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Abstract

In this work, the Cauchy problem for the time-fractional telegraph equation of distributed order in

R
n
× R

+ is considered. By employing the technique of the Fourier, Laplace and Mellin transforms, a

representation of the fundamental solution of this equation in terms of convolutions involving the Fox H-

function is obtained. Some particular choices of the density functions in the form of elementary functions

are studied. Fractional moments of the fundamental solution are computed in the Laplace domain. Finally,

by application of the Tauberian theorems we study the asymptotic behaviour of the second-order moment

(variance) in the time domain.
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1 Introduction

Fractional partial differential equations (FPDE) with distributed order have been studied over the past decades

(see e.g. [2,3,9,20,21,25,31]). One reason of the interest is the relation of these equations with physical processes

involving times-scales, for example, fractional kinetics, the Cauchy problem of time-fractional diffusion-wave,

generalized time-fractional diffusion, time-fractional reaction-diffusion, fractional sub-diffusion equations, and

continuous random walk processes (see [16, 24] and references therein indicated). For a general overview of

fractional pseudo-differential equations of distributed order we refer to the work of Umarov and Gorenflo [33].

The idea of fractional derivative of distributed order goes back to Caputo in [11] to study anomalous diffusion in

viscoelasticity. He introduced the integro-differential operator (also called distributed order fractional derivative)

in the form

(
Dp(β)f

)
(t) =

∫ 2

0

p (β)
(
Dβf

)
(t) dβ,

Dβ being the Caputo fractional derivative of order β and p(β) a non-negative weight/density function or non-

negative generalized function. The integral over the order parameter of fractional differentiation is used to sum
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the contributions of the variable order model over the physical domain. First results about general solution of

linear distributed order differential equations were obtained by Caputo in [9] and Bagley and Torvik in [7, 8].

Later, Naber [25], Umarov et al [33], and Kochubei [19] studied linear distributed order FPDE with temporal

fractional derivatives and give some existence and uniqueness results for the initial-value problems for these

equations.

The time-fractional diffusion equation of distributed order was already studied in the literature in the one-

dimensional case. The research work of Mainardi and his collaborators found important connections with Fox

H-functions via the use of integral transforms such as Laplace, Fourier and Mellin transforms (see [21–23]).

Chechkin et al [10, 12] discussed the properties of diffusion equations with fractional derivatives of distributed

order for the description of anomalous relaxation and diffusion phenomena getting less anomalous in the course

of time, called, respectively, accelerating subdiffusion and decelerating superdiffusion. Fundamental solutions

for time-fractional diffusion equations of distributed order were presented in [3] and [15] for the one-dimensional

case that is, one space variable. It was proved in [15] that in the cases of the time-fractional diffusion and wave

equations of distributed order the first fundamental solution can be interpreted as a spatial probability density

function evolving in time. Boundary value problems for the generalized time-fractional diffusion equation of

distributed order were studied in [20] and maximum principles for such equation were presented in [2]. More

recently, we can find the work of Sandeva et al [30] where it was investigated the solution of generalized

distributed order diffusion equations with composite time-fractional derivative by using the Fourier–Laplace

transform method. There are also works dealing with numerical methods for solving these equations but our

focus is on the analytical analysis for FPDE of distributed order.

Time-fractional diffusion-wave equations of distributed order are also studied in the literature by different

methods. In [4–6] the authors obtained the solution via the resolution of an integral equation of Volterra type,

while in [3, 15] the authors use appropriate joint integral transforms to obtain the solution. The simultaneous

presence of distributed order differentiation 0 < α ≤ 1 and 1 < β ≤ 2 generalizes the single order time-fractional

diffusion-wave equation, to the so-called telegraphic equation. In this paper, our aim is to study the following

multidimensional time-fractional telegraph equation of distributed order

∫ 2

1

b2 (β)
[
C
0+∂

β
t u (x, t)

]
dβ + a

∫ 1

0

b1 (α)
[
C
0+∂

α
t u (x, t)

]
dα− c2 ∆xu (x, t) + d2 u (x, t) = q (x, t) , (1)

(see (17), in Section 3, for more details). In most of the works presented in the literature, the analytical resolution

of equation (1) is based essentially on the application of integral transforms (see [21]). In our work, we use also

integral transforms, more precisely by using the combination of Laplace, Fourier and Mellin transforms, we find

the explicit solution of equation (1) with appropriate initial and boundary conditions, in terms of convolutions

involving Fox H-functions. The key points to obtain our main result is the use of the classical Titchmarsh’s

Theorem to invert the Laplace transform, and the use of the Mellin transform to invert the Fourier transform.

The combination of these tools were used in [23] and [3] for the one-dimensional case and for special cases of the

equation (1). In our case, we deal with two order-density functions b1 (α) and b2 (β) and the complete equation

in several space variables, which results in more elaborate computations. As a byproduct the first and second

fundamental solutions are obtained as Fox H-functions. For some choices of the density functions we were able

to compute explicit solutions for equation (1). Using our computations we manage to compute the fractional

moments of arbitrary order of the first fundamental solution in the Laplace domain. In fact, the knowledge of

the second-order moment (variance) is important to classify the type of diffusion. By the Tauberian theorems

we study in more detail the asymptotic behaviour near zero and near infinity of the second-order moment for

the cases of fast/slow-diffusion and super fast/slow-diffusion.

The structure of the paper reads as follows: in the Preliminaries’s section we recall some basic facts about

fractional derivatives, integral transforms, and special functions, which are necessary for the development of

this work. In Section 3 we obtain a representation of the solution of equation (1) via convolution integrals

involving Fox H-functions. In the following section, we consider some particular cases of the density functions

b1 (α) and b2 (β), such as constant functions, linear functions, sinusoidal functions, and exponential functions.

Moreover, since the choices of the density functions b1 (α) and b2 (β) are independent it is possible to have

different particular cases of equation (1) by considering different expressions for the density functions. In

Section 5 we obtain the expression of the fractional moments of arbitrary order in the Laplace domain of the
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first fundamental solution of (1). Making use of the Tauberian theorems we study the asymptotic behaviours

of the second-order moment in the time domain for t → 0+ and t → +∞ from the asymptotic behaviours of

the corresponding second-order moment in the Laplace domain for s → +∞ and s → 0+, respectively. In the

final part of the paper we present and analyse some plots of the second-order moment for some particular cases.

As it will be shown the graphical representations support the analytical conclusions obtained via the Tauberian

theorems.

2 Preliminaries

Let a, b ∈ R with a < b and α > 0. The left Riemann-Liouville fractional integral Iγ
a+

of order γ > 0 is given by

(see [17])

(
I
γ

a+
f
)
(x) =

1

Γ (γ)

∫ x

a

f (t)

(x− t)1−γ
dt, x > a.

Let CDγ

a+
denote the left Caputo fractional derivative of order γ > 0 on [a, b] ⊂ R, which is defined by (see [17])

(
CD

γ

a+
f
)
(x) =

(
I
m−γ
a+

Dmf
)
(x) =

1

Γ(m− γ)

∫ x

a

f (m) (t)

(x− t)γ−m+1
dt, x > a, (2)

where m = [γ] + 1 and [γ] means the integer part of γ. The previous definitions of fractional integrals and

derivatives can be naturally extended to Rn considering partial fractional integrals and derivatives (see Chapter

5 in [29]). For instance, in (1), C
0+∂

β
t u (x, t) denotes the partial left Caputo fractional derivative with respect to

t with starting point t = 0.

In this work some integral transforms are used, namely, the Laplace, the Fourier and the Mellin transforms.

The Laplace transform of a real valued function f (t) is defined by (see [17])

L{f (t)} (s) = f̃ (s) =

∫ +∞

0

e−st f (t) dt, Re (s) ∈ C

and when it is applied to (2) leads to (see formula (5.3.3) in [17])

L
{
CD

γ

a+
f (t)

}
(s) = sγ f̃ (s)−

m−1∑

j=0

f (j)(a) sγ−j−1, m = [γ] + 1. (3)

Concerning the inverse Laplace transform of functions involving a branch point, we have the theorem from

Titchmarsh (see [32]).

Theorem 2.1 Let f̃ (s) be an analytic function which has a branch cut on the real negative semiaxis, which

has the following properties

f̃ (s) = O(1), |s| → +∞, f̃ (s) = O

(
1

|s|

)
, |s| → 0,

for any sector |arg (s)| < π − η, where 0 < η < π. Then the inverse Laplace transform of f̃ (s) is given by

f (t) = L−1
{
f̃ (s)

}
(t) = − 1

π

∫ +∞

0

e−rt Im
(
f̃(reiπ)

)
dr.

The Laplace convolution operator of two functions is defined by the integral

(f ∗t g) (t) =

∫ t

0

f(t− w) g(w) dw, t ∈ R
+ (4)

and the application of the Convolution Theorem to (4) leads to

L{(f ∗t g) (t)} (s) = L{f} (s) L{g} (s) . (5)

The n-dimensional Fourier transform of a function f (x) of x ∈ Rn is defined by (see [17])

F {f (x)} (κ) = f̂(κ) =

∫

Rn

eiκ·x f (x) dx, κ ∈ R
n,
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while the corresponding inverse Fourier transform is given by the formula

f (x) = F−1
{
f̂(κ)

}
(x) =

1

(2π)n

∫

Rn

e−ix·κ f(κ) dκ, x ∈ R
n. (6)

The Fourier convolution operator of two functions is defined by the integral

(f ∗x g) (x) =

∫

Rn

f(x− z) g(z) dz, x ∈ R
n (7)

and the application of the Convolution Theorem to (7) leads to

F {(f ∗x g) (x)} (κ) = F {f} (κ) F {g} (κ) . (8)

For the n-dimensional Laplace operator ∆x =
∑n

i=1
∂2

∂x2
i

we have (see formula (1.3.32) in [17])

F {∆f (x)} (κ) = −|κ|2 F {f (x)} (κ) . (9)

Another integral transform that we use in this work is the Mellin transform. For f locally integrable on ]0,+∞[

it is defined by (see [17])

M{f(w)} (s) = f∗ (s) =

∫ +∞

0

ws−1 f(w) dw, s ∈ C, (10)

and the inverse Mellin transform is given by

f(w) = M−1 {f (s)} (w) =
1

2πi

∫ γ+i∞

γ−i∞
w−s f (s) ds, w > 0, γ = Re (s) . (11)

The condition for the existence of (10) is that −p < γ < −q (called the fundamental strip), where p, q, are the

order of f at the origin and ∞, respectively. The integration in (11) is performed along the imaginary axis and

the result does not depend on the choice of γ inside the fundamental strip. For more information about this

transform and its properties, see e.g. [17, 27]. The Mellin convolution between two functions is defined by

(f ∗M g) (x) =

∫ +∞

0

f
(x
u

)
g(u)

du

u
, (12)

and satisfies the Mellin Convolution Theorem (see formula (1.4.40) in [17])

M{f ∗M g} (s) = M{f} (s) M{g} (s) .

The following relation holds (see (1.4.30) in [17])

M
{
f

(
1

x

)}
(s) = M{f} (−s) , (13)

and the Mellin transform of the Bessel function is given by (see formula (8.4.19.2) in [27])

M
{
Jν

(
2√
x

)}
(s) =

Γ
(
ν
2 − s

)

Γ
(
s+ ν

2 + 1
) , −3

4
< Re (s) <

ν

2
. (14)

The solution of the time-fractional telegraph equation of distributed order obtained in this work involves

the Fox H-function Hm,n
p,q , which is defined, via a Mellin-Barnes type integral in the form (see [18]), by

Hm,n
p,q


 z

(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)


 =

1

2πi

∫

L

∏m
j=1 Γ(bj + βjs)

∏n
i=1 Γ(1− ai − αis)∏p

i=n+1 Γ(ai + αis)
∏q
j=m+1 Γ(1− bj − βjs)

z−s ds, (15)

where ai, bj ∈ C, and αi, βj ∈ R+, for i = 1, . . . , p and j = 1, . . . , q, and L is a suitable contour in the complex

plane separating the poles of the two factors in the numerator (see [18]).
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The particular cases studied in Section 4 involve the use of the two-argument inverse tangent arctan (x, y).

