
Universidade de Aveiro
2021

RICARDO
CORREIA

DETECÇÃO COOPERATIVA DE CONDIÇÕES
CLIMATÉRICAS ADVERSAS DAS ESTRADAS
USANDO SENSORES DOS VEÍCULOS

COOPERATIVE IN-VEHICLE SENSING OF
ADVERSE ROAD-WEATHER CONDITIONS

Universidade de Aveiro
2021

RICARDO
CORREIA

DETECÇÃO COOPERATIVA DE CONDIÇÕES
CLIMATÉRICAS ADVERSAS DAS ESTRADAS
USANDO SENSORES DOS VEÍCULOS

COOPERATIVE IN-VEHICLE SENSING OF
ADVERSE ROAD-WEATHER CONDITIONS

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Eletrónica e Telecomunicações, realizada sob a orientação científica do
Doutor Joaquim José de Castro Ferreira, Professor adjunto da Escola Su-
perior de Tecnologia e Gestão de Águeda da Universidade de Aveiro, e do
Doutor Paulo Jorge de Campos Bartolomeu, Investigador Auxiliar do Depar-
tamento de Electrónica, Telecomunicações e Informática da Universidade de
Aveiro.

o júri / the jury

presidente / president Prof. Doutor Manuel Bernardo Salvador Cunha
Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Prof. Doutor José Carlos Meireles Monteiro Metrôlho
Professor Adjunto, Instituto Politécnico de Castelo Branco

Prof. Doutor Joaquim José de Castro Ferreira
Professor Adjunto, Universidade de Aveiro

agradecimentos /
acknowledgements

Chegado o final de mais uma etapa da minha vida, não posso deixar de
agradecer a todas as pessoas que fizeram parte deste caminho.
Aos meus orientadores, Prof. Joaquim Ferreira e Prof. Paulo Bartolomeu,
agradeço por todas as ideias, apoio e orientação ao longo da realização deste
trabalho. Ao João Almeida, pelo acompanhamento prestado ao longo deste
trabalho.
Aos meus amigos do mítico Clube dos Mansos, quero agradecer por todo
o apoio e momentos de partilha e descontração. Quero também fazer um
agradecimento especial ao meu melhor amigo, Nuno Costa, por estar sempre
cá para mim, mesmo quando a vida não é fácil de levar.
Aos meus avós, pais e tias, por todos os valores que me transmitem, por me
proporcionarem sempre o melhor, por apoiarem todas as decisões que tomo
ao longo do meu percurso e por toda a paciência que têm comigo.
À Adriana, pelo apoio incondicional e partilha em todos os momentos.
Estou-vos eternamente grato, obrigado!

Este trabalho é financiado pelo Fundo Europeu de Desenvolvimento
Regional (FEDER), através do Programa Operacional Competitivi-
dade e Internacionalização (COMPETE 2020) do Portugal 2020
[Projeto TRUST com o no 037930 (POCI-01-0247-FEDER-037930)];

Palavras Chave redes intra-veiculares, condições meteorológicas, condições de estrada,
comunicações veiculares, sistemas inteligentes de transportes, segurança
rodoviária

Resumo A segurança rodoviária apresenta uma grande relevância durante os últimos
tempos, dado o aumento da utilização de veículos e a necessidade de pro-
teger os passageiros. Umas das principais causas dos acidentes rodoviários
está diretamente relacionada com as condições meteorológicas, nomeada-
mente a chuva e o piso molhado, que diminuem a visibilidade e a estabili-
dade do carro, respectivamente. Atualmente, apenas são usadas estações
meteorológicas para determinar as condições do tempo, porém, os sistemas
inteligentes de transportes estão a tornar-se mais complexos e a adotar no-
vos modelos para interpretar as condições do meio e difundir a informação
de forma mais rápida e eficiente. Ao nível dos sistemas de transportes inteli-
gentes cooperativos (C-ITS), pretende-se atingir esse propósito com base em
sensorização cooperativa e Internet das Coisas (IoT), garantindo uma maior
coordenação, quer pela informação disponibilizada ao condutor, a partir de
sistemas de comunicação como V2V (veiculo-para-veiculo) e V2I (veiculo-
para-infraestrutura), quer pela utilização dos próprios sensores dos veículos
como referência das condições de circulação. Neste trabalho desenvolveu-
se um algoritmo interativo com o condutor para identificar os parâmetros ne-
cessários para o estudo das condições meteorológicas, através dos sinais
proprietários que se encontram especificados na comunicação intra-veicular,
como por exemplo o estado do limpa pára-brisas para identificar situações
de aguaceiros ou chuva intensa, a posição das luzes como forma de avaliar
a visibilidade da estrada e a velocidade das rodas para analisar o estado do
piso e possíveis causas de acidentes. Devido às diferentes representações
que os parâmetros apresentam, o algoritmo é constituido por vários méto-
dos, implementando diferentes processos para a detecção de parâmetros em
que só apresentam um bit de informação e para parâmetros que dispõem de
um ou mais bytes de informação. Com o recurso métodos de engenharia
reversa, o objetivo passa, não só, por interpretar as transições que vão acon-
tecendo nos sinais e, após um processo de filtragem, detetar a posição e o
identificador da mensagem onde se encontra o parâmetro pretendido, mas
também, por correlacionar e comparar esses sinais com as respostas de di-
agnóstico OBD-II (On-Board Diagnostics) sem ser necessário aceder a um
vasto conjunto de dados, num curto espaço de tempo. Posteriormente, os
parâmetros são transmitidos para uma plataforma OBU que difunde os dados
através de mensagens cooperativas para a rede veicular. Foram realizados
testes em dois carros, sendo os resultados obtidos satisfatórios. No primeiro
carro foram encontrados todos os parâmetros binários, mas não se obteve o
mesmo resultado nos parâmetros não-binários, contrariamente ao segundo
carro. Contudo, estes acontecimentos permitiram adquirir conhecimento so-
bre a forma como os fabricantes de automóveis desenvolvem os seus sis-
temas intra-veiculares. Conclui-se assim que este trabalho acrescenta um
passo importante nesta área.

Keywords in-vehicle networks, weather conditions, road conditions, vehicular communi-
cations, intelligent transport systems, road safety

Abstract Given the increasing use of vehicles and the need to protect passengers, road
safety has been of great importance in recent times. One of the main causes
of road accidents is directly related to weather conditions, namely rain and wet
conditions, which respectively decrease the visibility and stability of the car.
Currently, weather stations are used to determine only the weather conditions.
However, intelligent transportation systems are becoming more complex and
adopting new models to interpret the conditions of the environment and dis-
seminate the information more quickly and efficiently. Cooperative Intelligent
Transport Systems are meant to achieve this purpose based on cooperative
sensors and the Internet of Things (IoT), while ensuring greater coordination,
either by the information made available to the driver, from communication
systems such as Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I),
or by using the vehicle sensors as a reference for traffic conditions. An inter-
active algorithm was developed, alongside the driver, to identify the necessary
parameters to study the weather conditions. This algorithm is divided into
several processes, that are specified within the intra-vehicular communication
through proprietary signals, such as the state of the windshield wiper to detect
rain, headlight position as a way to assess visibility and wheel speed to ana-
lyze the state of the surface and possible accident causes. The algorithm is
composed by several methods, due to the different representations presented
by the parameters. Thourght implementing different processes of detection
parameters represented by only one bit of information and for parameters that
have one or more bytes of information. Through using reverse engineering,
the purpose is not only to interpret the transitions that occur in the signals
and, after a filtering process, detect the position and the message identifier of
the desired parameter, but also to correlate and compare these signals with
the OBD-II (On-Board Diagnostic) diagnostic responses without a large set of
data and in a short period of time. Afterwards, the parameters are transmitted
to an On-Board Unit (OBU) platform that broadcasts the data using cooper-
ative messages to the vehicle’s network. Tests were performed in two cars
and the results obtained were satisfactory. All binary parameters were found
in the first car, but not in the non-binary parameters, whereas on the second
car is founded. However, these events allowed to acquire knowledge about
the matter in which car manufacturers develop their intra-vehicular systems. It
can, therefore, be concluded that this work adds an important step in this field.

Contents

Contents i

List of Figures iii

List of Tables vii

Glossário ix

1 Introduction 1

1.1 Scope and Motivation . 1

1.2 Background . 2

1.3 Objectives . 3

1.4 Document Organization . 4

2 Fundamental Concepts and State-of-the-Art 5

2.1 Controller Area Network . 5

2.1.1 Physical Layer . 6

2.1.2 Data Link Layer . 7

2.1.3 Detecting and signaling errors . 9

2.1.4 Network Layer . 10

2.1.5 Application Layer . 11

2.1.6 CAN FD and CAN XL . 12

2.2 OBD-II . 12

2.3 CAN and OBD-II Readers . 13

2.3.1 ELM 327 . 13

2.3.2 CANCrocodile . 13

2.3.3 CLX000 . 14

2.4 Bluetooth Low Energy . 14

2.4.1 BLE Protocol Stack . 15

2.4.2 Communication between BLE devices . 19

i

2.4.3 BLE Performance . 19

2.5 Intelligent Transportation Systems and Vehicular Communications 21

2.5.1 ITS . 21

2.5.2 ETSI ITS-G5 . 22

2.6 Review of the state-of-art of algorithms for CAN data processing 26

3 System Architecture 31

3.1 Global Architecture . 31

3.2 Proposed Solution . 33

4 Implementation 37

4.1 Main components . 37

4.1.1 CAN-BUS OBD Simulator . 37

4.1.2 Carloop . 38

4.2 Collecting data from the ECU simulator . 38

4.3 Collecting data from vehicles . 40

4.3.1 Binary parameters . 41

4.3.2 Non-Binary parameters . 42

5 Tests and Validation 49

5.1 Communication . 49

5.1.1 USB communication . 49

5.1.2 BLE . 51

5.2 Data extraction from vehicles . 52

5.2.1 Vehicles . 52

5.2.2 Binary parameters . 53

5.2.3 Non-Binary parameters . 57

5.2.4 Identification of Wheels Position in specific traces 66

5.2.5 Final considerations . 71

6 Conclusions and Future Work 73

6.1 Conclusions . 73

6.2 Future work . 74

References 75

ii

List of Figures

2.1 Representation of the segments in the Nominal Bit Time (NBT) time-frame 6

2.2 External components used for termination of the CAN bus 7

2.3 Structure of a CAN Standard Frame . 8

2.4 Structure of a CAN Extended Frame . 8

2.5 Unsegmented and Segmented message transmissions . 10

2.6 Structure of a request-message with the respective configuration 11

2.7 Structure of a response-message with the respective configuration 11

2.8 J1962 Connector, Font: [37] . 13

2.9 Bluetooth ELM 327 interface . 13

2.10 CANCrocodile . 14

2.11 CLX000 products . 14

2.12 BLE Protocol Stack . 15

2.13 State machine of the Link Layer . 16

2.14 Package format and PDU field structure of two channels 17

2.15 Structure of Data Channel and Advertising Channel PDUs 17

2.16 Hierarchy of BLE data . 19

2.17 Theoretical lifetime of a slave for one-way and round-trip ATT message exchanges, and for

different parameter configurations, based on CC2540 current measurements [43] 20

2.18 Average latency for one-way and round-trip message exchanges for various connInterval

and BER values [43] . 21

2.19 IEEE WAVE and ETSI ITS-G5 protocol stacks . 22

2.20 Structure of the CAM message . 24

2.21 Structure of the DENM message . 25

3.1 Scheme of the global architecture workflow . 32

3.2 Proposed system architecture. In 1 the vehicle is represented, in 2 the implemented

algorithm and in 3 the IT2S platform . 34

3.3 IT2S platform . 35

3.4 Equipment inside the vehicle . 36

iii

4.1 CAN-BUS OBD Simulator . 38

4.2 Carloop and RedBear Duo . 38

4.3 Representation of the state machine used to extract the parameters from CAN Simulator 39

4.4 Demonstration of the counting process of bit-flips . 41

4.5 Flowchart of the method used to identify the binary parameters 42

4.6 Illustration of the process used to find the throttle parameter 43

4.7 Illustration of the process used to find the steering wheel parameter 44

4.8 IDs and the corresponding number of messages . 45

4.9 Comparison between the bit-flips and behaviour of two bytes 45

5.1 Setup used for the USB communication test . 50

5.2 Data trasmitted from Carloop to platform via USB . 51

5.3 Result of the transmission by BLE . 52

5.4 Pictures of the vehicles used to test the implementation methods 53

5.5 Setup with Carloop and PC in Nissan Micra 2012 . 53

5.6 Setup with Carloop and PC in Renault Captur 2015 . 54

5.7 Identification of the position through the process of the three phases 54

5.8 Graphic with the transitions of the position lights in bit #9 of the CAN message with ID

625 over the time of the three phases . 55

5.9 Graphic with the transitions of the medium lights of N Micra 2012 in bit #10 of the CAN

message with ID 625 over the time of the three phases . 56

5.10 Graphic with the transitions of the maximum lights of Nissan Micra 2012 in bit #11 of the

CAN message with ID 625 over the time of the three phases 56

5.11 Graphic with the transitions of the windshield wiper speed #1 of Nissan Micra 2012 in bit

#16 of the CAN message with ID 35D over the time of the three phases 56

5.12 Graphic with the transitions of the windshield wiper speed #2 of Nissan Micra 2012 in bit

#18 of the CAN message with ID 35D over the time of the three phases 57

5.13 Graphic with the transitions of the position lights of Renault Captur 2015 in bit #16 of

the CAN message with ID 3B7 over the time of the three phases 57

5.14 Identification of the steering wheel position through the process described 58

5.15 Graphic with the variations of the steering wheel in byte #0 of the CAN message with ID

0C6 over the time . 58

5.16 Identification of the throttle position through the process described 58

5.17 Graphic with the variations of the throttle pedal in byte #5 of the CAN message with ID

186 over the time . 59

5.18 Trace in Rua das Longas, Ovar, used to test the method for speeds 59

5.19 Result of the features calculations from the values extracted from the PID 0x0D corre-

sponding to the vehicle speed . 60

iv

5.20 Indication of the candidates to the vehicle speed from the RMSE values 61

5.21 Result of the method of detection of the wheel speed parameters, with the message ID and

the byte corresponding to the position found . 62

5.22 Graphic with the variation of the vehicle speed in byte #3 of the CAN message with ID

7E8 and PID 0x0D over the time . 62

5.23 Graphics of the variation of the wheel speed parameters found over time 63

5.24 Graphic with the variation of the engine speed in byte #3 of the CAN message with ID

7E8 and PID 0x0C over the time . 63

5.25 Graphic with the variation of the engine speed in byte #0 of the CAN message with ID

186 over the time . 64

5.26 Number of bit-flips of the CAN ID 0C6 message during the test 64

5.27 First two bytes’ bit-flips of the CAN ID 0C6 . 65

5.28 Illustration of the different circumferences of the wheels in a curve. Adapted from [76] . . 67

5.29 Right curve between Rua Cimo de Vila and Rua Montes de Sandes 68

5.30 Left curve between Rua Montes de Sandes and Rua do Beira Monte 68

5.31 Picture taken at the moment of the test with Nissan Micra 2012 69

5.32 Picture taken at the moment of the test with Renault Captur 2015 69

5.33 Graphic of the variation of the wheel speed parameters and the identification of the moment

of the right curve . 70

5.34 Graphic of the variation of the wheel speed parameters and the identification of the moment

of the left curve . 71

5.35 Graphic with the values of byte #2 of ID 2 representing the rotation speed of the steering

wheel . 72

v

List of Tables

1.1 Vehicle sensor data collection for weather-related ITS applications, Adapted from TRUST

report . 3

2.1 Minimum, Nominal and Maximum values of the parameters represented in figure 2.2 . . . 7

2.2 Descriptions of the four types of Protocol Data Units . 11

2.3 CAM Use Cases . 23

2.4 DEMN Use Cases . 24

2.5 Summary of CAN reverse engineering algorithms for each of the four properties 29

3.1 SARWS architecture components and description . 33

4.1 List of Parameter IDentifications (PIDs) extracted from the CAN-BUS Simulator 39

4.2 Required weather-related parameters . 40

4.3 Formula and description of the implemented method’s features 46

5.1 Results of the binary parameters extracted in both vehicles 55

5.2 Non-Binary parameters of Renault Captur with the respective CAN ID, Byte(s), Unit,

Offset and Scale . 65

5.3 Non-Binary parameters of Nissan Micra with the respective CAN ID, Byte(s), Unit, Offset

and Scale . 66

5.4 Identification of the values for each wheel in Renault Captur 70

5.5 Identification of the values for each wheel in Nissan Micra 71

vii

Glossário

FR Front Right
FL Front Left
RR Rear Right
RL Rear Left
CAN Controller Area Network
OEM Original Equipment Manufacturer
SAE Society of Automotive Engineers
OBD On-Board Diagnostics
ITS Intelligent Transport System
C-ITS Cooperative Intelligent Transport

