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Abstract 14 

Vacuum cleaning can be a household source of particulate matter (PM) both from the vacuum 15 

motor and from settled dust resuspension. Despite the evidence of this contribution to PM levels 16 

indoors, the effect of this source on PM composition is still unknown. In this study, four vacuum 17 

cleaners (washable filter bag-less, wet, bagged and HEPA filter equipped robot) were tested for the 18 

emission rate of particulate mass and number. The detailed PM chemical characterisation included 19 

organic and elemental carbon, metals and organic speciation. PM10 emission rates from bagged 20 

vacuum operation were much higher (207 ± 99.0 µg min-1) compared with the ones obtained from 21 

wet (86.1 ± 16.9 µg min-1) and washable filter bag less vacuums (75.4 ± 7.89 µg min-1). Particle (8 22 

to 322 nm) number emission rates ranged from 5.29 × 1011 (washable filter bag less vacuum) to 23 

21.2 × 1011 (wet vacuum) particles min-1. Ratios of peak to background levels indicate that 24 

vacuuming can elevate the ultrafine particle number concentrations by a factor ranging from 4 to 25 

61. No increase in PM mass or number concentrations was observed during the HEPA filter 26 

equipped vacuum operation. The increase in copper and elemental carbon PM10 contents during 27 

vacuuming suggested motor emissions. Organic compounds in PM10 included alkanes, PAHs, 28 

saccharides, phenolics, alcohols, acids, among others. However, it was not possible to establish a 29 

relationship between these compounds and vacuuming due to the vast array of possible household 30 

sources. The cancer risks associated with metals and PAH inhalation were negligible. 31 

 32 

Keywords: Vacuum cleaners, Indoor air quality, Particles, Elemental composition, OC/EC, 33 

Organic compounds. 34 

 35 

1. Introduction 36 

People spend more than 90% of their daily life in indoor environments [1–3] and, for this reason, 37 

personal exposure to pollutants in these microenvironments is of great concern. Due to the 38 
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susceptibility of children and elderly to air pollution, numerous studies have been conducted to 39 

assess indoor air quality in schools [4–7], children [8–11] and elderly day care centres [12–14]. 40 

Despite the importance of the above-mentioned microenvironments, most of people’s time is spent 41 

at home [1–3,15]. 42 

Indoors, particulate matter (PM) is one of the biggest health hazards [16]. Particulate matter is a 43 

heterogeneous mixture of different chemical components and physical characteristics, which are 44 

responsible for diverse health effects [17].  45 

Household activities, such as cooking, smoking, hair spraying/drying, candle/incense burning or 46 

vacuuming, have been reported to generate considerable amounts of particulate matter indoors [18–47 

20], which may have a strong influence on short-term exposure [21]. Isaxon et al. [18] evaluated 48 

the influence of household activities in 22 homes in Sweden on indoor airborne particles (number 49 

concentration and black carbon). The authors reported that despite the transient nature of indoor 50 

sources, they rapidly generate particulate peak concentrations. He et al. [20] quantified the effect of 51 

20 different household activities on indoor particle mass and number concentrations. The authors 52 

reported that depending on the type of source and housing characteristics, indoor particles 53 

increased distinctively. The influence of nine specific sources on particulate matter number size 54 

distribution and mass concentration was evaluated individually in an empty laboratory by Glytsos 55 

et al. [19]. High particle number concentrations during activation of the distinct sources and a great 56 

influence of the source type on particle number size distributions were observed. Studies carried 57 

out to assess household sources of PM reported that vacuuming can significantly elevate indoor PM 58 

concentrations [22–24] with a very high total lung deposition fraction by number [25].  59 

According to a survey on time use patterns in Europe for woman and men aged 20 to 74, and across 60 

the whole year, cleaning and upkeep activities are among the most time consuming tasks, 61 

representing 13 to 28 % of the total time spent on domestic work [26]. An online survey (covering 62 

23 countries), aiming at assessing household’s cleaning habits and preferences, revealed that 33 % 63 

of respondents vacuum 2-5 times per week, while 46 % spend 1‐2 hours vacuuming [27]. 64 

Some studies reported in the literature were focused on the operation of vacuum cleaners and their 65 

impacts on particle mass and number levels, both in laboratory chambers [21,28–31] and under real 66 

life conditions [18,20,32]. Additionally, a number of studies also included bioaerosol levels 67 

associated with vacuuming [28,30,31]. Although many studies have investigated particulate mass 68 

and number emissions during vacuum cleaning operations, an important gap in knowledge still 69 

exists with respect to the chemical characteristics of the released particles. The characterisation of 70 

the chemical composition of particles arising from specific indoor sources is of great interest due to 71 

the risk associated with specific PM components and the possibility of using certain compounds as 72 

tracers for source apportionment in indoor environments [33,34]. Regarding PM characterisation, 73 

Szymczak et al. [35] reported ultrafine particles from a commercial professional vacuum motor 74 

consisting almost entirely of copper. Vu et al. [25] suggested that particles released from the 75 
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vacuum cleaner motor were possibly carbon internal void aggregates. The authors’ hypothesis was 76 

based on the finding that particles generated from vacuum cleaning were found to be nearly 77 

hydrophobic with an average growth factor around 0.98–1.10 for particle sizes of 50 and 100 nm. 78 

Isaxon et al. [18] reported an increase in black carbon levels during vacuum cleaning.  79 

Despite the significant data provided by these and other studies, the impact of this source on 80 

household air quality is still uncertain due to the variability and complexity of vacuum cleaning and 81 

limited on-site experiments. Studies conducted in laboratory allow obtaining reproducible 82 

measurements with greater control of relevant factors that might influence the results and, thus, 83 

they can serve as a reference. However, particulate emission rates measured in laboratory chambers 84 

may substantially differ from those obtained in households since settled dust resuspension is not 85 

considered [36] and neither are the differences in dust loads in residential settings [20]. On the 86 

other hand, measurements conducted under real life conditions, in which concentration data is 87 

crossed with daily activity logs, can introduce some recall bias and misreporting.  88 

The aim of the present study was to evaluate the impact of commercial vacuums on short-term 89 

particulate matter mass and number concentrations in indoor air. Since particle inhalation during 90 

vacuuming may adversely affect households, a detailed chemical characterisation of particulate 91 

matter was performed, which was the basis for a carcinogenic and noncarcinogenic risk 92 

assessment. The tests were carried out in a household under controlled conditions with respect to 93 

ventilation patterns and concurrent source events. 94 

 95 

2. Materials and methods 96 

2.1. Sampling sites and strategy  97 

Three cylinder vacuum cleaners (washable filter bag less vacuum, wet vacuum, bagged vacuum) 98 

and a HEPA filter equipped robot were temporarily borrowed from Spanish homeowners for 99 

testing (Table 1). These devices were selected because cylinder vacuum cleaners are the prevalent 100 

type in the EU with a market share of 68% in 2016, whilst robotic cleaners have shown an 101 

increasing sales trend [37]. Measurements were performed in the living room (volume = 91.9 m3) 102 

of a suburban Spanish house in León from October to November 2017. Similarly to the approach 103 

described by Vu et al. [25], Wu et al. [36] and Corsi et al [32], during the monitoring campaign 104 

there were no other activities in the house and the measurements were carried out in a closed room 105 