This function computes the principal value of the argument function of the complex number z = x + yi. In

terms of the standard inverse tangent, whose range is
]
−π

2 ,
π
2

[
, it can be expressed as follows

arctan (x, y) =





arctan
(y
x

)
, if x > 0

π

2
− arctan

(
x

y

)
, if y > 0

−π
2
− arctan

(
x

y

)
, if y < 0

arctan
(y
x

)
± π, if x < 0

undefined, if x = 0 and y = 0

. (16)

Throughout the paper, we assume that all the involved functions are Laplace and Fourier transformable, in

order to be possible to obtain a general solution of (1).

3 Time-fractional telegraph equation of distributed order

Let us consider the following time-fractional telegraph equation of distributed order

∫ 2

1

b2(β)
[
C
0+∂

β
t u (x, t)

]
dβ + a

∫ 1

0

b1(α)
[
C
0+∂

α
t u (x, t)

]
dα− c2 ∆xu (x, t) + d2 u (x, t) = q (x, t) , (17)

for given order-density functions b2(β) > 0 and b1(α) > 0, subject to the following initial and boundary

conditions

u(x, 0) = f (x) ,
∂u

∂t
(x, 0) = g (x) , lim

|x|→+∞
u (x, t) = 0,

∫ 2

1

b2(β) dβ = C2,

∫ 1

0

b1(α) dα = C1, (18)

where (x, t) ∈ R
n × R

+, ∆x is the classical Laplace operator in R
n, the partial time-fractional derivatives of

order β ∈ ]1, 2] and α ∈ ]0, 1] are in the Caputo sense and given by (2), a ∈ R
+
0 , c, d ∈ R, and C1, C2 ∈ R+.

The positive constants C1 and C2 can be taken as 1 if we want to assume the normalization condition for the

integral. In order to obtain the solution of (17)-(18) we extend the ideas presented in [25] and [3] to find the

fundamental solution related to the generic order-density functions b2(β) and b1(α).

3.1 Solution in the Fourier-Laplace Domain

In order to analytically determine the solution of (17)-(18) in the space-time domain we start applying the

Fourier and Laplace transforms to (17). After that , there are two alternative strategies related to the order in

carrying out the inversions of the Fourier and Laplace transforms are performed (see [21]):

(S1) invert the Fourier transform, giving ũ (x, s), and then invert the remaining Laplace transform.

(S2) invert the Laplace transform, giving û (κ, t), and then invert the remaining Fourier transform.

In this work we consider (S2) where the inversion of the Laplace transform is performed via the classical

Titchmarsh’s Theorem, and the inversion of the Fourier transform is performed via the Mellin transform.

Let us start applying in (17) the Laplace transform with respect to the variable t ∈ R+ and the n−dimensional

Fourier transform with respect to the variable x ∈ R
n. Taking into account relations (3) and (9), and the initial

conditions in (18), we obtain

̂̃u(κ, s)
∫ 2

1

b2(β) s
β dβ − f̂(κ)

∫ 2

1

b2(β) s
β−1 dβ − ĝ(κ)

∫ 2

1

b2(β) s
β−2 dβ

+ a ̂̃u(κ, s)
∫ 1

0

b1(α) s
α dα− a f̂(κ)

∫ 1

0

b1(α) s
α−1 dα+ c2 |κ|2 ̂̃u(κ, s) + d2 ̂̃u(κ, s) = ̂̃q(κ, s),
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which is equivalent to

̂̃u(κ, s) =
f̂(κ)

[
sB2 (s) + sB1 (s)− s d

2

c2

]
+ ĝ(κ)

[
B2 (s)− d2

c2

]

s2 [B2 (s) +B1 (s) + |κ|2] +
̂̃q(κ, s)

c2 [B2 (s) +B1 (s) + |κ|2] , (19)

where f̂ (κ) and ĝ (κ) are the Fourier transforms of the functions f (x) and g (x), respectively, and

B2 (s) =
1

c2

[∫ 2

1

b2(β) s
β dβ + d2

]
, (20)

B1 (s) =
a

c2

∫ 1

0

b1(α) s
α dα. (21)

3.2 Solution in the time-space domain

In this section we perform the inversion of the Laplace and Fourier transforms in order to obtain our solution

in the time-space domain. Let us consider the following auxiliar functions in the Laplace domain

̂̃u1 (κ, s) =
B2 (s) +B1 (s)

sp (B2 (s) +B1 (s) + |κ|2) , (22)

̂̃u2 (κ, s) =
1

sp (B2 (s) +B1 (s) + |κ|2) , (23)

̂̃u3 (κ, s) =
B2 (s)

sp (B2 (s) +B1 (s) + |κ|2) , (24)

with p ≥ 0. Supposing that these functions are in the conditions of Theorem 2.1, which happens for the particular

cases we consider in Section 4, we have

û1 (κ, t) = − 1

π

∫ +∞

0

e−rt Im
(
̂̃u1

(
κ, reiπ

))
dr, (25)

û2 (κ, t) = − 1

π

∫ +∞

0

e−rt Im
(
̂̃u2

(
κ, reiπ

))
dr, (26)

û3 (κ, t) = − 1

π

∫ +∞

0

e−rt Im
(
̂̃u3

(
κ, reiπ

))
dr. (27)

In order to simplify (25), (26), and (27), we need to evaluate the imaginary parts of the functions ̂̃uj
(
κ, reiπ

)
,

j = 1, 2, 3, along the ray s = reiπ , with r > 0. In this sense, by writing

B2

(
reiπ

)
= ρ2 (cos (γ2π) + i sin (γ2π)) =⇒





ρ2 = ρ2 (r) =
∣∣B2

(
reiπ

)∣∣

γ2 = γ2 (r) =
1

π
arg

(
B2

(
reiπ

)) , (28)

B1

(
reiπ

)
= ρ1 (cos (γ1π) + i sin (γ1π)) =⇒





ρ1 = ρ1 (r) =
∣∣B1

(
reiπ

)∣∣

γ1 = γ1 (r) =
1

π
arg

(
B1

(
reiπ

)) , (29)

we obtain, after straightforward calculations, the following expressions for the imaginary part of the functions
̂̃uj , j = 1, 2, 3

Im
{
̂̃u1

(
κ, reiπ

)}
= K1 (p, |κ| , r) =

B |κ|2

(−r)p
[(
A+ |κ|2

)2

+B2

] , (30)

Im
{
̂̃u2

(
κ, reiπ

)}
= K2 (p, |κ| , r) =

−B

(−r)p
[(
A+ |κ|2

)2

+B2

] , (31)

Im
{
̂̃u3

(
κ, reiπ

)}
= K3 (p, |κ| , r) =

ρ2

[
ρ1 sin (γ1π − γ2π) + |κ|2 sin (γ2π)

]

(−r)p
[(
A+ |κ|2

)2

+B2

] , (32)
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where

A = ρ2 cos (γ2π) + ρ1 cos (γ1π) and B = ρ2 sin (γ2π) + ρ1 sin (γ1π) . (33)

Applying the inverse Laplace transform to (19) and taking into account Theorem 2.1, and expressions (25),

(26), (27), (30), (31), and (32), we obtain

û (κ, t) = − f̂ (κ)
π

∫ +∞

0

e−rt
[
K1 (1, |κ| , r)−

d2

c2
K2 (1, |κ| , r)

]
dr

− ĝ (κ)

π

∫ +∞

0

e−rt
[
K3 (2, |κ| , r) −

d2

c2
K2 (2, |κ| , r)

]
dr

− q̂ (κ, t)

πc2
∗t

∫ +∞

0

e−rtK2 (0, |κ| , r) dr, (34)

where ∗t is given by (4) and in the last term me made use of (5). For the inversion of the Fourier transform,

taking into account (6) and (8), we obtain

u (x, t) = −f (x) ∗x F−1

{
1

π

∫ +∞

0

e−rt
[
K1 (1, |κ| , r)−

d2

c2
K2 (1, |κ| , r)

]
dr

}
(x, t)

− g (x) ∗x F−1

{
1

π

∫ +∞

0

e−rt
[
K3 (2, |κ| , r)−

d2

c2
K2 (2, |κ| , r)

]
dr

}
(x, t)

− q (x, t) ∗t ∗x F−1

{
1

πc2

∫ +∞

0

e−rtK2 (0, |κ| , r) dr
}
(x) . (35)

Making use of the following formula presented in [29] for the inverse Fourier transform

1

(2π)
n

∫

Rn

e−ix·κ ϕ (|κ|) dκ =
|x|1−

n
2

(2π)
n
2

∫ +∞

0

ϕ (w) w
n
2 Jn

2
−1 (|x|w) dw, (36)

and since we are dealing with radial functions in κ, (35) can be rewritten as

u (x, t) = − 1

π
f (x) ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0

e−rt
[
K1 (1, w, r) −

d2

c2
K2 (1, w, r)

]
dr w

n
2 Jn

2 −1 (|x|w) dw
]

− 1

π
g (x) ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0

e−rt
[
K3 (2, w, r) −

d2

c2
K2 (2, w, r)

]
dr w

n
2 Jn

2
−1 (|x|w) dw

]

− 1

πc2
q (x, t) ∗t ∗x

[
|x|1−

n
2

(2π)
n
2

∫ +∞

0

∫ +∞

0

e−rtK2 (0, w, r) dr w
n
2 Jn

2 −1 (|x|w) dw
]

= − 1

π
f (x) ∗x




∫ +∞

0

e−rt
|x|1−

n
2

(2π)
n
2

∫ +∞

0

[
K1 (1, w, r)−

d2

c2
K2 (1, w, r)

]
w

n
2 Jn

2
−1 (|x|w) dw

︸ ︷︷ ︸
I1

dr




− 1

π
g (x) ∗x




∫ +∞

0

e−rt
|x|1−

n
2

(2π)
n
2

∫ +∞

0

[
K3 (2, w, r) −

d2

c2
K2 (2, w, r)

]
w

n
2 Jn

2
−1 (|x|w) dw

︸ ︷︷ ︸
I2

dr




− 1

πc2
q (x, t) ∗t ∗x




∫ +∞

0

e−rt
|x|1−

n
2

(2π)
n
2

∫ +∞

0

K2 (0, w, r) w
n
2 Jn

2
−1 (|x|w) dw

︸ ︷︷ ︸
I3

dr


 . (37)
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To compute explicitly I1, I2, and I3 in (37) we are going to use the Mellin transform. First, we rewrite these

integrals as a Mellin convolution (12). In fact considering the following auxiliar functions

g1 (w) = K1 (1, w, r)−
d2

c2
K2 (1, w, r) g2 (w) = K3 (2, w, r)−

d2

c2
K2 (2, w, r)

g3 (w) = K2 (0, w, r) f (w) =
1

(2π)
n
2 |x|n w n

2 +1
Jn

2
−1

(
1

w

)

we have

I1 = M{g1 ∗M f}
(

1

|x|

)

=

∫ +∞

0

g1 (w) f

(
1

|x|w

)
dw

w

=

∫ +∞

0

[
K1 (1, w, r) −

d2

c2
K2 (1, w, r)

]
w

n
2 +1 |x|

n
2 +1

(2π)
n
2 |x|n

Jn
2 −1 (|x|w)

dw

w

=
|x|1−

n
2

(2π)
n
2

∫ +∞

0

[
K1 (1, w, r)−

d2

c2
K2 (1, w, r)

]
w

n
2 Jn

2 −1 (|x|w) dw

and analogously,

I2 = M{g2 ∗M f}
(

1

|x|

)
and I3 = M{g3 ∗M f}

(
1

|x|

)
. (38)

From the relations (13) and (12) we have for I1

M{I1} (s) = M
{
g1 ∗M f

(
1

|x|

)}
(s) = M{g1} (−s) M{f} (−s) ,

which is equivalent to

M{I1} (−s) = M{g1} (s) M{f} (s) . (39)

In a similar way we obtain

M{I2} (−s) = M{g2} (s) M{f} (s) , (40)

and

M{I3} (−s) = M{g3} (s) M{f} (s) . (41)

Let us now compute the Mellin transforms that appear in (39), (40), and (41). Taking into account (10), we

obtain

M{f} (s) =
1

(2π)
n
2 |x|

n
2

∫ +∞

0

ws−1 w−n
2 −1 Jn

2
−1

(
1

w

)
dw.