System
IoT Internet of Things
ETSI European Telecommunications

Standards Institute
WAVE Wireless Access in Vehicular

Environments
IEEE Institute of Electrical and Electronics

Engineers
TRUST Transportation and Roadmonitoring

system for UbiquitouS real-Time
information services

ECU Electronic Control Unit
LTE Long Term Evolution
BLE Bluetooth Low Energy
DLC Data Lenght Code
RTR Remote Transmission Request
OBU On-Board Unit
USB Universal Serial Bus
RSU Road Side Unit
NBR Nominal Bit Rate
NBT Nominal Bit Time
PDU Protocol Data Unit
SID Service IDentification
PID Parameter IDentification
DTC Diagnostic Trouble Code
CARB California Air Resources Board
M2M Machine-to-Machine
API Application Programming Interface

SDK Software Development Kit
V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure
GSM Global System for Mobile

Communication
VLC Visible Light Communications
DSRC Dedicated Short Range Communications
LTE-V LTE-Vehicular
5G Fifth Generation
mmWaves Millimeter Waves
MAC Medium Access Control
ML Machine Learning
LSB Least Significant Bit
MSB Most Significant Bit
GAP Generic Access Profile
GATT Generic Attribute Profile
ATT Attribute Protocol
CRC Cyclic Redundancy Check
CiA CAN in Automation
FD Flexible Data
ISO International Organization for

Standardization
SOF Start-of-Frame
EOF End-of-Frame
SPP Serial Port Protocol
RMSE Root-Mean-Square Error
LIN Local Interconnect Network
AFH Adaptive Frequency Hopping
TDMA Time Division Multiple Access
BER Bit Error Rate
CAM Cooperative Awareness Message
DENM Decentralized Environmental

Notification Message
TCU Telematic Control Unit
ARM Advanced RISC Machines
ABS Anti-lock braking system
EPA Environmental Protection Agency

ix

CHAPTER 1
Introduction

1.1 Scope and Motivation

Mobility is not a recent concept. The innovation of transportation facilities arose from the
need to transport people and is associated with the development of humanity. Nowadays, a
vehicle is indispensable in our daily lives. This statement can be seen in the data on vehicles
existing worldwide. The number of vehicles on the roads has been continuously increasing,
reaching one billion units in 2010, which corresponds approximately to one vehicle for every
seven people [1]. Vehicle production and sales growth continued, reaching a peak of 80 million
cars sold in 2018. However, sales currently show a drop of 20 million compared to 2018,
standing at 60 million, with the COVID-19 pandemic as one of the leading causes of this
decline [2] [3]. As a result of the growth in the number of vehicles on the roads, concerns
have arisen about road safety and efficiencies, such as road accidents, traffic jams, energy
consumption, and air pollution. The implementation of measures to cope with the negative
consequences and associated dangers such as Anti-lock braking system (ABS) or airbags has
had very positive results worldwide, thus reducing the number of fatalities associated with
road accidents [4].

Air pollution is now a key concern of automotive manufactures. In the 1960s, vehicle
pollution became a cause for concern. Due to smog problems in Los Angeles, the state of
California ordered them to create emission control systems to meet Environmental Protection
Agency (EPA) emission standards. The companies started to produce their systems, but in
1988, the Society of Automotive Engineers (SAE) established a connector and a set of standard
tests so that they all have the same technology. In 1996 the On-Board Diagnostics (OBD)-II
was created with improvements in its standards and became mandatory, in the United States,
for all cars manufactured since then. Thanks to this protocol and with the boost in the cars’

1

electronic development, it is possible to access several parameters of the vehicle through the
OBD-II port present in the car [5].

The success of these security measures has not prevented the search for new solutions
further to reduce the road risks. The main objective is to eliminate the number of deaths
and severe injuries on the roads, and therefore, new measures are needed to achieve these
goals. The introduction of information and communication technologies in road systems,
associated with the development of Intelligent Transport System (ITS), allows the exchange
of information between the various elements of the road system, anticipating dangerous
situations. The growing interest in the study of vehicular communications has brought the
publication of two standards: Wireless Access in Vehicular Environments (WAVE), defined
by the Institute of Electrical and Electronics Engineers (IEEE) and ITS-G5, developed by
the European Telecommunications Standards Institute (ETSI). Another decisive factor for
road safety is the Internet of Things (IoT) technology associated with new sensors included in
vehicles, road infrastructures, and compact devices with large capacities for data collection
and transmission. Vehicle communication substantially impacts traffic handling, accident
prediction, route optimization and direction [6].

One of the leading causes of road accidents is weak weather conditions, which can cause
poor visibility and loss of control of the car due to the state of the road in situations of
rain and wet conditions. The monitoring of weather conditions and the early warning of
adverse conditions through sensors and vehicular communications can drastically reduce the
occurrence of accidents or, in cases of unexpected accidents, the dissemination of warning
messages relying on the vehicular network, including those responsible for traffic control.
Therefore, reducing the probability of secondary events arising from that accident.

Road weather conditions monitoring can be improved using vehicle sensors, albeit indirectly,
and smartphone sensors. On-board data collected from the OBD-II port and the smartphone’s
camera can play a decisive role in assessing road weather conditions. For example, CAN
messages from the OBD-II port with information of various parameters such as the state of
the headlights, the state of the windshield wipers, vehicle speed, wheels speed, and external
air temperature, can be used to inform other vehicles in the vicinity or even to the cloud. The
increasing modernization of vehicles has brought a growing number of integrated sensors and
actuators, causing new security concerns, particularly in automated vehicles [7] [8].

1.2 Background

This dissertation is part of a project called Transportation and Roadmonitoring system for
UbiquitouS real-Time information services (TRUST) that aims to develop an environmental
and weather monitoring system capable of identifying risk conditions for driving in road
infrastructures, equipped with ITS technologies. Communication between vehicles and
infrastructures is intended to alert drivers in transit and warn about the danger of accidents
in specific locations, reducing the number of incidents and associated fatalities.

The work contributes to the collection of weather-related Controller Area Network (CAN)
parameters. Nowadays, an Electronic Control Unit (ECU) in modern vehicles produces

2

enormous amounts of data, which can be used to collect information regarding each vehicle’s
condition and usage. Furthermore, if wireless communications are available, these data offer
significant potential for the development of Cooperative Intelligent Transport System (C-ITS)
applications, including traffic management, traffic information, road safety, weather-related
notifications, among other purposes.

Data from vehicle integrated sensor systems provides an improved perception of the
surrounding environment. As a result, the TRUST project aims to integrate the CAN/OBD-
II interface with the ITS-G5/Long Term Evolution (LTE) vehicular communications platforms
on the fleet vehicles, enabling sensor-data collection to infer weather-related events in the
area. A shortlist of parameters that can, at least in some vehicle models, be measured in the
OBD-II interface or directly from the CAN-BUS, are presented in Table 1.1. This literature
overview identifies the target of the proposed ITS applications in each work and the specific
data monitored.

Reference, Year Goal Parameters
Enriquez et al. [9],

2012
Slippery road

conditions detection
Throttle pedal position, wheel speed,
vehicle speed, steering wheel angle,

and brake pressure
Geem et al. [10], 2016 Road surface distress

detection
Wheel speed, steering wheel angle,

ToF camera data
Hou et al. [3], 2017 Slippery road

conditions detection
Wheel speed, vehicle speed

Iqbal et al. [11], 2017 Remote online
diagnostic system

Engine speed, vehicle speed, engine
fault detection

Galanis et al. [12],
2019

Speed recommendation
based on road
conditions

Engine speed, engine load, axle ratio,
transmission rate, vehicle stability,

position and speed
Abuali [13], 2015 Monitoring road

artifacts and driver
behavior

Throttle pedal position, brake pedal
position, steering wheel angle

Bartos et al. [14], 2019 Weather assessment Windshield wiper data
Chapman et al. [15],

2010
Road weather

conditions evaluation
Ambient temperature, wiper status,

ABS data, rain sensor, etc
Mahoney et al. [16],

2013
Weather and road

conditions evaluation
Ambient temperature, wiper status,
ABS data, rain sensor, headlamps,
atmospheric pressure, sun sensor,

engine speed, etc

Table 1.1: Vehicle sensor data collection for weather-related ITS applications, Adapted from TRUST
report

1.3 Objectives

Developing an algorithm to discover weather-related parameters in the in-vehicle networks
requires a few objectives to achieve this goal:

3

• Acquire knowledge about serial communication concepts and vehicular communications.
Serial communication plays an important role in intra-vehicular networks, and therefore,
the communication protocol used in vehicles is studied. The European standard that
defines the functions of the various protocol layers in the communications between
vehicles, and the highest layer on the cooperative messages, is also studied.

• Research articles that have contributed to the development in the area of identifying
parameters in intra-vehicle messages. Studying state-of-the-art is essential to understand
what already exists and needs to be improved, offering value to this work.

• Design and implement several processes and methods to decode the weather-related
data more faster than the existing works.

• Discover the best solution to transmit the data to an On-Board Unit (OBU) platform
and communicate it to the vehicle network with one of the cooperative messages defined
by C-ITS protocols.

• Make the best contribution to the TRUST project to which this work is integrated.

1.4 Document Organization

The rest of the dissertation is organized as follows:

• Chapter 2 - Fundamental Concepts and State-of-the-Art - This chapter explains
in detail the concepts covered in this dissertation;

• Chapter 3 - System Architecture - Exposes the contextualization of this dissertation
and the architecture of the proposed system;

• Chapter 4 - Implementation - Describes the implementation of the solutions found;
• Chapter 5 - Tests and Validation - Presents the description of the various test

scenarios and the results obtained to validate the implementation;
• Chapter 6 - Conclusions and Future Work - Presents the conclusion taken from

the results and future work.

4

CHAPTER 2
Fundamental Concepts and

State-of-the-Art

This chapter introduces the related concepts of this dissertation and the State-of-the-Art
CAN reverse-engineering algorithms. Firstly, the CAN protocol that has been responsible for
the communication in the intra-vehicular networks are presented, from the physical layer to
the higher layers, such as OBD-II, used to communicate between the vehicle and an external
equipment. Secondly, it is discussed the Bluetooth Low Energy (BLE) concept used for the
communication between the CAN-Reader and the OBU placed in the vehicle, which transmits
and receives the vehicles sensor-data with Road Side Units (RSUs). This communication of
cooperative-data between these last two elements is specified in the following topic, which
concerns ITS and C-ITS technologies. In the end, the description of the reverse engineering
algorithms is considered chronologically in order to show the evolution over the last few years.

2.1 Controller Area Network

Robert BOSCH, in 1986, developed a serial communication protocol for the automotive
industry called the CAN protocol [17].

CAN is a message-oriented transmission protocol. Every message has an associated
message identifier, which is unique within the whole network and defines both the content
and the message’s priority. One of the main advantages of this protocol is its flexibility, as
it can be used in systems of low latency or systems with a large bandwidth. Simplicity is
another benefit of this protocol, whereas an extensive number of wires was reduced to only
two communication wires. Formerly, controllers were connected by a very complex wiring
system in the automotive industry. However, when this protocol appeared, the complexity of
cable wiring vanished, and the communication became simpler, reaching now up to 1Mbit/s
[18].

Here are some examples of other characteristics of this protocol:
• Every node can be master at one time and slave at another time (Multi-Master);

5

• When a message is transmitted, all nodes can receive it simultaneously (Multi-Cast);
• Messages with smaller IDs have a higher priority than messages with larger IDs;
• Detect message errors;
• Automatic re-transmission of corrupted messages;
• Distinction between temporary errors and permanent errors;

2.1.1 Physical Layer

One of the CAN physical layers, available in most of CAN transceivers, is specified in the
International Organization for Standardization (ISO) 11898-2 standard [19]. This physical
layer protocol defines the bit timing, synchronization, and physical signaling.

In terms of bit timing, the protocol defines the Nominal Bit Rate (NBR) as the number of
bits transmitted per second to the bus. The equation is given by:

NBR = 1
NominalBitT ime

(2.1)

The NBT is the bit period and is distributed into three different segments. Figure 2.1
shows the division between them.

Figure 2.1: Representation of the segments in the NBT time-frame

The figure above displays unique colors to distinguish the different segments. The segment
represented by the color red is the Synchronization Segment that is used to synchronize the
nodes of the bus, followed by the Prop Segment represented with the color yellow. This
segment compensates for the delays that may occur due to the bus line and delays caused by
the transceivers. The next two segments can be adjusted, depending on the calculations of
time differences, to synchronize the transmitter and the receiver.

The CAN physical layer protocol also specifies cabling types, electrical signal levels and
the bus termination values to suppress reflections [20].

Using two termination resistors at each side of the bus is a critical factor for efficient
communication. Only one resistor or none increases the delay of the transition between a
dominant state and a recessive state. In some cases, the transition may even not exist, causing
a bit-error [21]. The external equipment must have the termination shown in figure 2.2, and
the values are described in table 2.1.

6

Figure 2.2: External components used for termination of the CAN bus

Table 2.1: Minimum, Nominal and Maximum values of the parameters represented in figure 2.2

Parameters Minimum Nominal Maximum
R1, R2 (Ω) 90 100 110
C1, C2 (pF) 470 560 640

R1 = R2
C1 = C2

2.1.2 Data Link Layer

The CAN data link layer specifies the format, type, and structure of the CAN messages.
Until the appearance of the new 2.0 specification [17], the CAN messages were consisted

of only 11-bit identifiers. However, CAN 2.0 released the possibility to use 29-bit identifiers,
increasing the number of messages available. According to the specification, a message with an
11-bit identifier is called Standard Frame and a message with 29-bit identifiers is an Extended
Frame.

A CAN frame begins with a start bit called Start-of-Frame (SOF) that indicates the start
of the message. This bit is followed by the Arbitration Field, which consists of the 11-bit
identifier and the Remote Transmission Request (RTR) bit used to distinguish between a
data frame (dominant bit) and a remote frame (recessive bit). The IDE bit that follows the
RTR bit indicates the format of the frame, distinguishing between a standard frame and an
extended frame. In the case of an extended frame, this bit is in the Arbitration Field, and
more bits are added to the identifier, thus changing to 29 bits. In the case of a standard
frame, the IDE bit is in the Control Field, such as the Data Lenght Code (DLC) used to
indicate the number of bytes in the Data Field. If the message type is a remote frame, the
DLC contains the number of bytes of the message reply. The Data Field contains the message
content, up to 8 bytes. As for the error detection, the messages contain a Cyclic Redundancy
Check (CRC) Field with a CRC sum and a CRC delimiter. The ACKnowledge Field (ACK)

7

consists of the ACK slot and ACK delimiter. The transmitter sends the ACK slot bit as a
recessive bit and, if the message was received correctly, it is written as the dominant bit by
the receivers. The end of the frame is indicated by the End-of-Frame (EOF) bit.

Figures 2.2 and 2.3 represents the structure of a standard and extended message, referring
to data/remote frames, respectively.

Figure 2.3: Structure of a CAN Standard Frame

Figure 2.4: Structure of a CAN Extended Frame

Besides these two types of messages, there are four types of messages: Data Frame, Remote
Frame, Error Frame, and Overload Frame. The Data Frame is the only type that carries data
between the transmitter and the receiver. Depending on the identifier’s size, the format can
be standard or extended and can carry data up to 8 bytes, according to the value of DLC
parameter. In this type of frame, the RTR bit is dominant (’0’). The Remote Frame does
not have data associated and it is transmitted when a given node wants to request data from
another node. This type of message is identified by the RTR bit, in which it is recessive (’1’).
The Error Frame is only transmitted when it detects an error in the bus. This type of message
consists of two distinct fields. The overlap error flags give the first field from different stations.
The second field is the error delimiter. The node that detects the error in the message sends
an error message with a specific flag. The active flag is transmitted when an active error is
detected and consists of 6 consecutive dominant (’0’) bits. The passive flag is transmitted
when a passive error is detected, consisting of 6 recessive bits (’1’). The second field is the
error delimiter, consisting of 8 recessive bits. The Overload Frame consists of two bit-fields:
overload flag and overload delimiter. There are two conditions for an overload frame to be
transmitted:

• Internal conditions of a receiver, which requires a delay of the next data or remote
frame;

• The detection of a "dominant" bit during intermission.
After transmitting this flag, any node is attentive to the bus until it detects a "recessive"

bit. The second field is the overload delimiter, consisting of 8 bits recessives.
It is important to note that the Data and Remote Frames are separated from preceding

frames called by a bit field called Interframe Space [22]. It consists of two fields:

8

• Intermission - consists of 3 recessive bits and, during intermission, a transmission of
a Data/Remote Frame to any node is not allowed to start. The only action that can
occur is an overload condition.

• Bus Idle - The detection of a dominant bit during the bus-free state is interpreted as
the beginning of the frame. This field can have a random period.

