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Abstract 

Hybrid electric vehicles (HEV) have demonstrated energy benefits to road traffic networks, but a deeper 

understanding the correlation of driving volatility with their energy use and pollutant emissions is rather 

rare. This paper introduces an approach based on driver volatility measured by vehicle acceleration and 

jerk to estimate HEV emissions rates. Dynamic emission models represented by nine driving behaviors 

associated with vehicular jerk classification, and considering the on/off state of the internal combustion 

engine are proposed. To assess real-world emission performance, data were collected from one vehicle 

using a portable emissions measurement system. Results indicated that proposed models using engine 

speed as input were good predictors of carbon dioxide and particulate matter (R2 ranged from 0.72 to 

0.96, depending on the pollutant and jerk type) for both internal combustion engine on/off states. 

However, the predicted emissions of nitrogen oxides resulted in values of R2 lower than 0.57, mostly due 

in part to the proportion of measured concentrations lower than the instrument detection limit (~47%). 

Driving volatility-based models accurately characterized measured carbon dioxide (with 1–16% of 

measured value) and yielded lower relative mean square errors than the traditional vehicle specific power 

modal approach. Our results suggest that vehicular jerk classification can be useful to reduce 

instantaneous emission impacts during different driving regimes. For instance, these models can be 

integrated into electronic car units to provide feedback about emission rates associated with volatile 

driving and into warning systems that could detect/prevent unsafe maneuvers. These classifications 

would allow for better energy efficiency and eco-efficient driving behavior controls for automated 

vehicles. 
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1. Introduction and research objectives 

Transportation represented almost 25% of greenhouse gas (GHG) emissions in the European Union (EU) 

countries in 2017 [1], with road transportation accounting for over 70% of these emissions [1]. The road 

transportation sector also was an essential emitter of fine particulate matter (PM2.5) and nitrogen oxides 

(NOx) emissions, having contributed 11% and 39% to each in 2017 [2]. Despite EU legislation restricting 

carbon dioxide (CO2) emissions for new passenger cars under Regulations (EC) 443/2009 [3], the average 

Worldwide Harmonized Light Vehicles Test Procedure (WLTP) CO2 for gasoline and diesel vehicles were 

149.5 g.km−1 and 152.1 g.km−1, respectively, in 2019, which is still far from the EU target of 95 g.km−1 for 

2020 [4]. 

Recent statistics revealed that some consumers in the EU are opting for alternatively-powered vehicles 

instead of diesel vehicles [5]. In 2019, hybrid electric vehicles (HEV) represented more than 55% of 

alternatively-powered vehicles sold in the EU and 6% of new-car registrations [5]. Almost 900 000 units 

were registered during 2019, which is nearly 50% more than 2018 values [5]. It has been estimated that 

the sales of HEVs and other alternative-powered will reach 43 million by 2030 [6]. 

 



HEVs have less life-cycle GHG emissions, fuel consumption (FC), and, concomitantly, allow to typically 

attain lower tailpipe emissions compared to diesel and gasoline internal combustion engines (ICE) [6], [7]. 

The improved energetic and environmental benefits of HEVs are due to their operating system that 

consists of an ICE assisted by an electric device to propel the vehicle and a battery to store the energy 

produced either by the ICE or by regenerative braking [8]. However, HEVs produce sporadic high emissions 

when the ICE is restarting, which results from a combination of circumstances such as: driving conditions, 

vehicle speed, road grade, ambient temperature, driver aggressiveness, and HEV system design [9], [10]. 

Moreover, frequent restarts mean longer warming up periods for HEVs that can significantly increase FC 

and exhaust emissions until the ICE and after treatment are fully warmed [10]. 

