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1. Introduction

Convolutional codes form a fundamental class of linear codes that are widely used 
in applications (see also the related notion of sequential cellular automata [3]). They 
are typically described by means of a generator matrix, which is a polynomial matrix 
with coefficients in a finite field or a finite ring, depending on the application. Yet, the 
mathematical theory of convolutional codes over finite fields is much developed and has 
produced many sophisticated classes of codes. On the other hand, very little is known 
about concrete optimal constructions of convolutional codes over finite rings. In any 
case, the decoding of these codes is, in general, not easy. Probably the most prominent 
decoding algorithm is the Viterbi algorithm but its use is limited as its complexity grows 
exponentially with the size of the memory of the code. However, in [24] it was shown 
that the decoding of convolutional codes over finite fields requires only linear algebra 
when they are used over the erasure channel, i.e., when the positions of the errors are 
known. Despite the fact that convolutional codes that possess optimal erasure correcting 
capabilities require large finite fields, the results in [24] allow to implement these codes 
in many practical situations and therefore attracted the interest of many researchers, see 
for instance [14] and references therein.

Following this thread of research and aiming to extend these results over finite fields to 
the context of finite rings, we consider in this paper convolutional codes C over Zpr [D]
and study the erasure correcting capabilities of these codes over the erasure channel. 
The extension of the concept of convolutional codes from finite fields to finite rings was 
first introduced by Massey and Mittelholzer [16], in 1989, and since then has attracted 
a lot of attention [4,7,11,10,18,21,22]. This interest is due to the discovery that the most 
appropriate codes for phase modulation are the linear codes over the residue class ring 
ZM , M a positive integer. It was immediately apparent that convolutional codes over 
ZM behave very differently from convolutional codes over finite fields. For instance, in 
contrast with the field case, convolutional codes over ZM are not necessarily free modules. 
We focus on the ring Zpr as, obviously, by the Chinese Remainder Theorem, results on 
codes over Zpr can be extended to codes over ZM [1].

In particular, our goal is to retrieve as much information as possible from the received 
corrupted vector. The decoder proposed in this work is a maximum likelihood algebraic 
decoder and follows succinctly two main steps. Firstly, it searches for unique decoding, 
i.e., when there exists a unique most likely word, then, the decoder outputs such a 
word. When this is not possible the algorithm performs a list decoding algorithm, i.e., it 
computes a complete list of the most likely codewords for a given corrupted codeword.

For this problem, we shall use the parity-check matrix H(D) of C in a particular 
form. Then, the number of independent columns of specific submatrices of H(D) will 
determine the size of the list of possible codewords in the algorithm. Considering the 
erasures as unknowns to-be-determined, the decoding problem treated here amounts 
to solving a system of linear equations over Zpr . The idea we used in this work is to 
multiply a selected subset of these equations by a power of p in such a way that we 
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obtain equations with coefficients in the field pr−1Zpr , isomorphic to Zp, and therefore 
we can easily compute the unknowns. Once we know some of the coefficients we can 
select another set of equations and apply the same ideas to these equations to recover 
another set of erased symbols. In this way we develop a systematic recursive procedure 
to recover all possible erasures that could have occurred. This, in turn, provides with a 
list with the closest codewords to the received information vector.

The outline of this paper is as follows. In Section 2, we present basic results on con-
volutional codes over the finite ring Zpr , in particular about their parity-check matrices, 
which are important for decoding over the erasure channel. In Section 3, we present 
our erasure decoding algorithm for convolutional codes over Zpr and illustrate it with 
an example. Finally, we conclude with analyzing the complexity of our algorithm in 
Section 4.

2. Preliminary results

In this section we present the elementary background required in the paper. Let Zpr [D]
denote the ring of polynomials with coefficients in Zpr and let A = {0, 1, 2, . . . , p −1} be 
the set of digits. We say that v(D) has order s, denoted by ord(v(D)) = s, if ps−1v(D) �=
0 and ps−1v(D) ∈ pr−1Z�

pr [D]. Every element in v(D) ∈ Z�
pr [D] admits a unique p-

adic expansion as v(D) = a0(D) + a1(D)p + · · · + ar−1(D)pr−1, with ai(D) ∈ A[D], 
ord(ai(D)) = r − 1 and i = 0, 1, . . . , r − 1. We shall extensively use that pr−1Zpr is 
isomorphic to the field Zp in our algorithms.

Definition 1. [6,8,22] A convolutional code C of length n is a Zpr [D]-submodule of Zn
pr [D]. 

A polynomial matrix G(D) ∈ Zk×n
pr [D] such that

C =
{
G(D)Tu(D) ∈ Zn

pr [D] : u(D) ∈ Zk
pr [D]

}
is called generator matrix of the code.

A polynomial matrix H(D) is a parity-check matrix (or syndrome former) of a con-
volutional code C if C = KerZpr [D]H(D), i.e., for every w(D) ∈ Zn

pr [D],

w(D) ∈ C ⇔ H(D)w(D) = 0. (1)

Definition 2. Let R be a ring with identity and U(D) ∈ R[D]n×n. Then U(D) is called
unimodular if there exists V (D) ∈ R[D]n×n such that U(D)V (D) = V (D)U(D) = In.