2.1.3 Detecting and signaling errors

Within the various concepts that have already been presented about the CAN bus, we can
add one more called Error Handling. Error Handling aims to detect errors in the messages
that appear on the CAN bus so that the transmitter can re-transmit an incorrect message.
All nodes along the bus will try to detect errors in a message, and if an error is detected, the
node that found it will transmit an error signal. The remaining nodes will detect the error
caused by the flag node and discard the current message.

For error detection, the CAN protocol specifies five types of errors, three at the message
level and two at bit level:

• Cyclic Redundancy Check Error – when the transmitter sends a frame, redundant
bits are placed in the CRC field. The error occurs when the value of this receiver field
does not match with the value sent by the transmitter;

• Format Error – The error is detected when a given field has a different bit than
foreseen, i.e., in a field where the bit should be recessive and is dominant. Consequently,
this violates the rules for space;

• Acknowledgment Error – When it is not detected a dominant bit in ACK field;
• Bit monitoring – The transmitter, when it is sending a message, can to monitor the

bus. Then, if the node detects a different bit from the one it sent, this type of error is
generated;

• Bit stuffing – When there are six consecutive bits with the same logical level.

The errors detected are flagged by sending an error message immediately after the error is
detected. The type of flag to be sent is defined by the state of the node and can be considered
error active or error passive. When an active error is detected, the node sends an Active Error
Flag, instead of a passive error where a Passive Error Flag is sent.

Each node contains two error counters, one for transmission errors (Transmit Error
Counter) and one for reception errors (Receive Error Counter). Each time an error is detected,
the respective counter is incremented by 8.

• If both counters have a value below 128, the node is error active;
• If one of the counters has a value over 128, the node is error passive.
If the transmission counter reaches the value of 256, then the node goes into the bus-off

state, and it can no longer communicate with the other nodes and cannot send messages
to the bus. However, they can continue monitoring the bus, and after 128 consecutive 11
recessive bits, their counters return to 0.

If a message is sent without errors, the counters will be decremented by 1, unless they are
0.

9

2.1.4 Network Layer

This layer is in charge of the data exchange between nodes. It also specifies a segmentation
method for nodes that cannot fit all the data they want to transmit in a single CAN frame
[23].

Figure 2.5a shows an unsegmented message transmission. In the case of segmented message
transmission, the data split into various CAN frames and use a Flow Control technique to not
losing any fragmentation. Figure 2.5b shows an example of a segmented message transmission.

(a) Unsegmented message transmission

(b) Segmented message transmission

Figure 2.5: Unsegmented and Segmented message transmissions

In this layer, the transmission and reception of messages with 6 or 7 data bytes are
performed to transmit of a unique Protocol Data Unit (PDU). For unsegmented messages,
the transmission of a PDU is called Single Frame.

When the message is longer, the transmission occurs with a multiple PDUs. The multiple
PDUs are called First Frame (for the first message) and Consecutive Frame (for all the
following PDUs). The receiver adjusts the transmission by responding with a Flow Control
PDU. Table 2.2 provides a more detailed description of each one.

10

Table 2.2: Descriptions of the four types of Protocol Data Units

PDU Description
Single Frame Unique message to transfer unsegmented messages

First Frame First message sent to the receiver, indicating the
beginning of a fragmented message

Consecutive Frame Consecutive segments sent after the First Frame

Flow Control Frame Instruct the transmitter to start, stop or resume
transmission of Consecutive Frames

2.1.5 Application Layer

CAN application layer is specified in the ISO 15765. This standard defines the requirements
for the operations between the CAN vehicle-reader, and the CAN network. More generally,
we can state that this standard is a CAN for vehicles [24].

In general, this layer specifies a set of diagnostic services performed on a vehicle using
an external device. This standard features several services and standardized tables with
various parameters to perform a reading of some sensors in real-time or even a code system to
diagnose problems or failures in the vehicles [25]. The communication between the device
and the vehicle is made through exchanging messages. All of the sensors available in the PID
tables can be requested by a message with the type of service and the intended parameter.
After that, a particular ECU sends a response-message with the value of the sensor.

These messages contain a Service IDentification (SID) that can vary between 01 to 09, a
PID that identifies the standard parameters and data (in a response-message). Figures 2.6
and 2.7 show the request-message and response-message structures.

Figure 2.6: Structure of a request-message with the respective configuration

Figure 2.7: Structure of a response-message with the respective configuration

It is also important to note that, for systems with CAN bus based on ISO 15765, all ECUs
must respond to a request message during a specific period. This timer is called P2CAN and
has a maximum value of 50 ms.

The message exchanges between the device and the vehicle are through the OBD-II port.

11

2.1.6 CAN FD and CAN XL

The vehicles’ modernization requires a greater capacity of CAN communication to follow this
progress by the manufacturers. Therefore, CAN in Automation (CiA) has been designed new
protocols with the requirements of future in-vehicle networks.

CAN Flexible Data (FD) was released in 2015 [26] and provides transmissions up to
5 Mbits/s with a payload of 64 bytes. This growth in the number of data reduces the
overhead and improves the protocol’s efficiency [27]. Moreover, this new protocol presents
an improvement in error detection with an improved CRC field and the introduction of
the "protected stuff-bit counter" [28]. This protocol can operate with the classical CAN
simultaneously, i.e., each node can transmit messages of both types. When only one node is
transmitting, the bit-rate can increase because no nodes need to be synchronized. However,
when several nodes are transmitting simultaneously, they have the flexibility to change the
type of messages and move to the classic style [29].

CAN XL is a current protocol, still in development, and it is specified as the third-
generation of the CAN data link layer protocol by the CiA members [30] [31]. CAN XL
can transmit messages up to 10 Mbits/s with a payload of 2048 bytes. It is protected with
a cascaded CRC, which features a Hamming Distance of 6, meaning that five randomly
distributed bit-errors are detected [32]. Additionally, this protocol will force the physical layer
to be upgraded, producing new transceivers to operate with all the other transceivers that
support CAN and CAN FD [33] [34].

2.2 OBD-II

Nowadays, the pollution caused by cars is no longer as debated as it was last century. Over
the years, solutions to combat this problem have emerged, such as electric cars [35]. However,
in 1988, the California Air Resources Board (CARB) introduced the OBD to reduce the air
pollution caused by traffic. The emissions were controlled with an ECU, which monitored the
sensors’ data and restricted the emissions on that basis [36].

SAE released the first board OBD-I. Years later, with the improvement of the technologies,
more sensors are added, improving the number of ECUs and the diagnostics, creating the
OBD-II. Since 1996, cars have been equipped with OBD-II technology, and this interface
provides real-time information/data from any part of the vehicle.

The system is accessed with a 16-pin connector [37], named J1962 connector. This
connector is used for OBD communications and has two pins, 6 and 14, to allow access to the
CAN bus. The other pins represented in figure 2.8 belong to other communication protocols
that can be accessed through the OBD-II port.

The connector also has power pins (+12V/GND) to power the devices that connect to the
vehicle.

12

Figure 2.8: J1962 Connector, Font: [37]

2.3 CAN and OBD-II Readers

The number of CAN and OBD2 readers is quite large, from the simpler and cheapest device to
sophisticated devices capable of reading standard OBD2 data or raw CAN data and sending
it to an application on the mobile phone or to a cloud.

This section discusses four devices with different characteristics and different functionalities.

2.3.1 ELM 327

The ELM327 is a tiny and low-cost micro-controller designed to act as a bridge between the
OBD ports and a standard RS232 serial interface [38]. Many OBD2 readers are using this
micro-controller integrated with WiFi or Bluetooth to report the real-time data to an Android
App. Figure 2.9 illustrates an example of a Bluetooth ELM 327 interface.

Figure 2.9: Bluetooth ELM 327 interface

These devices use Bluetooth Serial Port Protocol (SPP) to replace RS232 cables. This
protocol is also suitable for sending and receiving a burst of data between two devices [39].

2.3.2 CANCrocodile

CANCrocodile is designed for safe data reading from the vehicle CAN bus, without damaging
CAN wires and without electrical connections, in a contactless way. This device only works
in the listen-mode by detecting magnetic fields around CAN-High and CAN-Low wires.

13

Figure 2.10: CANCrocodile

2.3.3 CLX000

The CLX000 is a CAN Bus data logger with the following characteristics:

• Plug and Play - configure in 2min and the baud rate is automatically detected;
• Standalone - log CAN data into SD card;
• Free Software;
• Live Stream - easily stream data in Wireshark;
• Compact;
• Low Cost;

The CLX000 can discover proprietary parameters through reverse engineering using
Wireshark software. After configuring the dedicated software and plug the CLX000 in the
car, the CLX000 stays in listen-mode, reading the messages on the bus. As the messages
are released on the PC, the software can filter parameters in which data does not change,
facilitating the search for parameters.

Figure 2.11: CLX000 products

To this work, the information from the vehicle’s sensors must be transmitted to the OBU
in a wireless configuration, choosing the Bluetooth technology, more specifically BLE.

2.4 Bluetooth Low Energy

Bluetooth Smart, also known as Bluetooth Low Energy (BLE), is designed to perform wireless
communications between two short-distance devices. BLE was introduced in 2010 to reduce
energy costs between data transfers, compromising a longer battery life for devices [40].

14

Machine-to-Machine (M2M) and IoT applications are those where BLE is most used, where
the transmission of data does not need to be fast or in large quantities. This version of
Bluetooth is also adopted by major brands, such as Apple and Google, that provide great
BLE Application Programming Interface (API) as part of their respective mobile development
Software Development Kits (SDKs). In terms of hardware, Nordic Semiconductor and Silicon
Labs produce system-on-a-chip implementations for BLE that can be used to integrate with
this technology [41].

2.4.1 BLE Protocol Stack

Like the classic Bluetooth, BLE has the protocol divided into two parts: the Controller
and the Host. The Controller consists of the Physical Layer and the Link Layer, typically
implemented in a system-on-chip with integrated radio. The Host comprises L2CAP, ATT,
Generic Attribute Profile (GATT), Generic Access Profile (GAP), and the communication
between the Host and the Controller through the HCI [42].

Although BLE implements the same architecture as classic Bluetooth, a device that
supports only BLE cannot communicate with a device that only implements classic Bluetooth.
This type of device is called a single-mode device. When implementing both types, it is called
a dual-mode device [43].

Figure 2.12: BLE Protocol Stack

Physical Layer

BLE operates in an ISM band at 2.4GHz and contains 40 radio frequency channels, separated
by a 2MHz spacing. There are two types within these channels: advertising channels (used to
discover devices, establish connections, and broadcast transmissions) and data channels (used
for communication between two devices).

The Adaptive Frequency Hopping (AFH) technique is used on all channels to make the
transmission signal more robust and reliable, adapting to interference that may arise, mainly

15

from Wi-Fi. Also, the channels use GFSK modulation, and the transmission rate of data is
1Mbps.

For there to be a connection between two devices, it is necessary to share the same channel
of the piconet, tuning in to the same frequency at the same time. In BLE. there is no
maximum number of devices that can connect to just one. However, in Classic Bluetooth,
that number was limited to seven devices [42].

Link Layer

The Link Layer controls the connections between devices, defining the packets’ structure,
discovering, sending, and receiving the data. When a device intends to broadcast data, it
transmits the data in advertising packets through the advertising channels, being the advertiser.
When devices are only receiving data through advertising channels, they are called scanners.

As soon as two devices establish a connection, one becomes the master and the other
the slave, and the master may have more than one slave. The slave is in sleep mode and
wakes up periodically to check if the master intends to send any data packets. The master
determines this period and coordinates the average access using a Time Division Multiple
Access (TDMA) [43].

The operation of this layer can be described using the following state machine in figure
2.13.

Figure 2.13: State machine of the Link Layer

The format of the packets defined by this layer is unique, both for data channel packets
and for advertising channel packets, and has a length that can vary between 80 bits and 376
bits. Figure 2.14 represents the package structure.

However, we have different values in the package’s various fields for the two different
types of channels. The first two fields (preamble and access address) have fixed size but differ
depending on the channel type.

16

The PDU field is the only field with variable size, varying its structure through the physical
channel through which it will pass. Figure 2.15 also shows the structure of the field for each
type of channel.

Figure 2.14: Package format and PDU field structure of two channels

The advertising channel PDUs has a 16-bit header and 6 to 37 bytes to the payload. In the
payload, 6 bytes are for advertiser addresses, and 0 to 31 bytes are for data. The data channel
PDUs has a 16-bit header, a payload of up to 246 bytes, and other small fields: Message
Integrity Check (MIC), L2CAP Header (L2 He), and ATT Operation Code (Op) [44].

Figure 2.15: Structure of Data Channel and Advertising Channel PDUs

The CRC field is the last field of the packages and is used for error detection.

Host Controller Interface

The HCI allows and controls the communication between the host and the controller through
a serial interface. Due to the controller’s time requirements and the contact with the physical
layer, it is important to separate from the host. Although the Host is responsible for more
complex implementations, it is not demanding in time [45].

Logical Link Control and Adaptation Protocol

This protocol allows the transmission and reception of data packets from the upper layers.
L2CAP supports multiplexing, segmentation. and reassembly protocols, ensuring the quality
of information in the upper layers.

Attribute Protocol

In the Attribute Protocol, two roles are specified: a server role and a client role. A server can
expose a group of attributes to a client that is available using the ATT protocol.

17

The attributes are discrete values with the following properties:
• Attribute type, defined by a Universal Unique IDentifier (UUID);
• Attribute handle;
• Group of permissions for higher layers that utilize the attribute.

Generic Access Profile

GAP aims is to control connections and advertisements, using rules described by each profile
and which must be followed by other profiles. It is the GAP that also makes the device visible,
establishes connections, and describes security procedures.

In BLE, there are 4 GAP roles: Broadcaster, Observer, Peripheral and Central. These
four roles can be divided into two groups: those that allow the establishment of a connection,
such as the the central and peripheral roles, and those that do not allow a connection, such as
a broadcaster or an observer.

When a device is operating in the Broadcaster role, it only sends advertising events and,
in the Observer role, it only receives advertising events. Any device in the Peripheral role
accepts a connection request and will have the Slave role in the Link Layer Connection state.
A device in the Central role initiates a connection request and will have the Master role in the
Link Layer Connection state. This device supports multiple connections, unlike the peripheral
[46].

Generic Attribute Profile

GATT describes how BLE devices transfer data back and forth using concepts like Services
and Characteristics. A generic data protocol – Attribute Protocol (ATT) – is used to store
Services, Characteristics and other related data in a clear lookup table using 16-bit IDs for
every entry in the table [47].

GATT arises as soon as a dedicated connection is established between two devices, being
present during the GATT advertising process.

It is important to remember that GATT and its connections are exclusive. When a BLE
peripheral connects to a central device, it will stop advertising, and it will be impossible to
other devices to connect until the prevailing connection is broken. It is essential to highlight
that this connection is the only way to enable back and forth communication. The central
device sends data to the peripheral and vice versa. If there is a need for data exchange between
two peripherals, a mailbox system will have to be used, and consequently, all messages go
through the central device. Furthermore, the communication can take occur in both directions,
contrary to the one-way broadcasting approach, which uses only advertising data and GAP.

The GATT profile can take on two roles: client and server. However, a device does not
need to play a role exclusively, as the same device can be a server and a client simultaneously,
despite different services.

The GATT server stores the data that will be transported by the ATT, receives commands,
requests and sends responses, notifications and indications to the GATT client.

The GATT client sends commands and requests to the server, receiving the respective
responses, notifications, and indications sent to it about the status of the server.

18

Figure 2.16: Hierarchy of BLE data

2.4.2 Communication between BLE devices

In the link layer, there is an exchange of advertising and scan packets. The advertiser, with
a specific time interval, sends an advertising packet to the scanner. The first packet should
indicate the type of event, and this event will influence the rest of the communication between
the devices. If the scanner is interested in the scan response payload and if the event packages
are scannable type, the scanner can send a request and receive its response.

At the GATT layer, communication is initiated by the GATT client (central) with a
request to the GATT server (peripheral). As soon as the connection is established, the server
responds to the client, suggesting a Connection Interval to the central to send requests to the
server with that specific time interval to check new data from the peripheral. Figure X shows
the data exchange procedure.

2.4.3 BLE Performance

It is crucial to see the performance that a BLE device can have to understand this technology’s
limits [48] [49]. In [43], three researchers performed an overview and evaluation of BLE
performance based on four factors: energy consumption, latency, piconet size, and throughput.
The security of BLE is tested by Mike Ryan [50], presenting different techniques to eavesdrop
into BLE communications.

Energy Consumption

The following figure illustrates a slave’s lifetime for one-way and round-trip approaches and
different parameter configurations, based on CC2540 current measurements.

The slave was expected to consume less energy when the connSlaveLatency is at its
maximum. The maximum value obtained was 14.1 and 12.4 years for the one-way and round-
trip method, respectively, resulting from a connInterval of 86.25ms and connSlaveLatency
of 370 (the master obtained readings every 32 seconds). The smallest value obtained had a

19

Figure 2.17: Theoretical lifetime of a slave for one-way and round-trip ATT message exchanges, and
for different parameter configurations, based on CC2540 current measurements [43]

connInterval of 7.5ms and a connSlaveLatency of 0, with a duration of 2.6 and 2.0 days for each
method. Note that the slave’s lifetime, when the connSlaveLatency has the maximum value,
does not differ with the increase in the connSlaveLatency due to the value of the connInterval,
which cannot exceed 499.