(all the doors and windows were closed) to achieve minimum ventilation conditions. Ventilation 106 

rates, estimated by the CO2 concentration decay method as described by Alves at al. [38], ranged 107 

between 0.24 and 0.62 h-1. The average estimates of ventilation rates are presented in Table 1. On 108 

average, 45 min measurements were conducted during vacuum cleaning. Only the person 109 

responsible for carrying out the activity was present in the room during the experiments. The living 110 

room tiled floor and rugs (two cut pile carpet/rug and one long threads shag rug) were vacuumed 111 
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twice with each vacuum cleaner at least one week apart. After the household activity ceased, the 112 

room was kept completely empty and closed until the restoration of particle concentration to the 113 

original level. Background indoor air measurements were also performed in the living room during 114 

which no activities were conducted in the house. The temperature (accuracy ±0.5°C), relative 115 

humidity (accuracy ±3.0% with probe at 25°C) and CO2 (accuracy ±3.0% of reading with probe at 116 

25°C) were continuously monitored with an indoor air quality probe (TSI, model 7545). 117 

Temperature and relative humidity ranged between 19.7 and 26.3  ͦC and between 30.6 and 45.7 %, 118 

respectively, for the whole set of measurements (Table 1). 119 

Real time size segregated particulate concentrations (PM1, PM2.5, PM10) were recorded using a 120 

DustTrak monitor (TSI, DRX 8533). Real time particle size distributions and number 121 

concentrations in the range from 8 to 322 nm were measured using a Scanning Mobility Particle 122 

Spectrometer (SMPS, TSI Incorporated). The SMPS consists of an electrostatic classifier (TSI, 123 

Model 3071) and a condensation particle counter (TSI, Model 3022). The aerosol was sampled 124 

through polyethylene tubing. All reported data has been corrected for diffusion losses using 125 

equations described in Kulkarni et al. [39]for small particles and impaction/settling losses for larger 126 

particles as a function of size [40]. 127 

Simultaneous sampling with a PM10 high volume air (MCV, model CAV-A/mb) instrument was 128 

carried out. The equipment was operated at a flow of 30 m3 h−1. Particulate samples were collected 129 

on pre-weighed 150 mm quartz fibre filters (Pallflex®). PM10 samples were also collected into 47 130 

mm Teflon filters using a low volume sampler (Echo TCR, Tecora) working at 2.3 m3 h−1. To 131 

ensure the reliability of the measurements, the sampling devices were calibrated prior to sampling 132 

and maintenance was performed in a regular basis. The gravimetric quantification was performed 133 

following the specifications described in EN 12341:2014 [41], with a microbalance (XPE105 134 

DeltaRange®, Mettler Toledo, readability of 0.01 mg). The particulate mass was obtained from the 135 

average of six consecutive measurements (relative standard deviation < 0.02%), after conditioning 136 

the filters for 24 h in the weighing room. The high and low volume samplers and the real time 137 

monitoring instruments were placed in the middle of the room at a height of about 1.5 m [42].   138 

 139 

2.2. Analytical techniques 140 

The carbonaceous content in the PM10 samples (quartz filters) was analysed by a thermal optical 141 

transmission technique. The method includes controlled heating steps under inert (N2) and 142 

oxidising (N2 with 4% of O2) atmospheres. The carbonaceous content of the sample can be divided 143 

into organic carbon (OC), pyrolysed carbon (PC) and elemental carbon (EC). PC, which is 144 

produced from organic carbon during heating under inert atmosphere, was determined measuring 145 

the filter light transmittance through a laser beam and a photodetector. The OC/EC determination is 146 

based on the quantification of the CO2 released by a non-dispersive infrared (NDIR) analyser. The 147 
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latter was daily calibrated with standard CO2 cylinders and the recovery was periodically verified 148 

by analysing filters impregnated with known amounts of potassium phthalate. 149 

After weighing, Teflon filters were analysed by proton-induced X–ray emission (PIXE) to detect 150 

elements with atomic number above 10. Measurements were performed at the PIXE set-up fully 151 

dedicated to aerosol samples [43] at the 3 MV Tandetron accelerator of the INFN-LABEC 152 

laboratory, exploiting a 3 MeV proton beam. Further insight in the methods may be found in 153 

Lucarelli et al. [44]. 154 

Two 47 mm diameter punches of each quartz filter were extracted first with dichloromethane and 155 

then with methanol. The total organic extracts were fractionated by flash chromatography using 156 

eluents of increasing polarity through an activated silica-gel column. Four different fractions 157 

resulted from this process: (i) aliphatics, (ii) polycyclic aromatic hydrocarbons, (iii) n-alkanols, 158 

phenols, sterols and other hydroxyl compounds and (iv) acids and sugars. The different organic 159 

fractions were concentrated and dried by a gentle nitrogen stream before analysis. Extracts (i) and 160 

(ii) were analysed in a gas chromatograph-mass spectrometer (GC–MS) from Shimadzu. Extracts 161 

with oxygenated compounds were analysed in a GC-MS from Thermo Scientific. These latter 162 

fractions (iii and iv) include polar compounds, which require derivatisation before analysis. N,O-163 

bis(trimethylsilyl)trifluoroacetamide (BSTFA): trimethylchlorosilane (TMCS) 99:1 (Supelco 164 

33149-U) was used as silylation reagent. The GC-MS calibrations were performed with injection of 165 

about 150 authentic standards (Sigma-Aldrich) at least at four different concentration levels. 166 

Standards and samples were both co-injected with internal standards: tetracosane-d50 and 1-167 

chlorohexadecane. Additionally, for PAHs determination, a mixture of six deuterated compounds 168 

(1, 4-dichlorobenzene-d4, naphthalene- d8, acenaphthene-d10, phenanthreme-d10, chrysene-d12, 169 

perylene-d12), was used. The organic extracts were injected in the single ion monitoring and total 170 

ion chromatogram modes and the compound identification was based on comparison of the mass 171 

spectra with the Wiley and NIST mass spectral libraries, comparison with authentic standards and 172 

analysis of fragmentation patterns[45]. A description of recovery efficiency tests for several 173 

compounds can be found in Oliveira et al. [46]. Field blanks were used to account for artefacts 174 

associated with transport, handling, and storage of filters, as described in the EN 12341:2014 [41]. 175 

These filters were analysed in the same way as samples and the data obtained was subtracted from 176 

the samples in order to obtain corrected results. 177 

 178 

3. Results 179 

3.1. Particulate matter  180 

3.1.1. Mass concentrations 181 

Figure 1 depicts the time resolved PM10 mass concentrations during the operation of the four 182 

vacuum cleaners. An increase in PM10 mass concentrations was observed close after the activation 183 
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of the source. On average, increases over PM10 initial concentrations (before the activation of the 184 

source) of 1.61 ± 0.636, 1.48 ± 0.323, 1.22 ± 0.035 µg m-3 were observed during the operation of 185 

the bagged, wet and washable filter bag less vacuums, respectively. No increase in PM10 mass 186 

concentrations was experienced during the operation with the HEPA filter vacuum cleaner. The 187 

increase in PM concentrations during vacuuming is determined by the dust collection efficiency, 188 

filtration elements employed and degree of reentrainment of already collected particles [47]. The 189 

reentrainment of collected dust particles was found by Trakumas et al. [47] to be higher for 190 

cyclonic and wet collectors. However, the authors highlighted that filter bag collectors also 191 

reemitted particles after being loaded, depending on the particulate load and the type of filter 192 

material used in the bag.  193 

The ratios of peak to background values for PM10 concentrations indicate that vacuum cleaning 194 

operations can elevate the indoor levels by a factor ranging from over 1.5 to over 2.5. Raaschou-195 

Nielson et al. [48] reported an increase in indoor PM2.5 by a factor of 1.3 in Danish infants’ 196 

bedrooms during vacuum cleaning. Fine particles dominate the PM10 mass as indicated by 197 