Considering the change of variables 1
w
= 2√

z
and taking into account (10), (14), and the duplication formula for

the Gamma function (see [1])

Γ (z) =

√
π

22z−1

Γ (2z)

Γ
(
z + 1

2

) (42)

we get

M{f} (s) = 1

π
n
2 |x|2 2s

∫ +∞

0

z
s
2−n

4 −1 Jn
2 −1

(
2√
z

)
dz

=
1

π
n
2 |x|2 2s

M
{
Jn

2
−1

(
2√
z

)}(
s

2
− n

4
− 1

2

)

=
1

π
n
2 |x|2 2s

Γ
(
n−s
2

)

Γ
(
s
2

) , −3

4
< Re (s) <

n

4
− 1

2

=
1

π
n−1
2 |x|n 2n−1

Γ (n− s)

Γ
(
n+1−s

2

)
Γ
(
s
2

) . (43)
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Now, we calculate the Mellin transform of the function g1. Taking into account (10), (30), (31), and (33), we

get

M{g1} (s) =
∫ +∞

0

ws−1K1 (1, w, r) dw − d2

c2

∫ +∞

0

ws−1K2 (1, w, r) dw

= −B
r

∫ +∞

0

ws+1

(A+ w2)
2
+B2

dw − d2B

c2r

∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw. (44)

Considering the change of variables w2 = z in (44) we obtain

M{g1} (s) = −B

2r

∫ +∞

0

z
s
2

z2 + 2Az +A2 +B2
dz

︸ ︷︷ ︸
I4

− d2B

2c2r

∫ +∞

0

z
s
2−1

z2 + 2Az +A2 +B2
dz

︸ ︷︷ ︸
I5

. (45)

Taking into account formula (2.2.9.36) in [28]

∫ +∞

0

xα−1

ax2 + bx+ c
dx =

π sin [(1− α)ψ] c
α
2 −1

a
α
2 sin (ψ) sin (απ)

, ac > b2, ψ = arccos

(
b√
ac

)
, (46)

with

α =
s

2
+ 1 for I4, α =

s

2
for I5, a = 1, b = A, c = A2 +B2, ψ = arccos

(
A√

A2 +B2

)
, (47)

and making use of the following property of the Gamma function (see [1])

csc (πz) =
1

π
Γ (1− z) Γ (z) (48)

we compute the integrals I4 and I5, getting

I4 =

∫ +∞

0

z
s
2

z2 + 2Az +A2 +B2
dw

=
π

sin (ψ)

sin
(
− sψ

2

)

sin
((
s
2 + 1

)
π
) (

A2 +B2
) s

4− 1
2

= − π

sin (ψ)

sin
(
sψ
2

)

sin
(
− sπ

2

) (
A2 +B2

) s
4− 1

2

= − π

sin (ψ)

csc
(
− sπ

2

)

csc
(
sψ
2

) (
A2 +B2

) s
4− 1

2

= − π

sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1−

(
1 + s

2

))

Γ
(
sψ
2π

)
Γ
(
1− sψ

2π

) (
A2 +B2

) s
4− 1

2 , (49)

and

I5 =

∫ +∞

0

z
s
2−1

z2 + 2Az +A2 +B2
dw = − π

sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4−1

. (50)

Hence, from (49) and (50) we conclude that (45) takes the form

M{g1} (s) =
Bπ

2r sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1−

(
1 + s

2

))

Γ
(
sψ
2π

)
Γ
(
1− sψ

2π

) (
A2 +B2

) s
4− 1

2

+
d2Bπ

2c2r sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4−1

. (51)
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Let us now calculate the Mellin transform of g2. Taking into account (10), (31), (32), and (33), we get

M{g2} (s) =
∫ +∞

0

ws−1K3 (2, w, r) dw − d2

c2

∫ +∞

0

ws−1K2 (2, w, r) dw

=
ρ2

r2

∫ +∞

0

ws−1

(
A+ w2

)
sin (γ2π)−B cos (γ2π)

(A+ w2)
2
+B2

dw +
d2B

c2r2

∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw

=
ρ2 sin (γ2π)

r2

∫ +∞

0

ws−1
(
A+ w2

)

(A+ w2)
2
+B2

dw − Bρ2 cos (γ2π)

r2

∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw

+
d2B

c2r2

∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw

=
Aρ2 sin (γ2π)

r2

∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw +
ρ2 sin (γ2π)

r2

∫ +∞

0

ws+1

(A+ w2)
2
+B2

dw

+

[
−Bρ2 cos (γ2π)

r2
+
d2B

c2r2

] ∫ +∞

0

ws−1

(A+ w2)2 +B2
dw

=
ρ2 sin (γ2π)

r2

∫ +∞

0

ws+1

(A+ w2)
2
+B2

dw

+
Ac2ρ2 sin (γ2π)−Bc2ρ2 cos (γ2π) + d2B

c2r2

∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw. (52)

Considering the change of variables w2 = z in (52), we obtain

M{g2} (s) =
ρ2 sin (γ2π)

2r2

∫ +∞

0

z
s
2

z2 + 2Az +A2 +B2
dz

+
Ac2ρ2 sin (γ2π)−Bc2ρ2 cos (γ2π) + d2B

2c2r2

∫ +∞

0

z
s
2−1

z2 + 2Az +A2 +B2
dz. (53)

The two integrals in (53) correspond to the integrals I4 and I5. Hence, from (49) and (50) we arrive to

M{g2} (s) = −πρ2 sin (γ2π)
2r2 sin (ψ)

Γ
(
1 + s

2

)
Γ
(
1−

(
1 + s

2

))

Γ
(
sψ
2π

)
Γ
(
1− sψ

2π

) (
A2 +B2

) s
4− 1

2

− π
(
Ac2ρ2 sin (γ2π)−Bc2ρ2 cos (γ2π) + d2B

)

2c2r2 sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4−1

.

(54)

We finally calculate the Mellin transform of g3. Taking into account (10), (31), and (33), we get

M{g3} (s) =
∫ +∞

0

ws−1K2 (0, w, r) dw

= −B
∫ +∞

0

ws−1 1

(A+ w2)
2
+B2

dw

= −B
∫ +∞

0

ws−1

(A+ w2)
2
+B2

dw. (55)

Considering the change of variables w2 = z in (55), we obtain

M{g3} (s) = −B
2

∫ +∞

0

z
s
2−1

z2 + 2Az +A2 +B2
dz. (56)

The integral in (56) corresponds to the integral I5. Hence, from (50) we arrive to

M{g3} (s) =
Bπ

2 sin (ψ)

Γ
(
s
2

)
Γ
(
1− s

2

)

Γ
(
ψ
π

(
s
2 − 1

))
Γ
(
1− ψ

π

(
s
2 − 1

))
(
A2 +B2

) s
4−1

. (57)
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Now, using the inverse Mellin transform (11) applied to (39), (40), and (41) we obtain, respectively, the repre-

sentation of integrals I1, I2, and I3 in terms of Mellin-Barnes integrals and, consequently, as Fox H-functions.

For the integral I1, taking into account (11), (33), (51), and (43), we obtain

I1 =
B
(
A2 +B2

)− 1
2

r π
n−3
2 (2 |x|)n sin (ψ)

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1 + s

2

)
Γ (n− s) Γ

(
− s

2

)

Γ
(
s
2

)
Γ
(
ψs
2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

+
Bd2

(
A2 +B2

)−1

rc2 π
n−3
2 (2 |x|)n sin (ψ)

1

2πi

∫ γ+i∞

γ−i∞

Γ (n− s) Γ
(
1− s

2

)

Γ
(
−ψ
π
+ ψs

2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1 + ψ

π
− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

which is equivalent, by (15), to the following expression in terms of Fox H-functions

I1 =
B
(
A2 +B2

)− 1
2

r π
n−3
2 (2 |x|)n sin (ψ)

H
1,2
4,3




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
1,

1

2

)
,

(
0,

1

2

)
,

(
0,

ψ

2π

)

(
1,

1

2

)
,

(
1− n

2
,
1

2

)
,

(
0,

ψ

2π

)




+
Bd2

(
A2 +B2

)−1

rc2 π
n−3
2 (2 |x|)n sin (ψ)

H
0,2
3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 . (58)

For the integral I2, taking into account (11), (33), (54), and (43), we obtain

I2 =
ρ2 sin (γ2π)

(
A2 +B2

)− 1
2

r2 π
n−3
2 (2 |x|)n sin (ψ)

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1 + s

2

)
Γ (n− s) Γ

(
− s

2

)

Γ
(
s
2

)
Γ
(
ψs
2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

−
(
Ac2ρ2 sin (γ2π)−Bc2ρ2 cos (γ2π) +Bd2

) (
A2 +B2

)−1

r2c2 π
n−3
2 (2 |x|)n sin (ψ)

× 1

2πi

∫ γ+i∞

γ−i∞

Γ (n− s) Γ
(
1− s

2

)

Γ
(
−ψ
π
+ ψs

2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1 + ψ

π
− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds

which is equivalent, by (15), to the following expression in terms of Fox H-functions

I2 =
ρ2 sin (γ2π)

(
A2 +B2

)− 1
2

r2 π
n−3
2 (2 |x|)n sin (ψ)

H
1,2
4,3




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
1,

1

2

)
,

(
0,

1

2

)
,

(
0,

ψ

2π

)

(
1,

1

2

)
,

(
1− n

2
,
1

2

)
,

(
0,

ψ

2π

)




−
(
Ac2ρ2 sin (γ2π)−Bc2ρ2 cos (γ2π) +Bd2

) (
A2 +B2

)−1

r2c2 π
n−3
2 (2 |x|)n sin (ψ)

×H
0,2
3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 . (59)

Finally, for the integral I3, taking into account (11), (33), (57), and (43), we obtain

I3 =
B
(
A2 +B2

)−1

π
n−3
2 (2 |x|)n sin (ψ)

1

2πi

∫ γ+i∞

γ−i∞

Γ (n− s) Γ
(
1− s

2

)

Γ
(
−ψ
π
+ ψs

2π

)
Γ
(
n+1
2 − s

2

)
Γ
(
1 + ψ

π
− ψs

2π

)



(
A2 +B2

)− 1
4

|x|




−s

ds
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which is equivalent, by (15), to the following expression in terms of Fox H-functions

I3 =
B
(
A2 +B2

)−1

π
n−3
2 (2 |x|)n sin (ψ)

H
0,2
3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 . (60)

From (58), (59), and (60) we conclude that the representation (37) of the solution u (x, t) of (17)-(18) corresponds

to the sum of convolution integrals involving Fox H-functions.

In the next subsection we summarize our calculations in the main result of the paper.

3.3 Main result and corollary

Taking into account (37), (58), (59), and (60) we obtain our main result.