For any matrix A with entries in Zpr or Zpr [D], we denote by [A]p the (componentwise) 
projection of A into Zp.

Lemma 1. [13] Let U(D) ∈ Zpr [D]n×n. Then U(D) is unimodular (over Zpr [D]) if and 
only if [U(D)]p is unimodular (over Zp[D]).
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Definition 3. Let F be a finite field. A polynomial matrix P (D) ∈ F [D]k×n with k ≤ n

is left prime if in all factorizations P (D) = Δ(D)P̄ (D) with Δ(D) ∈ F [D]k×k and 
P̄ (D) ∈ F [D]k×n, the left factor Δ(D) is unimodular.

Lemma 2. [12] Let P (D) ∈ Zp[D]k×n with k ≤ n. Then, the following conditions are 
equivalent:

(i) P (D) is left prime.

(ii) There exists N(D) ∈ Zp[D](n−k)×k such that 
(
P (D)
N(D)

)
is unimodular.

(iii) u(D)P (D) ∈ Zn
pr [D] ⇒ u(D) ∈ Zk

pr [D], for all u(D) ∈ Zk
pr(D), where Zpr(D)

denotes the ring of rational functions with coefficients in Zpr .

The next result follows immediately from Lemma 1 and Lemma 2.

Corollary 1. Let P (D) ∈ Zpr [D]k×n with k ≤ n. Then [P (D)]p is left prime over Zp[D]

if and only if there exists N(D) ∈ Zpr [D](n−k)×k such that 
(
P (D)
N(D)

)
is unimodular.

If C is a convolutional code that admits a parity-check matrix, then a parity-check ma-
trix of C can be constructed as follows (for more details see [21]): Let Ĝ(D) ∈ Zpr [D]k̂×n

be a generator matrix of C and consider

Ĉ = {Ĝ(D)�u(D) : u(D) ∈ Zpr((D))k̂}

where Zpr((D)) denotes the ring of Laurent series over Zpr , i.e., the set of elements of 
the form

a(D) =
+∞∑

i=−∞
aiD

i

where the coefficients ai are in Zpr and only finitely coefficients with negative indices 
may be nonzero. Note that C = Ĉ ∩ Zpr [D]n. Then, there exists

G(D) =

⎡⎢⎢⎢⎢⎣
G0(D)
pG1(D)

...
pr−1Gr−1(D)

⎤⎥⎥⎥⎥⎦ , Gi(D) ∈ Zpr [D]ki×n for i = 0, . . . , r − 1 (2)

with G =

⎡⎢⎢⎣
G0(D)
G1(D)

...
Gr−1(D)

⎤⎥⎥⎦ full row rank over Zp[D] such that
p
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Ĉ = {G(D)�u(D) : u(D) ∈ Zpr((D))k},

where k = k0 + k1 + · · · + kr−1. A procedure to obtain G(D) in this particular form is 
described in [21, Theorem 1]. A parity-check matrix of Ĉ can be determined as follows 
Consider the generator matrix G(D) defined in (2) and let N(D) ∈ Zpr [D](n−k)×n such 
that ⎛⎜⎜⎜⎜⎝

G0(D)
G1(D)

...
Gr−1
N(D)

⎞⎟⎟⎟⎟⎠
is unimodular. Then, there exists Hi(D) ∈ Zpr [D]li×n where l0 = n − k and li = kr−i, 
i = 1, 2, . . . , r − 1, and L(D) ∈ Zpr [D]k0×n such that

⎛⎜⎜⎜⎜⎜⎜⎝

L(D)
Hr−1(D)
Hr−2(D)

...
H1(D)
H0(D)

⎞⎟⎟⎟⎟⎟⎟⎠ [G0(D)� G1(D)� . . . Gr−1(D)� N(D)�] = P (D) (3)

for some

P (D) =

⎡⎢⎢⎣
γ1(D)

γ2(D)
. . .

γn(D)

⎤⎥⎥⎦ ,
where γi(D) are nonzero polynomials in Zpr [D]. Then,

H(D) =

⎡⎢⎢⎢⎢⎣
H0(D)
pH1(D)

...
pr−1Hr−1(D)

⎤⎥⎥⎥⎥⎦ , Hi(D) ∈ Zpr [D]li×n, li = kr−i, for i = 1, . . . , r−1, l0 = n−k

with H =

⎡⎢⎢⎣
H0(D)
H1(D)

...
Hr−1(D)

⎤⎥⎥⎦
p

full row rank over Zp[D], such that

w(D) ∈ Ĉ ⇔ H(D)w(D) = 0.
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More details can be found in [21]. Then,

Ĉ = {w(D) ∈ Zpr((D))n : H(D)w(D) = 0},

and consequently,

C = KerZpr [D]H(D),

which means that H(D) is a parity-check matrix of C.
However, not all convolutional codes admit a parity-check matrix as the following 

example shows.

Example 1. Let G(D) =
[
1 + D 1 + D 1 + D

3 3 0

]
∈ Z9[D]2×3 and C be the convolu-

tional code with generator matrix G(D). Let us assume that C admits a parity-check 
matrix H(D). Then, since w(D) = [1 + D 1 + D 1 + D]� ∈ C, it follows that 

H(D)w(D) = 0. Then, (1 + D)H(D) 
(1

1
1

)
= 0 and therefore, H(D) 

(1
1
1

)
= 0. This 

means that 
(1

1
1

)
∈ C, which is not true.