PM2.5/PM10 and PM1/PM10 ratios ranging from 0.74 to 0.81 and from 0.72 to 0.79 (except for the 198 

HEPA filter equipped robot), respectively (Table 1). Despite the predominance of finer particles, 199 

coarser particles were also recorded during the vacuuming tests. These coarser particles may result 200 

from resuspension caused by direct contact of vacuum cleaner components with flooring and also 201 

by the action of walking during vacuuming [32]. Corsi et al. [32] reported significant PM10 mass 202 

resuspension during vacuuming with a mean time-averaged PM10 increase over 17 μg m-3 above 203 

background levels. Fine particle emissions during vacuum cleaning have been associated with 204 

mechanical abrasion of the vacuum motor and spark discharging between the graphite brushes and 205 

the commutator [19,21,29,35]. Vacuum motor emissions can be partly or totally removed with the 206 

installation of a HEPA filter [47,49]. 207 

 208 
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Figure 1. PM10 mass concentrations during vacuum cleaning. 209 

 210 

The average particle emission rate (�����) was calculated as follows [20,50]: 211 

 212 

�����  = � ×  	
�� 

���
∆�  +  �� +  �� ��������������̅� −  ������      (1)                     213 

                                                                             214 

where V is the room volume, Cin and Cin0 are the peak and initial indoor particle concentrations, 215 

respectively, α is the average air exchange rate, α + κ is the average removal rate and Δt is the time 216 

difference between the initial and peak particle concentration. The particle removal rate is the slope 217 

obtained by plotting ln(Cin/Cin0) versus time [22,51,52].  218 

    219 

Table 1. Characteristics of the vacuums tested, sampling conditions and PM10 mass and particle 220 

number concentrations and emission rates during the operation of distinct vacuum cleaners. 221 

 Washable filter bag 
less vacuum 

Wet vacuum Bagged vacuum HEPA filter equipped 
robot 

Vacuum characteristics             

Year of purchase 2010 2014 2016 2016 

Motor power (W) 2200 750 1000 Battery powered model 

Dust collection Plastic chamber Water tank Disposable paper bag Plastic chamber 

Vacuum tests     

N 2 2 2 2 

Air exchange rate (α, h-1) 0.29 ± 0.06 0.42 ± 0.05 0.50 ± 0.16 0.47 ± 0.07 

T (°C) 24.6 ± 2.40 20.6 ± 1.30 21.7 ± 0.31 20.4 ± 0.07 

HR (%) 38.2 ± 10.7 39.8 ± 3.66 37.8 ± 1.05 35.7 ± 1.22 

PM10 initial mass concentration 
(µg m-3) 

30.5 ± 9.19 18.0 ± 9.90 42.0 ± 41.0 23.5 ± 0.707 
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PM10 peak mass concentration 
(µg m-3) 

51.0 ± 8.49 37.5 ± 4.95 65.0 ± 42.4 26.0 ± 1.41 

PM2.5/PM10 (%) 74.2 ± 10.1 81.2 ± 4.45 81.1 ± 16.4 43.3 ± 3.61 

PM1/PM10 (%) 72.1 ± 10.6 79.4 ± 4.92 79.4 ± 17.7 39.2 ± 4.00 

Particle number initial 
concentration (particles × 103 
cm3) 

6.59 ± 4.16 3.57 ± 0.38 19.7 ± 16.9 4.88 ± 1.34 

Particle peak number 
concentration (particles × 105 
cm3) 

0.548 ± 0.014 2.10 ± 0.136 1.39 ± 0.102 0.050 ± 0.011 

Emission rate PM10 (µg s-1) 1.26 ± 0.131 1.44 ± 0.282 3.46 ± 1.65 - 

Emission rate particle number 
(particles × 1011 min-1) 

5.29 ± 1.48 21.2 ± 2.10 12.6 ± 4.54 - 

 222 

The estimated PM10 emission rates from bagged vacuum operation were, on average, 2.4 and 2.8 223 

times higher (207 ± 99.0 µg min-1) than those from wet (86.1 ± 16.9 µg min-1) and washable filter 224 

bag less vacuum operation (75.4 ± 7.89 µg min-1) (Table 1). The emission rates derived from this 225 

study are in line with those presented in the literature. He et al. [20] reported a PM2.5 emission rate 226 

of 70 ± 40 µg min-1 for vacuuming. Higher vacuum emission rates (690 ± 30 µg min-1) were 227 

reported by Nasir and Colbeck [50] in a shared multi storey single room. The large variability in 228 

vacuum emissions was highlighted in the study of Knibbs et al. [28]. The authors reported PM2.5 229 

emission rates from 21 vacuum cleaners during warm and cold start tests in the ranges from 0.41 to 230 

1962 and from 0.24 to 2870 µg min-1, respectively.  231 

 232 

3.1.2. Number concentrations 233 

Figure 2 illustrates the time evolution of the total particle number concentration during vacuuming. 234 

The maximum particle number concentration was reached within a few minutes. The average 235 

particle number concentration in the room was higher during the operation of the wet vacuum (1.69 236 

× 105 ± 7.54 × 102 particles cm-3) and the bagged vacuum (1.09 × 105 ± 4.95 × 103 particles cm-3). 237 

The HEPA filter equipped vacuum cleaner did not increase the number of particles in the room. 238 

During its operation, the particle number concentration was 4.53 × 103 ± 8.16 × 102 particles cm-3, 239 

which was similar to the one recorded before the vacuum operation (5.86 × 103) and after the robot 240 

was turned off (4.38 × 103). 241 

 242 
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Figure 2. Particle number concentrations during vacuum cleaning. 243 

 244 

 These results are in accordance with previous studies reporting very high (> 99%) fine particle 245 

collection efficiency of vacuums equipped with a HEPA filter [29,53]. Manigrasso et al. [54] 246 

documented a decrease in particle number concentration compared to background levels when 247 

using a HEPA filter equipped vacuum cleaner, suggesting that the filter removes particles from the 248 

ambient air to some extent. The ratios of peak to background levels for ultrafine particle number 249 

concentrations presented in Table 1 indicate that vacuuming can elevate concentrations by a factor 250 

ranging from 4 (bagged vacuum) to 61 (wet vacuum). Table 1 also provides estimates of particle 251 

number emission rates for the different vacuums, which were calculated as described above for 252 

particulate mass emissions (Equation 1). A previous study conducted by He et al. [20] in suburban 253 

Brisbane households reported submicrometer particle emission rates of 0.97 ± 1.57 × 1011 particles 254 

min-1 (particles from 0.007 to 0.808 μm). Knibbs et al. [28] measured particle number emission 255 

rates from 21 vacuum cleaners in the range from 0.004 to 108 × 109 particles min-1 (particles from 256 

0.54 to 20 μm). The assessment of vacuum cleaning in a full-scale chamber carried out by Afshari 257 

et al. [21] resulted in an emission rate of 0.35 × 1011 particles min-1 (particles from 0.02 and about 258 

1.0 μm). Wu et al. [36] tested 3 different scenarios of vacuum cleaning in a closed living room, 259 
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including normal condition, filter removed, and filter and dust bag removed. The ultrafine particle 260 

number emission rates (from 0.0146 to 0.6612 μm) for the operation with no filter and without 261 

filter and dust bag was 2.2 and 2.5 times higher than that of the normal scenario (1.32 ± 0.58 × 1010 262 

particles min-1). In the present study, the average emission rates (particles from 0.008 to 0.322 μm) 263 

were estimated to range from 5.29 × 1011 to 21.2 × 1011 particles min-1. 264 

Emissions should be compared with caution since the differences between vacuum cleaners 265 