Theorem 3.1 The solution of the time-fractional telegraph equation of distributed order (17) subject to the

conditions (18) is given, in terms of convolution integrals, by

u (x, t) =

∫

Rn

f (z) G1 (x− z, t) dz +

∫

Rn

g (z) G2 (x− z, t) dz +

∫

Rn

∫ t

0

q (z, w) G3 (x− z, t− w) dw dz,

(61)

where the fundamental solutions G1, G2, and G3 are given by

G1 (x, t) =
−1

π
n−1
2 (2 |x|)n

∫ +∞

0

B
(
A2 +B2

)− 1
2 e−rt

r sin (ψ)

×


H



(
A2 +B2

)− 1
4

|x|


+

d2

c2

(
A2 +B2

)− 1
2 H∗



(
A2 +B2

)− 1
4

|x|




 dr,

G2 (x, t) =
−1

π
n−1
2 (2 |x|)n

∫ +∞

0

(
A2 +B2

)− 1
2 e−rt

r2 sin (ψ)


−ρ2 sin (γ2π) H



(
A2 +B2

)− 1
4

|x|




− 1

c2

(
Ac2ρ2 sin (γ2π)−Bc2ρ2 cos (γ2π) +Bd2

) (
A2 +B2

)− 1
2 H∗



(
A2 +B2

)− 1
4

|x|




 dr,

G3 (x, t) =
−1

c2 π
n−1
2 (2 |x|)n

∫ +∞

0

B
(
A2 +B2

)−1
e−rt

sin (ψ)
H∗



(
A2 +B2

)− 1
4

|x|


 dr,

where ρ2 and γ2, A and B, and ψ are given, respectively, by relations (28), (33), and (47), and the functions

H and H∗ are expressed in terms of the following Fox H-functions

H



(
A2 +B2

)− 1
4

|x|


 = H

1,2
4,3




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
1,

1

2

)
,

(
0,

1

2

)
,

(
0,

ψ

2π

)

(
1,

1

2

)
,

(
1− n

2
,
1

2

)
,

(
0,

ψ

2π

)


 ,

H∗



(
A2 +B2

)− 1
4

|x|


 = H

0,2
3,2




(
A2 +B2

)− 1
4

|x|

(1− n, 1) ,

(
0,

1

2

)
,

(
−ψ
π
,
ψ

2π

)

(
1− n

2
,
1

2

)
,

(
−ψ
π
,
ψ

2π

)


 .

Remark 3.2 If we consider

f (x) = δ (x) =

n∏

i=1

δ (xi) , g (x) = q (x, t) = 0, a = c = 1, d =
√
λ
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with λ ∈ R+ in (17)-(18), then the solution u (x, t) given by (61) corresponds to the eigenfunction of the

time-fractional telegraph equation of distributed order in Rn × R+. Moreover, if additionally b2 (β) = 0 (resp.

b1 (α) = 0) we obtain the representation of the eigenfunctions of the time-fractional diffusion (resp. wave)

equation of distributed order in Rn × R+.

Considering a = 0 in Theorem 3.1, we have the following simplifications

B1 (s) = 0, A = ρ cos (γπ) , B = ρ sin (γπ) , A2 +B2 = ρ2, ψ = γπ,

which give the following result.

Corollary 3.3 The solution of the time-fractional wave equation of distributed order

∫ 2

1

b2(β)
[
C
0+∂

β
t u (x, t)

]
dβ − c2 ∆xu (x, t) + d2 u (x, t) = q (x, t)

for given order-density function b2(β), subject to the following initial and boundary conditions

u(x, 0) = f (x) ,
∂u

∂t
(x, 0) = g (x) , lim

|x|→∞
u (x, t) = 0,

∫ 2

1

b2(β) dβ = 1,

is given, in terms of convolution integrals, by

u (x, t) =

∫

Rn

f (z) G1 (x− z, t) dz +

∫

Rn

g (z) G2 (x− z, t) dz +

∫

Rn

∫ t

0

q (z, w) G3 (x− z, t− w) dw dz,

where the fundamental solutions G1, G2, and G3 are given by

G1 (x, t) =
−1

π
n−1
2 (2 |x|)n

∫ +∞

0

e−rt

r

[
H

(
1

|x| √ρ

)
+

d2

c2ρ
H∗

(
1

|x| √ρ

)]
dr,

G2 (x, t) =
−1

π
n−1
2 (2 |x|)n

∫ +∞

0

e−rt

r2

[
−H

(
1

|x| √ρ

)
− d2

c2ρ
H∗

(
1

|x| √ρ

)]
dr,

G3 (x, t) =
−1

c2 π
n−1
2 (2 |x|)n

∫ +∞

0

e−rt

ρ
H∗

(
1

|x| √ρ

)
dr

with ρ and γ given by relations (28), and the functions H and H∗ are expressed in terms of the following Fox

H-functions

H
(

1

|x| √ρ

)
= H

0,2
3,2




1

|x| √ρ

(1− n, 1) ,

(
1,

1

2

)
,
(
0,
γ

2

)

(
1− n

2
,
1

2

)
,
(
0,
γ

2

)


 ,

H∗
(

1

|x| √ρ

)
= H

0,2
3,2




1

|x| √ρ

(1− n, 1) ,

(
0,

1

2

)
,
(
−γ, γ

2

)

(
1− n

2
,
1

2

)
,
(
−γ, γ

2

)


 .

Remark 3.4 If we consider the one dimensional case in the previous result, i.e., when n = 1 in Corollary 3.3

we obtain the same results presented in [3] for the time-fractional Klein-Gordon equation of distributed order

where we corrected some missprints. Moreover, we observe that the definition of the Fox H-function considered

in [3] is different from the one considered in this work, more precisely, the authors considered the change of

variable s 7→ −s in (15).

The numerical implementation of (61) is possible, however, depends substantially on the study of the asymptotic

behaviour of the fundamental solutions G1, G2, and G3 through the study of the asymptotic behaviour of the

associated H-functions. This is not the subject of this work and is left for future work. We would like to remark

also that (61) is a very general solution, but for particular cases of the dimension, the fractional parameters,

and/or the density functions, it is possible to get simpler expressions.
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4 Particular cases

In this section we consider the cases where the density functions b1 and b2 are constant functions, linear

functions, sinusoidal functions, and exponential functions. We start pointing out that it is not possible to

obtain simple/pratical expressions for ρ1, ρ2, γ1, and γ2 in (20) and (21), and therefore for A and B in (33),

for arbitrary functions b2 (β) and b1 (α). For this particular choices of b1 and b2 we obtain, when possible, the

correspondent expressions of ρ1, ρ2, γ1, γ2. We observe that the quantities A and B depend on ρ1, ρ2, γ1, γ2
and they appear in Theorem 3.1. Due to the independence of the choice of b1 and b2 it is possible to obtain

different versions of Theorem 3.1 and Corollary 3.3. For example, it is possible to obtain an explicit expression

of the solution of (17)-(18) when b1 is a linear function (see Subsection 4.4) and b2 is an exponential function

(see Subsection 4.7).

4.1 Single order case

Here we consider the case of the time-fractional telegraph equation in Rn × R+ with single order fractional-

derivative. Putting

b1 (α) = δ (α− α1) , 0 < α1 ≤ 1, b2 (β) = δ (β − β1) , 1 < β1 ≤ 2,

in (17) then we get

B1 (s) =
a

c2
sα1 , B2 (s) =

1

c2
sβ1 . (62)

From (62) we have that

B1

(
reiπ

)
=

a

c2
rα1 eiα1π, B2

(
reiπ

)
=

1

c2
rβ1 eiβ1π

and relations (28) and (29) become




ρ1 (r) =
a

c2
rα1

γ1 (r) = α1 (const.)

,





ρ2 (r) =
1

c2
rβ1

γ2 (r) = β1 (const.)

.

In these conditions, (19) becomes

̂̃u (κ, s) = f̂ (κ)
[
sβ1−1 + a sα1−1

]
+ ĝ (κ) sβ1 + ̂̃q (κ, s)

sβ1 + a sα1 + c2 |κ|2
. (63)

If we additionally consider in (63)

f (x) = δ (x) =

n∏

j=1

δ (xj) , g (x) = 0, q (x, t) = 0,

it becomes

̂̃u (κ, s) = sβ1−1 + a sα1−1

sβ1 + a sα1 + c2 |κ|2

which corresponds to the Laplace-Fourier transform of the first fundamental solution of the time-fractional

telegraph equation of single-order deduced in [14] (see expression (4.1) in Section 4), and therefore there is a

consistency in the obtained results.

4.2 Multi-order case

We now consider the case of the time-fractional telegraph equation in Rn × R+ for multi-order time-fractional

derivatives, i.e., let

b1 (α) =

q∑

j=1

aj δ (α− αj) , 0 < α1 < α2 < · · · < αq < 1, aj ∈ R,

b2 (β) =

p∑

j=1

bj δ (β − βj) , 1 < β1 < β2 < · · · < βp < 2, bj ∈ R,
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in (17), so that

B1 (s) =
a

c2

q∑

j=1

aj s
αj , B2 (s) =

1

c2

p∑

j=1

bj s
βj .

In this case we were not able to compute the correspondent expressions (28) and (29) for this case.

4.3 Uniform distributed case

Here we consider the case where the density functions b2 (β) and b1 (α) are constant, i.e., let us consider in (17)

b1 (α) = κ1 and b2 (β) = κ2, with κ2, κ1 ∈ R+, which implies from (20) and (21) that

B1 (s) =
a κ1

c2
s− 1

ln (s)
, B2 (s) =

κ2

c2
s2 − s

ln (s)
. (64)

Let us now obtain the expressions for ρ1 and γ1. Taking into account (29), (64), and the definition of the

complex logarithm, we have that

B1

(
reiπ

)
=
a κ1

c2
reiπ − 1

ln (reiπ)
=
a κ1

c2
−r − 1

ln (r) + iπ
=

−a κ1 (r + 1)

c2
1

ln (r) + iπ
. (65)

Taking into account (16), we have the following representation in terms of complex exponentials:

z1 =
−a κ1 (r + 1)

c2
=
a κ1 (r + 1)

c2
eiπ, (66)

z2 =
1

ln (r) + iπ
=

ln (r)− i π

ln2 (r) + π2
=

1√
ln2 (r) + π2

exp

(
−i

(
π

2
+ arctan

(
− ln (r)

π

)))
. (67)

From (66) and (67), expression (65) becomes

B1

(
reiπ

)
=

a κ1 (r + 1)

c2
√
ln2 (r) + π2

exp

(
i

(
π

2
− arctan

(
− ln (r)

π

)))
,

and hence




ρ1 = ρ1 (r) =
a κ1

c2
r + 1√

ln2 (r) + π2

γ1 = γ1 (r) =
1

2
− 1

π
arctan

(
− ln (r)

π

) .

Now we pass to the deduction of the expressions of ρ2 and γ2. From (64) we have the following relation

B2 (s) =
1

c2
s2 − s

ln (s)
=
s κ2

a κ1
B1 (s)

which implies that

B2

(
reiπ

)
=
κ2 re

iπ

a
B1

(
reiπ

)
=

κ2
(
r2 + r

)

c2
√
ln2 (r) + π2

exp

(
−i

(
π

2
+ arctan

(
− ln (r)

π

)))
,

and hence




ρ2 = ρ2 (r) =
κ2

c2
r2 + r√

ln2 (r) + π2

γ2 = γ2 (r) = −
(
1

2
+

1

π
arctan

(
− ln (r)

π

)) .
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4.4 Linear density functions

Here we consider the case where the density functions b1 (α) and b2 (β) are linear functions, i.e., let us consider

in (17)

b1 (α) = 2α, 0 < α ≤ 1; b2 (β) = −2 (β − 2) , 1 < β ≤ 2.