However, in the case that a convolutional code does not admit a parity-check matrix, 
the procedure above constructs a matrix H(D) such that C ⊂ KerZpr [D]H(D) because 
C ⊂ Ĉ.

If a convolutional code C admits a parity-check matrix, it is called observable or
non-catastrophic. The characterization of the non-catastrophic convolutional codes over 
Zpr [D] is still an open problem. However, for a certain class of convolutional codes, the 
following lemma characterizes the non-catastrophic codes.

Lemma 3. Let C be a convolutional code of length n that admits a generator matrix G(D)
of the form

G(D) =

⎡⎢⎢⎢⎢⎣
G0(D)
pG1(D)

...
pr−1Gr−1(D)

⎤⎥⎥⎥⎥⎦ , Gi(D) ∈ Zpr [D]ki×n for i = 0, . . . , r − 1 (4)

such that

G =

⎡⎢⎢⎣
G0(D)
G1(D)

...
Gr−1(D)

⎤⎥⎥⎦
p

(5)
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is full row rank over Zp[D]. Then, C admits a parity-check matrix if and only if G is left 
prime over Zp[D].

Proof. Take k = k0 + k1 + · · ·+ kr−1 and let us assume that G(D) is such that G is left 
prime over Zp[D]. Then, by Corollary 1, there exists N(D) ∈ Zpr [D](n−k)×n such that

⎛⎜⎜⎜⎜⎝
G0(D)
G1(D)

...
Gr−1
N(D)

⎞⎟⎟⎟⎟⎠
is unimodular. Then⎛⎜⎜⎜⎜⎜⎜⎝

L(D)
Hr−1(D)
Hr−2(D)

...
H1(D)
H0(D)

⎞⎟⎟⎟⎟⎟⎟⎠ [G0(D)� G1(D)� . . . Gr−1(D)� N(D)�] = I (6)

for some Hi(D) ∈ Zpr [D]li×n where l0 = n − k and li = kr−i, i = 1, 2, . . . , r − 1, and 
L(D) ∈ Zpr [D]k0×n. Let us define

H(D) =

⎛⎜⎜⎝
H0(D)
pH1(D)

...
pr−1Hr−1(D)

⎞⎟⎟⎠ .

By Corollary 1 we have that

H =

⎡⎢⎢⎣
H0(D)
H1(D)

...
Hr−1(D)

⎤⎥⎥⎦
p

is left prime over Zp[D]. Expression (6) also implies that

H(D)G(D)� = 0. (7)

Let us prove that C = KerZpr [D]H(D). Expression (7) shows that C ⊂ KerZpr [D]H(D). 
To prove the other inclusion, let us consider that w(D) ∈ KerZpr [D]H(D), i.e., w(D) ∈
Zpr [D] is such that
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⎛⎜⎜⎝
H0(D)
pH1(D)

...
pr−1Hr−1(D)

⎞⎟⎟⎠w(D) = 0.

Then

Hi(D)w(D) = pr−ivi(D)

for some vi(D) ∈ Zpr [D]li , i = 0, 1, . . . , r − 1. Since, by (6),

w(D) = [G0(D)� G1(D)� · · · Gr−1(D)� N(D)�]

⎡⎢⎢⎢⎢⎢⎢⎣

L(D)
Hr−1(D)
Hr−2(D)

...
H1(D)
H0(D)

⎤⎥⎥⎥⎥⎥⎥⎦w(D),

it follows that

w(D) = [G0(D)� G1(D)� · · · Gr−1(D)� N(D)�]

⎡⎢⎢⎢⎢⎢⎢⎣

L(D)w(D)
pvr−1(D)
p2vr−2(D)

...
pr−1v1(D)

0

⎤⎥⎥⎥⎥⎥⎥⎦

= G(D)�

⎡⎢⎢⎢⎢⎣
L(D)w(D)
vr−1(D)
vr−2(D)

...
v1(D)

⎤⎥⎥⎥⎥⎦ ,

which means that w(D) ∈ C. Thus, we conclude that C = KerZpr [D]H(D), i.e., C admits 
a parity-check matrix.
To show the converse, let us assume that C has a parity-check matrix H(D) and let 
w̄(D) ∈ Zn

p [D] be such that

w̄(D) = G�ū(D),

for some ū(D) ∈ Zk
p(D). Then,

pr−1w(D) = G�pr−1u(D),

where w(D) ∈ Zn
pr [D] and u(D) ∈ Zk

pr(D) are such that [w(D)]p = w̄(D) and [u(D)]p =
ū(D). Therfore,



J. Lieb et al. / Finite Fields and Their Applications 72 (2021) 101815 9
pr−1w(D) = G(D)�u1(D)

where

pr−1u(D) =

⎡⎢⎢⎣
Ik0

pIk1

. . .
pr−1Ikr−1

⎤⎥⎥⎦u1(D).