(model, age, state of preservation, etc.), sampling conditions (real life monitoring campaigns vs 266 

laboratory chambers) and particle diameters may lead to non-generalisable results. In real life/on 267 

site monitoring campaigns, several factors, such as building characteristics, ventilation conditions, 268 

concurrent activities, cleaning routines, etc., should also be taken into account. In fact, He et al. 269 

[20] obtained variable results in different houses when vacuumed. In one of the houses, a doubling 270 

in PM2.5 concentrations was observed during vacuuming compared to background levels, while no 271 

increase was noticed in particle number concentrations. However, in a different house, the opposite 272 

behaviour was registered, with no increase in the PM2.5 mass concentrations, while the particle 273 

number concentration increased. The authors pointed out the differences in vacuums and in 274 

cleaning routines as possible reasons behind the observed results. House cleaning routines can 275 

affect both the dust resuspension and the dust loads available to vacuum, which, in turn, may affect 276 

the particle reemission. The effect of the vacuum cleaner or vacuum cleaner components on 277 

emissions can also be significant. Afshari et al. [21] investigated fine particle emissions when 278 

running a vacuum cleaner in a full-scale chamber. Two experiments were carried out: (i) vacuum 279 

cleaner operated with a dust bag and (ii) vacuum cleaner operated without dust bag, filters and hose 280 

in order to study the emissions from the motor only. The results revealed that the particle 281 

concentrations originating from the motor were higher than those from the vacuum cleaner with a 282 

bag.  283 

Figure 3 displays the typical evolution of the distribution of the aerosol during the operation of the 284 

vacuum cleaners. While using the wet and bagged vacuum cleaners, more than 90 % (93 – 95 %) of 285 

the total particle number concentrations was found in the nucleation mode (N < 30 nm). This value 286 

dropped to 74 – 78 % when using the washable filter bag less vacuum cleaner. The high number of 287 

ultrafine particles emitted from vacuuming is consistent with previous studies [25,28,36,55]. The 288 

geometric mean diameter (GMD) of the particle size distribution ranged between 13.5 and 17.8 nm, 289 

while the source was active (excluding the HEPA filter equipped robot).290 
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 292 

 293 

Figure 3. Typical average evolution of the mean particle size distribution before, during and after vacuum cleaning. 294 
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3.2. Metals  295 

Trace and major elements were analysed in PM10 samples (Table 2). Among them, Cu and Si 296 

strongly dominated when the wet and bagged vacuum cleaners were run, while the washable filter 297 

bag less vacuum and the HEPA filter equipped robot generated particles mainly containing Si and 298 

Ca. Elements accounted for PM10 mass fractions of 31.2, 20.1, 22.4 and 8.41 %wt., which 299 

represented increases over background of 6.6, 4.3, 4.8 and 1.8 times for the washable bag less 300 

filter, wet, bagged and HEPA filter equipped vacuum cleaners, respectively.  301 

 302 

Table 2. PM10 mass fractions (wt.%) of major and trace elements. 303 

Element Washable filter bag 
less vacuum 

Wet vacuum Bagged vacuum HEPA filter equipped 
robot 

Background 

Na 0.100 bdl bdl 0.331 1.05 

Mg 0.751 0.762 0.416 0.152 0.152 

Al 3.87 3.16 2.18 1.45 0.314 

Si 9.74 4.675 4.39 2.73 0.678 

P 0.106 0.167 0.060 0.041 0.013 

S 1.30 0.419 0.801 0.370 0.648 

Cl 1.27 0.515 0.599 0.319 0.749 

K 1.71 0.435 0.585 0.359 0.336 

Ca 5.94 2.68 2.41 1.77 0.396 

Ti 0.884 0.418 0.248 0.133 0.006 

V 0.002 bdl bdl bdl bdl 

Cr 0.005 bdl bdl bdl 0.005 

Mn 0.049 bdl 0.019 0.021 0.007 

Fe 1.88 0.867 0.843 0.635 0.263 

Ni 0.004 0.013 0.007 0.001 0.001 

Cu 2.92 5.78 8.89 0.012 0.012 

Zn 0.246 0.130 0.116 0.062 0.049 

As bdl 0.010 0.004 bdl 0.004 

Se 0.003 0.001 0.002 0.001 0.003 

Br 0.009 bdl 0.003 bdl 0.002 

Rb 0.017 bdl 0.015 0.001 bdl 

Sr 0.040 0.021 0.037 0.011 bdl 

Y 0.014 0.014 0.012 bdl 0.003 

Zr 0.011 bdl 0.045 bdl bdl 

Mo 0.283 bdl 0.755 0.008 bdl 

Pb 0.015 bdl bdl 0.004 bdl 

Σ Elements 31.2 20.1 22.4 8.41 4.69 

Σ Element oxides 53.4 32.9 35.2 14.8 7.56 
bdl – below the detection limit. The measured element concentrations were converted into the respective 304 

mass concentrations of the most common oxides (SiO2, Al2O3, MgO, MnO, Fe2O3, TiO2, K2O, etc.) 305 
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 306 

The contribution of Cu to the PM10 mass ranged from 0.01 %wt. (HEPA equipped robot) to 4.86 307 

%wt. (bagged vacuum), which represent an increase over background concentrations ranging from 308 

1.6 to 848 times. Metals contribute to 20 – 30% of the total weight of a vacuum cleaner. The 309 

metallic components are made of aluminum (motor and screws), stainless and galvanized steel 310 

(motor), brass (plug) and copper (plug, power cord, wire cables and motor) [56]. Cu concentrations 311 

up to 55 µg m-3 were previously reported in particulate matter emissions from a professional 312 

vacuum cleaner in a test room [35].  313 

For each element, enrichment factors (EFs) were calculated according to equation 2, where E and R 314 

represent the concentrations of the element under analysis and the reference element, respectively: 315 

 316 

EF = (E/R)air/(E/R)crust                                                                                                             (2) 317 

 318 

In the present study, Si was used as reference element due to its high abundance in the earth’s crust. 319 

The average element concentrations in the upper continental crust were taken from Wedepohl [57]. 320 

During vacuuming, minimal enrichments were obtained for some elements, such as Al, Mg, K, Fe, 321 

V, and Mn (EF < 5), indicating that these elements were mostly derived from soil dust. Rasmussen 322 

et al. [58] found significant relationships between concentrations in household settled dust and 323 

airborne particulate matter for several elements, namely Ag, Al, As, B, Cu, Fe, Mn, Pb, U, V and 324 

Zn. In the present study, other elements like P, Ca, Ni, S and Cl were enriched (Figure 4) during the 325 

operation of every vacuum cleaner tested and also in the background sample suggesting that the 326 

origin of the enrichment was not vacuuming. Zinc (132 < EF < 163) and selenium (743 < EF < 327 

1285) were also highly enriched elements in all vacuuming tests and background sample (EF = 419 328 

and EF = 16721 Zn and Se, respectively). Molybdenum was highly enriched (675 < EF < 37240) in 329 

all the vacuuming samples except in the one collected during the wet vacuum operation, whereas it 330 

was not enriched in the background sample. Copper EFs were very high when operating all the 331 

vacuum cleaners (over 6000, 25,000 and 41,000 for the washable filter bag less, wet and bagged 332 

vacuum cleaners, respectively), except for the HEPA equipped robot (EF < 100) (Figure 4). 333 
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Figure 4. Enrichment factors of elements in PM10 sampled during vacuum cleaning.334 
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A health risk assessment of  exposure to major and trace elements by inhalation was carried out as 335 

described by the United States Environmental Protection Agency (USEPA)[59], as follows: 336 