Latency

The next figure illustrates the average latency for one-way and round-trip message exchanges,
for various connInterval and BER values.

Latency was measured between the first message transmitted and the correct reception
of the last message. The figure represents an average of more than ten million simulations.
The average latency for smaller Bit Error Rate (BER) values for one-way and round-trip
presents values smaller than 2ms and 1ms, respectively, for different connInterval values.
For higher BER values, the value of connInterval influences latency levels. The correct data
transmissions are slower due to the tendency to have more than one connection for a single
transmission to be successful.

20

Figure 2.18: Average latency for one-way and round-trip message exchanges for various connInterval
and BER values [43]

Security

In this article [50], Mike Ryan presents techniques for listening to BLE conversations, showing
how packets can be picked up and reassembled in connection streams, and revealed an attack
that makes encryption useless to the key exchange protocol, removing any confidentiality
associated with the protocol.

2.5 Intelligent Transportation Systems and Vehicular Communications

One of the most important of the ITS and C-ITS is the Vehicle-to-Vehicle (V2V) communica-
tions. The transmission of messages between vehicles will have a more efficient role in road
safety, rather than vehicles working individually for this purpose. Exchanging vehicle data
can prevent, for example, chain collisions if the information about the first accident is being
reported to the other nearest cars.

2.5.1 ITS

ITS allows more efficient use of society’s infrastructure to improve traffic flow and road
safety and reduce environmental impact. C-ITS focuses on the communication between those
systems.

Over the years, several communication types have been suggested to support the in-
formation exchange within the vehicular network. Among these types are Global System
for Mobile Communication and ZigBee [51], BLE [52] [53], and Visible Light Communica-
tions (VLC) [54]. However, the most used technology is based on Dedicated Short Range

21

Communications (DSRC), designed to support applications based on V2V and Vehicle-to-
Infrastructure (V2I) communications. Other alternatives are being studied, such as LTE-
Vehicular (LTE-V) or Fifth Generation (5G), and the 5G technology is considered the
successor of the DSRC technology in vehicular communications [55] [56]. The expectation is
that Millimeter Waves (mmWaves) is the basis of 5G, allowing a quick exchange of information
from sensorization such as fine-grade object detection, real-time road video and high-resolution
maps [57].

Dedicated Short Range Communication

In DSRC systems, there are two main stacks of protocols for vehicular networks: IEEE WAVE
and ETSI ITS-G5. The first stack was initially presented in America and developed by IEEE
and the second was developed by ETSI for Europe. Figure 2.19 illustrates both of them.

Figure 2.19: IEEE WAVE and ETSI ITS-G5 protocol stacks

These protocols depend on IEEE 802.11p to implement the physical layer and the Medium
Access Control (MAC) layer. The physical layer uses OFDM with BPSK, QPSK, 16-QAM, and
64-QAM models, identical to the IEEE 802.11a standard, but with double-time parameters
to obtain less interference due to the multi-path propagation and the Doppler shift effect.

In these protocols, the MAC layer presents some differences to the IEEE 802.11a standard,
as it differs in some characteristics from the traditional Wi-Fi deployment.

2.5.2 ETSI ITS-G5

In the standard OSI model, the upper protocol layer is the application layer, which consists
of all the applications in a system. However, in the ETSI protocol stack, the application layer
was split in two: the upper part that continues to be called the application layer and the
lower part called the application support layer (ITS Facilities).

As the name implies, this layer provides resources to the various ITS applications, such
as information collection and support and authentication support. It is also responsible
for managing messages that allow collaboration between vehicles - Cooperative Awareness
Message (CAM) and Decentralized Environmental Notification Message (DENM).

22

The ETSI-G5 protocol defines these two types of messages that enable exchanging of
events and beacons between ITS stations. CAM and DENM are the messages used in-vehicle
communications that help, for example, the driver in preventing road accidents.

Cooperative Awareness Message

CAM are messages shared by each node in the ITS network that periodically provides
information to neighboring nodes. Therefore, each ITS station maintains awareness of the
environment surrounding it through status information such as time, position, motion state,
and attribute information, including data of dimensions, type of vehicles, and function in the
road traffic. The risk of collision can be estimated using the information that a nearby vehicle
provides, comparing his data with its own, thus estimating this value and may even inform
the driver of that vehicle [58].

The control of sending and receiving CAM messages is done by a CAM manager, located
in the ITS Facilities layer. The generation of a message is created from the time management
information, station state monitoring, and mobile station dynamic modules. In order to be
transmitted to the network, the message is passed to the layer below. After the manager has
validated the reception message,it passes to the Local Dynamic Map (LDM) management,
responsible for maintaining a local georeferenced database with information around the vehicle.

Depending on the various use cases, there are different requirements in terms of the
transmission timing.

Table 2.3: CAM Use Cases

Use case Min Frequency (Hz) Min Latency
(ms)

Emergency Vehicle Warning 10 100
Slow Vehicle Indication 2 100

Intersection Collision Warning 10 100
Motorcycle Approaching Indication 2 100

Collision Risk Warning 10 100
Speed Limits Notification 1 to 10 100

Traffic Light Optimal Speed Advisory 2 100

The messages will have to be transmitted with a minimum interval of 0.1s (10Hz) and a
maximum interval of 1s (1Hz) [59].

The CAMmessage format consists of a header and a body. The header contains information
about the message, such as the message identifier, the generation time, and the version. The
body contains information about the ITS station, such as the station identifier and type,
reference points (latitude, longitude, elevation, and heading), among other CAM parameters
[60]. Figure 2.20 shows the complete message structure.

23

Figure 2.20: Structure of the CAM message

Decentralized Environmental Notification Message

Unlike CAM, DENM messages are only transmitted when the ITS station detects an event
on the road. DENMs are used in Road Hazard Warning-related applications (RHW), and
these applications are event-based and composed of multiple use cases that will define the
final message structure. Table 2.4 show some of the use cases.

Table 2.4: DEMN Use Cases

Use case Condition
Emergency Eletronic Break Light Hard breaking of a vehicle

Traffic Condition Warning Traffic Jam Detection
Collision Risk Warning Detection of a collision risk by a RSU

Precipitation Detection of a heavy rain or snow by a vehicle

Wind Detection of a strong wind condition (stability
control of the vehicle)

Visibility Detection of a low visibility condition (activa-
tion of some lights or anti-fog)

As in the CAM messages, DENMs are generated by the message manager from the
information provided by the time management, station state monitoring and mobile station
dynamic modules and also from the LDM georeferenced database. Once the message is
constructed, it moves to the lower layers [61].

The general procedure for dealing with these types of messages is as follows:

24

• The ITS station, as soon as it detects a situation corresponding to a known use case,
starts by broadcasting the respective DENM message to the stations located within a
relevant area;

• The message is repeated with a specific frequency and persists until the event is resolved;
• The DENM broadcast ends automatically after a particular time or when an ITS station

reports that the event has ceased to exist;
• ITS stations that receive DENM process the data and choose the type of warning they

show the user.

The format of the DENM message, as shown in figure 2.21, consists of a header and a
body. The header is identical to the one of the CAM message, but the body contains more
fields, organized into three different categories:

• Decentralized Situation Management Group - general information about the
event;

• Decentralized Situation - details about the event informed;
• Decentralized Situation Location - inform about the event location data.

Figure 2.21: Structure of the DENM message

25

2.6 Review of the state-of-art of algorithms for CAN data processing

As already mentioned in section 2.1.5, the OBD-II diagnostic system consists of a request-
response method with several services available, such as real-time vehicle status data. The
SAE J1969 standard defines a list of Parameter IDentifications (PIDs) that must be the same
in all vehicle models, allowing access to different types of parameters without knowing the
vehicle’s CAN specification. Acessing these type of parameters can be used to analyze the
raw CAN traffic. The acquired data is used to correlate with the proprietary signals of each
vehicle.

Recently, Hyun Min Song and his co-worker [62] presented a method for decoding these
unknown messages comparing raw CAN messages and PIDs response-messages with a score
method, discovering which proprietary signals are closest to the data of the PID signals.
Thomas Huybrechts et al. [63] uses the same logic, but it is performed with two different
approaches to analyze the data: a Machine Learning (ML) and a Arithmetic method (Root
Mean Square).

Although these methods show promising results, they cannot identify parameters beyond
the PID list. The other parameters, i.e., the headlight and windshield’s status and the wheel’s
speed, does not appear in this list. Therefore, different methods are developed to decode the
available raw CAN signals.

Marchetti et al. [64] (2018) proposed READ that consists of an algorithm to extract
signals, analyzing all the bits of the CAN messages. The algorithm starts by counting the
number of bit-flips occurring in consecutive messages, dividing by the total number of messages.
Moreover, it uses a logarithm function to represent the different orders of magnitude of the
bit-flip rates.

In the first phase, the magnitude value is used to detect the signal boundaries. The
algorithm senses that the Least Significant Bit (LSB) of the signal will have more bit-flips
than a Most Significant Bit (MSB) of the adjacent signal. Consequently, if the magnitude
of the bit i is greater than the magnitude of bit i+1, the algorithm identifies a boundary
between those bits.

In the last phase, the algorithm classifies the detected signals into three categories: counters,
checksums, and physical signals. The counters are more easily detected because these signals
increments in every sample. So, the bit-flip rate of LSB is always 1 and from the MSB to
LSB, the bit-flip rate doubles to the value of 1. Checksums are detected when the magnitude
of all the bits are 0, and the normal probability distribution of the bit-flip rates centers at 0.5.

After 25 traces analyzed, Marchetti et al. [64] reveal that READ is much more accurate
at finding signal boundaries than Markowitz et al. algorithm FBCA [65].

In conclusion, READ is a great CAN reverse engineering algorithm but can only found
the boundaries between signals. However, in the same year, a new algorithm that can
simultaneously tokenize, translate and interpret CAN signals appears. ACTT [66] is a method
that collects raw CAN data when the user is driving, identifies the position of a possible

26

physical signal, and correlates with the PIDs signals.
The algorithm starts by categorizing all bits into constants (0’s and 1’s) and non-constants.

Afterward, the time-varying sequence of bit strings is converted into a sequence of integers to
make a linear regression of the two types of signals (extracted signals and signals obtained by
responses to PIDs) and apply a linear fit score. Lastly, an algorithm is applied to identify
those not related signals, to improve the score. The interpretation of the physical signals is
measured using the formulas of the related PID.

As in READ, ACTT only considers signals that are unsigned and with big-endian byte
order. However, ACTT shows promising results, finding 69.6% of constants 0’s and 1’s and
matching 16.8%, leaving 13.6% of the signals unidentified.

LibreCAN is presented by Pesé et al. (2019) [67] and consists of a three-phase algorithm:
Phase 0 is inspired by the READ algorithm, with a slight difference in identifying signal

boundaries and classification of the signals. The signals are classified as CONST (constant),
UNSED (unused), and POSS (possibly COUNTER, MULTI, CRC, or PHYS).

Phase 1 is identical to the ACTT translation. The signals obtained from phase 0 correlate
with signals obtained from the PIDs diagnostic responses, using linear regression to discover
the signals’ scale and offset. Also, the researchers use external sensor-data to improve the
results.

Phase 2 involves a new method that allows identifying body-related signals, such as
windshields, doors, and lights over a filtering process, before and after acting on the parameter.
The theory is to collect signals before turning on the car entirely as a reference. After saving
some of these signals, the key is flipped and the signals are collected again. Three types of
signals can be identified: CONSTANT (messages that change after turning on but still a
constant), REFERENCE (that do not change after turning on, maintaining the reference
state). and POWERTRAIN (which changes after the trigger and change their value over the
time).

Once again, this algorithm works only for signals that assume big-endian byte order and
unsigned encodings.

The research in this field has been growing. Many authors contributed to detecting
and identifying proprietary CAN signals, decoding the messages that Original Equipment
Manufacturers (OEMs) attempt to cover up. The year of 2020 had new papers/works coming
out, presetting new improvements for this area.

Clinton Young et al. [68] present a method identical to phase two of LibreCAN, combining
CAN IDs with the vehicle functions through changes in the data field. They use a clustering
algorithm to associate the IDs based on their function, classifying these unknown IDs under
the previous labels. Miki E. Verma et al. [69] criticized the submitted proposal, who claims
not to consider "a true signal reverse engineering algorithm".

Miki E. Verma and his co-workers [69] introduce CAN-D, a four-step pipeline for decoding
CAN data. Unlike all the other algorithms presented so far, it can extract and distinguish
between big-endian and little-endian order, and signed and unsigned signals.

27

The first stage is the classification of the signals, which can be performed using two
methods: heuristics or ML. The heuristics method is identical to the method used in phase
zero of LibreCAN and achieves identical accuracy with the ML method. After training with
many CAN databases, a supervised classification is performed with several classification
methods to detect which method presents the best results. The Random Forest classifier
achieved the best result in predicting the probability of a single bit been an LSB of a signal.

In phase 2, several procedures are created to optimize tokenization and discover the signal’s
byte order. Once the signals are tokenized, phase 3 starts to classify whether the signals are
unsigned or signed.

Phase 3 starts similar to phase 1, experimenting with supervised classifiers to classify the
type of signal. However, as the output of phase 2 already indicates the LSB and MSB of
the signal, the detection of signedness is simpler to solve through a Heuristics Signedness
Classifier, which verifies how the two MSBs would behave if the signal were unsigned or signed.
After that, the CAN-D use a combination of phase two of LibreCAN and ACTT to interpret
and discover the integer value of the signals in phase 4. CAN-D prove higher results than the
rest of the algorithms, with a better performance in terms of the signal boundary classification
and error rates.

Daniel Frassinelli et. al. [70] presents AutoCAN, a software to analyze privacy and data
security. This tool also extracts unknown CAN data from the vehicles and tries to discover
parameters by establishing relationships based on physics laws.

AutoCAN defines four signal categories: uint, enum, rand, and cyclic. The algorithm
starts from bit 0 and increases the analyzed signal size until it identifies that the bit i+1 is
no longer part of the signal, indicating the start of a new signal. After that, the algorithm
implements a plausibility analysis verifying if the signal had an equivalent behaviour to one of
the four categories specified. The analyze divides into four parts:

• Auto-correlation - to verify if the signal is well segmented or has an error;
• HAMD - detects bit endianness and encoding size by measuring bit changes whenever

the signal changes. The number of changes is normalized, getting a value between 0
and 1, where 1 means that the bit has always changed and 0 means that it has never
changed. If it has a higher HAMD value from right to left, the order of the bytes is
little-endian, otherwise, is in big-endian configuration;

• Post-HAMD - MSB validation of uint signals;
• Removal of Signals Error - removes signals where all bits change to 1 at the same

time.
After the segmentation, the algorithm identifies the signals using the correlation between

them. Notwithstanding, unlike the other algorithms that correlate the segmented signals
with PID signals, AutoCAN applies physical and mathematical properties, relating all signals
simultaneously, i.e., integrating vehicle’s speed and the odometer data. The correlation is
classified using Pearson’s coefficient.

28

AutoCAN was tested in four different vehicles, resulting in a percentage of correct segmen-
tation between 70% and 89% of the known signals and 6% to 11% of average bit-error, based
on a ground-truth with several documents, OBD analysis and manual reverse engineering.

This algorithm demonstrates a better segmentation work than READ, where there is
a distinction between the different physical signals (uint, enum, cyclic) which in READ is
limited to only one category (PHY).

Daniel Frassinelli et al. [70] also explored the purpose and functionality of Telematic
Control Unit (TCU) in modern cars and the device’s security mechanism and how TCU
extracts information from the user and the vehicle’s routes without his consent. This non-
consent further revealed that any car dealership might have all the travel data made by the
car. The following table 2.5 summarizes all the properties described in this section of each
work.

Table 2.5: Summary of CAN reverse engineering algorithms for each of the four properties

Boundary Endianness Signedness Interpretation
READ (2018) [64] X
ACTT (2018) [66] X X

LibreCAN (2019) [67] X X
Young, C. et al. (2020) [68] X

CAN-D (2020) [69] X X X X
AutoCAN (2020) [70] X X X X

After reviewing the literature, it is proven that the studies show a significant improvement
in the segmentation and identification of unknown CAN parameters. Consequently, OEMs are
increasingly investing in security and message encryption to prevent attacks on the vehicle’s
system. However, all the algorithms described process the vehicles’ data after several traces
and with databases with millions of messages to decode them.

The work developed during the dissertation, described in detail in the following sections,
shows a different approach from the works previously presented. The main difference stays in
the identification of the weather-related parameters before or during a trip.

29

CHAPTER 3
System Architecture

In the development of this work, a system is created capable of reading, decoding and
identifying various parameters in the CAN messages of the vehicle related to the road and
weather conditions around it, from an external equipment connected to the respective CAN
pins of the OBD-II port.