Consequently,

H(D)pr−1w(D) = H(D)G(D)�u1(D) = 0,

which means that pr−1w(D) ∈ C. Therfore u1(D) ∈ Zk
pr [D] and hence, ū(D) ∈ Zk

pr [D]. 
Thus, we conclude by Lemma 2 that G is left prime over Zp[D]. �

It is well-known that kernel representations are useful to detect errors introduced 
during transmission. If a word w(D) is received after channel transmission, the existence 
of errors is checked by simple multiplication by H(D): if H(D)w(D) = 0, it is assumed 
that no errors occurred. As Example 1 and Lemma 3 show, not all convolutional codes 
defined in Zpr [D] admit a parity-check matrix. Nevertheless we showed that there always 
exists a matrix H(D) such that C ⊂ kerH(D), and then we still can make use of H(D)
to decode when the transmission occurs over the erasure channel. For simplicity, we will 
also call this matrix a parity-check matrix of C. In an erasure channel a codeword can 
only have erasures (i.e., we know the positions of the part of the codeword that is missing 
or erased) but no errors occur. In fact, if one considers the erasures as indeterminates, 
H(D)w(D) = 0 give rise to a system of linear equations. Solving this system amounts 
to decoding the received word w(D), as we explain in detail in the next section.

The associated truncated sliding parity-check matrix of H(D) =
ν∑

i=0
HiDi, is

Hc
j =

⎡⎢⎢⎢⎢⎣
H0

H1 H0

...
. . .

Hj Hj−1 · · · H0

⎤⎥⎥⎥⎥⎦ (8)

with Hj = 0 for j > ν. As any codeword w(D) of C satisfies H(D)w(D) = 0, if w(D) =∑
i∈N0

wiDi, we have that, for all j ≥ 0, 
∑j

i=0 H
iwj−i = 0, i.e.,⎡⎢⎢⎢⎢⎣

H0

H1 H0

...
. . .

Hj Hj−1 · · · H0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
w0

w1

...
wj

⎤⎥⎥⎥⎥⎦ = 0. (9)
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Two of the main notions of minimum distance of convolutional codes are the free 
distance and the column distance. Given w(D) =

∑
i∈N0

wiDi, we define its Hamming 
weight as

wt(w(D)) =
∑
j∈N

wt(wj)

where wt(wj) is the number of nonzero elements of wj.
Given an (n, k) convolutional code C ⊆ Zn

pr [D], we define its free distance as

dfree(C) = min{wt(w(D)) : w(D) ∈ C and w(D) �= 0}.

The free distance gives the correction capability of a convolutional code when consid-
ering whole codewords. In other words, there is no maximum degree j for a codeword 
considered by the free distance. In this work we shall focus on the sliding-window erasure 
correction capabilities of C within a time interval and this will be determined by the j-th 
column distance of C, for j ∈ N0, which is defined as follows.

dcj(C) = min{wt((w0, w1, . . . , wj)) :
∑
i∈N0

wiDi ∈ C, w0 �= 0}

∗=
{
wt((w0, w1, . . . , wj)) : (w0, w1, . . . , wj) satisfies (9) and w0 �= 0

}
(10)

where the equality ∗ holds for convolutional codes that have a parity-check matrix. Next, 
we present two preliminary results.

Lemma 4. [17] Let Ax = b with A ∈ Za×s
pr and b ∈ Za

pr be a linear system of equations 
in x. Suppose this system has a solution. Then, the solution is unique if and only if [A]p
is full column rank or equivalently, if the McCoy1 rank of A is s.

Note that, opposed to the field case, a set of vectors in Zpr can be linearly dependent 
but none of them is in the Zpr -span of the others. The following result states the erasure 
correcting capability of a convolutional code in terms of its column distance.

Lemma 5. Let C = KerZpr [D]H(D) and j ∈ N. The following statements are equivalent:

1. the column distance dcj(C) = d;
2. if (w0, w1, . . . , wj) contains up to d − 1 erasures then w0 can be recovered and there 

exist d erasures that make it impossible to recover w0.
3. all sets of d − 1 columns of Hc

j that contain at least one of the first n columns of Hc
j

are linearly independent and there exists a set of d columns of Hc
j that contains at 

least one of the first n columns of Hc
j and is linearly dependent;

1 The McCoy rank of a matrix is the largest size of a minor that is an invertible element in the ring, 
A \ {0} in our case.
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If these equivalent statements hold, then the following holds:

(4) none of the first n columns of [Hc
j ]p is contained in the Zp-span of any other d − 2

columns of [Hc
j ]p.

Proof. The equivalence of 1., 2. and 3. can be shown exactly in the same way as for 
finite fields (see [9]). The last statement (4) follows from the fact that if we have a linear 
combination of columns of [Hc

j ]p in Zp, we readily obtain linear combinations of Hc
j over 

Zpr (just multiply the coefficients of the linear combination from Zp by pr−1). �
We notice that statement (4) of Lemma 5 does not imply the others as we show in 

the following example.

Example 2. Consider C = KerZ9[D]H(D) over Z9 where H(D) = H0 + H1D with

H0 =
(

1 0 3
0 1 3

)
and H1 =

(
0 1 1
1 0 1

)
.

Then, none of the first 3 columns of [Hc
1 ]3 is a linear combination of 1 = 3 − 2 of the 

remaining columns of [Hc
1 ]3. Hence, (4) is fulfilled for d = 3. However, it is easy to see 

that dc1(C) = 2 (consider the truncated codeword (w0, w1) = (003 002)), i.e., the first 
statement of Lemma 5 is not fulfilled for d = 3.