Considering the change of variables sα = t and sβ = t and making an integration by parts, we have from (21)

and (20) that

B1 (s) =
2a

c2
s ln (s)− s+ 1

ln2 (s)
, B2 (s) = − 2

c2
s ln (s)− s2 + s

ln2 (s)
. (68)

Let us now obtain the expressions for ρ1 and γ1. From (29) and (68) we have that

B1

(
reiπ

)
=

2a

c2
reiπ ln

(
reiπ

)
− reiπ + 1

ln2 (reiπ)
. (69)

Since

z1 = reiπ ln
(
reiπ

)
− reiπ + 1 = −r ln (r) + r + 1− i rπ

=

√
(r + 1− r ln (r))

2
+ r2π2 exp

(
−i

(
π

2
+ arctan

(
r ln (r) − r − 1

rπ

)))
,

z2 = ln2
(
reiπ

)
= ln2 (r)− π2 + i 2π ln (r)

=
(
ln2 (r) + π2

)
exp

(
i arctan

(
ln2 (r) − π2, 2π ln (r)

))
,

then (69) takes the form

B1

(
reiπ

)
=

2a

c2

√
(r + 1− r ln (r))

2
+ r2π2

ln2 (r) + π2

× exp

(
−i

(
π

2
+ arctan

(
r ln (r) − r − 1

rπ

)
+ arctan

(
ln2 (r)− π2, 2π ln (r)

)))
,

and hence




ρ1 (r) =
2a

c2

√
(r + 1− r ln (r))2 + r2π2

ln2 (r) + π2

γ1 (r) = −1− 1

π
arctan

(
r ln (r) − r − 1

rπ

)
− 1

π
arctan

(
ln2 (r) − π2, 2π ln (r)

)
.

Now we obtain the expressions for ρ2 and γ2 in a similar way. From (28) and (68) we have that

B2

(
reiπ

)
= − 2

c2
reiπ ln

(
reiπ

)
−
(
reiπ

)2
+ reiπ

ln2 (reiπ)
.

Since

z1 = − 2

c2
=

2

c2
exp (iπ)

z2 = reiπ ln
(
reiπ

)
−
(
reiπ

)2
+ reiπ = −r (ln (r) + r + 1)− i rπ

= r

√
(ln (r) + r + 1)

2
+ π2 exp

(
−i

(
π

2
+ arctan

(
ln (r) + r + 1

π

)))
,

z3 = ln2
(
reiπ

)
= ln2 (r) − π2 + i 2π ln (r)

=
(
ln2 (r) + π2

)
exp

(
i arctan

(
ln2 (r) − π2, 2π ln (r)

))
,
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then

B2

(
reiπ

)
=

2r

c2

√
(ln (r) + r + 1)2 + π2

ln2 (r) + π2

× exp

(
i

(
π

2
− arctan

(
ln (r) + r + 1

π

)
− arctan

(
ln2 (r)− π2, 2π ln (r)

)))
,

and hence




ρ2 = ρ2 (r) =
2r

c2

√√√√ (ln (r) + r + 1)
2
+ π2

(
ln2 (r) + π2

)2

γ2 = γ2 (r) =
1

2
− 1

π
arctan

(
ln (r) + r + 1

π

)
− 1

π
arctan

(
ln2 (r)− π2, 2π ln (r)

)
.

4.5 Sinusoidal density functions

Here we consider the case where the density functions b1 (α) and b2 (β) are sinusoidal functions, i.e., let us

consider in (17)

b1 (α) =
π

2
sin (απ) , 0 < α ≤ 1; b2 (β) = −π

2
sin (βπ) , 1 < β ≤ 2.

Integrating by parts, we have from (21) and (20) that

B1 (s) =
aπ

2c2
s+ 1

ln2 (s) + π2
, B2 (s) =

π2

2c2
s (s+ 1)

ln2 (s) + π2
. (70)

Now we deduce the expressions for ρ1 and γ1. From (29) and (70) we have that

B1

(
reiπ

)
=
aπ

2c2
reiπ + 1

ln2 (reiπ) + π2
. (71)

Since

z1 = reiπ + 1 = 1− r

√
(1− r)2 arctan (1− r, 0) ,

z2 = ln2
(
reiπ

)
+ π2 = ln (r) (ln (r) + i 2π)

=
(
ln2 (r)

(
ln2 (r) + 4π2

)) 1
2 exp

(
i

(
π

2
− arctan

(
ln (r)

2π

)))
,

then (71) becomes

B1

(
reiπ

)
=
aπ2

2c2

√
(1− r)2 ln2

((
ln2 (r) + 4π2

))
exp

(
i

(
arctan (1− r, 0)− π

2
+ arctan

(
ln (r)

2π

)))
,

and hence




ρ1 = ρ1 (r) =
aπ2

2c2

√
(1− r)

2
ln2 (r)

(
ln2 (r) + 4π2

)

γ1 = γ1 (r) = −1

2
+

1

π
arctan (1− r, 0) +

1

π
arctan

(
ln (r)

2π

) . (72)

Now we deduce the expression for ρ2 and γ2. From (70) we have the following relation

B2

(
reiπ

)
=

1

a
reiπ B1

(
reiπ

)
. (73)

Therefore, from (73) and (72) we immediately conclude that

B2

(
reiπ

)
=
rπ2

2c2

√
(1− r)2 ln2 (r)

(
ln2 (r) + 4π2

)
exp

(
i

(
π

2
+ arctan (1− r, 0) + arctan

(
ln (r)

2π

)))
,
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and hence




ρ2 = ρ2 (r) =
rπ2

2c2

√
(1− r)2 ln2 (r)

(
ln2 (r) + 4π2

)

γ2 = γ2 (r) =
1

2
+

1

π
arctan (1− r, 0) +

1

π
arctan

(
ln (r)

2π

) .

4.6 Sinusoidal density functions II

Here, we consider another case where the density functions b1 (α) and b2 (β) are also sinusoidal functions. Let

us consider in (17)

b1 (α) =
π

4
sin

(απ
2

)
, 0 < α ≤ 1; b2 (β) =

π

4
sin

(
βπ

2

)
, 1 < β ≤ 2,

where b1 and b2 are such that

∫ 1

0

b1 (α) dα+

∫ 2

1

b2 (β) dβ = 1.

Integrating by parts, we have from (21) and (20) that

B1 (s) =
aπ

2c2
2s ln (s) + π

4 ln2 (s) + π2
, B2 (s) =

π

2c2
s (πs− 2 ln (s))

4 ln2 (s) + π2
. (74)

From (29) and (74) we have that

B1

(
reiπ

)
=
aπ

2c2
2reiπ ln

(
reiπ

)
+ π

4 ln2 (reiπ) + π2
. (75)

Since

z1 = 2reiπ ln
(
reiπ

)
+ π = π − 2r ln (r)− i 2rπ

=
(
(π − 2r ln (r))

2
+ 4r2π2

) 1
2

exp

(
−i

(
π

2
+ arctan

2r ln (r)− π

2rπ

))
,

z2 = 4 ln2
(
reiπ

)
+ π2 = 4 ln2 (r)− 3π2 + i 8π ln (r)

=
((

4 ln2 (r)− 3π2
)2

+ 64π2 ln2 (r)
) 1

2

exp
(
i arctan

(
4 ln2 (r) − 3π2, 8π ln (r)

))
,

then expression (75) becomes

B1

(
reiπ

)
=
aπ

2c2

√√√√ (π − 2r ln (r))
2
+ 4r2π2

(
4 ln2 (r) − 3π2

)2
+ 64π2 ln2 (r)

× exp

(
−i

(
π

2
+ arctan

(
2r ln (r)− π

2rπ

)
+ arctan

(
4 ln2 (r)− 3π2, 8π ln (r)

)))
,

and hence




ρ1 = ρ1 (r) =
aπ

2c2

√√√√ (π − 2r ln (r))
2
+ 4r2π2

(
4 ln2 (r)− 3π2

)2
+ 64π2 ln2 (r)

γ1 = γ1 (r) = −1

2
− 1

π
arctan

(
2r ln (r) − π

2rπ

)
− 1

π
arctan

(
4 ln2 (r)− 3π2, 8π ln (r)

)
.

Let us now obtain the expressions for ρ2 and γ2. From (28) and (74) we have that

B2

(
reiπ

)
=

π

2c2
reiπ

(
π reiπ − 2 ln

(
reiπ

))

4 ln2 (reiπ) + π2
. (76)
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Since

z1 = reiπ
(
π reiπ − 2 ln

(
reiπ

))
= r (rπ + 2 ln (r) + i 2π)

= r
(
(rπ + 2 ln (r))

2
+ 4π2

) 1
2

exp

(
i

(
π

2
− arctan

(
rπ + 2 ln (r)

2π

)))
,

z2 =
((

4 ln2 (r)− 3π2
)2

+ 64π2 ln2 (r)
) 1

2

exp
(
i arctan

(
4 ln2 (r) − 3π2, 8π ln (r)

))
,

then expression (76) takes the form

B2

(
reiπ

)
=

rπ

2c2

√√√√ (rπ + 2 ln (r))2 + 4π2

(
4 ln2 (r) − 3π2

)2
+ 64π2 ln2 (r)

× exp

(
i

(
π

2
− arctan

(
rπ + 2 ln (r)

2π

)
− arctan

(
4 ln2 (r)− 3π2, 8π ln (r)

)))
,

and hence




ρ2 = ρ2 (r) =
rπ

2c2

√√√√ (rπ + 2 ln (r))
2
+ 4π2

(
4 ln2 (r)− 3π2

)2
+ 64π2 ln2 (r)

γ2 = γ2 (r) =
1

2
− 1

π
arctan

(
rπ + 2 ln (r)

2π

)
− 1

π
arctan

(
4 ln2 (r)− 3π2, 8π ln (r)

)
.

4.7 Exponential density functions

Here we consider the case where the density functions b1 (α) and b2 (β) are exponential functions, i.e., let us

consider in (17)

b1 (α) =
1

e− 1
eα, 0 < α ≤ 1; b2 (β) =

e2

e− 1
e−β , 1 < β ≤ 2.

From (21) and (20), we have that

B1 (s) =
a

e2 (e− 1)

es− 1

1 + ln (s)
, B2 (s) =

1

c2 (e− 1)

s (s − e)

ln (s)− 1
. (77)

From (29) and (77) we have that

B1

(
reiπ

)
=

a

e2 (e− 1)

e reiπ − 1

1 + ln (reiπ)
. (78)

Since

z1 = e reiπ − 1 = (er + 1) eiπ,

z2 = 1 + ln
(
reiπ

)
= 1 + ln (r) + iπ =

((
ln2 (r) + 1

)2
+ π2

) 1
2

exp

(
i

(
π

2
− arctan

(
ln (r) + 1

π

)))
,

then (78) takes the form

B1

(
reiπ

)
=

a

c2 (e− 1)

(er + 1)√(
ln2 (r) + 1

)2
+ π2

exp

(
i

(
π

2
+ arctan

(
ln (r) + 1

π

)))
,

and hence




ρ1 = ρ1 (r) =
a

c2 (e− 1)

(er + 1)√(
ln2 (r) + 1

)2
+ π2

γ1 = γ1 (r) =
1

2
+

1

π
arctan

(
ln (r) + 1

π

) .
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Let us now obtain the expression for ρ2 and γ2. From (28) and (77) we have that

B2

(
reiπ

)
=

1

c2 (e − 1)

reiπ
(
reiπ − e

)

ln (reiπ)− 1
. (79)

Since

z1 = reiπ
(
reiπ − e

)
= r (r + e) ,

z2 = ln
(
reiπ

)
− 1 = ln (r) − 1 + iπ =

(
(ln (r) − 1)

2
+ π2

) 1
2

exp

(
i

(
π

2
− arctan

(
ln (r)− 1

π

)))
,

then (79) takes the form

B2

(
reiπ

)
=

1

c2 (e− 1)

r (r + e)√
(ln (r) − 1)2 + π2

exp

(
−i

(
π

2
− arctan

(
ln (r) − 1

π

)))
,

and hence 



ρ2 = ρ2 (r) =
1

c2 (e− 1)

r (r + e)√
(ln (r)− 1)

2
+ π2

γ2 (r) = −1

2
+

1

π
arctan

(
ln (r) − 1

π

) .

