just a single LR orbit, there exists an
infinite continuous set of LRs. In Fig. 2 (top panel) we
show the effective potential Hðr; π=2Þ for the Melvin
spacetime. The tube of planar LRs is stable against radial
perturbations.
Considering now the SMBH spacetime, from the LR

conditions, Eqs. (34) and (35), we find that LRs must
satisfy both θ ¼ π=2 and

3B2r3 − 5MB2r2 − 4rþ 12M ¼ 0: ð43Þ

In Fig. 2 (bottom panel), the effective potentialHðr; π=2Þ is
plotted. It may present two local extrema, corresponding to
one stable and one unstable LR, which are determined by
Eq. (43). The red dots correspond to unstable LRs, while
the black crosses correspond to stable LRs. In contrast to
the Melvin spacetime, the SMBH does not admit a trans-
lation symmetry along the z direction, so that the LRs are
located on the equatorial plane only. Due to the shape of the
potential, bound equatorial photon orbits are allowed
around the stable LR. Such orbits neither fall into the
BH nor escape to infinity. In Fig. 3, we show an example of
such a bound orbit in the SMBH spacetime with BM ¼ 0.1.
Bound orbits are also allowed outside the equatorial

plane in the SMBH spacetime, due to the presence of closed
pockets on the effective potentialHðr; θÞ, see e:g. [17]. The
existence of such closed pockets gives rise to interesting
lensing features as we shall see below.
As the value of B is increased (in terms of the

scale M), stable and unstable LRs converge in their radial
coordinate—see the sequence of “crosses” in Fig. 2. For a
critical value of the magnetic field strength (Bc) the radial

FIG. 2. Top: Effective potential Hðr; θÞ for the Melvin space-
time, evaluated at the equatorial plane. Bottom: Effective poten-
tial for the SMBH spacetime, also evaluated at the equatorial
plane. We have chosen different values of magnetic field strength.
The red (black) dots (crosses) correspond to the equatorial
unstable (stable) LRs radial coordinate. For B > Bc there are
no LRs (green curve).
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coordinates of the stable and unstable LRs coincide. The
value of Bc is determined by Eq. (43) together with

∂2
rHðr; π=2Þ ¼ 0; ð44Þ

which has the solution

BcM ¼ 2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
169 − 38

ffiffiffiffiffi
19

p

15

s
≈ 0.189366: ð45Þ

For B > Bc, Eq. (43) possesses no real solution with
r > 2M, and therefore there are no LRs outside the
apparent horizon. This intriguing fact is further explored
in the next section. In the following, SMBHs with B > Bc
shall be called overcritical.

B. Topological charge of LRs in the SMBH
and Melvin spacetimes

It was recently shown that a four-dimensional BH
spacetime that is stationary, axi-symmetric, circular and
asymptotically flat must have one standard LR outside the
event horizon for each rotation sense [4]. Subsequently, a
generalization of this result for asymptotically de Sitter/
anti–de Sitter spacetimes was also reported, with a similar
conclusion [6]. Since the SMBH solution is asymptotically
Melvin, the existence of LRs is not guaranteed by the above
theorems; thus, the intriguing possibility of a BH without
LRs emerges. As seen in the previous section, this is indeed
the case for overcritical SMBHs.

In order to have a deeper understanding on the absence
of LRs in a BH spacetime, it is insightful to analyze how the
different (Melvin) asymptotic structure impacts on the LR
topological charge, which is at the heart of the aforemen-
tioned theorems [4,5]. To do so, let us introduce the vector
field v ¼ ðvr; vθÞ, where

vi ≡ ∂iHffiffiffiffiffi
gii

p ; i ¼ ðr; θÞ ðnot summedÞ: ð46Þ

Thus

vr ¼
sin θ
4r3

½B2r2ð3r − 5MÞ − 4ðr − 3MÞ csc2 θ�; ð47Þ

vθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
cos θ

16r2Λ
½B2r2ð3B2r2 sin2 θ þ 8Þ − 16 csc2 θ�:

ð48Þ

We write the components of v in terms of its “norm” v and
the angle Ω:

vr ¼ v cosΩ; ð49Þ

vθ ¼ v sinΩ; ð50Þ

where

v2 ≡ ∂μH∂μH ¼ v2r þ v2θ: ð51Þ

As an illustration of this vector field on the SMBH
spacetime, we have represented in Fig. 4 (top panel) the
field v on the ðr; θÞ space. When compared to the
Schwarzschild spacetime, the main difference occurs in
the asymptotic region (see Fig. 1 of Ref. [4] for the
Schwarzschild case). The Melvin asymptotics make vr
asymptotically positive, whereas it is negative for asymp-
totically flat spacetimes. In contrast, the qualitative behav-
ior of the vector field next to the horizon is similar for the
SMBH and the vacuum Schwarzschild BH. The asymptotic
difference will impact decisively on the topological charge.
To compute the topological charge, consider a piecewise

smooth and positive oriented curve C in ðr; θÞ space; it is
possible to introduce the useful integer quantity [4]:

w ¼ 1

2π

I
C
dΩ: ð52Þ

If one deforms the curve C without it intersecting any LR,
the value of w remains unaltered. Due to this, w can be
interpreted as a topological charge associated to C. Given a
single nondegenerate LR that is completely inside the curve
C, then w is the topological charge of that LR [4].
Following [4], a LR with w ¼ −1 is named standard,
while a LR with w ¼ 1 is named exotic [4,5]. The LR

FIG. 3. Example of bound orbit on the equatorial plane with
η ¼ 5.004 and BM ¼ 0.1. The orbit is bounded between r ¼
3.396M and r ¼ 20.963M. The central circle represents the BH
apparent horizon.
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stability is actually closely connected to this value: the LR
is stable (unstable) if w ¼ þ1 (w ¼ −1), provided that the
null energy condition is satisfied [5], which is the case in
electrovacuum.
The total topological charge of the SMBH spacetime

(M ≠ 0) is computed by choosing a curve C that encloses
all of the spacetime outside the BH, under some appropriate
limit [4]. Such a possible curve C ¼ L1 ∪ L2 ∪ L3 ∪ L4 is
depicted in Fig. 4 (bottom panel), where C is illustrated
enclosing two LRs, one stable and the other one unstable.
The paths fL4; L2g have constant θ−-values, θ¼fε;π− εg
respectively, whereas fL1; L3g have constant radial coor-
dinates fr0; Rg, satisfying R > r0 > 2M. Thus, (52) can be
separated into the sum:

w ¼ 1

2π
ðΔΩ1 þ ΔΩ2 þ ΔΩ3 þ ΔΩ4Þ; ð53Þ

where

ΔΩ1 ¼
Z
L1

dΩ
dθ

dθ

����
r¼R

; ð54Þ

ΔΩ2 ¼
Z
L2

dΩ
dr

dr

����
θ¼π−ε

; ð55Þ

ΔΩ3 ¼
Z
L3

dΩ
dθ

dθ

����
r¼r0

; ð56Þ

ΔΩ4 ¼
Z
L4

dΩ
dr

dr

����
θ¼ε

: ð57Þ

The LR charge outside the BH is then obtained by taking
limR→∞ limr0→2M limε→0 w. Computing analytically the
integrations (54)–(57) for SMBHs proved to be challenging
in the most general case. However, in the large magnetic
field limit, BM ≫ 1 the calculations simplify considerably.
In such limit we obtain:

vr ≃ B2 sin θ

�
3r − 5M

4r

�
; ð58Þ

vθ ≃
3

4
B2 cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
: ð59Þ

Taking also ε ≪ 1, the integrations (54)–(57) yield:

ΔΩ1 ≃ −π − 2εF ðRÞ þOðε3Þ; ð60Þ

ΔΩ2 ≃ ε½F ðRÞ − F ðr0Þ� þOðε3Þ; ð61Þ

ΔΩ3 ≃ π þ 2εF ðr0Þ þOðε3Þ; ð62Þ

ΔΩ4 ≃ ε½F ðRÞ − F ðr0Þ� þOðε3Þ; ð63Þ

where we have used the auxiliary function

F ðrÞ ¼ ð5M − 3rÞ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞp :

The sum (53) then readily gives us w ≃Oðε3Þ. Since the
subleading term can be made much smaller than unity, and
accounting for the fact that w must be an integer, we then
arrive at the neat result that w ¼ 0, in the large magnetic
field limit ðBM ≫ 1Þ.
Regarding the most general case, it is nevertheless

straightforward to check numerically that the integrations
(54)–(57) also yield a vanishing topological LR charge for
the SMBH spacetime if B ≠ 0:

wSMBH ¼ 0 ðB ≠ 0Þ: ð64Þ

In contrast, Schwarzschild has wSchw ¼ −1. Since the
topological charge w is constant along the SMBH family

2 5 10 15 20 25 30

0.5

1

1.5

2

2.5

3

r/M

θ

FIG. 4. Top panel: plot of the normalized vector field v on the
ðr; θÞ space for the SMBH spacetime with BM ¼ 0.1. Bottom
panel: depiction of a closed (dotted) curve C that encloses two
LRs in the SMBH spacetime. The curve C is made to approach
the axis and horizon under appropriate limits (see text and [4] for
details).
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with different B ≠ 0, we may have one of the following
two cases:

(i) undercritical SMBHs (B < Bc):ABHspacetimewith
one standard unstable LR (w1 ¼ −1) and one stable
exotic LR (w2 ¼ þ1), such that w ¼ w1 þ w2 ¼ 0.

(ii) overcritical SMBHs (B > Bc): A BH with no LRs at
all outside the horizon (w ¼ 0).

Case (ii) is the only example (known to the authors) of a
BH spacetime without any LR outside a regular horizon.
This is possible due to the nontrivial asymptotic behavior of
the SMBH (for B ≠ 0). The absence of LRs in the SMBH
spacetime with B > Bc was first discussed in [60].
As a final remark concerning the analysis in this section,

the contour integration approach to compute w for the
entire spacetime is not, strictly speaking, well defined for
the Melvin (M ¼ 0) case, since any closed curve C setup to
include virtually all of the Melvin spacetime must intersect
a LR in the tube of planar LRs. To illustrate this, in Fig. 5
we represent the vector field v in the ðρ; zÞ plane for the
Melvin spacetime, described by

vρ ¼
∂ρHðρ; zÞffiffiffiffiffiffigρρ
p ¼ 3B2ρ2 − 4

4ρ2
; ð65Þ

vz ¼
∂zHðρ; zÞffiffiffiffiffiffi

gzz
p ¼ 0: ð66Þ

In that plot, the vertical red line represents the tube of
planar LRs, which extends indefinitely along the z direc-
tion. This tube creates an obstacle for the contour setup
depicted in Fig. 4 (bottom). Although it might be possible

to still define a topological charge for the Melvin universe,
it will require a different approach which is beyond the
scope of this paper.

IV. SHADOWS AND GRAVITATIONAL LENSING

A. Setup

Let us now turn to the gravitational lensing in the Ernst
spacetime and the shadows cast by SMBHs. We use the
backwards ray-tracing method, which consists in evolving
the light rays from the observer’s position, and backwards
in time, until it is captured by the BH or scattered to a
celestial sphere of finite radius. For this purpose, we solve
numerically the equations

_t ¼ E
Λ2ð1 − 2M

r Þ
; ð67Þ

_ϕ ¼ LΛ2

r2 sin2 θ
; ð68Þ

obtained from Eq. (20), together with

̈rþ Γr
μν _xμ _xν ¼ 0; ð69Þ

θ̈ þ Γθ
μν _xμ _xν ¼ 0; ð70Þ

obtained from the geodesic equation. We need to supply
initial conditions for Eqs. (67)–(70). This is achieved by
computing the 4-momentum of the photon, as measured by
a static observer. The tetrad basis of this static observer in
the SMBH spacetime can be written as

ê0̂μ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2M
r

r
Λ; 0; 0; 0

�
; ð71Þ

ê1̂μ ¼
�
0;

Λffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ; 0; 0
�
; ð72Þ

ê2̂μ ¼ ð0; 0; rΛ; 0Þ; ð73Þ

ê3̂μ ¼
�
0; 0; 0;

r sin θ
Λ

�
; ð74Þ

obeying

êâμêb̂νnâ b̂ ¼ gμν; ð75Þ

where nâ b̂ are the covariant components of the Minkowski
metric tensor. ê0̂μ is the 4-velocity of the static observer,

and êîμ (i ¼ 1, 2, 3) are the spatial directions of the
reference frame. The components of the 4-momentum of
the photon measured in the static frame, namely

FIG. 5. Plot of the normalized vector field v ¼ ðvρ; vzÞ in the
ðρ; zÞ plane, for the Melvin spacetime with B ¼ 0.1. The vertical
red line represents the location of the tube of planar LRs.
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pâ ¼ êâμpμ; ð76Þ

are given by

pt̂ ¼ Eobs ¼
Effiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q
Λ
; ð77Þ

pr̂ ¼ Λffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q _r; ð78Þ

pθ̂ ¼ rΛ_θ; ð79Þ

pϕ̂ ¼ LΛ
r sin θ

: ð80Þ

The photon’s linear 3-momentum p⃗ in the static frame has
the components

p⃗ ¼ ðpr̂; pθ̂; pϕ̂Þ; ð81Þ

which are parametrized as functions of the celestial
coordinates ðα; βÞ as

pr̂ ¼ jp⃗j cos α cos β; ð82Þ

pθ̂ ¼ jp⃗j sin α; ð83Þ

pϕ̂ ¼ jp⃗j cos α sin β: ð84Þ

From Eqs. (77)–(80) and Eqs. (82)–(84), we obtain

E ¼ jp⃗jΛ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r ����
ðrobs;θobsÞ

; ð85Þ

_r ¼ jp⃗jΛ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
cos α cos β

����
ðrobs;θobsÞ

; ð86Þ

_θ ¼ jp⃗jΛ−1 sin α
r

����
ðrobs;θobsÞ

; ð87Þ

L ¼ jp⃗jΛ−1r sin θ cos α sin βjðrobs;θobsÞ; ð88Þ

where ðrobs; θobsÞ are the observer’s coordinates. The
observer’s position matches the initial photons’ position,
and Eqs. (85)–(88) are the initial conditions for the
equations of motion (67)–(70). Each pair ðα; βÞ represents
one point in the observer’s local sky. The shadow corre-
sponds to the points in the α–β plane for which the light
rays, evolved backwards in time, using a Dormand-Prince
method [80], are captured by the BH. We compared our
results, obtained with a Cþþ code with the ones obtained
using the PYHOLE code [81] and obtained excellent

agreement. In order to study the behavior of the scattered
light rays, we place a celestial “sphere” at rcs > robs, with a
different color in each quadrant (red, green, blue, yellow).
We also place a white circular spot on the celestial sphere
along the axis joining the observer and the origin of the
radial coordinate—see Fig. 6 top panels. Unlike asymp-
totically flat localized objects, where all interesting lensing
features occur near a gravitational center, in asymptotically
Melvin spacetimes nontrivial features may appear pano-
ramically. Thus, it is of interest to consider panoramic
images, with a 360° horizontal and 180° vertical span.
When the BH and the magnetic field are absent (i.e., B ¼ 0,
M ¼ 0), the observer’s panoramic view is shown in Fig. 6
(bottom panel).
In the following, SMBHs (M;B ≠ 0) and Melvin uni-

verses (M ¼ 0, B ≠ 0) will be said to be observed under
comparable conditions if the perimetral radius rp, given by

rp ≡ ffiffiffiffiffiffiffi
gϕϕ

p jθ¼π=2 ¼
4r

4þ B2r2
; ð89Þ

is the same in both cases (rather than the radial coordinate
robs). In contrast to Schwarzschild [8], if B ≠ 0 the
perimetral radius has a maximum value, given by

rmax
p ¼ 1

B
; ð90Þ

and the corresponding value of the radial coordinate is

FIG. 6. Top left: the observer’s local sky in the equatorial
position with reference directions fN; S; F; B; E;Wg. Top right:
the light emitting colored celestial sphere encircling both the
observer and the BH. Bottom: the panoramic image of the
observer’s local sky in flat spacetime.
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r ¼ 2

B
: ð91Þ

Since r ∈� 0;þ∞½, for SMBH spacetimes with B ≠ 0 there
will be generically two radial coordinates r for the same
perimetral radius rp. The observer location is chosen to be
(of the two) the one with smallest r value.