3. A decoding algorithm for erasures

In this section we state the problem using the notation presented in the previous 
section and then propose an efficient decoding algorithm to solve it. More concretely, we 
aim to recover erasures that may occur during the transmission of the information over 
an erasure channel using convolutional codes C ⊂ Zn

pr [D]. We derive a constructive step 
by step decoding algorithm to compute a minimal list with the closest codewords to the 
received vector. This is equivalent to solving a certain system of linear equations in Zpr .

Suppose that w(D) =
∑

i∈N0
wiDi ∈ C is sent and assume that we have correctly 

received all coefficients up to an instant i − 1 and some of the components of wi are 
erased. The decoder tries to recover wi up to a given instant i + T and if this is not 
possible it outputs a list with the closest vectors at time instant i +T . The parameter T
is called the delay constraint and represents the maximum delay the receiver can tolerate 
to retrieve wi, see [2,15]. For the sake of simplicity it will be assumed that T ≤ ν, where 
ν is the degree of the parity-check matrix H(D) of C. The system of equations that 
involve wi up to time instant i + T is
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⎡⎢⎢⎣
Hν Hν−1 · · · H0

Hν Hν−1 · · · H0

. . .
...

...
. . .

Hν Hν−1 · · · H0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

wi−ν

wi−ν+1

...
wi

...
wi+T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (11)

We can take the columns of the matrix in (11) that correspond to the coefficients of 
the erased elements to be the coefficients of a new system. With the remaining columns 
we can compute the independent terms, denoted by bi.

We regard the erasures as to-be-determined variables and denote for i ∈ N0 by w̃i the 

subvector of wi that corresponds to the positions of the erasures. Similarly, denote by 

H̃j
i the matrix consisting of the columns of Hj with indices corresponding to the erased 

positions in wi. Then, we obtain the following system of linear equations

⎡⎢⎢⎢⎢⎣
H̃0

i

H̃1
i H̃0

i+1
...

. . .
H̃T

i H̃T−1
i+1 · · · H̃0

i+T

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

w̃i

w̃i+1

...
w̃i+T

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
bi

bi+1

...
bi+T

⎤⎥⎥⎥⎥⎦ . (12)

Hence, the problem of decoding is equivalent to solving the system of linear equations 
described in (12).

For this algorithm we consider a parity-check matrix H(D) of the form

H(D) =

⎡⎢⎢⎢⎢⎣
H0(D)
pH1(D)

...
pr−1Hr−1(D)

⎤⎥⎥⎥⎥⎦ with

⎡⎢⎢⎢⎢⎣
H0(D)
H1(D)

...
Hr−1(D)

⎤⎥⎥⎥⎥⎦ full row rank. (13)

Hence, it readily follows that one can rewrite (12), after appropriate row permutations, 
as
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̃0
i,0

pH̃0
i,1
...

pr−1H̃0
i,r−1

H̃1
i,0 H̃0

i+1,0
pH̃1

i,1 pH̃0
i+1,1

...
...

pr−1H̃1
i,r−1 pr−1H̃0

i+1,r−1
...

. . .
H̃T

i,0 H̃T−1
i+1,0 · · · H̃0

i+T,0
pH̃T

i,1 pH̃T−1
i+1,1 · · · pH̃0

i+T,1
...

...
...

pr−1H̃T
i,r−1 pr−1H̃T−1

i+1,r−1 · · · pr−1H̃0
i+T,r−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
w̃i

w̃i+1

...
w̃i+T

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bi0
pbi1
...

pr−1bir−1
bi+1
0

pbi+1
1
...

pr−1bi+1
r−1

...
bi+T
0

pbi+T
1
...

pr−1bi+T
r−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

with the property that the rows of the matrices H̃0
i,t, [H̃1

i,t H̃0
i+1,t], . . . , [H̃T

i,t H̃T−1
i+1,t · · ·

H̃0
i+T,t] have order r, for t = 0, 1, . . . , r − 1. Note that the number of nonzero rows of 

each block in the decomposition (14) will depend on the erasure pattern.
Denote by es the size of w̃s, for s ∈ {i, i + 1, . . . , i + T}.

List decoding:
We aim to compute all possible solutions of (14). To this end we define the following 
matrix for all 0 ≤ t ≤ r − 1,

H̃c
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̃0
i,0

H̃0
i,1
...

H̃0
i,r−t−1
H̃1

i,0 H̃0
i+1,0

H̃1
i,1 H̃0

i+1,1
...

...
H̃1

i,r−t−1 H̃0
i+1,r−t−1

...
. . .

H̃T
i,0 H̃T−1

i+1,0 · · · H̃0
i+T,0

H̃T
i,1 H̃T−1

i+1,1 · · · H̃0
i+T,1

...
...