Currently, there are four types of HEV powertrain configurations: parallel, series, power-split or series-

parallel hybrid, and multi-mode [11]. In the parallel hybrid configuration, both the engine and electric 

motors can individually or jointly operate as the power source. Usually, the engine operates as the most 

dominant power-source while the electric motor engages for assistance. In the series hybrid, only the 

electric motor runs the drivetrain. Since the engine is not mechanically coupled to the drivetrain, it can 

consistently operate at its most efficient speed and work as a generator to power the electric motor or to 

recharge the batteries. The power-split (or series-parallel hybrid) allows the vehicle to operate either in 

parallel or series, thus achieving higher operational efficiencies. The multi-mode hybrid powertrain 

consists of adding clutches to parallel or power-split powertrain systems, which can become any of the 

above-mentioned hybrid configurations in the same powertrain [11]. 

Despite the environmental benefits, there is a need for a full understanding of instantaneous behavior 

using a driving volatility analysis for both HEV energy use and pollutant emissions. This paper introduces 

an approach based on driver volatility measured by vehicle acceleration and jerk to estimate HEV 

emissions rates. Therefore, the specific objectives include: 

(1) To examine the influence of speed, acceleration, vehicular jerk, RPM, and grade on HEV 

emission rates; 

(2) To develop second-by-second CO2, NOx, and Particulate Matter (PM) hot emissions for a 

selected HEV that account for driving volatility as a means of vehicular jerk classification; 

(3) To compare the HEV emission model based on driving volatility and a vehicle specific power 

(VSP) modal emission approach. 

The findings from this paper can be beneficial in three ways. Firstly, the definition of nine driving types 

based on vehicular acceleration and jerk classification that covers driving types that are important from a 

safety point for an on-road vehicle, regardless of the site-specific operational conditions. Secondly, the 

driving volatility information can be used in HEV warning systems to alert the driver about behaviors 

associated with high fuel consumption levels and unsafe maneuvers. This last point is especially critical 

since driving volatility represents a safety concern not only in HEVs but also in other types of vehicles. 

These warnings can reduce driving volatility, thereby assisting vehicle engineers in designing more energy-

efficient driving behavior controls for the autonomous vehicles, in particular powered by the HEV 

technology. Thirdly, the estimation of emissions using vehicular jerk classification can be incorporated 

into electronic control units (ECUs) to provide feedback about emission rates based on driving style. 

Although the models were developed using one probe car, the methodology is replicable to all vehicle 

types by simply knowing vehicle jerk type, and correlating engine parameters and emission rates. 

 

2. Literature review 

Portable Emissions Measurement System (PEMS) devices make feasible the correlation of driving 

conditions and engine and vehicle operating parameters with related exhaust emissions, as they record 

on-board measurements of tailpipe emissions at a high-resolution time [12]. Emission measurements 

studies have been conducted for HEVs using PEMS, as presented in Table 1. Some work has been 

conducted on VSP [13], ambient temperatures [14] and battery states of charge [15], [16] impacts on 

emission values. Zhai et al. [13] conducted a study on a 2001 Toyota Prius and reported increases in CO2 

(0.5–5 g.s−1), and carbon monoxide (CO) (<1–20 mg.s−1) for VSP from less than −2 to 19 kW.ton-1, but that 

study did not include data values where the ICE engine was always on (VSP > 19 kW.ton-1). Alvarez and 



Weilenmann [14] studied the influence of low ambient temperature on HEV FC and CO2 emissions for five 

HEVs models. The results show that the amount of HEV cold-start extra emissions were on average 30–

85% lower than cold-start extra emissions of conventional gasoline vehicles. Moreover, the HEV cold-start 

extra emissions of FC and CO2 were similar to those of conventional gasoline-fueled vehicles, except at an 

ambient temperature of 23 °C. Duarte et al. [16] confirmed that an ICE on period longer than 30 s led to 

increases in NOx fuel-based emissions up to 73% on a full HEV. Also, battery state of charge (SOC) affected 

the amount of time the ICE was off, such that lower SOC levels (40–50%) resulted in higher NOx emissions. 