B. Gravitational lensing in the Melvin universe

The gravitational lensing in the Melvin universe
(B ≠ 0 ¼ M) is exhibited in Fig. 7(b), where it is compared
with the Minkowski case, Fig. 7(a). For the Melvin
universe, B is the only scale and so all dimensionful
quantities are normalized by B. The panoramic image is
for an observer at rp ¼ 1=B, θobs ¼ π=2 and a celestial
sphere at rcs ¼ 2.5=B.
The Melvin spacetime (unlike Minkowski), exhibits

gravitational lensing leading to several notable features:

(1) Looking forward (toward F), the observer sees the
celestial sphere flipped horizontally, i.e., left-right
inverted. This left-right flipping is a consequence of
the axial symmetry together with staticity. By con-
trast, in spherical symmetry, a gravitational centre
tends to flip the image with respect to the symmetry
center, rather than an axis—see, e.g., Fig. 3 (top
right) in [15].

(2) Looking east/west (toward E/W), the observer sees
some chaotic regions. An understanding of these
regions can be obtained by following illustrative
photons. For this purpose we have highlighted two
points (1 and 2) of the image within the turbulent
regions. Introducing a radial coordinate that com-
pactifies the radial direction

RM ≡ r
1þ r

: ð92Þ

FIG. 7. Panoramic image obtained in Minkowski (upper panel) and Melvin (lower panel) spacetimes. The latter exhibits gravitational
lensing.
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Figure 8 exhibits the effective potential Hðr; θÞ
contour plot, in terms of RM, for the Melvin
universe and the photons corresponding to the points
highlighted in Fig. 7(b). The black regions in the left
panels of Fig. 8 are the inaccessible regions for the
photon due to the restriction (31) on the effective
potential. Recall that spatial infinity is inaccessible
to these photons (or any photons that have η ≠ 0).
The photons start off at the blue dot (observer) and
terminate their trajectories at the black dot, where
they meet the celestial sphere (red dotted line). The
left panels of Fig. 8, clarify that the turbulent lensing
region arises due to the existence of multiple turning
points of the orbit before encountering the celestial
sphere, which occurs at larger latitudes than that of
the initial observation.

(3) Looking north/south or back (toward N/S or B), the
observer sees a qualitatively similar image as to that
in Minkowski spacetime in terms of the color
patterns, albeit a different structure for the grid lines,
likely a consequence of r ¼ constant surfaces in (1)
not being round spheres.

C. Undercritical SMBHs

We now turn our attention to the general SMBH
spacetime (M ≠ 0) considering not only the lensing but
also the shadows produced by the existence of a BH region.
Let us start by considering how the Schwarzschild shadow
is deformed due to small magnetic fields and undercritical
SMBHs. For this purpose, we shall consider nonpanor-
amic, narrrow angle images, centered around the F
direction.
Figure 9 exhibits the shadows and lensing of SMBHs for

BM ≪ 1, which is (likely) the parameter range most
suitable to model real astrophysical environments (near
the BH region). In this figure the observer is located on the
equatorial plane (θobs ¼ π=2), at rp ¼ 10M and the view-
ing angle is 75° (as opposed to 360° in the panoramic
images). The colored celestial sphere in Fig. 9 has radius
rcs ¼ 25M. For B ¼ 0, we recover the Schwarzschild BH
shadow, which is perfectly circular in the observer’s local
sky. For B > 0, we note that the shadow is no longer
circular, becoming oblate (elongated along the horizontal
direction) as the value of B is increased. It is a rather curious
feature in the SMBH spacetime that the intrinsic horizon

FIG. 8. Left: contour plots of the effective potential for the Melvin spacetime in the RM − θ plane, for the points marked
in Fig. 7(b). The trajectories start off at the blue dot (observer) and terminate at the black dot, where they meet the celestial
sphere (red dotted vertical line). Right: trajectories described by the photon for the corresponding values of η (displayed in the left
column).
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geometry becomes prolate (cf. Fig. 1) but the BH shadow
becomes oblate (cf. Fig. 9). This is yet another manifes-
tation of how the shadow is not a faithful probe of the event
horizon geometry [82].
Further analyzing the impact of B on the shadow in