...
H̃T

i,r−t−1 H̃T−1
i+1,r−t−1 · · · H̃0

i+T,r−t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

and write
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⎡⎢⎢⎢⎢⎣
w̃i

w̃i+1

...
w̃i+T

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
wi

0
wi+1

0
...

wi+T
0

⎤⎥⎥⎥⎥⎦+ p

⎡⎢⎢⎢⎢⎣
wi

1
wi+1

1
...

wi+T
1

⎤⎥⎥⎥⎥⎦+ · · · + pr−1

⎡⎢⎢⎢⎢⎣
wi

r−1
wi+1

r−1
...

wi+T
r−1

⎤⎥⎥⎥⎥⎦ , (16)

where wj
t has entries in Ap = {0, 1, . . . , p − 1}, for all j ∈ {i, i + 1, . . . , i + T} and 

t ∈ {0, 1, . . . , r − 1}. We aim at computing the maximum number of coefficients wj
t in 

(16).

Step 1: Find the solution (ŵi
0, ŵ

i+1
0 , . . . , ŵi+T

0 ) of the system

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̃0
i,0

H̃0
i,1
...

H̃0
i,r−1
H̃1

i,0 H̃0
i+1,0

H̃1
i,1 H̃0

i+1,1
...

...
H̃1

i,r−1 H̃0
i+1,r−1

...
. . .

H̃T
i,0 H̃T−1

i+1,0 · · · H̃0
i+T,0

H̃T
i,1 H̃T−1

i+1,1 · · · H̃0
i+T,1

...
...

...
H̃T

i,r−1 H̃T−1
i+1,r−1 · · · H̃0

i+T,r−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p︸ ︷︷ ︸

[H̃c
0]p

⎡⎢⎢⎢⎢⎣
ŵi

0
ŵi+1

0
...

ŵi+T
0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bi0
bi1
...

bir−1
bi+1
0
bi+1
1
...

bi+1
r−1
...

bi+T
0
bi+T
1
...

bi+T
r−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p

, (17)

over the field Zp. Let e =
∑i+T

s=i es. Then, the “integer” part of the set of 

solutions, i.e., the vector 

⎡⎢⎢⎢⎢⎣
wi

0
wi+1

0
...

wi+T
0

⎤⎥⎥⎥⎥⎦ in (16), is given by:

S0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
wi

0
wi+1

0
...

wi+T

⎤⎥⎥⎥⎥⎦ ∈ Ae :

⎡⎢⎢⎢⎢⎣
wi

0
wi+1

0
...

wi+T

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ŵi

0
ŵi+1

0
...

ŵi+T

⎤⎥⎥⎥⎥⎦ with

⎡⎢⎢⎢⎢⎣
ŵi

0
ŵi+1

0
...

ŵi+T

⎤⎥⎥⎥⎥⎦ satisfying (17)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
0 0 p 0 0
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It is straightforward to see that the size of S0 is given by

|S0| = pe−rank [H̃c
0]p .

To compute the remaining vectors, if necessary, in the p-adic decomposition 
of (16) we recursively apply the following algorithm in the next step.

Step 2: Let bjs,0 = bjs, j = i, i + 1, . . . , i + T , s = 0, 1, . . . , r − 1.
For t = 1, . . . , r − 1 do

1. For j = i, i + 1, . . . , i + T , consider the solutions 

⎡⎢⎢⎢⎢⎣
wi

t−1
wi+1

t−1
...

wi+T
t−1

⎤⎥⎥⎥⎥⎦ ∈ St−1 and define

⎡⎢⎢⎢⎢⎣
b̂j0,t
b̂j1,t
...

b̂jr−t−1,t

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
pt−1bj0,t−1
ptbj1,t−1

...
pr−2bjr−t−1,t−1

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎣

pt−1H̃j−i
i,0 · · · pt−1H̃0

j,0
ptH̃j−i

i,1 · · · ptH̃0
j,1

...
...

...
pr−2H̃j−i

i,r−t−1 · · · pr−2H̃0
j,r−t−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
wi

t−1
wi+1

t−1
...

wj
t−1

⎤⎥⎥⎥⎥⎦
2. For j = i, i + 1, . . . , i + T , and � = 0, 1, . . . , r − t − 1, compute one bi�,t such 

that

b̂j�,t = pt+�bj�,t

3. Solve the system of linear equations

[H̃c
t ]p

⎡⎢⎢⎢⎢⎣
ŵi

t

ŵi+1
t
...

ŵi+T
t

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bit,0
bit,1
...

b0t,r−t−1
bi+1
t,0
bi+1
t,1
...

bi+1
t,r−t−1

...
bi+T
t,0
bi+T
t,1
...

bi+T
t,r−t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p

, (18)
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over Zp and let

St =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
wi

t

wi+1
t
...

wi+T
t

⎤⎥⎥⎥⎥⎦ :

⎡⎢⎢⎢⎢⎣
wi

t

wi+1
t
...

wi+T
t

⎤⎥⎥⎥⎥⎦
p

=

⎡⎢⎢⎢⎢⎣
ŵi

t

ŵi+1
t
...

ŵi+T
t

⎤⎥⎥⎥⎥⎦ with

⎡⎢⎢⎢⎢⎣
ŵi

t

ŵi+1
t
...