Chapter 2 presented a summary of the fundamental concepts for developing this work
and a review of several algorithms proposed by researchers from various universities for the
problem exposed by this dissertation. However, and as described at the end of the previous
chapter, these algorithms have a disadvantage to this work: it only detects the parameters after
collecting data from several traces and making extensive analysis of all messages extracted
from them. Although the results of the presented algorithms are positive, they are not suitable
for anyone’s needs. The architecture used is sophisticated, and it is still very focused on
research and not on a solution to fill a position in the market. The solution proposed for this
work is more simplified, more economical and prepared to immediately act on the vehicle
without any prior reading of the vehicle’s CAN messages. The detection of these parameters
improves the vehicles’ traffic on the roads, preventing congestion and accidents related to
weather conditions through cooperative communications such as V2V and V2I.

This chapter presents the system’s global architecture where this work fits, followed by
the detailed architecture about the proposed solution, describing the functionality and the
function of the elements involved.

3.1 Global Architecture

The global architecture of an Intelligent Transport System (ITS) can be introduced by
explaining SARWS. SARWS is a project that contributes to the evolution of these systems in
terms of weather conditions.

Usually, the meteorological data of the area are collected through weather stations. SARWS
proposes a new technique to gather and share this data using different units, such as vehicles,
road-weather sensors and smartphones.

31

One of the advantages of SARWS is that all the vehicles can benefit from it, even if
they do not have CAN readers,OBUs or Internet access. SARWS notifies drivers about any
information related to the weather conditions. Furthermore, this project can evaluate the
traffic pollution by tracking the air quality from the vehicles’ sensors and reporting these to
the public authorities.

Therefore, the principal objective is to provide weather services in real-time that ensure
safety, efficiency, and energy sustainable mobility that cannot be seen in traditional approaches.
That is where ITS play a part, contributing to human comfort and security, providing tangible
results quickly and efficiently.

As mentioned in the first chapter, this work is part of the TRUST project, which belongs
to a part of the SARWS project, and has several objectives such as:

• Obtain information about the climate from sensors available in vehicles and road
infrastructures;

• Develop new sensors to evaluate the state of the environment and traffic conditions;
• Use of communications protocols over the vehicular network (V2V, V2I);
• Remote analysis and processing of all information to identify and generate warnings to

drivers about the conditions and the most critical areas to drive;
• Dissemination of road safety alerts almost in real-time through vehicle communication

networks of central servers, but also of neighbouring nodes in more urgent situations;

Figure 3.1 and Table 3.1 illustrate and details the architecture workflow, focusing on the
high-level connectivity and the functionalities layers.

Figure 3.1: Scheme of the global architecture workflow

32

Table 3.1: SARWS architecture components and description

Components Description
A Weather-Pollution V-ITS-S station (WV-ITS-S)
B Vehicle ITS station (V-ITS-S)
C Roadside ITS station (R-ITS-S)
D Central ITS station (C-ITS-S), Traffic Management Center (TMC)
E Broker, Cloud
1 Vehicle-to-Infrastructure communication (V2I)
2 C-ITS-S to R-ITS-S
3 Broker to C-ITS-S
4 Vehicle-to-Vehicle communication (V2V)
5 V-ITS-S to cloud

The present architecture has four functionality layers. The first one is regarding the Data
Acquisition Layer, which consists of all the sensors that notify about weather/pollution and
traffic information. In this case, the data (windscreen wiper movement, the surrounding
temperature and headlights status) from the sensors are extracted from the vehicles through
CAN-BUS.

The second layer is the Communication Layer, which lists and uses all communication
types (1 to 5), as shown in Table 3.1, assuring the inter-station connection and providing the
required safety and weather/pollution contents to both Central ITS-S and the broker in the
cloud (D, E).

The third layer is the Management Layer responsible for handling, storing, and analysing
the data obtained from the installed ITS stations. This management process is restricted to
the central ITS station (C-ITS-S) with limited interaction with the cloud broker.

The fourth layer is the Data Diffusion Layer, where the information collection and
distribution occurs. Furthermore, this layer is responsible for diffuse the handled messages,
generate high-level data, and interrelate with the end-users and brokers. Additionally, in this
layer, different high-level algorithms are typically controlled by the security manager’s entities.

3.2 Proposed Solution

As already mentioned, this works aims to develop a system to read and identify messages
from the CAN in-vehicle network. A few elements with particular technologies are needed to
implement this system to achieve this goal.

Figure 3.2 presents the developed architecture scheme, in which three main components
are distinguished.

33

Figure 3.2: Proposed system architecture. In 1 the vehicle is represented, in 2 the implemented
algorithm and in 3 the IT2S platform

The previous figure shows the three elements that belong to this system: the vehicle, the
algorithm and the IT2S platform.

Vehicle: Represented by 1 in figure 3.2, this element consists of a CAN network responsible
for monitoring and controlling the various parts of the vehicle through control units and
sensors installed inside of them. There is also an output port, the OBD-II port, which also
allows to monitoring the data being communicated between the units. Over this OBD-II port,
it is also possible to communicate into the car, so the OBD-II is used to collect this data.

CAN-Reader & Algorithm: Represented by 2 in figure 3.2, this element consists of a
controller and a corresponding algorithm to detect and identify the raw CAN messages. The
communication between the OBD-II port and the controller is not direct because, between
these two elements, it needs a CAN transceiver to enable the communication between the

34

network nodes and the micro-controller. Sometimes it may also be necessary to use a CAN
controller, if the micro-controller does not have that capability.

Figure 3.2 also shows the two protocols used for communication between the controller
and the IT2S platform. It is understood that the controller must also contain these two forms
of communication, BLE and Universal Serial Bus (USB). The proposed algorithm is described
in the next chapter.

IT2S platform: Represented by 3 in figure 3.2, this element is built on top of the apu3c4
system board from PC Engines with several features and a set of extensions such as a GPS
receiver, a WiFi module, an LTE module, and a pair of appropriate antennas for each module.
This platform can operate either as an RSU or as an OBU. For this architecture, the platform
works as an OBU, receiving the various parameters via USB or BLE. It is prepared to transmit
this data to an outside RSU with cooperative messages [71]. Figure 3.3 shows a picture of the
platform.

Figure 3.3: IT2S platform

Figure 3.4 depicts the on-board devices that will be installed inside the vehicle.
In the following figure, in addition to the elements described above, a smartphone is also

present. Even if it is not directly related to this work, the smartphone has an essential role in the
TRUST project. It is used to show a dashboard with different pieces of information and gathers
light measurements and camera images (besides its core function of reporting/disseminating
road-weather warnings).

35

Figure 3.4: Equipment inside the vehicle

36

CHAPTER 4
Implementation

The third chapter exposed, in detail, the proposed architecture of this work. The parameters
collected by the On-Board Diagnostics (OBD) port have a fundamental role for the On-Board
Unit (OBU), transmitting essential data about the vehicle’s status and performance. This
chapter explains the practical implementation with the concepts that were exposed previously
in chapter 2.

First, it is described the materials used for the development of this work and, in the
following sections, it is explained the implementation of the algorithm used to extract the
weather-related parameters.

4.1 Main components

This section presents the main components that were used to implement this work.

4.1.1 CAN-BUS OBD Simulator

The simulator is an OBD development board to simulate the functionality of the OBD system.
This platform can simulate up to three ECUs (ECM, TCM and ABS ECU), generate Diagnostic
Trouble Codes (DTCs), and control five parameters in real-time, using five potentiometers
[72]. Figure 4.1 shows the simulator.

The controller used on this board is the OE91C1610 produced by OZEN Elektronic. This
controller has the following main features:

• Compatible with ISO 15765-4;
• Multiple variable and fixed PIDs;
• MIL Led output;
• Supports 11-bit and 29-bit identifier;
• Supports communications with 250 or 500k baud-rate [73].

37

Figure 4.1: CAN-BUS OBD Simulator

4.1.2 Carloop

Carloop is a development kit to interact with the vehicle over the OBD port and link up to a
cloud via 3G, Wi-Fi, and Bluetooth [74].

The Carloop (figure 4.2a) used is constitute with a RedBear Duo (figure 4.2b) [75], a
development board created to simplify the process of building IoT products, developing
projects with Wi-Fi and BLE communications, making it a useful tool for this work. Duo uses
STM32F205, an Advanced RISC Machines (ARM) micro-controller with a CAN interface, so
Carloop only needs a CAN transceiver, avoiding implementing a CAN controller.

(a) Carloop
(b) RedBear Duo

Figure 4.2: Carloop and RedBear Duo

4.2 Collecting data from the ECU simulator

In the early stage of this work, the simulator provides CAN data that can be used to choose
the best protocol to communicate between the Carloop and the OBU before working with the
vehicles.

38

The principal purpose for this part is to establish a communication between the Carloop
and the IT2S platform with these two types: USB and BLE, using the CAN-BUS Simulator
messages. Furthermore, it is appropriated to test and validate the capability of the Carloop
on the exchange of CAN messages with the CAN-BUS Simulator. The parameters chosen
to extract values from the simulator are associated with the potentiometers to change their
values in real-time. The following table 4.1 present the name of the parameters and the
respective PIDs.

Table 4.1: List of PIDs extracted from the CAN-BUS Simulator

PID (HEX) Description Var. Value
05 ECT 0..255
0C RPM 0..65535
0D SPEED 0..255
10 MAF 0..65535
14 O2 volt 0..255

For each parameter, Carloop gives 160 milliseconds to guarantee that the response is
successfully received. Since the number of parameters is five, the transmission to the OBU is
set to 200 milliseconds, allowing all the values to be updated with 1 second. During the 160
milliseconds, Carloop needs to send a request-message with the corresponded ID for external
requests, the type of service that intends to read (mode 1) and the respective PID parameter.
After that, waits until the CAN-BUS Simulator sends the response-message. Figure 4.3 shows
the explanation of the process implemented in the Carloop.

Figure 4.3: Representation of the state machine used to extract the parameters from CAN Simulator

After storing all the parameters in a buffer, the data is sent in a specific frame to the
OBU with two bytes reserved for each parameter, separated with a comma.

For the sake of simplicity, the data are sent directly in hexadecimal to the IT2S platform,
and the conversion is made on the platform side. Thus, all data processing is placed on this
site, leaving Carloop focused only on extracting and transmitting data through the OBD port.

The simplest and fastest way to send is via USB. The RedBear Duo micro-controller has
a native USB port, enabling it to dump data directly into the OBU using a USB cable.

39

However, this solution is not practical, so it is necessary to implement wireless commu-
nication between the two devices. The best solution is to use Bluetooth communication,
in this case, BLE, because it is more connected to this type of IoT implementations. In
BLE communications, it is necessary to define the roles and characteristics that each device
performs in the Bluetooth network. It is mandatory to have at least one Peripheral device
and a Central device. Based on the explanation given in section 2.4.1, it is decided to use the
OBU as a Central to establishing the connection with Carloop that acts as a Peripheral.

In the configuration of the GAP level, it is also necessary to decide the devices ’role at the
GATT level. Usually, the GATT server contains the data to be sent, and the GATT client
only reads then. Since Carloop is the device that accesses the vehicle’s data, it is assumed
that it will have the server role.

The tecnique for sending data is identical to the one used for USB communication.

4.3 Collecting data from vehicles

The second part of this work consists of extracting proprietary weather-related parameters
from the vehicles. The parameters required for the project are shown in table 4.2.

Table 4.2: Required weather-related parameters

Barometric Pressure External Air Temperature
Brake Status and Boost Vehicle and Engine Speed
Steering Wheel Angle Steering Wheel Direction

Windshield Wiper State Headlight Status
Engine Load Wheels speed

All brands develop a different way of representing the content in CAN messages. In section
2.6, it is found in articles that the data may be in signed or unsigned and little-endian or
big-endian configurations, plus the conversion to an integer, which may be different because of
the scale and offset, increasing the difficulty to extract and interpret the data. However, this
difficulty is more significant for the cases intended to identify parameters based on numerous
messages captured during a trip, which led to thinking of a different way to acquire the desired
parameters more easily.

The work developed is an iterative algorithm based on particular works presented in the
state-of-the-art and other new concepts proposed to give more value to this work.

The selected parameters do not have the same size. The status parameters are only
represented by a bit, unlike other parameters that can take values between one byte and two
bytes. The analysis and the identification process vary depending on the parameters’ size and
behavior, and the proposed algorithm does not process the data equally for everyone. For
that purpose, the algorithm’s operation is divided into two categories: binary parameters
and non-binary parameters.

40

4.3.1 Binary parameters

The identification of the binary parameters, such as the headlight status, windshield wiper
state, and brake status, consists in three phases: Reference, Monitoring, and Validation.
In each phase, the algorithm checks all the messages sent to the bus and counts all the
transitions in each bit (bit-flips), if applicable. Figure 4.4 shows how bit-flips are counted.
The data processing is then treated differently between each phase.

Figure 4.4: Demonstration of the counting process of bit-flips

Phase 0: Reference

In this phase, the user needs to turn ON the vehicle and not perform any action inside the
vehicle for a bit of time. The algorithm will search for the bits that did not show any transition
(0 to 1 or 1 to 0), saving the reference for the next phase. The rest of the bit-flip numbers
greater than 0 are ignored in the next phase.

Phase 1: Monitoring

In phase 1, the user will have an order to make a specific number of transitions in the
parameter he wants to identify. The algorithm then filters the bits with a bit-flip count twice
the number of triggers and deletes those that present different results. For example, if the
driver is required to press the brake pedal three times, the brake pedal is pressed and released
(x3). This case means that the message containing the bit that represents this parameter will
vary, in that position, from 0 to 1 when it is pressed and from 1 to 0 when it is not, so it has
to be considered twice the number requested. The filtered parameters are the only ones that
the algorithm will be aware of in the next phase.

Phase 2: Validation

The last phase serves as confirmation to ensure that identification is made correctly. The user
makes a different number of transitions requested by the algorithm, finding the desired bit.

The flowchart presented in figure 4.5 demonstrates how the described process works.

41

Figure 4.5: Flowchart of the method used to identify the binary parameters

4.3.2 Non-Binary parameters

The identification of non-binary parameters can be divided into two processes, depending
on the type of parameter. This division occurs because some parameters listed in table 4.2
cannot be identified with the car stopped. Consequently, a new process had to be created to
perform this part of the work.

The first process includes the Steering Wheel Angle and the Throttle Pedal. It is identical
to the previous method, except that only the phase 0 and phase 1 are performed (Reference
and Monitoring). There is no need for the confirmation phase because the parameters are
already constituted by more bits, having a more particular behaviour.

42

Phase 0: Reference

The reference phase in identifying these parameters is more effective than in the identification
of the previous parameters. In this process, the algorithm is not scanning the messages
bit-by-bit, but byte-by-byte, so the number of candidates reduces. Any transition of a bit in a
determined byte excludes the candidate, contrary to the analysis in the binary parameters in
which only that bit is excluded.

Phase 1: Monitoring

After a particular time, the second phase begins with the driver being subjected to several
instructions to execute inside the car. The type of instructions depends on the type of
parameter to be identified. However, the processing and analysis of the data are identical. As
the controller detects the messages via the OBD-II port, the driver carries out the instructions,
and the algorithm records the UPs and DOWNs of the respective bytes that are being
processed. If the byte X of the ID Y in the message N increases concerning byte X of the
previous message (N-1), the algorithm increment UPs value. The same process occurs if there
is a decrease concerning the previous byte. The time for this processing must be short, as the
instructions are also quick to execute. These counters permit us to identify if the parameter
presents a positive or a negative derivative quickly. After this count, the data is processed
and filters the bytes with a counter 90% greater than the opposite counter. There may be
parameters that require this phase to be repeated, and the analysis differs between them. The
following figures 4.6 and 4.7 shows the processes to decode the mentioned parameters.

Figure 4.6: Illustration of the process used to find the throttle parameter

43

Figure 4.7: Illustration of the process used to find the steering wheel parameter

The second process includes the vehicle speed, the wheels’ speed, and the engine speed
(RPM). These parameters can only be identified when the vehicle is in motion.Therefore, the
identification method cannot be the same as the process previously described, as there is no
way to track the parameters with the car stopped.

Regarding the vehicle speed, the detection can follow two paths:

• Read the speed value through an exchange of messages with the ECU, sending a request
to the controller with the respective PID and recording the response value directly in
the buffer, as explained in the previous section with the simulator;

• Read the PID value and relate with all bytes of CAN messages, assigning a score to
each byte - the byte(s) with the highest score are the candidates most likely to represent
the speed of the car. This method is used in other parameters, and that is why it is
explained later.

The first method is the simplest and most accurate way to obtain the vehicle speed.
However, the second method can have the speed data without wasting time on the requesting
process.