 

Previous studies have quantified emissions and FC benefits differences between HEVs and ICEs. Holmén 

and Sentoff [17] compared one HEV and its counterpart conventional vehicle on the same route with the 

same driving profile. They concluded that HEV benefits decrease for higher average speed rural and 

freeway driving. Wu et al. [18] have found average CO2 emissions reductions from two Euro 5 Toyota Prius 

gasoline-electric vehicles by approximately 35% and 15% relative to conventional gasoline and diesel cars, 

respectively, in Macao. Huang et al. [19] examined two identical model CV/HEV passenger car pairs on 

three test routes, where HEVs showed an on-road 23–49% FC benefit compared to the CVs. However, the 

HEVs showed high nitrogen monoxides (NO), CO and hydrocarbon (HC) emission events observed during 

short periods due to the lower HEV three-way catalyst effectiveness when the ICE is off. 

The effects of HEV ICE on-off cycles in low speed situations have negative impacts on particulate number 

(PN) emission rates. Conger and Holmén [20] indicated that during urban and rural driving, 59% and 45% 

of all HEV high-emission events, respectively, occur as a result of engine reignitions. Recently, Frey et al. 

[21] investigated the main sources of variability in terms of emission rates and energy use for a plug-in 

hybrid electric vehicle (PHEV). They considered the power demand, charging model, cold-start and hot-

stabilized operation, and electricity generation resource mix. Although results confirmed both energy and 

emission benefits for PHEVs over conventional light duty vehicles, the PHEV was sensitive to the above-

mentioned factors and produced high on-road emissions rates during cold starts. 

 



Although road grade is an important factor in quantifying exhaust emissions accurately, few studies have 

addressed in detail real-world road grade impacts on HEV emissions. For instance, Robinson and Holmén 

[22] studied a relationship between instantaneous hybridization factor (ratio of electric system power to 

total system power that accounts for energy storage in the high voltage battery), VSP and real-world road 

grade. They developed a CO2 model using a VSP computed with real-world road grade that provided an 

improved fit (R2 = 0.87) over the no-grade VSP model (R2 = 0.6). 

Prior studies have demonstrated that high fuel consumption (FC) is associated with aggressive driving 

behavior, for instance, extreme braking and speed-ups [9]. It must be stressed that during real driving 

conditions, the traffic environment along the road can be rather complex. For instance, a vehicle’s non-

compliance with a yield signal on a secondary road or unexpected pedestrians crossing road far from 

crosswalk can result in sudden accelerations and decelerations during a trip. Vehicular jerk can represent 

the temporal dynamics of the acceleration and deceleration of a vehicle. Vehicular jerk, which is defined 

as the rate at which an object’s acceleration changes with respect to time, can be used as an indicator of 

driving volatility [23], thus, it is an aggregate measure of driving performance. 

Earlier studies of HEVs have used speed and acceleration to measure driving aggressiveness and FC [24], 

[25], but the available on-road HEV data needed to assess the impacts of vehicular jerk on energy use 

[26], [27] and hot-stabilized emissions are scarce. In a recent study by Rio-Torres et al. [27], three different 

driving styles (normal, calm, and volatile) were used to quantify possible improvements in FC. The HEV FC 

savings reached 12% and 4% for normal urban and normal highway driving, respectively [27]. 

Other authors conducted a jerk-based analysis on emissions for a broad range of topics, such as 

interactions between motor vehicles and cyclists at urban multi-lane roundabouts [28], development of 

dynamic FC models [29], spatial distributions of jerk, and CO2 and NOx emissions in different roundabout 

layouts [30], however, their research was only applied to ICEs. 

The literature review revealed that each of the prior studies had shortcomings that do not enable full 

characterization of HEV emissions and driving volatility. These shortcomings included the influence of 

driver volatility in HEV on-road emissions using vehicular jerk, as well as the development of HEV emission 

models for both global and local pollutants that consider driving behavior styles based on vehicular jerk. 

This paper fills these gaps through the establishment of a full understanding of HEVs in terms of on-road 

emissions, engine data, and driving volatility in real-world driving conditions. The further integration of 

driving volatility and emissions rate information to optimize road vehicle performance, in particular for 

HEVs, is worthy of research at this stage. This study is unique since it uses driving volatility analysis to 

assess tailpipe emissions of an actual HEV, and it establishes a jerk classification based on cruise and 

volatile states, internal combustion engine status, and engine parameters to predict both global (CO2) and 

local (NOx and PM) pollutant emissions. 