ŵi+T
t

⎤⎥⎥⎥⎥⎦ satisfying (18)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Output data:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
wi

0
wi+1

0
...

wi+T
0

⎤⎥⎥⎥⎥⎦+ p

⎡⎢⎢⎢⎢⎣
wi

1
wi+1

1
...

wi+T
1

⎤⎥⎥⎥⎥⎦+ · · · + pr−1

⎡⎢⎢⎢⎢⎣
wi

r−1
wi+1

r−1
...

wi+T
r−1

⎤⎥⎥⎥⎥⎦ :

⎡⎢⎢⎢⎢⎣
wi

t

wi+1
t
...

wi+T
t

⎤⎥⎥⎥⎥⎦ ∈ St, t = 0, 1, . . . , r − 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

The size of the list decoding is

r−1∏
t=0

|St|,

where each |St| is given by

|St| = pe−rank [H̃c
t ]p (19)

Note that Steps 1 and 2 deal with systems of linear equations over fields. The fact 
that these steps yield the set of all solution follows from [19, Theorem 3].

Example 3. Let C ⊂ Z8[D] be the convolutional code with parity-check matrix H(D) =
H0 + H1D + H2D2 ∈ Z8[D] where

H0 =

⎡⎢⎣ 1 1 1 1 1
0 0 2 0 2
4 4 0 4 4

⎤⎥⎦ , H1 =

⎡⎢⎣ 1 2 0 0 0
0 0 0 2 4
4 0 4 4 0

⎤⎥⎦ , H2 =

⎡⎢⎣ 3 5 7 0 0
0 0 0 0 2
0 0 0 4 0

⎤⎥⎦ .
It is easy to check that w(D) = w0 + w1D + w2D2 + w3D3 with

w0 = [5, 5, 0, 6, 0], w1 = [6, 6, 4, 3, 6], w2 = [2, 1, 1, 2, 0], w3 = [2, 6, 4, 0, 0]

is a codeword of C. Assume that one receives

w0 = [5, w0,1, w0,2, 6, w0,3], w1 = [6, 6, 4, w1,1, 6],

w2 = [2, 1, w2,1, w2,2, w2,3], w3 = [2, w3,1, 4, 0, 0]
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where w0,1, w0,2, w0,3, w1,1, w2,1, w2,2, w2,3, w3,1 are erasures. Let the delay constraint for 
the decoding be T = 2. To firstly recover w0 we start our list decoding algorithm. One 
has

H̃c
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
2 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 0 0
5 7 0 0 1 1 1
0 0 1 1 1 0 1
0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and [H̃c

0]2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 0 0
1 1 0 0 1 1 1
0 0 1 1 1 0 1
0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We write wi,j = wi,j
0 + 2wi,j

1 + 4wi,j
2 for i = 0, . . . , 3 and j ∈ {1, 2, 3}. Solving the linear 

system

[H̃c
0]2 · [w0,1

0 , w0,2
0 , w0,3

0 , w1,1
0 , w2,1

0 , w2,2
0 , w2,3

0 ]� = [5, 0, 1, 5, 0, 1, 4, 0, 1]�2
= [1, 0, 1, 1, 0, 1, 0, 0, 1]�

over Z2 gives the (unique) solution

[w0,1
0 , w0,2

0 , w0,3
0 , w1,1

0 , w2,1
0 , w2,2

0 , w2,3
0 ] = [1, 0, 0, 1, 1, 0, 0],

i.e., S0 = {[1, 0, 0, 1, 1, 0, 0]}. Note that |S0| = pe−rank [H̃c
0]p = p7−7 = 1.

Then, in step 2.1 and step 2.2 of the algorithm, one computes

(
b̂00,1
b̂01,1

)
=
(

5
0

)
−
[

1 1 1
0 2 2

](1
0
0

)
=
(

4
0

)
⇒
(
b00,1
b01,1

)
=
(

2
0

)

b̂10,1 = 5 −
[

2 0 0 1
]⎛⎜⎝1

0
0
1

⎞⎟⎠ =
(

4
0

)
⇒ b10,1 = 1

(
b̂20,1
b̂21,1

)
=
(

4
0

)
−
[

5 7 0 0 1 1 1
0 0 2 2 2 0 2

]
⎛⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ =
(

6
4

)
⇒
(
b20,1
b21,1

)
=
(

3
1

)

Afterwards, according to step 2.3, one has to solve the system of linear equations
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⎡⎢⎢⎢⎢⎢⎣
1 1 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 0
1 1 0 0 1 1 1
0 0 1 1 1 0 1

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0,1
1

w0,2
1

w0,3
1

w1,1
1

w2,1
1

w2,2
1

w2,3
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
1
1
1

⎞⎟⎟⎟⎠

over Z2, which yields

[w0,1
1 , w0,2

1 , w0,3
1 , w1,1

1 , w2,1
1 , w2,2

1 , w2,3
1 ] = [0, c1, c1, 1, c1 + c2, 1, c2]

with free parameters c1, c2 ∈ Z2, i.e.,

S1 = {[0, c1, c1, 1, c1 + c2, 1, c2], c1, c2 ∈ A2}

with |S1| = p7−rank [H̃c
1]p = p2 = 4.