Fig. 9, we remark that in the Schwarzschild case, the white
spot on the celestial sphere appears as a ring in the
observer’s local sky: an Einstein ring [83]. For the
SMBH, on the other hand, the spherically symmetric
Einstein ring is broken up; as the value of B is increased
one observes different patterns. For instance, for BM ¼
0.04 [Fig. 9(c)] four (distorted) copies of the white spot are
seen, forming the ends of a cross centered in the BH
shadow, somewhat reminiscent of the famous Einstein

cross formed by the lensed image of the quasar
QSO 2237þ 0305.

D. Overcritical SMBHs

Let us now consider largemagnetic fields and overcritical
SMBHs.Aswe have seen in Sec. III A, forB > Bc one of the
most remarkable features concerning null geodesics in the
SMBH spacetime arises: there are no LRs. This leads to
the following intriguing question: since LRs determine the
edge of the BH shadow (on the equatorial plane), what
happens to the shadow of SMBHs with B > Bc?
To investigate this question, Fig. 10 exhibits the shadow

and gravitational lensing for a SMBH with BM ¼ 0.2 [thus

FIG. 9. Nonpanoramic images of the shadows and gravitational lensing of (undercritical) SMBHs for different values of the magnetic
field B. We have chosen the observer perimetral radius rp ¼ 10M, θobs ¼ π=2 and rcs ¼ 25M.
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(a)

(b)

(c)

FIG. 10. Top: panoramic image of the shadow and gravitational lensing of an overcritical SMBH (BM ¼ 0.2). The observer is located
at rp ¼ 4.698M, θobs ¼ π=2 and rcs ¼ 45M. Middle: the celestial sphere was colored white to emphasize the multiple disconnected
shadows (black regions) in the top image. Bottom: three FPOs (blue, green, and black curves), corresponding to three points at the
shadow edge in the middle panel, at the intersection of vertical and horizontal lines with the corresponding color.
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B > Bc, cf. Eq. (45)]. This is a panoramic image since the
impact of the absence of LRs is to permit the possibility of a
panoramic, (almost) 360° wide, BH shadow.
Let us dissect the previous statement. In Fig. 10, the

observer’s perimetral radius and the radius of the celestial
sphere are rp ¼ 4.698M and rcs ¼ 45M, respectively. The
location of the celestial sphere impacts on how panoramic
the shadow is. Figure 2 makes clear that outwards directed
equatorial light rays with η ≠ 0 always reach a radial
turning point. This turning point is at an increasingly large
r when approaching the backwards (B) direction, and
r → ∞ as η ¼ 0, i.e., as the observer looks toward B.
Hitting the celestial sphere is a stoppage criterion, yielding
a colorful pixel. But all lights rays except the one with
η ¼ 0, would reach a radial turning point whence they
necessarily fall back into the BH region (green curve in
Fig. 2) if the celestial sphere is pushed to a sufficiently large
rcs, yielding a panoramic (almost) 360° wide BH shadow.4

Besides the panoramic (equatorial) shadow, the image of
overcritical SMBHs in Fig. 10 has other outstanding
features. In Fig. 10(b) the shadow image is exhibited with
a white colored celestial sphere, to appreciate the appear-
ance of multiple disconnected shadows. Thus both the
shadow and the lensing [as seen in Fig. 10(a)] contain
imprints of a chaotic pattern.
In order to better understand these chaotic patterns in the

overcritical SMBH we proceed as in the Melvin universe
case, analysing individual orbits. In Fig. 10(a) we have
highlighted three distinct points on the celestial sphere: one
scattered orbit in the chaotic region (point 1) and two
absorbed orbits in two distinct shadow regions (points 2
and 3). The analysis of the corresponding orbits is done in
Fig. 11, specifying the value of η and the contour plots of
the effective potentialHðr; θÞ. As in Fig. 8, the blue (black)
dots mark the beginning (end) of the orbit, corresponding to
the position of the observer (celestial sphere or apparent
horizon). In the right panels of Fig. 11, the black sphere has
radius equal to the one of the BH apparent horizon. In the
left panels of Fig. 11, the radial coordinate along the
horizontal axis is the compactified coordinate [81]

R≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ð2MÞ2

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ð2MÞ2

p ; ð93Þ

such that spatial infinity corresponds to R ¼ 1, and the
apparent horizon to R ¼ 0.
The photon trajectory corresponding to point 1 shows

how a north directed observation sees the southern

hemisphere, where the photon reaches the celestial sphere.
On the other hand, trajectory 2 shows that a slightly
different observation direction is described by a photon
that reaches the radial turning point (rather than the celestial
sphere), whence it falls into the BH region. The same
occurs for point 3 whose effective potential pushes the
whole of the celestial sphere into the forbidden region,
explaining why no colorful points can be found in its
vicinity. Besides the r − θ motion, Fig. 11 also exhibits the
nontrivial azimuthal motion, which adds to the possible
color mixing in the lensing regions with chaotic patterns.
Before closing the analysis of Fig. 10 there is one last

point that merits discussion. The absence of equatorial LRs
determines there is no shadow edge on the equatorial plane,
apart from the one determined by the arbitrary placement of
the celestial sphere. How about outside the equatorial
plane? In asymptotically flat cases, the BH shadow edge
in nonspherically symmetric spacetimes is determined,
generically, by a set of bound photon orbits, dubbed
fundamental photon orbits (FPOs) in [84]. For the Kerr
case these are the familiar spherical orbits, which degen-
erate in the corotating and counterrotating LRs on the
equatorial plane. Are there nonequatorial FPOs in the
SMBH spacetime?
The answer to this question is yes. Since the SMBH does

not admit separability, we have numerically computed such
FPOs. These are illustrated in Fig. 10(c), for the overcritical
SMBH with BM ¼ 0.2. The corresponding points in the
shadow edge, for each of the three illustrated FPOs, are
identified by the intersection between the vertical and
horizontal dashed lines in Fig. 10(b) (with the same color).
It is worth remarking that the black FPO is planar; but it is
polar rather than equatorial, and it is geometrically non-
circular, as we now explain. First, observe that identical
polar planar FPOs occur for any ϕ ¼ constant, due to the
axial symmetry and always intersect the z axis. Second,
inspection of the ϕ ¼ constant hypersurfaces of the SMBH
geometry (1) shows that these sections are conformal to the
Schwarzschild ones:

ds2jϕ¼cte: ¼ Λ2

�
−
�
1 −

2M
r

�
dt2 þ dr2

ð1 − 2M
r Þ

þ r2dθ2
�
:

ð94Þ

Thus the usual Schwarzschild LR at r ¼ 3M remains a
geodesic here, but now the θ motion plays the role of the
usual ϕ in Schwarzschild and thus these are polar rather
than equatorial orbits. These are our polar planar FPOs.
Third, since these polar orbits with r ¼ 3M exist for every
ϕ, they span the r ¼ 3M, t ¼ constant, 2-surface of the
SMBH geometry (1):

ds2jt¼cte:;r¼3M¼ð3MÞ2
�
Λ2ðr;θÞdθ2þ sin2θ

Λ2ðr;θÞdϕ
2

�
: ð95Þ

4Strictly speaking, there is always a vicinity of the B direction
(backwards), wherein no shadow is seen, since such photons hit
the celestial sphere before reaching their radial turning point no
matter how large (but finite) rcs is. But for a sufficiently far away
celestial sphere this vicinity is reduced, in the discretized image,
to a single point: the B direction.
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This (topologically) 2-sphere is not round (but rather
prolate, as the apparent horizon, Fig. 1). It has equatorial
leq and polar lp proper lengths:

leq

2πð3MÞ ¼
1

1þ ð3MBÞ2
4

; ð96Þ

lp

2πð3MÞ ¼ 1þ ð3MBÞ2
8

: ð97Þ

Thus, we conclude that, in this sense, for B ≠ 0 the polar
FPOs are not circular, but rather elongated in the magnetic
field direction, since lp > leq. Similar planar FPOs can be
found in examples of di-BHs—see [85].
The existence of FPOs suggests that there are shadow

edges that are independent of the celestial sphere location
(unlike, say, the equatorial shadow edge). We also remark
that FPOs also exists for the undercritical SMBHs and they
determine the BH shadow edges shown in Fig. 9.