5 Moments

In this section we obtain the expression for some fractional moments of the first fundamental solution G1 of the

time-fractional telegraph equation of distributed order (17) in the Laplace domain, and we apply the Tauberian

theorems to study the asymptotic behaviour of the second-order moment in the time domain for t → 0+ and

t → +∞ knowing the asymptotic behaviour of second-order moment in the Laplace domain for s → +∞ and

s → 0, respectively.

It is well known that the Mellin transform (10) can be interpreted as the fractional moment of order s − 1

of the function f (see [13]). Therefore, we can calculate the fractional moments of arbitrary order γ > 0 of G̃1,

where G̃1 denotes the Laplace transform of G1. Denoting by s the variable in the Laplace domain and by r the

radial quantity |x|, we have, from the definition of the Mellin transform, that

M̃γ (s) =

∫ +∞

0

rγ G̃1 (r, s) dr =

∫ +∞

0

rγ−n+1−1 rnG̃1 (r, s) dr = M
{
rn G̃1 (r, s)

}
(γ − n+ 1) . (80)

Recalling that for the case of the first fundamental solution G1 we assume in (17) that

f (x) = δ (x) =

n∏

j=1

δ (xj) , g (x) = q (x, t) = 0,

we have, from (19), that

G1 (r, t) = L−1

{
F−1

{
̂̃u1 (κ, s)

∣∣∣
p=1

− d2

c2
̂̃u2 (κ, s)

∣∣∣
p=1

}
(r, s)

}
(r, t)

which is equivalent to

G̃1 (r, s) = L{G1 (r, t)} (r, s) = F−1

{
̂̃u1 (κ, s)

∣∣∣
p=1

− d2

c2
̂̃u2 (κ, s)

∣∣∣
p=1

}
(r, s) .

Let us now calculate the inverse Fourier transform that appears in the previous expression. As it was done in

Section 3 we make use of the Mellin transform to calculate the integral. In fact, taking into account (36), we

have that

F−1

{
̂̃u1 (κ, s)

∣∣∣
p=1

− d2

c2
̂̃u2 (κ, s)

∣∣∣
p=1

}
(r, s)

=
r1−

n
2

(2π)
n
2

∫ +∞

0

[
̂̃u1 (w, s)

∣∣∣
p=1

− d2

c2
̂̃u2 (w, s)

∣∣∣
p=1

]
w

n
2 Jn

2
−1 (|x| w) dw (81)

= M{g4 ∗M f4}
(
1

r

)
,
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where ∗M denotes the Mellin convolution given by (12) at the point 1
r
with

g4 (w) = ̂̃u1 (w, s)
∣∣∣
p=1

− d2

c2
̂̃u2 (w, s)

∣∣∣
p=1

and f4 (w) =
1

(2π)
n
2 |x|n w n

2 +1
Jn

2 −1

(
1

w

)
.

Denoting by I6 the integral in (81), we have, by relations (13) and (12), that

M{I6} (s) = M
{
g4 ∗M f4

(
1

r

)}
(s) = M{g4} (−s) M{f4} (−s)

which is equivalent to

M{I6} (−s) = M{g4} (s) M{f4} (s) . (82)

Since f4 is equal to f in (43), we have that

M{f4} (s) =
1

π
n−1
2 |x|n 2n−1

Γ (n− s)

Γ
(
n+1−s

2

)
Γ
(
s
2

) . (83)

Now we calculate the Mellin transform of function g4. Taking into account (10), and (22), (23) with p = 1, we

get

M{g4} (s) =
∫ +∞

0

ws−1

[
̂̃u1 (w, s)

∣∣∣
p=1

− d2

c2
̂̃u2 (w, s)

∣∣∣
p=1

]
dw

=
c2B2 (s) + c2B1 (s)− d2

c2 s

∫ +∞

0

ws−1

B2 (s) +B1 (s) + w2
dw.

Taking into account formula (46) with

α = s, a = 1, b = 0, c = B2 (s) +B1 (s) , ψ =
π

2
,

and making use of (48), we conclude that

M{g4} (s) =
π
(
c2B2

(
s+ c2B1

(
s− d2

)))

c2 s

csc (sπ)

csc
(
(1− s) π2

) (B2 (s) +B1 (s))
s
2−1

=
π
(
c2B2

(
s+ c2B1

(
s− d2

)))

c2 s

Γ (1− s) Γ (s)

Γ
(
1+s
2

)
Γ
(
1−s
2

) (B2 (s) +B1 (s))
s
2−1

. (84)

From (83), (84), (82), and (80) we conclude that

M
{
rn F−1

{
̂̃u1 (κ, s)

∣∣∣
p=1

− d2

c2
̂̃u2 (κ, s)

∣∣∣
p=1

}
(r, s)

}
(γ − n+ 1, s)

=

(
c2B2 (s) + c2B1 (s)− d2

)
(B2 (s) +B1 (s))

− s
2−1

π
n−3
2 2n−1c2s

Γ (n+ s) Γ (1 + s) Γ (−s)
Γ
(
n+1+s

2

)
Γ
(
− s

2

)
Γ
(
1−s
2

)
Γ
(
1+s
2

)
∣∣∣∣∣
s=γ−n+1

. (85)

By the duplication formula of the Gamma function (42), we have the following equalities for the Gamma

functions that appear in (85)

Γ (n+ s)

Γ
(
1
2 + n+s

2

) =
2n+s−1

√
π

Γ

(
n+ s

2

)
, (86)

Γ (1 + s)

Γ
(
1+s
2

) =
2s√
π
Γ
(
1 +

s

2

)
, (87)

Γ (−s)
Γ
(
1
2 − s

2

) =
2−s−1

√
π

Γ
(
−s
2

)
. (88)

Taking into account (86), (87), and (88), expression (85) simplifies to

M
{
rn F−1

{
̂̃u1 (κ, s)

∣∣∣
p=1

− d2

c2
̂̃u2 (κ, s)

∣∣∣
p=1

}
(r, s)

}
(γ − n+ 1, s)

=

(
c2B2 (s) + c2B1 (s)− d2

)
(B2 (s) +B1 (s))

− s
2−1

π
n
2 c2s

2s−1 Γ

(
n+ s

2

)
Γ
(
1 +

s

2

) ∣∣∣∣∣
s=γ−n+1

,
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and consequently the fractional moments of arbitrary order γ in the Laplace domain are given by

M̃γ (s) =

(
c2B2 (s) + c2B1 (s)− d2

)
(B2 (s) +B1 (s))

−γ+n−3
2

π
n
2 c2s

2γ−n Γ

(
γ + 1

2

)
Γ

(
3 + γ − n

2

)
. (89)

If we restrict (89) to the diffusion case studied in [13], i.e., if we consider d = 0, b2 (β) = 0 and b1 (α) = δ (α− α1),

with 0 < α1 ≤ 1, we have that B2 (s) = 0 and B1 (s) =
1
c2

sα1 , and (89) becomes equal to

M̃α1,γ (s) =

(
4c2

) γ−n+1
2

2π
n
2

s−
α1(γ−n+1)

2 −1 Γ

(
γ + 1

2

)
Γ

(
3 + γ − n

2

)
. (90)

Taking into account the following formula for the inverse Laplace transform (see (2.1.1.1) in [26])

L−1

{
1

sν

}
(t) =

tν−1

Γ (ν)
, ν > 0, (91)

we conclude that

Mα1,γ (t) =

(
4c2

) γ−n+1
2

2π
n
2

Γ
(
γ+1
2

)
Γ
(
3+γ−n

2

)

Γ
(
1 + α1(γ−n+1)

2

) t
α1(γ−n+1)

2

which coincides with the expression (68) in [13], and shows consistency in the obtained expression. Let us now

analyse expression (89). We start pointing out the following special cases:

• When γ = n − 2k − 3, with n > 2k + 3 and k ∈ N0, the correspondent moments in the Laplace domain

become infinite.

• When γ = 1 (mean value), we have

M̃1 (s) =

(
c2B2 (s) + c2B1 (s)− d2

)
(B2 (s) +B1 (s))

n
2 −2

π
n
2 c2s

21−n Γ
(
2− n

2

)
(92)

which becomes infinite when n = 4 + 2k, with k ∈ N0.

• When γ = 2 (variance), we have

M̃2 (s) =

(
c2B2 (s) + c2B1 (s)− d2

)
(B2 (s) +B1 (s))

n−5
2

π
n−1
2 c2s

21−n Γ

(
5− n

2

)
(93)

which becomes infinite when n = 5 + 2k, with k ∈ N0.

• When γ = 3 (3rd moment), we have

M̃3 (s) =

(
c2B2 (s) + c2B1 (s)− d2

)
(B2 (s) +B1 (s))

n
2 −3

π
n
2 c2s

23−n Γ
(
3− n

2

)
(94)

which becomes infinite when n = 6 + 2k, with k ∈ N0.

5.1 Tauberian analysis for the second-order moment (variance)

In this subsection we make use of the Tauberian theorems to derive, from (93) with d = 0, the asymptotic

behaviour of M2 (t), for t → 0+ and t → +∞ knowing the asymptotic behaviours of M̃2 (s) for s → +∞
and s → 0, respectively. To better understand the diffusion and wave cases, we perform a separate analysis

considering particular choices of b1(α) and b2(β). Let us recall some necessary Laplacian inversion formulas

that can be found in [26]:

• Formula (2.5.1.12):

L−1

{
1

sν
lnn (s)

}
(t) =

(
− d

dµ

)n [
tµ−1

Γ (µ)

] ∣∣∣∣∣
µ=ν

, n ∈ N. (95)

• Formula (2.5.6.5):

L−1

{
1

sν
lnµ (as)

}
(t) =

aν−1

Γ (−µ)

∫ +∞

0

w−µ−1

Γ (ν + w)

(
t

a

)w+ν−1

dw, Re (µ) < 0, a > 0, Re (s) > 0.

(96)
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5.1.1 The diffusion case

Here we consider b2 (β) = 0 = B2 (s) = 0, and some particular choices of b1 (α) in (93). For B2 (s) = 0 the

second-order moment in the Laplace domain becomes

M̃2 (s) =
21−n Γ

(
5−n
2

)

π
n−1
2

(B1 (s))
n−3
2

s
, n 6= 5 + 2k, k ∈ N0. (97)

From (97) we immediately see that for n = 3, the moment does not depends on B1 (s) and it is given by

M̃2 (s) =
1

4π s
, so that M2 (t) =

1

4π
.

Therefore, in the following particular cases we omit the analysis for the dimension n = 3.

• Slow-diffusion: Let us consider

b1 (α) = κ1 δ (α− α1) + κ2 δ (α− α2) , 0 < α1 < α2 < 1, κ1, κ2 > 0, κ1 + κ2 = 1

which implies that

B1 (s) =
aκ1

c2
sα1 +

aκ2

c2
sα2 . (98)

Considering (98) in (97) we have the following behaviour of M̃2 (s) when s → 0+

M̃2 (s) =
21−n a

n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(κ1 s
α1 + κ2 s

α2)
n−3
2

s
∼ 21−n (a κ1)

n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

s
α1(n−3)

2 −1.