Regarding the wheels’ speed, the second path is the only option for identification. During
this work, other ways to identify these parameters, i.e., finding an ID with four values of
two very identical bytes or finding these four equal values in different IDs. However, due to
the microcontroller’s processing and memory limitations of the micro-controller used, it is
impossible to save that bunch of data and analyze it. A new solution had to be found that is
fast and occupies the smallest possible memory space.

The inspiration to develop a new technique to relate CAN data with the ground-truth
values of the PID speed comes from previous works [62] [63] described in section 2.6. During
this part of the work, various methods have been attempted to relate these two variables.

44

Pearson’s correlation coefficient between CAN data

The first method used to verify the relation is Pearson’s correlation coefficient. Pearson’s
coefficient measures the relationship between two groups of data and can take values between
-1 and 1. When the result is close to these boundaries, the correlation is strong, and when it
is close to 0, the correlation is weak. Given a pair of random variables (x, y), the formula for
the ρ is:

ρ = cov(X,Y)
σxσy

(4.1)

ρ =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2 (4.2)

However, the raw CAN messages do not have the same sampling frequency, making it
difficult to calculate the coefficient. The data can be interpolated to achieve the same number
of samples [66] [67] [69], but this device does not have the memory to store all these messages.

Figure 4.8: IDs and the corresponding number of messages

Pearson’s correlation coefficient between bit-flips

After discarding the previous method, it is tried to implement the Pearson’s correlation
coefficient between the 8-bit bit-flips of two data groups. Now, the problem with the number
of samples does not exist. However, after validating this method, the results show a low
efficiency due to the strong correlation with almost all bytes. This strong correlation occurs
because, usually, the number of bit-flips increases from the MSB to the LSB, resulting in a
positive linear relationship. Figure 4.9 shows an example where this happens.

Figure 4.9: Comparison between the bit-flips and behaviour of two bytes

45

In this example, on the right, it represents the behavior of byte #3 of ID 7E8 and the
bit-flips counters of that byte and, on the left, the behavior of the byte 0 of ID 0C6 and the
respective bit-flips counters of that byte are represented. As can be seen in the figure above,
there is no relationship between the graphics. However, it can be observed that the result
between the ratio of the bit-flips values indicates a solid relationship between them.

ρ = (0 − 19) ∗ (8 − 10, 25) + ...+ (85 − 19) ∗ (19 − 10, 25))√
(0 − 19)2 ∗ (8 − 10, 25)2 + ...+ (85 − 19)2 ∗ (19 − 10, 25)2 = 0, 997 (4.3)

Implemented method

After the results were not promising in the previous methods, a new solution was chosen, based
on our best knowledge. The solution found for this second process is a comparison between
some features that classify the signals over time, without depending on the number of samples.
The four features are average normalized, percentage of ascents, percentage of descents and
position of the function’s maximum value. The following table shows the explanation and the
importance of each feature.

Table 4.3: Formula and description of the implemented method’s features

Feature Formula Description

Average
normalized

average(x) − x(min)
x(max) − x(min)

The sum of the values divided by the num-
ber of messages. In this case, it is used a
min-max normalization to normalize the
average between 0 and 1;

Percentage of
ascents

number of ascents
number of messages

Estimate the derivative of the function
described by the vehicle parameter during
the trace

Percentage of
descents

number of descents
number of messages

Estimate the derivative of the function
described by the vehicle parameter during
the trace

Normalized
position of

the maximum
value

index(max)
number of messages

Find the position of the maximum num-
ber. This feature does not depend on the
number of samples of the signal. However,
when the sample numbers are too far, their
comparison may not be accurate.

After all, a Root-Mean-Square Error (RMSE) is used to measure the differences between
the features of the parameters. The formula for calculating the RMSE is given by:

RMSE =

√√√√(1
N

)
N∑

i=1
(yi − xi)2, (4.4)

46

where N is the number of features, yi is the predicted value (i.e. PID speed) and xi is the
actual value (candidate).

The lower the RMSE value, the lower the distance between them. So, the probability of a
given candidate is higher to be chosen.

47

CHAPTER 5
Tests and Validation

The previous chapter exposes the processes used to implement this work. After searching for
methods to accomplish this dissertation’s ambitions, it is time to test and validate them.

This chapter splits into two important topics for this work: the communication and the
extraction of the parameters. Firstly, the two types of communication presented in 4.2 are
tested with the CAN BUS ECU Simulator, following by the tests to the processes described
in 4.3 on both vehicles. The results of the various methods will present figures and graphics
to prove the veracity of the solutions.

In the end, it is considered a brief discussion about the algorithm’s effectiveness and
performance, based on the results of the tests.

5.1 Communication

Before beginning the tests to discover the CAN parameters, the validation of the communication
between the Carloop and OBU is presented.

The previous chapter describes two methods to transmit these data: USB communica-
tion and BLE communication. This first part of the work demonstrates how Carloop can
communicate the parameters with both standards.

The tests was performed at the Institute of Telecommunications in Aveiro. CAN messages
are simulated through the simulator presented in 4.1.1. A PC and a Serial Bluetooth Terminal
application for Android are used to validate data transmissions via USB and BLE, respectively.

5.1.1 USB communication

The first test proves that the two elements can communicate using a USB cable. The Carloop
send request-messages and receives the respective response-messages from the simulator. The
CAN parameters are broadcast to the IT2S platform after collecting all the values.

As shown in figure 4.3, Carloop requests the five parameters of table 4.2 and saves them
in a buffer. When the last PID parameter is stored, the buffer is sent to the platform. This

49

platform has and embedded software to receive this data through a USB port, convert the
values from HEX to Integer, and store it in a share-memory.

Figure 5.1 shows a picture with the setup used for this test.

Figure 5.1: Setup used for the USB communication test

The IT2S platform receives data, and the integer values of the parameters are shown in
an output terminal. Putty was the terminal chosen since it supports SSH protocol. Figure 5.2
shows the output terminal with the respective parameter values. The name of each parameter
is abbreviated:

• rpm – Engine Speed (0x0C);
• spd – Vehicle Speed (0x0D);
• ect – Engine Coolant Temperature (0x05);
• maf – Mass Air Flow Sensor (0x10);
• o_2 – Oxygen Sensor 1 (0x14);

50

Figure 5.2: Data trasmitted from Carloop to platform via USB

After this test, the USB communication is ensured and proves that Carloop can transmit
the CAN-bus data to the platform with this approach. The next step is to test the wireless
communication, more precisely with the BLE.

5.1.2 BLE

BLE communication implies a different setup. Due to the lack of time, it was only possible to
develop the peripheral code to the Carloop, dismissing the Bluetooth part of the platform. For
that reason, the setup includes a smartphone with a Bluetooth-Serial application to confirm
the received data.

This application provides a simulation of a terminal to receive messages from every
Bluetooth device that connects to the phone. The smartphone can detect which devices are
available to pair and, as soon as Carloop is selected, the connection is complete, and it starts
receiving the data, second by second.

51

(a) Debug of the transmitted data in the Arduino ter-
minal

(b) Data on the Serial Bluetooth Terminal application

Figure 5.3: Result of the transmission by BLE

5.2 Data extraction from vehicles

These tests are executed in the vehicles and validate the algorithm’s efficiency and the several
processes proposed in section 4.3.

The present section presents the same structure as section 4.3 of the previous chapter.
Firstly, the algorithm’s performance in the detection of binary parameters is evaluated,
followed by the non-binary parameters, and finishing with the presentation of two different
routes to validate the identification of the position of the wheels.

In each part, the results are shown with a table containing the message ID and the
respective position of the parameter in the data field identified by the algorithm. Since, in
some cases, there is an iteration with the driver, graphics are also shown to validate that, in
the position found by the algorithm, the iterations that the driver executes corresponds with
the variations of the graphic. Other relevant figures are also shown for the demonstration of
the test results.

5.2.1 Vehicles

The next two pictures in figure 5.4 show the vehicles used to test the methods implemented
in this work: Nissan Micra 2012 and Renault Captur 2015.

52

(a) Nissan Micra 2012 (b) Renault Captur 2015

Figure 5.4: Pictures of the vehicles used to test the implementation methods

5.2.2 Binary parameters

Binary parameters may also be referred to as status parameters. These binary values are only
intended to indicate whether the parameter is ON or OFF. When a parameter is in OFF, it is
at ’0’ and when it is in ON state it is at ’1’.

Identifying this type of parameters does not require any specific scenario since the tests
are carried out with the vehicle stopped, only with the ignition triggered. These tests can be
called static, because they do not need to set the vehicle in motion to extract the respective
parameter.

Inside the vehicle, Carloop was installed, in the OBD-II port, with the detection software
and a Computer to read the algorithm’s requests and receive the output with the position of
the parameter. Putty is used to reading the messages through the COM port where Carloop
is connected to the PC. Due to the limited availability of the vehicles, the tests are performed
during the night. Therefore the next figures, 5.5 and 5.6, may not be very perceptible with
the arrangement of each vehicle’s elements.

Figure 5.5: Setup with Carloop and PC in Nissan Micra 2012

53

Figure 5.6: Setup with Carloop and PC in Renault Captur 2015

Figure 5.5 shows how Carloop interacts with the driver to identify the CAN message with
the position lights’ bit. After a set of messages, the algorithm asks the driver not to handle
the lights control for 10 seconds, starting phase 0 of this process. The driver is then asked to
turn the lights five times during 15 seconds, corresponding to phase 1. Three more transitions
are requested for the validation phase (phase 2). In the end, the position of the parameter
that the algorithm has identified is shown.

The result’s veracity is shown in the graphic of figure 5.6, which shows the three phases
and the requested variations within the required time spaces.

Figure 5.7: Identification of the position through the process of the three phases

54

Figure 5.8: Graphic with the transitions of the position lights in bit #9 of the CAN message with
ID 625 over the time of the three phases

The other results obtained by the algorithm in this type of parameters are shown in the
table 5.1. The figures from 5.9 to 5.13 show graphics of the parameters found to validate the
position variations.

Table 5.1: Results of the binary parameters extracted in both vehicles

Parameters N Micra 2012 R Captur 2015
CAN ID (HEX) Bit CAN ID (HEX) Bit

Position Lights 625 9 3B7 16
Medium Lights 625 10 3B7 16
Maximum Lights 625 11 - -

Windshield Wiper Speed #1 35D 16 - -
Windshield Wiper Speed #2 35D 18 - -

Table 5.1 consists of five binary parameters identified in each vehicle. The Nissan Micra
2012 (N Micra 2012) shows a positive response to the process presented, identifying all the
parameters proposed for this part. Unlike Nissan, the tests on the Renault Captur 2015 (R
Captur 2015) did not meet expectations, obtaining only two of the five parameters.

As regards the similarity of the results obtained on the Renault, it can be seen that there
is no distinction, within the CAN-bus accessible via the OBD-II port, between the position
lights and the medium lights. A more detailed analysis of these results is described later in
the final considerations.

55

Figure 5.9: Graphic with the transitions of the medium lights of N Micra 2012 in bit #10 of the
CAN message with ID 625 over the time of the three phases

Figure 5.10: Graphic with the transitions of the maximum lights of Nissan Micra 2012 in bit #11 of
the CAN message with ID 625 over the time of the three phases

Figure 5.11: Graphic with the transitions of the windshield wiper speed #1 of Nissan Micra 2012 in
bit #16 of the CAN message with ID 35D over the time of the three phases

56

Figure 5.12: Graphic with the transitions of the windshield wiper speed #2 of Nissan Micra 2012 in
bit #18 of the CAN message with ID 35D over the time of the three phases

Figure 5.13: Graphic with the transitions of the position lights of Renault Captur 2015 in bit #16
of the CAN message with ID 3B7 over the time of the three phases

5.2.3 Non-Binary parameters

The non-binary parameters are represented by one or more bytes, and therefore, the algorithm
needs to perform other processes to find them in CAN messages.

In section 4.3.2 shows that different processes are implemented within this type of parame-
ters. In the Throttle Pedal Position and the Steering Wheel Direction, the tests are also static
as in the binary parameters, not requiring any specific place to perform them. In the other
parameters, the locations and specifications for the tests are mentioned later. The conditions
where the tests occurred are the same as those described in section 5.2.1.

Regarding the static tests, figure 5.14 and 5.16 shows how Carloop interacts with the
driver to identify Steering Wheel Direction and the Throttle Pedal Position.

The procedure of both parameters, which is explained in section 4.3.2 of the previous
chapter, is similar. However, Steering Wheel Direction requires a much longer phase 1. After
the reference period corresponding to phase 0, the driver starts phase 1 by using the steering
wheel to each side as required. After that, the results are displayed with the CAN ID, and
the corresponded byte number.

57

The same process also identifies the Throttle Pedal position; however, in phase 1, it is
only requested to press the pedal twice. The graphics on figure 5.15 and 5.17 represent the
variations related to the actions caused by the driver in the found parameters, validating the
test result. Both figures represent the tests performed at Renault.

Figure 5.14: Identification of the steering wheel position through the process described

Figure 5.15: Graphic with the variations of the steering wheel in byte #0 of the CAN message with
ID 0C6 over the time

Figure 5.16: Identification of the throttle position through the process described

58

Figure 5.17: Graphic with the variations of the throttle pedal in byte #5 of the CAN message with
ID 186 over the time

There is no way to test without the car moving regarding the Vehicle Speed, Wheels Speed
and Engine Speed parameters. Therefore the implemented method implies a different process
of processing and analysis for this type of data.

The scenario chosen to evaluate the new method’s performance is a road located in an
area with little affluence to avoid disturbances during the tests, which would be impossible in
environments with a greater vehicle flow. These validations were made at Rua das Longas,
in Ovar, as shown in figure 5.18, during the night. The route chosen is straight to make
the detection of wheel speed more effective and is equivalent to approximately 30 seconds of
driving, being the time necessary for the method to identify the parameters in CAN messages.

Figure 5.18: Trace in Rua das Longas, Ovar, used to test the method for speeds

The following figures show the results obtained for Vehicle Speed and Wheels Speed in the

59

Renault. Figure 5.19 shows the result with the features of the PID 0x0D, corresponding to the
vehicle speed. The calculation performed by Carloop is shown as follows: ID, the normalized
value of the average, % of ascents divided by 100, % of descents divided by 100 and the
normalized position of the maximum value. In the previous chapter, table 4.3 describes these
features in more detail.

Figure 5.19: Result of the features calculations from the values extracted from the PID 0x0D
corresponding to the vehicle speed

The algorithm initially filters the CAN messages bytes, which contain a minimum value
equal to 0, due to the vehicle starting stopped) and a maximum value between 1 and 254.
This filter eliminates data that have not been changed or which are bytes with less significant
bits of a certain variable. Then, as shown in figure 5.20, the first candidates with the same
values calculated in the PID plus the RMSE value between the candidate features and the
PID features are chosen. The candidates with RMSE values below 0.1 are considered the
primary candidates for the vehicle speed but proceed to a final analysis to distinguish which
of them correspond to the wheels speed.

60

Figure 5.20: Indication of the candidates to the vehicle speed from the RMSE values

Since the vehicle travels on a straight road, the Wheels Speed parameters have to show
the same scale and offset in CAN messages, and therefore, the maximum value reached has
to be very similar in all four. Figure 5.21 shows the identification of the four-wheel speed
parameters. The interval [34, 35] indicates that four candidates contain a maximum value
between 34 and 35, concluding that they are the parameters corresponding to the wheels. In
some instances, a slight curve on the street coincides when the vehicle reaches its maximum
speed during the test. The route represented in figure 5.18 shows that exists a small curve
during the test, which explains that three of the four parameters have a maximum value of 34
and another parameter has a maximum value of 35. Through this technique, by searching the
parameters in intervals, it is possible to fix these small coincidences.

61

Figure 5.21: Result of the method of detection of the wheel speed parameters, with the message ID
and the byte corresponding to the position found

The graphics of figures 5.22 and 5.23 show the values of the PID values and four bytes’
values over the time to validate the similarity between them.

Figure 5.22: Graphic with the variation of the vehicle speed in byte #3 of the CAN message with
ID 7E8 and PID 0x0D over the time

62

(a) Byte #0 of ID 29A (b) Byte #2 of ID 29A

(c) Byte #0 of ID 29C (d) Byte #2 of ID 29C

Figure 5.23: Graphics of the variation of the wheel speed parameters found over time

This method is also used to find the Engine Speed parameter. The only difference is that
the primary candidates are only considered if they have an RSME value below 0,05. The
results show that byte #0 of ID 186 match the features of byte #3 of PID 0x0D. The graphics
of these bytes are presented in figures 5.24 and 5.25 to show the similarity between them.

Figure 5.24: Graphic with the variation of the engine speed in byte #3 of the CAN message with ID
7E8 and PID 0x0C over the time

63

Figure 5.25: Graphic with the variation of the engine speed in byte #0 of the CAN message with ID
186 over the time

Notice that all the proposed non-binary parameters are identified by only one byte. The
algorithm developed in this work allows finding a byte that can identify the parameters.
However, some parameters have two bytes of information, such as the steering wheel direction
parameter. Figure 5.26 shows all the bit-flips of the message with the ID 0C6 that occurred
during the test. If we analyze this figure more in detail, as shown in figure 5.27, we notice
a growth in the number of bit-flips from the Most Significant Bit (MSB) (0) to the Least
Significant Bit (LSB) (15), indicating a parameter of two bytes.