 337 

EC = (CA × ET × EF × ED) / AT                                                                                                                    338 

(3) 339 

 340 

where EC is the exposure concentration (ng m-3), CA is the element concentration (ng m-3), ET is 341 

the exposure time (0.75 h d-1), EF is the exposure frequency (144 d y-1), ED is the exposure 342 

duration (70 y) and AT is the averaging time (70 y × 365 d y-1 × 24 h d-1). The exposure time used 343 

in the calculations was based on the results of an online survey among 28,000 consumers from 23 344 

countries on their vacuum cleaning habits [27]. According to the survey, 33% of the respondents 345 

vacuum 2 to 5 times per week and 46% vacuum for half to one hour. Taking into account these 346 

results, the exposure concentration was calculated assuming a vacuum frequency of three times per 347 

week for 45 minutes. 348 

The excess cancer risk posed by the individual metals associated with PM10 inhalation were 349 

calculated following equation (4), where IUR is the inhalation unit risk ((ng m-3)-1). 350 

Risk = IUR × EC                                                                                                              351 

(4) 352 

The IUR values were retrieved from the database provided by USEPA [60] for three elements (As, 353 

Cr (VI), and Pb). In the present study, one seventh of total Cr concentration was used to estimate 354 

the risk considering that the tabulated IUR is for Cr (VI), which is based on a Cr (III): Cr (VI) 355 

proportion of 1/6. USEPA considers that a 10−6 risk is below the level of apprehension, while risks 356 

above 1.0 × 10−4 are of concern. In the present study, the cumulative cancer risk for all potential 357 

carcinogenic elements was negligible (always < 5×10-7). 358 

Noncarcinogenic risks associated with inhalation exposure to trace elements in indoor PM10 were 359 

estimated by the noncancer hazard quotient (HQ) following the methodology proposed by USEPA 360 

[59,61]:  361 

HQ = EC / RfC                                                                                                                                 (5) 362 

RfC is the USEPA reference concentration (mg m-3). Considering that, for some elements, 363 

reference doses (RfD, mg kg−1 day−1) are available instead of RfC values [60,62], these latter were 364 

calculated taking into consideration the inhalation rate and body weight of an adult following the 365 

methodology described by USEPA [63]. The reference values were retrieved from the Integration 366 

Risk Information System (IRIS) [62] and USEPA [60] databases. The HQ associated with 367 

inhalation exposure to particulate trace elements in the indoor air during vacuuming were much 368 

lower than the unity, indicating negligible risks.  369 



16 

 

 370 

3.3. OC/EC  371 

Total carbon (TC) represented from 32.7 ± 2.68 (washable filter bag less vacuum) to 51.6 ± 2.08 372 

(wet vacuum) wt.% of the PM10 mass during vacuuming, corresponding to TC increases over 373 

background levels ranging from 1.2 to 1.8. EC levels were distinctively higher during the operation 374 

of the wet (19.0 wt.% PM10 mass) and bagged (15.4 wt.% PM10 mass) vacuum cleaners. For the 375 

HEPA filter equipped vacuum cleaner, as well as in background air samples, EC was not present at 376 

detectable levels (Figure 5). OC and EC concentrations in samples collected when the vacuum 377 

cleaners were run were not correlated with each other, indicating distinct sources. Contrarily, good 378 

correlations were found between particulate EC concentrations and both Cu (r2 = 0.87) and Ni 379 

concentrations (r2 = 0.79). Good correlations (r2 > 0.75) between OC and several elements, 380 

including Si, S, Cl, K, Ca, Fe, Zn and Se, were also recorded. Given that one of the main 381 

contributors to indoor particles is probably resuspended dust, some of which associated with soil, 382 

these correlations are not surprising. Household PM10 dust has been reported to contain appreciable 383 

amounts of carbonaceous particles, mainly OC, whereas in many samples EC was too low or 384 

undetectable [64]. Black carbon, on the other hand, has been associated with motor emissions from 385 

vacuum cleaners [18]. OC to EC ratios showed high variability, ranging from 1.7 (bagged vacuum) 386 

to 106 (washable filter bag less vacuum). Habre et al. [65] found that household PM2.5 OC fractions 387 

were mainly related to human activities, including vacuum cleaning, which leads to resuspension of 388 

dust and PM2.5 generation. Alves et al. [38] reported average OC/EC values ranging from 4.2 to 9.7 389 

in school classrooms. The researchers argued that these ratios were expected, since resuspended 390 

dust, some of which associated with soil, was found to be one of the main primary contributors to 391 

indoor particles.  392 

  393 
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 394 

 395 

Figure 5. Chemical mass closure of PM10. 396 

 397 

In the present study, in order to convert the measured mass of OC to total organic matter (OM) 398 

mass, the OC concentration was multiplied by a factor of 1.4 [66,67], which is an estimate of the 399 

average molecular weight per carbon weight for the organic aerosol. The mass closure between 400 

chemical and gravimetric measurements was nearly 100% for most samples, except for background 401 

air and the sample collected during cleaning with the HEPA filter equipped robot (Figure 5). The 402 

fraction of unidentified mass might be attributable to the selection of the multiplier factor to derive 403 

the OM, particle-bound water, sampling artefacts, among others [67]. The presence of unanalysed 404 

constituents might also be responsible for the unaccounted mass. 405 

 406 

3.4. Organics  407 

The PM samples collected during vacuuming, as well as the background air samples, encompassed 408 

several aliphatics, polycyclic aromatic hydrocarbons (PAHs), alcohols, acids, sterols, glycerol 409 

derivatives, phenolic compounds, saccharides, among others. 410 

The aliphatic fraction of particulate matter comprised n-alkanes from C11 to C35. The maximum 411 

concentrations were observed for the homologues in the range from C20 to C22, which have been 412 

described as characteristic of petrogenic sources. The carbon preference indices of n-alkanes were 413 

in the range from 0.7 to 0.9 during the vacuuming operation and 1.1 for the background, suggesting 414 

the contribution of petroleum derivatives [68]. The presence of these compounds may be related to 415 
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oil-based or petrochemical textiles such as nylon, polyester, acrylic and spandex, which are made 416 

from natural gas or oil. Outgassing of lubricants applied to parts of the vacuum cleaners is another 417 

likely source. The Σ25 n-alkane concentrations ranged from 22.4 to 39.3 ng m-3 during vacuuming 418 

and 17.3 ng m-3 in the background air. 419 

Discontinuous series of n-alkanols from C10 to C30 were detected in the PM10 samples, maximising 420 

at C16, during the operation of the tested vacuums, as well as in the background sample (Table 3). 421 

Cetyl alcohol (C16H34O) is widely used in skin lotions and creams due to its water-binding 422 

properties [69].  Other long-chain alcohols, such as myristyl (C14H30O) and stearyl alcohol 423 

(C18H38O), were also found in all samples. Besides being used in a variety of cosmetic products as 424 

emulsifier, emollient, antifoaming agent, and surfactant, stearyl alcohol has also been isolated from 425 

human sebaceous lipids [69]. The Σ15 n-alkanol concentrations ranged from 362 to 858 ng m-3 426 

during vacuuming and 172 ng m-3 in the background air. 427 

 428 

Table 3. Concentrations (ng m-3) of oxygenated organic compounds in PM10 429 

  