Concerning the symbol ∼ used in the previous and subsequent expression, it must be understood in the

following sense: given two functions f (w) and g (w), we say that f and g are said to be asymptotically

equivalent as w → ∞ (resp. as w → 0), i.e. f ∼ g, if and only if limw→∞
f(w)
g(w) = 1 (resp. limw→0

f(w)
g(w) = 1).

Making use of (91) to invert the Laplace transform, we obtain for t→ +∞

M2 (t) ∼





c2

a κ1

tα1

Γ (1 + α1)
, n = 1

c

4
√
a κ1

t
α1
2

Γ
(
1 + α1

2

) , n = 2

21−n (a κ1)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

t
−α1(n−3)

2

Γ
(
1− α1(n−3)

2

) , 0 < α1 < min
{
1, 2

n−3

}
∧ n = 4 + 2k, k ∈ N0

.

(99)

In the normal diffusion process, corresponding to α1 = 1, we have that M
2(t)
t

→ c > 0, as t → +∞.

However, in the fractional case it holds M
2(t)
t

→ 0, as t → +∞, for all the dimensions. This corresponds

to a slow-diffusion process, as was observed in [23] for the case n=1. Also, we note a different behaviour of

M2 (t) along the dimensions described, and the restriction of the parameter α1 for dimensions n = 6+2k,

k ∈ N0.

From (98) we have the following behaviour of (97) when s → +∞

M̃2 (s) =
21−n a

n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(κ1 s
α1 + κ2 s

α2)
n−3
2

s
∼ 21−n (a κ2)

n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

s
α2(n−3)

2 −1.

Making use of (91) to invert the Laplace transform, we obtain for t→ 0+

M2 (t) ∼





c2

a κ2

tα2

Γ (1 + α2)
, n = 1

c

4
√
a κ2

t
α2
2

Γ
(
1 + α2

2

) , n = 2

21−n (a κ2)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

t
−α2(n−3)

2

Γ
(
1− α2(n−3)

2

) , 0 < α2 < min
{
1, 2

n−3

}
∧ n = 4 + 2k, k ∈ N0

.

(100)
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• Super slow-diffusion I : Let us consider

b1 (α) = κ1 (const.), 0 < α ≤ 1,

which implies that

B1 (s) =
a κ1

c2
s− 1

ln (s)
. (101)

From (101) we have the following behaviour of (97) when s → 0+

M̃2 (s) =
21−n (a κ1)

n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(− ln (s))
3−n
2

(1− s)
3−n
2 s

∼ 21−n (a κ1)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(− ln (s))
3−n
2

s
.

Making use of (95) (for n = 1) and (96) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, we

obtain for t→ +∞

M2 (t) ∼





c2

a κ1
ln (t) , n = 1

c

4
√
a κ1

L−1

{
(− ln (s))

1
2

s

}
(t) , n = 2

21−n (a κ1)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(−1)
3−n
2

Γ
(
n−3
2

)
∫ +∞

0

w
n−5

2 tw

Γ (1 + w)
dw, n = 4 + 2k, k ∈ N0

. (102)

For n = 1, we see that M
2(t)
t

→ 0, as t → +∞ and the decay turns out to be slower in comparison with

the previous case of slow diffusion. Therefore, this case corresponds to a super slow-diffusion process.

The decay turns out be different along the dimensions, although, we don’t have explicit formulas of the

asymptotic behaviour of M2 (t) at infinity to confirm it.

From (101) we have the following behaviour of (97) when s → +∞

M̃2 (s) =
21−n (a κ1)

n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(ln (s))
3−n
2

(s− 1)
3−n
2 s

∼ 21−n (a κ1)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

(ln (s))
3−n
2

s
5−n
2

.

Making use of (95) (for n = 1), and (96) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, we

obtain for t→ 0+

M2 (t) ∼





− c2

a κ1
t ln (t) , n = 1

c

4
√
a κ1

L−1

{
(− ln (s))

1
2

s
3
2

}
(t) , n = 2

21−n (a κ1)
n−3
2 Γ

(
5−n
2

)

π
n−1
2 cn−3

1

Γ
(
n−3
2

)
∫ +∞

0

w
n−5

2 t
3+n
2 +w

Γ
(
5−n
2 + w

) dw, n = 4 + 2k, k ∈ N0

.

• Super slow-diffusion II : Let us consider

b1 (α) = 2α, 0 < α ≤ 1,

which implies that

B1 (s) =
2a

c2
s ln (s)− s+ 1

ln2 (s)
. (103)

From (103) we have the following behaviour of (97) when s → 0+

M̃2 (s) =
a

n−3
2 Γ

(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

(s ln (s)− s+ 1)
n−3
2

(ln (s))
n−3

s
∼ a

n−3
2 Γ

(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

(ln (s))3−n

s
.
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Making use of (95) (for n = 1, 2) and (96) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, we

obtain for t→ +∞

M2 (t) ∼





c2

2a
ln2 (t) , n = 1

− c

4
√
2a

ln (t) , n = 2

a
n−3
2 Γ

(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

1

Γ (n− 3)

∫ +∞

0

wn−4 tw

Γ (1 + w)
dw, n = 4 + 2k, k ∈ N0

. (104)

As explained before this case corresponds also to a super slow-diffusion process since M
2(t)
t

→ 0 as t → +∞
as can be easily observed for dimensions n = 1 and n = 2.

From (103) we have the following behaviour of (97) when s → +∞

M̃2 (s) =
a

n−3
2 Γ

(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

(s ln (s)− s+ 1)
n−3
2

(ln (s))
n−3

s
∼ a

n−3
2 Γ

(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

(ln (s))
3−n
2

s
5−n
2

.

Making use of (95) (for n = 1) and (96) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, we

obtain for t→ 0+

M2 (t) ∼





− c2

2a
t ln (t) , n = 1

c

4
√
a κ1

L−1

{
(ln (s))

1
2

s
3
2

}
(t) , n = 2

a
n−3
2 Γ

(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

1

Γ
(
n−3
2

)
∫ +∞

0

w
n−5
2 t

3+n
2 +w

Γ
(
5−n
2 + w

) dw, n = 4 + 2k, k ∈ N0

.

• Super slow-diffusion III : Let us consider

b1 (α) =
π

2
sin (απ) , 0 < α ≤ 1

which implies that

B1 (s) =
aπ2

2c2
s+ 1

π2 + ln2 (s)
. (105)

From (105) we have the following behaviour of (97) when s → 0+

M̃2 (s) =
2

5−3n
2 a

n−3
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

(s+ 1)
n−3
2

(
π2 + ln2 (s)

)n−3
2 s

∼ 2
5−3n

2 a
n−3
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

(
π2 + ln2 (s)

) 3−n
2

s
.

Making use of (91) and (95) (for n = 1) to invert the Laplace transform, we obtain for t→ +∞

M2 (t) ∼





2c2

a π2
ln2 (t) , n = 1

c

2π
√
2a

L−1





(
π2 + ln2 (s)

) 1
2

s



 (t) , n = 2

2
5−3n

2 a
n−3
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

L−1





(
π2 + ln2 (s)

) 3−n
2

s



 (t) , n = 4 + 2k, k ∈ N0

. (106)

Again, we can see that this case corresponds to a super slow-diffusion process, although only for n = 1

we have an explicit expression of the asymptotic behaviour of M2 (t) at infinity.

From (105) we have the following behaviour of (97) when s → +∞

M̃2 (s) =
2

5−3n
2 a

n−3
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

(s+ 1)
n−3
2

(
π2 + ln2 (s)

)n−3
2 s

∼ 2
5−3n

2 a
n−3
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

(
π2 + ln2 (s)

) 3−n
2

s
5−n
2

.
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Making use of (91) and (95) (for n = 1) to invert the Laplace transform, we obtain for t→ 0+

M2 (t) ∼





2c2

aπ2
t ln2 (t) , n = 1

c

2π
√
2a

L−1





(
π2 + ln2 (s)

) 1
2

s
3
2



 (t) , n = 2

2
5−3n

2 a
n−3
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

L−1





(
π2 + ln2 (s)

) 3−n
2

s
5−n
2



 (t) , n = 4 + 2k, k ∈ N0

.

5.1.2 The wave case

Here we consider b1 (α) = 0 = B1 (s) = 0, and some particular choices of b2 (β) in (93). For B1 (s) = 0 the

expression for the second-order moment becomes

M̃2 (s) =
21−n Γ

(
5−n
2

)

π
n−1
2

(B2 (s))
n−3
2

s
, n 6= 5 + 2k, k ∈ N0. (107)

From (107) we immediately see that for n = 3, the moment does not depend on B2 (s) and it is given by

M̃2 (s) =
1

4π s
, so that M2 (t) =

1

4π
.

Therefore, in the following particular cases we omit the analysis for the dimension n = 3.

• Super fast-diffusion: Let us consider

b2 (β) = κ1 δ (β − β2) + κ2 δ (β − β2) , 1 < β1 < β2 ≤ 2, κ1, κ2 > 0, κ1 + κ2 = 1

which implies that

B2 (s) =
κ1

c2
sβ1 +

κ2

c2
sβ2. (108)

From (108) we have the following behaviour of (107) when s → 0+

M̃2 (s) =
21−n Γ

(
5−n
2

)

π
n−1
2 cn−3

(
κ1 s

β1 + κ2 s
β2
)n−3

2

s
∼ 21−n κ

n−3
2

1 Γ
(
5−n
2

)

π
n−1
2 cn−3

s
β1(n−3)

2 −1.

Making use of (91) (for n = 1, 2, 4) to invert the Laplace transform, we obtain for t→ +∞

M2 (t) ∼





c2

κ1

tβ1

Γ (1 + β1)
, n = 1

c

4
√
κ1

t
β1
2

Γ
(
1 + β1

2

) , n = 2

√
κ1

8cπ

t−
β1
2

Γ
(
1− β1

2

) , n = 4 ∧ 1 < β1 < 2

21−n κ
n−3
2

1 Γ
(
5−n
2

)

π
n−1
2 cn−3

L−1
{
s

β1(n−3)

2 −1
}
(t) , n = 6 + 2k, k ∈ N0

. (109)

For n = 1, 2 we can see that M
2(t)
t

→ +∞, which corresponds to a super fast-diffusion process. However,

for n = 4 (and also n = 3) we have that M
2(t)
t

→ 0, which shows a slow-diffusion process. Therefore, we

conclude that in the wave case the type of process vary from dimension 1 to higher dimensions.

From (108) we have the following behaviour of (107) when s → +∞

M̃2 (s) =
21−n Γ

(
5−n
2

)

π
n−1
2 cn−3

(
κ1 s

β1 + κ2 s
β2
)n−3

2

s
∼ 21−n κ

n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

s
β2(n−3)

2 −1.
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Making use of (91) (for n = 1, 2, 4) to invert the Laplace transform, we obtain for t→ 0+

M2 (t) ∼





c2

κ2

tβ2

Γ (1 + β2)
, n = 1

c

4
√
κ2

t
β2
2

Γ
(
1 + β2

2

) , n = 2

√
κ2

8cπ

t−
β2
2

Γ
(
1− β2

2

) , n = 4 ∧ 1 < β2 < 2

21−n κ
n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

L−1
{
s

β2(n−3)
2 −1

}
(t) , n = 6 + 2k, k ∈ N0

. (110)

• Fast-diffusion I : Let us consider

b2 (β) = κ2 (const.), 1 < β ≤ 2,

which implies that

B2 (s) =
κ2

c2
s2 − s

ln (s)
. (111)

From (111) we have the following behaviour of (107) when s → 0+

M̃2 (s) =
21−n κ

n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

(− ln (s))
3−n
2

(1− s)
3−n
2 s

5−n
2

∼ 21−n κ
n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

(− ln (s))
3−n
2

s
5−n
2

.