Figure 5.26: Number of bit-flips of the CAN ID 0C6 message during the test

64

Figure 5.27: First two bytes’ bit-flips of the CAN ID 0C6

Based on this analysis, it is affirmative to say that the CAN message with the ID 0C6
contains the steering wheel angle values in bytes #0 and #1 of the data field.

The results obtained by the algorithm in this type of parameters on Renault Captur are
resumed in Table 5.2. This table also contains the offsets, scales and units of the physical
values. The next formula shows how to obtain the values from the decimal value of the
parameters.

physical_value = offset+ scale ∗ decimal_value, (5.1)

where the offset is the value to offset the physical value, the scale is the value to multiply the
physical value.

Table 5.2: Non-Binary parameters of Renault Captur with the respective CAN ID, Byte(s), Unit,
Offset and Scale

R Captur 2015 CAN ID (HEX) Byte(s) Unit Offset Scale
Steering Wheel Angle 0C6 0-1 º 8000 0.1

Steering Wheel Direction 0C6 0 bool - -
Throttle Pedal 186 5 % 0 0.4
Vehicle Speed 217 3 - 4(7-4) km/h 0 0.1
Engine Speed 186 0-1 rpm 0 0.125

Wheels Speed

29A 0-1 km/h 0 0.005
29A 2-3 km/h 0 0.005
29C 0-1 km/h 0 0.005
29C 2-3 km/h 0 0.005

The tests described in this section were performed in the same way for the Nissan Micra
2012. The results of the tests are synthesized in Table 5.3. This table also contains the offsets,
scales and units of the physical values converted from hexadecimal to an integer.

65

Table 5.3: Non-Binary parameters of Nissan Micra with the respective CAN ID, Byte(s), Unit, Offset
and Scale

N Micra 2012 CAN ID (HEX) Byte(s) Unit Offset Scale
Steering Wheel Angle - - - - -

Steering Wheel Direction - - - - -
Throttle Pedal 182 4 % 0 1
Vehicle Speed 280 4-5 km/h 0 0.01
Engine Speed 180 0-1 rpm 0 0.125

Wheels Speed

284 0-1 km/h 0 0.005
284 2-3 km/h 0 0.005
285 0-1 km/h 0 0.005
285 2-3 km/h 0 0.005

Based on the two tables, it can be seen that the results obtained for these parameters were
quite positive. In Renault they were 100% achieved. However, in Nissan it was not possible
to find the message regarding the steering wheel of the vehicle. The reason why the algorithm
failed in this parameter is explained in detail below.

5.2.4 Identification of Wheels Position in specific traces

Once the four wheels’ parameters are identified, it is easier to identify the corresponded
position of every wheel. Firstly, it is needed to collect CAN data again, describing one or
more curves to verify the wheels’ speed differences.

When the vehicle moves on a straight street, the wheels follow the same line and, for that
reason, they rotate at the same speed. However, when the vehicle rotates, they describe a
different circumference line, drawing a smaller circumference on the internal wheels and larger
circumferences on the external wheels. As a result, the externals wheels ride a longer path
and need to speed up to follow the other wheels, as shown in figure 5.28.

66

Figure 5.28: Illustration of the different circumferences of the wheels in a curve. Adapted from [76]

This control is made by a differential. The differential is a fundamental element placed
in the wheel axle and can adjust the wheels speed in a curve. This mechanism allows the
semi-axles (which connect the differential to the wheel) to have different rotation speeds with
the same torque.

The scenarios chosen to check these differences in the wheel’s speed are two roads with an
associated curve. The test for the right-side curve is made from Rua Cimo de Vila to Rua
Montes de Sandes, located in Ovar and the test for the left-side curve is performed from Rua
Montes de Sandes to Rua do Beira Monte, as shown in figure 5.29 and 5.30.

67

Figure 5.29: Right curve between Rua Cimo de Vila and Rua Montes de Sandes

Figure 5.30: Left curve between Rua Montes de Sandes and Rua do Beira Monte

During the tests, it was raining and dark. The photos of figures 5.31 and 5.32, taken at
the moment of the test in Renault and Nissan prove this conditions.

68

Figure 5.31: Picture taken at the moment of the test with Nissan Micra 2012

Figure 5.32: Picture taken at the moment of the test with Renault Captur 2015

The graphic in figure represents the Wheels Speed parameters’ variation presented in the
table 5.2 of Renault, when the car is describing the right curve.

69

Figure 5.33: Graphic of the variation of the wheel speed parameters and the identification of the
moment of the right curve

First of all, it is revealing to note that the number of messages of the two messages 29A
and 29C are not the same, and therefore, even if the graphics are normalized, it can be visible
a small delay in one of the messages. However, the curve identified by the square drawn in
the figure is important to take from this test. There are small differences in the wheel’s speed
in the curve area, thus proving the theory explained above. The light purple line should
represent the right rear wheel, and the orange line describes the speed of the left front wheel,
the one that describes a larger circumference in a right curve. Table 5.4 demonstrates the
results obtained.

Table 5.4: Identification of the values for each wheel in Renault Captur

R Captur 2015 Position CAN ID (HEX) Byte(s)

Wheels Speed

Front Right (FR) 29A 0-1
Rear Right (RR) 29C 2-3
Front Left (FL) 29A 2-3
Rear Left (RL) 29C 0-1

The second test is performed with the vehicle rotating to the left to validate the previous
identification. The right wheels will have to move faster than the left wheels, thus, it is
expected the opposite result regarding the first trace. The graphic of figure 5.34 shows the
result of the route taken.

70

Figure 5.34: Graphic of the variation of the wheel speed parameters and the identification of the
moment of the left curve

Based on this graphic, it is possible to validate the results presented in table 5.4. The FR
wheel is represented by the dark purple color, the RR wheel by the light purple color, the FL
wheel by the orange color and the RL wheel by the green color.

Table 5.5 represents the results for Nissan Micra 2012.

Table 5.5: Identification of the values for each wheel in Nissan Micra

N Micra 2012 Position CAN ID (HEX) Byte(s)

Wheels Speed

Front Right (FR) 284 0-1
Rear Right (RR)) 285 0-1
Front Left (FL) 284 2-3
Rear Left (RL) 285 2-3

5.2.5 Final considerations

As mentioned throughout this chapter, communication tests were performed to validate
Carloop’s communication with the IT2S platform in two ways: cable and wireless. The results
of the tests ensured that Carloop could transmit the parameters of CAN messages in both
configurations.

Subsequently, the extraction tests of the parameters mentioned in table 4.2 begin. These
tests have validated the solutions implemented to extract binary and non-binary parameters
through static and dynamic methods. The data extracted from the vehicles was positive for
both cars but showed some differences with better results in the Nissan Micra 2012 for binary
parameters and better results in the Renault Captur 2015 for non-binary parameters.

Regarding the results of Renault’s binary parameters, the algorithm could not detect
the windshields’ movement and the maximum lights. In newer cars, there is a type of bus
supplementary to the CAN bus. The Local Interconnect Network (LIN) is a protocol with
low performance and low costs due to the use of only one wire for communication and not

71

requires a high communication speed [77]. Typically, the LIN Master serves as a gateway to
the CAN bus and is used for messages regarding windows, air conditioning and windshields
[78]. Due to the lack of documentation of the in-vehicle network, it is only estimated that the
problem comes from here.

In the non-binary parameters, Renault’s results exceeded expectations, unlike the Nissan
results that were not fully achieved. However, after manual analysis of the messages captured
from the bus, it is concluded that it is not detected by the method used being weak but by
the fact that there is no reference to the steering wheel angle in CAN messages. During this
analysis, it was found that there is only one value that represents the acceleration of the
steering wheel and that it is located in the message with ID 2 in byte #2, as shown in the
graphic of figure 5.35 concerning the trip represented in figure 5.30.

Figure 5.35: Graphic with the values of byte #2 of ID 2 representing the rotation speed of the
steering wheel

The graphic peaks refer to the steering wheel’s turning when the car leaves the parking
lot, drives the curve for the test and leans against the roadside at the end of the test.

At the end, an analysis is added to the wheels speed to assign the corresponding positions
to each wheel. This test also shows how the data extracted from the vehicle can inform about
the state of the weather during a drive through the state of the windshield and the state of
the lights. The remaining parameters also help in road safety, such as detecting of sudden
braking, which can be seen at the end of the graphic in figure 5.32.

72

CHAPTER 6
Conclusions and Future Work

6.1 Conclusions

This work studies how to extract and decode raw CAN messages transmitted within vehicle
communication networks. A solution to find specific parameters for a weather-related project
was structured, implemented and evaluated by a device connected to the OBD-II port of the
vehicles with an algorithm to apply reverse engineering on the CAN bus.

This work was developed due to the lack of results in online parameter detection, with the
primary objective of developing an iteration algorithm with the driver to contribute to the
evolution of ITS. The speed and efficiency of the parameter detection and the transmission of
this data to the OBU are other important objectives of this dissertation. It was stepped several
tasks to achieve the proposed objectives. Starting from the study of concepts involved with
this dissertation and the review of the state-of-the-art to the design of the system architecture,
development of the implementation and the validation of the planned implementation.

During this work, many tests were made to communicate with OBU and extract parameters
from raw CAN signals. The results of the tested communications were both positive with some
advantages and disadvantages between them. The main advantage of cable communication is
data transmission speed, not compromising delays or failures in the transmission of parameters
to the OBU. However it is not easy to have cables inside the vehicle without them being able
to disturb or obstruct the conductor. In an era when wired communication is falling into
disuse, wireless communication becomes an inherent option each time, and that is why BLE
technology is chosen. Although the latency levels are higher than the USB communication, it
does not prevent this technology from being the one that will be used in the TRUST project.

At the level of the work performed inside the vehicles, tests were made to the lights,
windshields, pedals, steering wheel, engine speed, vehicle speed, and wheel speeds. Other
parameters are not tested, such as External Air Temperature, Barometric Pressure, and
Engine Load. However, they can be obtained through the implemented method to relate the
messages with PIDs or extract the value directly by transmitting a request-message to the
bus with the intended PID. The results of the tested parameters were positive, as mentioned

73

in the previous chapter. Still, not all parameters were found, which concludes that there may
be gateways and other communication protocols within the in-vehicle network that make it
impossible to find them from reading on the OBD-II port. Another aspect that interfered
in the results was the specificity of the iterative methods with the driver: the case of the
parameter referring to the steering wheel angle happens because the test did not correspond
to how Nissan configured the parameter’s behaviour in the system. Nevertheless, this event
permits insight know-how into how OEMs develop their systems. The results also showed that
they could have different offset and scale for the parameters represented by one or more bytes.

The method implemented to relate CAN messages to diagnostic messages shows that it is
unnecessary to have databases with millions of CAN messages to obtain the desired results.
This work has proven that only a 30-second collection is needed to achieve this goal.

It was concluded that the results are very exciting and promising and bring a contribution
to this area.

6.2 Future work

During the development of this work, which culminated in the individual evaluation, it was
perceptible that certain aspects of the implementation could be improved. Thus, here are
some study topics that stand out for future developments:

• Check the effectiveness of this algorithm on a larger number of vehicles, from the oldest
to the most modern vehicle;

• Explore how OEMs represent the parameters in intra-vehicle messages in order to
develop new methods to detect them;

• Develop a device with a system dedicated to this function, preferably with more memory
to implement new methods for more accurate estimations such as the coefficient of
variation;

• Develop other methods for the most modern vehicles with new sensors that can be
added to the list of parameters to evaluate the weather conditions, such as a sun sensor
and rain sensor.

• Test the two forms of communication with the OBU in a real environment.

74

References

[1] World vehicle population tops 1 billion units, Accessed: October 2020. [Online]. Available: https:
//www.wardsauto.com/news-analysis/world-vehicle-population-tops-1-billion-units.

[2] Automotive industry worldwide - statistics & facts, Accessed: November 2020. [Online]. Available: https:
//www.statista.com/topics/1487/automotive-industry/#:~:text=Global%5C%20sales%5C%20of%
5C%20automobiles%5C%20are,commercial%5C%20vehicles%5C%20and%5C%20passenger%5C%20cars.

[3] Number of cars sold worldwide between 2010 and 2021, Accessed: November 2020. [Online]. Available:
https://www.statista.com/statistics/200002/international-car-sales-since-1990/.

[4] European comission, statistics - accident data (road fatalities in the eu since 2001), Accessed: November
2020. [Online]. Available: https://ec.europa.eu/transport/road_safety/specialist/statistics_
en.

[5] Obd-ii background, Accessed: January 2020. [Online]. Available: http://www.obdii.com/background.
html.

[6] Advantages of vehicle to vehicle communication, Accessed: October 2020. [Online]. Available: https:
//www.azuga.com/blog/vehicle-to-vehicle-communication-benefits.

[7] We hacked a ford focus and a volkswagen polo, Accessed: April 2020. [Online]. Available: https :
//www.which.co.uk/news/2020/04/we-hacked-a-ford-focus-and-a-volkswagen-polo/.

[8] Tesla model x hacked with $195 raspberry pi based board, Accessed: November 2020. [Online]. Available:
https://www.embedded.com/tesla-model-x-hacked-with-195-raspberry-pi-based-board/.

[9] D. Enriquez, A. Bautista, P. Field, S.-i. Kim, S. Jensen, M. Ali, and J. Miller, “Canopnr: Can-obd
programmable-expandable network-enabled reader for real-time tracking of slippery road conditions
using vehicular parameters”, in 2012 15th International IEEE Conference on Intelligent Transportation
Systems, IEEE, 2012, pp. 260–264.

[10] C. Van Geem, M. Bellen, B. Bogaerts, B. Beusen, B. Berlémont, T. Denys, P. De Meulenaere, L. Mertens,
and P. Hellinckx, “Sensors on vehicles (sensovo)–proof-of-concept for road surface distress detection
with wheel accelerations and tof camera data collected by a fleet of ordinary vehicles”, Transportation
Research Procedia, vol. 14, pp. 2966–2975, 2016.

[11] M. N. Iqbal, L. Y. Xin, W. U. Rehman, A. Rakhio, S. Siddique, D. Zahid, W. Yasin, and A. B. Waqar,
“Diagnostic tool and remote online diagnostic system for euro standard vehicles”, in 2017 IEEE 3rd
Information Technology and Mechatronics Engineering Conference (ITOEC), IEEE, 2017, pp. 415–419.

[12] I. Galanis, I. Anagnostopoulos, P. Gurunathan, and D. Burkard, “Environmental-based speed recom-
mendation for future smart cars”, Future Internet, vol. 11, no. 3, p. 78, 2019.

[13] N. AbuAli, “Advanced vehicular sensing of road artifacts and driver behavior”, in 2015 IEEE Symposium
on Computers and Communication (ISCC), IEEE, 2015, pp. 45–49.

[14] M. Bartos, H. Park, T. Zhou, B. Kerkez, and R. Vasudevan, “Windshield wipers on connected vehicles
produce high-accuracy rainfall maps”, Scientific reports, vol. 9, no. 1, pp. 1–9, 2019.

[15] M. Chapman, S. Drobot, T. Jensen, C. Johansen, W. Mahoney III, P. Pisano, and B. McKeever, “Using
vehicle probe data to diagnose road weather conditions—results from the detroit intellidrive (sm) field
study”, Transportation Research Record, vol. 2169, pp. 116–127, 2010.

75

https://www.wardsauto.com/news-analysis/world-vehicle-population-tops-1-billion-units
https://www.wardsauto.com/news-analysis/world-vehicle-population-tops-1-billion-units
https://www.statista.com/topics/1487/automotive-industry/#:~:text=Global%5C%20sales%5C%20of%5C%20automobiles%5C%20are,commercial%5C%20vehicles%5C%20and%5C%20passenger%5C%20cars
https://www.statista.com/topics/1487/automotive-industry/#:~:text=Global%5C%20sales%5C%20of%5C%20automobiles%5C%20are,commercial%5C%20vehicles%5C%20and%5C%20passenger%5C%20cars
https://www.statista.com/topics/1487/automotive-industry/#:~:text=Global%5C%20sales%5C%20of%5C%20automobiles%5C%20are,commercial%5C%20vehicles%5C%20and%5C%20passenger%5C%20cars
https://www.statista.com/statistics/200002/international-car-sales-since-1990/
https://ec.europa.eu/transport/road_safety/specialist/statistics_en
https://ec.europa.eu/transport/road_safety/specialist/statistics_en
http://www.obdii.com/background.html
http://www.obdii.com/background.html
https://www.azuga.com/blog/vehicle-to-vehicle-communication-benefits
https://www.azuga.com/blog/vehicle-to-vehicle-communication-benefits
https://www.which.co.uk/news/2020/04/we-hacked-a-ford-focus-and-a-volkswagen-polo/
https://www.which.co.uk/news/2020/04/we-hacked-a-ford-focus-and-a-volkswagen-polo/
https://www.embedded.com/tesla-model-x-hacked-with-195-raspberry-pi-based-board/

[16] W. P. Mahoney III and J. M. O’Sullivan, “Realizing the potential of vehicle-based observations”, Bulletin
of the American Meteorological Society, vol. 94, no. 7, pp. 1007–1018, 2013.