Wet vacuum Bagged 
vacuum  

HEPA filter 
equipped robot 

Washable filter 
bag less vacuum 

Background 

Saccharides 

Galactosan 2.41 bdl bdl bdl bdl 
Mannosan 1.15 2.57 2.74 bdl 1.27 
Levoglucosan 8.27 9.69 23.6 5.93 22.1 
Unidentified saccharides 45.2 47.4 46.5 278 4.50 
   Phenolics and alteration products 

Benzyl alcohol 1.96 bdl 6.77 bdl bdl 
Benzoic acid 0.643 0.683 0.858 1.26 0.187 
4-Hydroxybenzoic acid 0.049 0.194 0.153 0.279 0.074 
Trans-cinnamic acid bdl 0.102 0.116 0.212 0.027 
Pthalic acid 0.358 0.385 bdl 0.544 bdl 
Vanillic acid bdl 0.031 0.046 0.091 0.031 
Syringic acid bdl bdl bdl bdl 0.054 

Resorcinol 0.018 0.013 0.049 0.011 0.013 

4-Methyl catechol 0.003 0.002 0.004 0.004 0.001 
2,6-Dimethoxyphenol 0.005 0.003 0.021 0.005 0.001 
Eugenol 0.006 0.006 0.016 0.005 0.001 
Isoeugenol bdl 2.42 3.92 1.78 bdl 
4-Allyl-2,6-dimethoxyphenol (methoxy 
eugenol) 0.018 0.082 0.166 0.038 0.010 
2,4-Di-tert-buthylphenol 106 123 180 118 20.6 
Pyrogallol 0.002 bdl 0.017 0.002 0.001 
4-Phenylphenol 0.084 0.052 0.079 0.055 0.005 
4-tert-butylphenol 11.9 3.03 24.8 13.3 1.71 
4-Octylphenol 0.013 0.015 0.020 0.047 0.006 
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Thymol 2.236 0.063 4.74 1.634 0.199 
Coniferyl alcohol bdl bdl 0.016 0.009 bdl 
Sinapyl alcohol 0.006 0.003 0.025 bdl 0.001 
Bisphenol F bdl bdl bdl 3.99 bdl 
Bisphenol A 57.8 8.902 bdl 46.9 0.543 

Aliphatic alcohols 

1-Decanol 0.01 bdl 0.52 0.02 0.01 
Dodecanol 26.2 53.0 243 38.3 7.02 
Tetradecanol 79.9 139 204 122 8.78 
1-Pentadecanol 29.8 57.7 87.2 68.2 32.9 
Hexadecanol 137 201 220 189 82.7 
Heptadecanol  5.50 5.27 9.87 4.48 5.90 
1-Octadecanol 74.6 93.8 81.2 119 32.6 
1-Eicosanol 1.82 1.23 2.98 2.58 1.05 
1-Docosanol 1.70 0.40 3.72 bdl bdl 
1-Tricosanol 0.17 0.03 0.18 0.20 0.05 

1-Pentacosanol 0.20 0.06 2.09 0.45 0.03 
Hexacosanol 3.09 3.49 3.23 18.7 0.82 

1-Heptacosanol 0.05 0.02 0.04 0.16 0.01 

1-Octacosanol 0.82 0.41 0.57 5.23 0.09 

1-Tricontanol 0.39 0.18 0.17 0.43 0.03 

Steroid compounds 
 

Cholesterol 7.34 7.57 9.01 10.3 0.429 

5-Cholesten-3-ol (epicholesterol) bdl 0.099 bdl bdl bdl 
β-Sitosterol 0.985 0.253 0.556 0.597 0.120 

Lupeol 2.29 0.186 0.763 0.396 0.323 

Aliphatic acids 

Octanoic acid 0.820 0.245 1.73 0.754 0.163 

Nonanoic acid 0.246 0.453 3.79 1.18 0.194 

Decanoic acid 27.9 4.15 6.26 4.01 0.323 

Undecanoic acid 0.746 1.78 1.08 1.74 0.249 

Dodecanoic acid 13.0 65.3 147 59.8 87.8 

Tridecanoic acid 13.5 3.04 11.3 3.32 2.31 
Tetradecanoic acid 33.7 71.5 144 92.3 165 
Pentadecanoic acid 4.78 4.87 24.7 9.66 9.52 

Hexadecanoic acid bdl 49.5 504 332 141 
Heptadecanoic acid 0.367 0.394 0.478 1.46 1.73 
Octadecanoic acid 15.8 14.00 107 85.43 61.3 
Nonadecanoic acid 0.089 0.097 0.096 0.20 0.109 
Eicosanoic acid 0.229 0.124 bdl 0.84 0.443 
Docosanoic acid 0.053 0.045 0.334 0.54 1.76 

Diacids 

Butanedioic (succinic) 0.205 2.38 2.01 4.77 1.05 
Hydroxybutanedioic (malic) bdl bdl 2.09 bdl bdl 
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1,5-Pentanedioic (glutaric) 0.825 1.08 2.78 5.13 4.18 

Hexanedioic (adipic) 0.090 2.61 3.54 6.85 2.05 

Heptanedioic (pimelic) 0.711 0.608 0.530 0.978 0.248 

Octanedioic (suberic) 0.324 1.18 0.853 1.44 0.251 

Nonanedioic (azelaic) 0.840 3.10 2.72 6.57 1.03 

Other acids 

Boric acid bdl bdl 8.00 1.32 6.05 

2-Hydroxyethanoic (glycolic) 162 bdl 133 190 37.1 

2,3-Dihydroxypropanoic (glyceric) bdl bdl 13.8 45.9 14.6 

3-Hydroxybutanoic (3-hydroxybutyric) 0.491 0.497 0.335 0.807 0.166 

9-Cis-Hexadecenoic (palmitoleic)  0.772 0.616 1.11 1.09 1.43 

Cis,cis-9-12-octadecadienoic (linoleic)  0.821 bdl bdl bdl 0.147 

Cis-9-Octadecenoic (oleic)  4.40 0.928 1.70 2.00 20.37 

Cis-Pinonic 0.002 1.52 0.315 0.708 0.302 
Citric acid  bdl 0.221 0.723 1.44 0.088 
Adipic acid dioctyl ester 32.9 75.2 13.5 34.7 7.76 

Abietic  bdl bdl 0.378 bdl bdl 
Dehydroabietic 0.290 0.363 0.706 0.906 0.485 
Isopimaric bdl bdl bdl 0.034 0.009 
Podocarpic acid bdl 0.016 0.055 0.154 0.003 
    Glycerol derivatives 

 
Glycerol 0.917 136 237 671 144 
Diethylene glycol 1.16 0.575 0.425 bdl bdl 
1-Monolauroyl-rac-glycerol 0.001 0.005 0.036 0.005 bdl 
1-Monolinoleoylglycerol 4.86 bdl 86.0 4.97 1.08 
Glycerol monostearate (monostearin) 13.4 19.9 26.3 93.2 4.59 

1-Monopalmitate glycerol (1-monopalmitin) 15.3 19.4 16.2 71.6 3.50 
Other compounds 

2,6-Di-tert-butyl-1,4-benzoquinone 0.933 1.33 0.52 1.34 0.214 
(-)-Isopulegol 0.087 0.127 0.100 0.086 0.011 
5-Isopropyl-3-Methylphenol 0.098 0.168 0.520 0.270 bdl 
(1S, 2S, 3R, 5S)-2,3-Pinanediol  0.091 0.300 0.628 0.255 0.06 
Diethyltoluamide (DEET) 19.6 51.8 66.6 76.9 44.1 