In the last iteration, one computes

b̂00,2 = 2 · 2 − 2 ·
[

1 1 1
]( 0

c1
c1

)
= 4 − 4c1 ⇒ b00,2 = 1 − c1

b̂10,2 = 2 · 1 − 2 ·
[

2 0 0 1
]⎛⎜⎝ 0

c1
c1
1

⎞⎟⎠ = 0 ⇒ b10,2 = 0

b̂20,2 = 2 · 3 − 2 ·
[

5 7 0 0 1 1 1
]
⎛⎜⎜⎜⎜⎜⎜⎝

0
c1
c1
1

c1 + c2
1
c2

⎞⎟⎟⎟⎟⎟⎟⎠ = 4 − 4c2 ⇒ b20,2 = 1 − c2

and afterwards solves the system of linear equations

⎡⎢⎣ 1 1 1 0 0 0 0
0 0 0 1 0 0 0
1 1 0 0 1 1 1

⎤⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0,1
2

w0,2
2

w0,3
2

w1,1
2

w2,1
2

w2,2
2

w2,3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(1 − c1

0
1 − c2

)

over Z2, which yields
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[w0,1
2 , w0,2

2 , w0,3
2 , w1,1

2 , w2,1
2 , w2,2

2 , w2,3
2 ]

= [1 + c2 + c3 + c4 + c5 + c6, c3, c1 + c2 + c4 + c5 + c6, 0, c4, c5, c6]

with free parameters c3, c4, c5, c6 ∈ Z2, i.e.

S2 = {[1+ c2 + c3 + c4 + c5 + c6, c3, c1 + c2 + c4 + c5 + c6, 0, c4, c5, c6], c3, c4, c5, c6 ∈ A2},

with |S2| = p7−rank [H̃c
2]p = p4 = 16.

In summary, all solutions for the erased positions are given by⎛⎜⎜⎜⎜⎜⎜⎜⎝

w0,1

w0,2

w0,3

w1,1

w2,1

w2,2

w2,3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠+ 2

⎛⎜⎜⎜⎜⎜⎜⎝

0
c1
c1
1

c1 + c2
1
c2

⎞⎟⎟⎟⎟⎟⎟⎠+ 4

⎛⎜⎜⎜⎜⎜⎜⎝

1 + c2 + c3 + c4 + c5 + c6
c3

c1 + c2 + c4 + c5 + c6
0
c4
c5
c6

⎞⎟⎟⎟⎟⎟⎟⎠
with c1, c2, c3, c4, c5, c6 ∈ A2, i.e.,

|S| = p0+2+4 = p6 = 64.

Note that for c1 = c2 = c3 = c3 = c4 = c5 = c6 = 0, one gets the solution that leads to 
the original codeword we started with. Because of the constraint T = 2, the vector w3 is 
not recovered yet. However, since all other erasures are recovered, the remaining erasure 
w3,1 can now easily be recovered.

Of course the smaller the size of the output the better. Obviously, this holds if 
rank [H̃c

t ]p is maximal.

Remark 1. The presented decoding algorithm also works in the more general setting of 
codes over finite chain rings. Since all computations in the several steps of the algorithm 
are broken down to computations with coefficient matrices, it is not necessary to consider 
polynomial matrices over finite chain rings but only specially structured block codes over 
finite chain rings. There already exist some papers on block codes over finite chain rings, 
e.g. [5], [20].
If R is a finite chain ring and m its unique maximal ideal, then m = 〈γ〉 for some γ ∈ R
and R/m is isomorphic to a finite field Fq. Moreover, if e is the nihilpotency index of γ
and V a set of representatives for the equivalence classes of R modulo γ, then each a ∈ R
can be uniquely written as a = a0 +a1γ+ · · ·+ae−1γ

e−1 with ai ∈ V for i = 0, . . . , e −1. 
If R = Zpr , then one can choose γ = p, i.e. e = r. Moreover, V = Ap and the mentioned 
unique decomposition of a is just the p-adic expansion.
This has the following impact on our decoding algorithm: One has to solve systems of 
linear equations in a general finite field Fq instead of a prime field Fp, which is no major 
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problem. To obtain a general version of the algorithm for codes over finite chain rings, 
we just replace r by e and where p indicates the generator of the maximal ideal, we have 
to replace it by γ, where it indicates the cardinality of Fp or Ap we replace it by q.

4. Complexity analysis

In this section, we briefly want to analyze the complexity of the presented decoding 
algorithm. As we work with the projections of elements from the finite ring Zpr in the 
finite field Zp, we can state the computational effort in terms of the number of necessary 
field operations in Zp.

Theorem 1. Denote by e the maximal number of erasures that occur in a window of size 
(T + 1)n. The number of necessary field operations in Zp for our list decoding algorithm 
is

O(re2((n− k)(T + 1))0.8) if e ≤ (n− k)(T + 1)

O(re0.8((n− k)(T + 1))2) if e > (n− k)(T + 1).

Proof. The step of the algorithm that is relevant for the complexity of the whole algo-
rithm is to solve the system of linear equations in (18). This linear system has at most 
(n − k)(T + 1) equations and at most e unknowns. It follows from [23] that the number 
of field operations that is needed to do that is

O(e2((n− k)(T + 1))0.8) if e ≤ (n− k)(T + 1)

O(e0.8((n− k)(T + 1))2) if e > (n− k)(T + 1).

The theorem follows from the fact that we have to solve (18) for t = 0, . . . , r − 1, what 
gives us the factor r. �
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