FIG. 11. Left: contour plots of the effective potential in the R − θ plane, for the points selected in Fig. 10(a). Right: trajectories
described by the photon for the corresponding values of η (displayed in the left panels).
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V. FINAL REMARKS

The SMBH spacetime first obtained by Ernst in 1976
[53] as a solution of the Einstein-Maxwell (electrovacuum)
equations, is interpreted as a Schwarzschild BH in a Melvin
magnetic Universe. The latter is a sort of confining box, for
light rays, that can only reach infinity if they have no
angular momentum. The analysis of the null geodesics in
this paper has shown that the SMBH provides a rich and
novel case study for features of gravitational lensing and
BH shadows. As a summary of our results we would like to
emphasize the following features:

(i) The empty Melvin universe (M ¼ 0 ≠ B) [54] has
an equatorial stable LR, which, moreover, due to a
“vertical” isometry, implies the existence of a tube of
planar LRs.

(ii) The SMBH family (M ≠ 0 ≠ B) yields a novel
example of BH spacetimes wherein the LRs total
topological charge [4,5] is zero. This can be inter-
preted as the cancellation between the w ¼ −1
Schwarzschild and the w ¼ þ1 Melvin (asymp-
totics) topological charges.

(iii) The vanishing of the topological LR charge permits
that, unlike for asymptotically flat [4] and asymp-
totically de Sitter or AdS [6] BHs, there can be
asymptotically Melvin BHs without LRs.

(iv) The SMBHs family is then naturally divided into
undercritical (B < Bc) and overcritical (B > Bc)
spacetimes, where Bc is given by Eq. (45). The
latter describe BH spacetimes (regular on and out-
side a horizon) without LRs outside the horizon.

(v) Performing ray-tracing, we have shown that the
absence of equatorial LRs yields a panoramic
shadow: even a far away observer will see an
(almost) 360° BH shadow, looking at any direction
along the equatorial plane, as long as the celestial
sphere is sufficiently far away.

(vi) Despite the absence of LRs, there are nonequatorial
(unstable) FPOs, that determine parts of the shadow
edge, outside the equatorial plane. There are, in
particular planar, polar (but noncircular) photon
orbits, which determine the north and south pole
of the shadow edge.

(vii) Despite their simplicity, both the Melvin universe
and the MSBH family yield chaotic lensing (and the
latter also multiple shadows). Some insight into this
behavior can be obtained by following illustrative
orbits and analyzing the corresponding effective
potentials.

(viii) For small BM (undercritical) SMBHs, the shadow
becomes oblate, in a curious contrast with the
intrinsic horizon geometry which becomes prolate.

Although most of our results are unlikely to be astro-
physically relevant (since Melvin asymptotics do not
describe the real Universe), the shadow deformation for
small magnetic fields could, potentially, describe those for
an astrophysical BH immersed in a sufficiently strong
poloidal magnetic field whose backreaction would have to
be taken into account. Interestingly, the recent EHT results
suggest that the M87* magnetic field is poloidal, rather
than toroidal [52].
Finally, our work suggests further studies. For instance, a

deeper understanding of the chaotic patterns (and multiple
shadows) as well as their dependence on the celestial sphere
wouldbe desirable. These features are related to the existence
of closed pockets and forbidden regions in the effective
potential, leading to multiple turning points in the photons’
trajectories.We have observed, for instance, that the time that
a photon takes to reach the celestial sphere increases in the
chaotic region due to the existence of several radial turning
points, which has also been observed in other examples
[15,81,85,86]. As a second possible extension, a natural
follow upwith be to consider either the Reissner-Nordström-
Melvin or the Kerr-Melvin solutions (see, e.g., [87]). Both of
these acquire angular momentum, which will lead to frame-
dragging effects in the lensing and shadows.
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