Tributyl phosphate (TBP) bdl 118.42 bdl bdl 0.922 
Tetraacetylethylenediamine (TAED) bdl 6.60 bdl bdl bdl 
Parsol MCX 6.64 4.08 6.72 6.78 3.84 
Fyrol FR-2 (tris(1,3-
dichloroisopropyl)phosphate) 52.9 5.79 bdl bdl 0.526 
Acetyl tributyl citrate 2.63 144 3.98 4.99 3.28 
Oxidised Irgafos 168 342 bdl 71.2 128 31.43 

Plasticisers      
Benzyl butyl phthalate nd nd nd 0.268 nd 
Bis(2-ethylhexyl)adipate 0.109 nd bdl 0.361 bdl 
Bis(2-ethylhexyl)phthalate bdl 0.419 bdl 0.603 bdl 
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Di-n-butyl phthalate 0.300 0.459 bdl 0.677 bdl 
Diethyl phthalate 0.000 bdl bdl 0.155 bdl 
Dimethyl phthalate 0.100 nd nd 0.100 0.010 

bdl – below the detection limit; nd – not detected. 430 

 431 

A series of n-alkanoic acids from C8 to C22, maximising at C14 or C16, were identified (Table 3). 432 

Sources of alkanoic acids include cooking [70,71], emission from people’s skin oils [72], incense 433 

burning [73] and biomass combustion [74,75]. Other sources include biogenic contributors, such as 434 

fungi, bacteria, spores, and pollen [76]. Lower molecular weight n-alkanoic acids (<C18) were 435 

found in emissions from fossil fuel combustion, road dust and tyre wear debris [e.g. ,76,77]. Zhao 436 

et al. [71] pointed out tetradecanoic (myristic) acid as a possible organic marker to distinguish 437 

emissions from Chinese cooking. The Σ14 n-alkanoic acid concentrations ranged from 111 to 951 438 

ng m-3 during vacuuming, while the background air sample presented a concentration of 472 ng m-
439 

3, indicating that these compounds are originated from household’s activities.  440 

Among diacids, the compound with highest concentrations was adipic acid (or C6 diacid) (Table 3). 441 

Dicarboxylic acids from C4 to C8 were recorded in fine organic aerosols from charbroilers and meat 442 

cooking operations by Rogge et al. [78]. The authors identified hexanedioic acid as one of the 443 

dominant compounds. Malic acid was only present in the sample collected when the HEPA filter 444 

equipped robot was operated. Röhrl and Lammel [79] pointed out the influence of biogenic sources 445 

on the occurrence of malic acid. The Σ8 dicarboxylic acids concentrations ranged from 58.6 to 95.4 446 

ng m-3 during vacuum cleaning, while the background air sample presented a concentration of 21.0 447 

ng m-3. 448 

Several phenolic compounds were also detected in the samples; 2,4-di-tert-butylphenol, bisphenol 449 

A and 4-tert-butylphenol were the most abundant (Table 3). Alkylphenols, such as 4-tert-450 

butylphenol and 2,4-di-tert-butylphenol, have a large variety of usages such as emulsifying agents 451 

in latex paints, glue, and pesticide ingredients, in the preparation of antioxidants, curing agents, and 452 

heat stabilisers for polymer resins, among others [80]. In the present study, concentrations ranging 453 

from 106 to 180 ng m-3 and from 3.03 to 24.8 ng m-3 were registered for 2,4-di-tert-butylphenol and 454 

4-tert-butylphenol, respectively. These compounds were also detected in background air samples. 455 

Indoors, a source of alkylphenols is the biodegradation of alkylphenol ethoxylate, which is a widely 456 

used surfactant in detergents. They can also be released from the surface of polymer resins, which 457 

are used as antioxidant for wall or floor coverings [80]. Bisphenol A can act both as a plasticiser 458 

and as a fungicide and is used in the production of polycarbonate and epoxy resins [81]. This 459 

compound is ubiquitous in the atmosphere and its size distributions showed peaks in both fine and 460 

coarse fractions. Soil resuspension has been suggested as a main source for bisphenol A in the 461 

coarse fraction [82]. Bisphenol A is a decomposition product of polycarbonate, an ubiquitous 462 

material indoors (e.g. hard plastic bottles, CDs, DVDs, etc.) [83]. Isoeugenol was another phenolic 463 
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compound detected in three of the four samples collected in the living room during vacuuming 464 

(1.78 – 2.42 ng m-3) and was absent from the background air. Eugenol was detected in all samples 465 

although in much lower concentrations. Phenylpropenes, such as eugenol and isoeugenol, are 466 

produced by plants as defense compounds and as floral attractants of pollinators [84]. Isoeugenol is 467 

used in fragrance formulations which are incorporated into household laundry and cleaning 468 

products [85]. Eugenol is also common in consumer products, such as air fresheners [86]. This 469 

compound was also reported in samples collected in rooms from a Spanish household that had been 470 

treated with aerosols, electrical diffusion units, as well as with several cleaning products of 471 

domestic use [87]. Thymol was present in all samples and was among the phenolic compounds 472 

with the highest concentrations. Thyme essential oils are used in a variety of products in the food 473 

industry (preservatives and flavourings) and in cosmetics [88]. 474 

Levoglucosan and its stereoisomers, mannosan and galactosan, were detected in samples (Table 3). 475 

These saccharides are formed from the thermal degradation of cellulose [89–91]. Although their 476 

individual quantification was not possible, many other saccharides were detected in PM10 samples. 477 

Cholesterol and β-sitosterol were also found in PM samples. Cholesterol was the most abundant. It 478 

is likely associated with cooking activities [92,93]. 479 

Other hydroxyl compounds and phthalates were detected in the particulate matter organic extracts 480 

(Table 3). Among these, the most abundant were diethyltoluamide (DEET), tri(1,3-481 

dichloroisopropyl)phosphate and Irgafos 168 (tris(2,4‐di‐tert‐butylphenyl)phosphite). Tris(1,3-482 

dichloro-2-propyl) phosphate was not detected in two of the five samples, reaching a concentration 483 

of 52.9 ng m-3 during the wet vacuum operation, which was up to 100 times higher than the 484 

background concentration. Flame retardants are used in many consumer and industrial products 485 

(e.g. electronics and electrical, building/construction, and textiles) to delay ignition and slow the 486 

spread of fire. Organic phosphorous containing flame retardants are mainly used in cellulosic 487 

materials, textiles, PVC-based products and polyurethane foam [94]. Air concentrations of this 488 

phosphate triester in European homes ranged from no detectable concentrations to 21 ng m-3 [95]. 489 

Diethyltoluamide was present in all samples. It is used as insect repellent [96]. Irgafos 168 490 

(tris(2,4-di-tert-butylphenyl)phosphite) is a phosphite antioxidant used in several plastic packaging 491 

[97,98]. Parsol MCX (ethylhexyl methoxycinnamate) was also detected in all samples. It is 492 

frequently contained in personal care products as UV filter to protect human skin from UV 493 

radiation or as UV absorber to prevent light-induced product degradation [99]. 494 

Several plasticisers were detected in PM samples. Di-n-butylphthalate (DBP) was the most 495 

abundant phthalate plasticiser present in the samples during vacuuming. In the background sample, 496 

only dimethyl phthalate was detected at quantifiable levels (Table 3). Plasticisers are widely used 497 

in the production of polyvinyl chloride (PVC) plastics, as well as in  other applications such as 498 

glues, paints and cosmetics [100,101]. The vacuum body (external structure, dust container, power 499 

cord and wire cables) is made of several plastic components, including polypropylene (PP), 500 
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acrylonitrile butadiene styrene (ABS), high density polyethylene (HDPE) and PVC materials. 501 