Making use of (95) (for n = 1) and (96) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, we

obtain for t→ +∞

M2 (t) ∼





c2

κ2
t ln (t) , n = 1

c

4
√
κ2

L−1

{
(− ln (s))

1
2

s
3
2

}
(t) , n = 2

21−n κ
n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

(−1)
3−n
2

Γ
(
n−3
2

)
∫ +∞

0

w
n−5
2 t

3−n
2 +w

Γ
(
5−n
2 + w

) dw, n = 4 + 2k, k ∈ N0

. (112)

In this case, we only could obtain an explicit formula for the asymptotic behaviour of M2 (t) at infinity for

the dimension n = 1. It shows a fast-diffusion process since M
2(t)
t

→ +∞, as t→ +∞. Since the growth

is not so pronounced when compared with the super fast-diffusion process of the previous example, we

called it only fast-diffusion process. For dimensions higher we cannot present any conclusion.

From (111) we have the following behaviour of (107) when s → +∞

M̃2 (s) =
21−n κ

n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

(ln (s))
3−n
2

(s− 1)
3−n
2 s

5−n
2

∼ 21−n κ
n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

(ln (s))
3−n
2

s4−n
.

Making use of (95) (for n = 1) and (96) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, we

obtain for t→ 0+

M2 (t) ∼





c2

κ2

t2

2
ln

(
1

t

)
, n = 1

c

4
√
κ2

L−1

{
(ln (s))

1
2

s2

}
(t) , n = 2

21−n κ
n−3
2

2 Γ
(
5−n
2

)

π
n−1
2 cn−3

1

Γ
(
n−3
2

)
∫ +∞

0

w
n−5

2 t3−n+w

Γ (4− n+ w)
dw, n = 4 + 2k, k ∈ N0

.
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• Fast-diffusion II : Let us consider

b2 (β) = −2 (β − 2) , 1 < β ≤ 2

which implies that

B2 (s) = − 2

c2
s ln (s)− s2 + s

ln2 (s)
. (113)

From (113) we have the following behaviour of (107) when s → 0+

M̃2 (s) =
Γ
(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

(
−
(
s ln (s)− s2 + s

))n−3
2

(
ln2 (s)

)n−3
2 s

∼ Γ
(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

(− ln (s))
3−n
2

s
5−n
2

.

Making use of (95) (for n = 1) and (96) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, we

obtain for t→ +∞

M2 (t) ∼





c2

2
t ln (t) , n = 1

c

4
√
2
L−1

{
(− ln (s))

1
2

s
3
2

}
(t) , n = 2

Γ
(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

(−1)
n−3
2

Γ
(
n−3
2

)
∫ +∞

0

w
n−5

2 t
3−n
2 +w

Γ
(
5−n
2 + w

) dw, n = 4 + 2k, k ∈ N0

. (114)

For n = 1 we see that M
2(t)
t

→ +∞, as t → +∞ and corresponds to a fast-diffusion process. For higher

dimensions we cannot present any conclusion.

From (113) we have the following behaviour of (107) when s → +∞

M̃2 (s) =
Γ
(
5−n
2

)

2
n+1
2 π

n−1
2 cn−3

(
−
(
s ln (s)− s2 + s

))n−3
2

(
ln2 (s)

)n−3
2 s

∼ Γ
(
5−n
2

)

2
3n−5

2 π
n−1
2 cn−3

(ln (s))
3−n

s4−n
.

Making use of (95) (for n = 1, 2), and (96) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, we

obtain for t→ 0+

M2 (t) ∼





2c2
t2

2
ln (t) , n = 1

c

2
√
2
t ln

(
1

t

)
, n = 2

Γ
(
5−n
2

)

2
3n−5

2 π
n−1
2 cn−3

∫ +∞

0

wn−4 t3+n+w

Γ (4− n+ w)
dw, n = 4 + 2k, k ∈ N0

.

• Fast-diffusion III : Let us consider

b2 (β) = −π
2

sin (βπ) , 1 < β ≤ 2

which implies that

B2 (s) =
π2

2c2
π s (s+ 1)

π2 + ln2 (s)
. (115)

From (115) we have the following behaviour of (107) when s → 0+

M̃2 (s) =
2

5−3n
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

(s (s+ 1))
n−3
2

(
π2 + ln2 (s)

)n−3
2 s

∼ 2
5−3n

2 Γ
(
5−n
2

)

π
5−n
2 cn−3

(
π2 + ln2 (s)

) 3−n
2

s
5−n
2

.
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Making use of (91) and (95) (for n = 1) to invert the Laplace transform, we obtain for t→ +∞

M2 (t) ∼





2c2

π2
t ln2 (t) , n = 1

c

2π
√
2
L−1





(
π2 + ln2 (s)

) 1
2

s
3
2



 (t) , n = 2

2
5−3n

2 a
n−3
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

L−1





(
π2 + ln2 (s)

) 3−n
2

s
5−n
2



 (t) , n = 4 + 2k, k ∈ N0

. (116)

For n = 1 we see that M
2(t)
t

→ +∞, as t → +∞ and corresponds to a fast-diffusion process. For higher

dimensions we cannot present any conclusion.

From (115) we have the following behaviour of (107) when s → +∞

M̃2 (s) =
2

5−3n
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

(s (s+ 1))
n−3
2

(
π2 + ln2 (s)

)n−3
2 s

∼ 2
5−3n

2 Γ
(
5−n
2

)

π
5−n
2 cn−3

(
π2 + ln2 (s)

) 3−n
2

s4−n
.

Making use of (91) and (95) (for n = 1) to invert the Laplace transform, we obtain for t→ 0+

M2 (t) ∼





c2

π2
t2 ln2 (t) , n = 1

c

2π
√
2
L−1





(
π2 + ln2 (s)

) 1
2

s2



 (t) , n = 2

2
5−3n

2 a
n−3
2 Γ

(
5−n
2

)

π
5−n
2 cn−3

L−1





(
π2 + ln2 (s)

) 3−n
2

s4−n



 (t) , n = 4 + 2k, k ∈ N0

.

5.1.3 Graphical representations

In this section we present and analyse the graphical representation of the asymptotic behaviour of M2 (t), for

some of the cases studied previously separating the diffusion and the wave cases.

The diffusion case: In Figure 1 we have the graphical representation of (99), (102), (104), and (106) for

n = 1 and using a logarithmic scale.

101 102 103 104 105 106 107

1

100

104

106

t

M
2
(t
)

Super slow-diffusion III

Super slow-diffusion II

Super slow-diffusion

Slow-diffusion (�=1/2)

Normal diffusion

Figure 1: Representation for n = 1 of the normal diffusion, slow-diffusion, and super slow-diffusion processes.

Looking at the plot we see that, for large values of t, the transition from the normal diffusion to slow-

diffusion and then to supper slow-diffusion is characterized by slower growth of the variance. It is also seen

that for the different super-slow diffusion processes that we exhibit, the behaviour of M2 (t) at initial times is

not the same at large values of t, justifying the necessity of the logarithmic scale. In the following figure we

present a graphical representation of (100) (on the left) and (99) (on the right) for α1 = 0.5, 0.75, and different

values of the dimension.
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Figure 2: Representation of the slow-diffusion process for t → 0+ (left) and for t → +∞ (right), for α1 =

0.5, 0.75 (1st and 2nd lines respectively), and different values of n

From these plots we see that the diffusion along the dimensions is different and has a transition of the

behaviour at n = 3. In fact, for n = 1 and n = 2 the variance increases for large values of t with different slope,

for n = 3 the variance is constant, while for n = 4 (and also n = 4+ 2k, k ∈ N) the variance decreases for large

values of t. This is also consequence of a different behaviour of the variance for small values of t, where the

diffusion is faster when the dimension increases (as we can see in the plots on the left). Finally, we present a

graphical representation in logarithmic scale of (99) for n = 1, 2, 4, and different values of α1.
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Figure 3: Representation of the slow-diffusion process for n = 1, 2 (first line from left), and n = 4 (second line),

and different values of α1.

The plots show the different behaviour of the power functions tα1 , t
α1
2 , t−

α1
2 for n = 1, 2, 4 respectively (see

(99)). As the parameter α1 tends to 1, the variance of the diffusion process tends to the variance of the normal
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diffusion process. The increase of the dimension induces a reduction of the range of the plots.

The wave case: In Figure 4 we have the graphical representation of (109), (112), (114), and (116) for n = 1,

and using a logarithmic scale.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1000

10
7

10
11

t

M
2
(t
)

Fast-diffusion III

Fast-diffusion II

Fast-diffusion

Super fast-diffusion (β=3/2)

Wave-diffusion

Figure 4: Representation for n = 1 of the wave-diffusion, super fast-diffusion, and fast-diffusion processes.

From the analysis of the previous figure, we see that, for large values of t, the transition from fast-diffusion

to super-fast diffusion and then to normal wave-diffusion is characterized by a gradual increase of the variance.

For the different super fast-diffusion processes that we exhibit, the behaviour of M2 (t) at initial times is not

the same at large values of t, as we can see in the plot. Next, we present a graphical representation of (110)

(on the left) and (109) (on the right) for β1 = 1.5, 1.75, and different values of the dimension.
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Figure 5: Representation of the super fast-diffusion process for t → 0+ (left) and for t → +∞ (right), for

β1 = 1.5, 1.75 (1st and 2nd lines respectively), and different values of n

The analysis of the previous figures leads to similar conclusions to those obtained from Figure 2. Again we

see that there are different behaviours along the dimensions and occurs a transition at n = 3. In fact, for n = 1

and n = 2, the variance increases for large values of t with approximately the same slope, for n = 3 the variance

is constant, while for n = 4 (and also n = 4 + 2k, k ∈ N) the variance decreases for large values of t. This fact

comes from the different behaviour of the variance for small values of t (see the plots on the left), where the

diffusion is faster when the dimension increases. Finally, we present a graphical representation in logarithmic

scales of (109) for n = 1, 2, 4, and different values of β1.
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Figure 6: Representation of the super fast-diffusion process for n = 1, 2 (first line from left), and n = 4 (second

line), and different values of β1.

The plots reflect the different behaviour of the power functions tβ1 , t
β1
2 , and t−

β1
2 for n = 1, 2, 4 respectively

(see (109)). The variance of the diffusion process tends to the variance of the normal wave-diffusion process,

when β1 tends to 2.

6 Conclusions

The telegraph equation containing fractional derivatives in time and/or in space are usually adopted to describe

both diffusive and wave-like anomalous phenomena, due to the simultaneous presence of the first and second

order time derivatives, and therefore a detailed study of their solutions is required. Our attention in this work

was focussed on the time-fractional telegraph equation in Rn×R+ of distributed order, which, for some particular

choices of the density functions, can be related with sub/super-diffusive processes. Specifically, we were able

to worked out how to express their fundamental solutions in terms of Fox H-functions by a combination of the

Laplace, Fourier and Mellin transforms.

The presented approach corresponds to a generalization of the techniques used by several authors for time-

fractional diffusion-wave equations of distributed order (see [15, 23], for example), however, the simultaneous

presence of two density functions lead to more elaborate computations and a more complicated expression for

the solution. We were able to obtain a representation of the fundamental solution in terms of a Laplace-type

integral of a Fox H-function. Moreover, the general expression for the fractional moments of arbitrary order were

deduced and the second-order moment (variance) was studied in detail via the Tauberian theorems, for specific

choices of the density functions. We show during the paper that for particular choices of the density functions

and/or some parameters in (1) we recover several results presented in the literature for the time-fractional

diffusion-wave equations of single and distributed order, which reveals consistency of our results.
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