[17] R. B. GmbH, “Can specification, version 2.0”, 1991.

[18] Canbus: The central networking system of vehicles, Accessed: December 2019, Jun. 2019. [Online].
Available: https://premioinc.com/blogs/blog/can-bus-the-central-networking-system-of-
vehicles.

[19] “Road vehicles — Controller area network (CAN) — Part 2: High-speed medium access unit”, Interna-
tional Organization for Standardization, Standard, Dec. 2016.

[20] Can physical layer and termination guide, Accessed: November 2020, 2020. [Online]. Available: https:
//www.ni.com/pt- pt/innovations/white- papers/09/can- physical- layer- and- termination-
guide.html.

[21] Why are termination networks in can transceivers so important?, Accessed: October 2020, 2016. [Online].
Available: https : / / e2e . ti . com / blogs _ /b / industrial _ strength / archive / 2016 / 07 / 14 / the -
importance-of-termination-networks-in-can-transceivers.

[22] J. A. Cook and J. S. Freudenberg, “Controller area network (can)”, 2008.

[23] “Road vehicles — Diagnostic communication over Controller Area Network (DoCAN) — Part 2:
Transport protocol and network layer services”, International Organization for Standardization, Standard,
Apr. 2016.

[24] All about can bus, Accessed: December 2019, 2012. [Online]. Available: https://www.kanda.com/blog/
microcontrollers/bus/.

[25] “Road vehicles — Communication between vehicle and external equipment for emissions-related diag-
nostics — Part 5: Emissions-related diagnostic services”, International Organization for Standardization,
Standard, 2015.

[26] “Road vehicles — Controller area network (CAN) — Part 1: Data link layer and physical signalling”,
International Organization for Standardization, Standard, Dec. 2015.

[27] Can fd explained - a simple intro (2020), Accessed: November 2020. [Online]. Available: https://www.
csselectronics.com/screen/page/can-fd-flexible-data-rate-intro/language/en.

[28] Can fd - the basic idea, Accessed: November 2020. [Online]. Available: https://www.can-cia.org/can-
knowledge/can/can-fd/.

[29] Controller area network (can) and flexible data-rate (can fd), Accessed: November 2020. [Online].
Available: https://www.kvaser.com/about-can/can-fd/.

[30] Can xl is knocking on the door, Accessed: November 2020. [Online]. Available: https://www.can-
cia.org/news/cia-in-action/view/can-xl-is-knocking-on-the-door.

[31] Can xl and can fd light, Accessed: November 2020. [Online]. Available: https://www.can-cia.org/
news/cia-in-action/view/can-xl-and-can-fd-light/2020/5/28/.

[32] C. Senger, “Can xl error detection capabilities”, CAN Newsletter, Jun. 22, 2020.

[33] Can xl: Next step in can evolution, Accessed: November 2020. [Online]. Available: https://www.bosch-
semiconductors.com/news/t-newsdetailpage-4.html.

[34] Can xl: Bridging the bitrate gap between can fd and ethernet, Accessed: November 2020. [Online]. Available:
https://www.kvaser.com/can-xl-bridging-the-bitrate-gap-between-can-fd-and-ethernet.

[35] C. Pijolat, C. Pupier, M. Sauvan, G. Tournier, and R. Lalauze, “Gas detection for automotive pollution
control”, Sensors and Actuators B: Chemical, vol. 59, no. 2, pp. 195–202, 1999.

[36] M. A. K. Niazi, A. Nayyar, A. Raza, A. U. Awan, M. Ali, N. Rashid, and J. Iqbal, “Development of an
on-board diagnostic (obd) kit for troubleshooting of compliant vehicles”, 2013.

[37] Obd2 explained - a simple intro (2020), Accessed: October 2020, 2020. [Online]. Available: https:
//www.csselectronics.com/screen/page/simple-intro-obd2-explained/.

76

https://premioinc.com/blogs/blog/can-bus-the-central-networking-system-of-vehicles
https://premioinc.com/blogs/blog/can-bus-the-central-networking-system-of-vehicles
https://www.ni.com/pt-pt/innovations/white-papers/09/can-physical-layer-and-termination-guide.html
https://www.ni.com/pt-pt/innovations/white-papers/09/can-physical-layer-and-termination-guide.html
https://www.ni.com/pt-pt/innovations/white-papers/09/can-physical-layer-and-termination-guide.html
https://e2e.ti.com/blogs_/b/industrial_strength/archive/2016/07/14/the-importance-of-termination-networks-in-can-transceivers
https://e2e.ti.com/blogs_/b/industrial_strength/archive/2016/07/14/the-importance-of-termination-networks-in-can-transceivers
https://www.kanda.com/blog/microcontrollers/bus/
https://www.kanda.com/blog/microcontrollers/bus/
https://www.csselectronics.com/screen/page/can-fd-flexible-data-rate-intro/language/en
https://www.csselectronics.com/screen/page/can-fd-flexible-data-rate-intro/language/en
https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.kvaser.com/about-can/can-fd/
https://www.can-cia.org/news/cia-in-action/view/can-xl-is-knocking-on-the-door
https://www.can-cia.org/news/cia-in-action/view/can-xl-is-knocking-on-the-door
https://www.can-cia.org/news/cia-in-action/view/can-xl-and-can-fd-light/2020/5/28/
https://www.can-cia.org/news/cia-in-action/view/can-xl-and-can-fd-light/2020/5/28/
https://www.bosch-semiconductors.com/news/t-newsdetailpage-4.html
https://www.bosch-semiconductors.com/news/t-newsdetailpage-4.html
https://www.kvaser.com/can-xl-bridging-the-bitrate-gap-between-can-fd-and-ethernet
https://www.csselectronics.com/screen/page/simple-intro-obd2-explained/
https://www.csselectronics.com/screen/page/simple-intro-obd2-explained/

[38] J. Laukkonen, Elm327 programmed microcontroller car diagnostics, Accessed: June 2020, Feb. 2020.
[Online]. Available: https://www.lifewire.com/elm327-microcontroller-car-diagnostics-534688.

[39] What’s the difference between bluetooth le and bluetooth spp (ble vs spp)?, Accessed: June 2020. [Online].
Available: https://www.serialio.com/faqs/whats- difference- between- bluetooth- le- and-
bluetooth-spp-ble-vs-spp.

[40] Bluetooth vs. bluetooth low energy: What’s the difference?, Accessed: June 2020, Nov. 2015. [Online].
Available: https://www.link-labs.com/blog/bluetooth-vs-bluetooth-low-energy.

[41] What is bluetooth low energy (ble) and how does it work?, Accessed: June 2020, Mar. 2019. [Online].
Available: https://www.centare.com/blog/what_is_bluetooth_low_energy/.

[42] “Bluetooth Core Specification Version 5.1 ”, SIG Bluetooth, Tech. Rep., Jan. 2019, Accessed: July 2020.

[43] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low energy: An emerging
low-power wireless technology”, Sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[44] Bluetooth® low energy packet types, Accessed: July 2020. [Online]. Available: https : / /
microchipdeveloper.com/wireless:ble-link-layer-packet-types.

[45] Ble protocol stack — host controller interface (hci), Accessed: June 2020, Sep. 2019. [Online]. Available:
https://medium.com/@pcng/ble-protocol-stack-host-controller-interface-hci-44dd5697bd8.

[46] Gap | introduction to bluetooth low energy, Accessed: July 2020. [Online]. Available: https://learn.
adafruit.com/introduction-to-bluetooth-low-energy/gap.

[47] Gatt | introduction to bluetooth low energy, Accessed: July 2020. [Online]. Available: https://learn.
adafruit.com/introduction-to-bluetooth-low-energy/gatt.

[48] W. S. Jeon, M. H. Dwijaksara, and D. G. Jeong, “Performance analysis of neighbor discovery process in
bluetooth low-energy networks”, IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1865–
1871, 2017.

[49] W. Bronzi, R. Frank, G. Castignani, and T. Engel, “Bluetooth low energy performance and robustness
analysis for inter-vehicular communications”, Ad Hoc Networks, vol. 37, pp. 76–86, 2016.

[50] M. Ryan, “Bluetooth: With low energy comes low security”, in 7th {USENIX} Workshop on Offensive
Technologies ({WOOT} 13), 2013.

[51] S. Chumkamon, P. Tuvaphanthaphiphat, and P. Keeratiwintakorn, “The vertical handoff between gsm
and zigbee networks for vehicular communication”, in ECTI-CON2010: The 2010 ECTI International
Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology, IEEE, 2010, pp. 603–606.

[52] F. A. Teixeira, V. F. e Silva, J. L. Leoni, D. F. Macedo, and J. M. Nogueira, “Vehicular networks
using the ieee 802.11 p standard: An experimental analysis”, Vehicular Communications, vol. 1, no. 2,
pp. 91–96, 2014.

[53] W. Bronzi, R. Frank, G. Castignani, and T. Engel, “Bluetooth low energy for inter-vehicular communi-
cations”, in 2014 IEEE Vehicular Networking Conference (VNC), IEEE, 2014, pp. 215–221.

[54] M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, and H. Menouar, “Visible light communication for
vehicular networking: Performance study of a v2v system using a measured headlamp beam pattern
model”, IEEE Vehicular Technology Magazine, vol. 10, no. 4, pp. 45–53, 2015.

[55] A. Festag, “Standards for vehicular communication—from ieee 802.11 p to 5g”, e & i Elektrotechnik und
Informationstechnik, vol. 132, no. 7, pp. 409–416, 2015.

[56] R. Molina-Masegosa and J. Gozalvez, “Lte-v for sidelink 5g v2x vehicular communications: A new 5g
technology for short-range vehicle-to-everything communications”, IEEE Vehicular Technology Magazine,
vol. 12, no. 4, pp. 30–39, 2017.

[57] J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C. R. Bhat, and R. W. Heath, “Millimeter-wave
vehicular communication to support massive automotive sensing”, IEEE Communications Magazine,
vol. 54, no. 12, pp. 160–167, 2016.

77

https://www.lifewire.com/elm327-microcontroller-car-diagnostics-534688
https://www.serialio.com/faqs/whats-difference-between-bluetooth-le-and-bluetooth-spp-ble-vs-spp
https://www.serialio.com/faqs/whats-difference-between-bluetooth-le-and-bluetooth-spp-ble-vs-spp
https://www.link-labs.com/blog/bluetooth-vs-bluetooth-low-energy
https://www.centare.com/blog/what_is_bluetooth_low_energy/
https://microchipdeveloper.com/wireless:ble-link-layer-packet-types
https://microchipdeveloper.com/wireless:ble-link-layer-packet-types
https://medium.com/@pcng/ble-protocol-stack-host-controller-interface-hci-44dd5697bd8
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gap
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gap
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt

[58] “Intelligent transport systems (its); vehicular communications; basic set of applications; part 2: Spec-
ification of cooperative awareness basic service”, European Telecommunications Standards Institute,
Standard, Jan. 2019.

[59] “Intelligent transport systems (its); testing; part 1: Conformance test specifications for co-operative
awareness messages (cam); cam validation report”, European Telecommunications Standards Institute,
Standard, Apr. 2014.

[60] J. Santa, F. Pereñıguez, A. Moragón, and A. F. Skarmeta, “Experimental evaluation of cam and
denm messaging services in vehicular communications”, Transportation Research Part C: Emerging
Technologies, vol. 46, pp. 98–120, 2014.

[61] “Intelligent transport systems (its); vehicular communications; basic set of applications; part 3: Spec-
ifications of decentralized environmental notification basic service”, European Telecommunications
Standards Institute, Standard, Apr. 2019.

[62] H. M. Song and H. K. Kim, “Discovering can specification using on-board diagnostics”, IEEE Design &
Test, 2020.

[63] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van Barel, and P. Hellinckx, “Automatic reverse
engineering of can bus data using machine learning techniques”, in International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, Springer, 2017, pp. 751–761.

[64] M. Marchetti and D. Stabili, “Read: Reverse engineering of automotive data frames”, IEEE Transactions
on Information Forensics and Security, vol. 14, no. 4, pp. 1083–1097, 2018.

[65] M. Markovitz and A. Wool, “Field classification, modeling and anomaly detection in unknown can bus
networks”, Vehicular Communications, vol. 9, pp. 43–52, 2017.

[66] M. Verma, R. Bridges, and S. Hollifield, “Actt: Automotive can tokenization and translation”, in 2018
International Conference on Computational Science and Computational Intelligence (CSCI), IEEE,
2018, pp. 278–283.

[67] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and K. G. Shin, “Librecan: Automated
can message translator”, in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2283–2300.

[68] C. Young, J. Svoboda, and J. Zambreno, “Towards reverse engineering controller area network messages
using machine learning”, IEEE WF-IoT IEEE, 2020.

[69] M. E. Verma, R. A. Bridges, J. J. Sosnowski, S. C. Hollifield, and M. D. Iannacone, “Can-d: A
modular four-step pipeline for comprehensively decoding controller area network data”, arXiv preprint
arXiv:2006.05993, 2020.

[70] D. Frassinelli, S. Park, and S. Nürnberger, “I know where you parked last summer: Automated reverse
engineering and privacy analysis of modern cars”, in 2020 IEEE Symposium on Security and Privacy
(SP), IEEE, 2020, pp. 1401–1415.

[71] Pc engines - apu3 series system board, Accessed: December 2020, PC Engines GmbH, 2017. [Online].
Available: https://www.pcengines.ch/pdf/apu3.pdf.

[72] Canbus obd ecu simulator mobydic1610, Accessed: October 2019. [Online]. Available: https://www.
ozenelektronik.com/canbus-obd-ecu-simulator-p.html.

[73] Oe91c1610 datasheet, Ozen Elektronik.

[74] Carloop, Accessed: October 2019. [Online]. Available: https://www.carloop.io/.

[75] Redbear duo, Accessed: October 2019. [Online]. Available: https://github.com/redbear/Duo.

[76] Carro dentro de uma curva, Accessed: November 2020. [Online]. Available: http://www.ebanataw.com.
br/trafegando/concdc.htm.

[77] Lin bus explained - a simple intro (2021), Accessed: December 2020. [Online]. Available: https://www.
csselectronics.com/screen/page/lin-bus-protocol-intro-basics/language/en.

78

https://www.pcengines.ch/pdf/apu3.pdf
https://www.ozenelektronik.com/canbus-obd-ecu-simulator-p.html
https://www.ozenelektronik.com/canbus-obd-ecu-simulator-p.html
https://www.carloop.io/
https://github.com/redbear/Duo
http://www.ebanataw.com.br/trafegando/concdc.htm
http://www.ebanataw.com.br/trafegando/concdc.htm
https://www.csselectronics.com/screen/page/lin-bus-protocol-intro-basics/language/en
https://www.csselectronics.com/screen/page/lin-bus-protocol-intro-basics/language/en

[78] The lin interface and automotive interconnects — a perfect match, Accessed: December 2020. [Online].
Available: https://www.electronicdesign.com/markets/automotive/article/21806595/the-lin-
interface-and-automotive-interconnectsa-perfect-match.

79

https://www.electronicdesign.com/markets/automotive/article/21806595/the-lin-interface-and-automotive-interconnectsa-perfect-match
https://www.electronicdesign.com/markets/automotive/article/21806595/the-lin-interface-and-automotive-interconnectsa-perfect-match

	Contents
	List of Figures
	List of Tables
	Glossário
	Introduction
	Scope and Motivation
	Background
	Objectives
	Document Organization

	Fundamental Concepts and State-of-the-Art
	Controller Area Network
	Physical Layer
	Data Link Layer
	Detecting and signaling errors
	Network Layer
	Application Layer
	CAN FD and CAN XL

	OBD-II
	CAN and OBD-II Readers
	ELM 327
	CANCrocodile
	CLX000

	Bluetooth Low Energy
	BLE Protocol Stack
	Communication between BLE devices
	BLE Performance

	Intelligent Transportation Systems and Vehicular Communications
	ITS
	ETSI ITS-G5

	Review of the state-of-art of algorithms for CAN data processing

	System Architecture
	Global Architecture
	Proposed Solution

	Implementation
	Main components
	CAN-BUS OBD Simulator
	Carloop

	Collecting data from the ECU simulator
	Collecting data from vehicles
	Binary parameters
	Non-Binary parameters

	Tests and Validation
	Communication
	USB communication
	BLE

	Data extraction from vehicles
	Vehicles
	Binary parameters
	Non-Binary parameters
	Identification of Wheels Position in specific traces
	Final considerations

	Conclusions and Future Work
	Conclusions
	Future work

	References