Other vacuum parts, such as the flexible hose, hose collaer and handle, floor brush and extension 502 

tube are made of ethylene vinyl acetate (EVA), PP and HDPE [56]. Plasticisers can leach out from 503 

PVC with materials aging and contaminate the environment [102].  504 

The Σ19 PAHs concentrations ranged from 3.68 to 11.8 ng m-3 during vacuuming and 3.32 ng m-3 in 505 

the background air (Table 4). The PAHs with highest concentrations were pyrene, chrysene and 506 

benzo[b]fluoranthene. Delgado-Saborit et al. [103] measured sixteen PM-bound PAHs in 81 507 

English households and reported concentrations ranging from undetectable levels to 25 ng m-3. In 508 

Italy, Romagnoli et al. [104] documented concentrations of Σ 8PAHs in 10 private households in the 509 

range from 0.4 to 8.4 ng m-3. Higher PAH concentrations were determined by Naumova et al. [105] 510 

in 55 non-smoking urban residences in the USA. The indoor concentrations of Σ30 PAHs were 16-511 

220 ng m-3 in Los Angeles, 21-310 ng m-3 in Houston, and 22-350 ng m-3 in Elizabeth. 512 

Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated (Table 4) multiplying the 513 

measured levels of each PAH by the respective toxic equivalent factors (TEF), which were taken 514 

from Bari et al. [106]. Dibenzo[a,h]anthracene was the compound that most contributed to the 515 

carcinogenic potential of the PAH mixture for almost all the samples with values ranging from 33.8 516 

% (washable filter bag less vacuum) to 48.3 % (bagged vacuum). During the wet vacuum operation 517 

and in the background sample, the major contributor was benzo[a]pyrene accounting for 35.8 % 518 

and 37.2 % to the carcinogenic potential, respectively. 519 

 520 

Table 4. Concentrations of PAHs (ng m-3), carcinogenic potency of total PAHs (BaPeq, ng m-3) and 521 

cancer risk.  522 

PAHs Wet vacuum Bagged vacuum  HEPA filter 
equipped robot 

Washable filter bag 
less vacuum 

Background 

Naphthalene 0.354 0.079 nd nd bdl 

Acenaphthene 0.081 0.089 0.001 0.021 0.001 

Fluorene 0.183 0.026 bdl bdl bdl 

Phenanthrene 0.436 0.883 0.088 0.346 0.170 

Anthracene 0.300 0.405 0.065 0.210 0.119 

Acenaphthylene nd nd nd nd nd 

Retene 0.486 0.547 0.147 0.950 0.097 

Fluoranthene 0.258 0.315 0.157 0.152 0.090 

Pyrene 2.16 1.588 0.219 0.648 0.525 

Chrysene 1.69 0.992 0.368 1.96 0.393 

Benzo[a]anthracene 1.45 0.886 0.447 1.38 0.392 
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Benzo[b]fluoranthene 1.36 0.705 0.675 1.36 0.392 

Benzo[k]fluoranthene 1.08 0.755 0.500 1.22 0.333 

Benzo[e]pyrene 0.259 0.311 0.390 0.322 0.162 

Benzo[a]pyrene 0.426 bdl bdl 0.316 0.145 

Perylene 0.080 nd 0.066 nd nd 

Dibenzo[a,h]anthracene 0.304 0.259 0.106 0.413 0.105 

Indeno[1,2,3-cd]pyrene 0.453 0.226 0.255 0.677 0.194 

Benzo[g,h,i]perylene 0.493 0.261 0.193 0.591 0.199 

Σ PAHs 11.8 8.33 3.68 10.6 3.32 

BaPeq 1.19 0.54 0.30 1.22 0.39 

Cancer Risk 1.6 × 10-8 7.4 × 10-9 4.1 × 10-9 1.7 × 10-8 5.3 × 10-9 

 bdl – below the detection limit; nd - not detected. 523 

 524 

The inhalation exposure to PAHs was estimated following equation (3), where CA corresponds to 525 

the BaPeq concentration (ng m-3). The excess cancer risk posed by PM-bound PAHs was 526 

determined following equation (4) where IUR is calculated multiplying the cancer potency for 527 

B[a]P of 3.9 ((mg kg day)-1) by the reference human inspiration rate per day (20 m3) and dividing 528 

by the reference human body weight (70 kg). Table 4 displays the total carcinogenic risk calculated 529 

from the particle-phase PAH mixture. The average carcinogenic risk was found to be negligible 530 

(4.1 × 10-9 to 1.7 × 10-8).  531 

 532 

Conclusions 533 

Cleaning activities are an important part of the household’s daily routine and can contribute 534 

significantly to personal exposure. Vacuuming is a recognised source of indoor particle generation, 535 

however, there is still limited information on the impact of this particular source on indoor air 536 

quality, especially concerning the PM composition, which is key to refine indoor source 537 

apportionment and to improve estimates of residential human exposure. 538 

This study presents indoor particulate mass and number emission rates and a comprehensive PM10 539 

chemical characterisation during vacuuming cleaning with different devices (washable filter bag 540 

less vacuum, wet vacuum, bagged vacuum) without any other active source. A sharp increase in 541 

particle number concentrations was recorded when using most vacuum cleaners (4 to 61-fold in 542 

relation to background air levels). The increase in the PM10 mass concentrations due to vacuuming 543 

was less pronounced, ranging from 1.2 to 1.6 in comparison with the initial concentrations (before 544 

the activation of the source). While the bagged vacuum cleaner presented the highest PM10 545 

emission rates, the particle (7.64-310.6 nm) number emission rates were highest during the wet 546 
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vacuum operation. No increase in PM10 mass concentrations or ultrafine particle number was 547 

observed when using the HEPA filter equipped vacuum cleaner. 548 

When the wet and bagged vacuum cleaners were run, EC levels were substantially higher than 549 

those measured in the background air and while using other types of vacuum cleaners. The 550 

contribution of Cu to the PM10 mass ranged from 0.01 %wt. (HEPA equipped robot) to 4.86 %wt. 551 

(bag vacuum), which represented an increase over background concentrations ranging from 1.6 to 552 

848 times. 553 

Wear of vacuum materials, grease and oils might be a source of particulate organic compounds. 554 

However, in the present study the organic speciation revealed the contribution of multiple sources, 555 

making it difficult to differentiate the possible input of vacuuming to the detected components.  556 

Taking into account the numerous brands and models of vacuums available on the market, each 557 

possessing its own features (e.g. dust containers, bag materials, filtration systems etc), it is 558 

necessary to borne in mind that the findings of this study cannot be considered representative for 559 

each vacuum category (bag less, bagged, wet and robotic) and further investigations are necessary 560 

to consolidate the conclusions. Despite the limitations, the present study highlights the great 561 

variability in particle emission rates depending on the vacuum cleaner, suggesting that household 562 

exposure can be enhanced or reduced by proper selection of devices. Further investigation is 563 

needed to fully evaluate the potential health risk associated with this source. 564 
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Highlights: 

• Vacuum cleaner type had a great effect on PM mass and number emissions 
• HEPA filters can significantly reduce the PM emitted by the vacuum cleaner motor 
• Elemental carbon increased markedly during the operation of wet and bagged vacuums 
• Cooper enrichment factors were high when using vacuum cleaners without HEPA filter 
• The inhalation cancer risk for metals and PAHs was negligible 
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