 

3. Methodology 

The methodology was applied for real-world data collected from one model and make of a HEV tested 

under different driving conditions. It proceeded in four main sections: study experimental design (Section 

3.1), equipment (Section 3.2), data processing and quality assurance (Section 3.3), and data analysis 

(Section 3.4). 

3.1. Study design for field measurements 

Second-by-second on-road emissions, engine, and Global Positioning System (GPS) data were collected 

on three routes in the Aveiro region in Portugal (see Fig. S1). The routes were designed to include urban, 

extra-urban and highway roads, and different road grades [31], [32] and they were based on one origin–

destination pair with three alternatives, as follows: i) R1 includes 5.5 km and 18.1 km on urban and extra-

urban arterials, respectively; ii) R2 has 7.4 km and 22.8 km along extra-urban arterials and highways 

(including entry/exit ramps), respectively; and iii) R3 includes 12.8 km and 23.7 km in extra-urban arterials 

and highways (including entry/exit ramps), respectively. Traffic volumes at R3 are typically four times 

more than R2 values [31]. The speed limits on the studied routes are encompassed between 40 and 50 

km.h−1 for urban roads, 50–70 km.h−1 for extra-urban, and 120 km.h−1 for highways. Fig. 1 depicts the 



grade profile in each 100-m road segment on the three routes by travelling direction. The road grade for 

40%, 30% and 40% of the R1, R2 and R3 length, respectively, ranges from −1% to 2%, while the number 

of segments with positive grades are as follows: a) 64 (~54%) in R1 South-North; b) 51 (~44%) in R1 North-

South; c) 87 (~60%) in R2 South-North; d) 60 (~41%) in R2 North-South; e) 87 (~52%) in R3 South-North; 

and f) 79 (~47%) in R3 North-South. 

 

Fig. 1. Road grade profile in each 100-m segment: a) R1; b) R2 and c) R3. 

 

The tested vehicle was a 2019 Toyota full HEV model combining a 2ZR-FXE Atkinson-cycle 1.8L gasoline 

ICE with an electric motor through a multi-mode power-split powertrain [20]. Table 2 presents the ICE, 

environmental, emission, and performance characteristics of the vehicle. Two drivers drove the testing 

vehicle along the described routes. Collected data covered approximately 17 000 s (nearly 5 h) and almost 

280 km of road. The average temperatures observed during monitoring campaigns ranged from 15 °C and 

17 °C, while humidity ranged between 60% and 75%. 



Table 2. Summary of the characteristics of the testing vehicle. 

 

3.2. Equipment 

Tailpipe emissions concentrations were measured using a 3DATX ParSYNC integrated PEMS (iPEMS) [33]. 

The instrument measures the volume fraction of CO2, NO, and nitrogen dioxide (NO2) on a second-by-

second basis using consumable GasMOD™ Sensor Cartridges. Since NOx emissions are approximately 95% 

of NO and 5% of NO2 for gasoline vehicles, NO is used as surrogate for NOx [34]. This iPEMS uses three 

detection methods to measure PM based on opacity, ionization and light-scattering, which are sensitive 

to PM size fractions in the coarse PM (approximately 2.5 μm to over 10 μm), fine PM (0.3–2.5 μm) and 

ultra-fine PM (up to 0.4–0.5 μm) modes, respectively. Each detector indicates a voltage, which is 

subtracted from a reference value reported before each test [33]. Quality control procedures involved 

routine calibration checks using a UN 1956 gas mixture and the execution of a warm-up route of 30 min 

to assure the vehicle was under hot stabilized operation during the measurements. Table S1 presents 

more details concerning the range, sensitivity, and resolution of the iPEMS sensors. 

An ELM327 on-board diagnostics (OBD) tool reported second-by-second ICE data, as follows: i) OBD 

speed; ii) engine revolutions per minute – RPM; iii) engine load; iv) fuel flow rate – FFR; v) mass air flow – 

MAF; and vi) intake air temperature – IAT. OBD also provided the air-to-fuel ratio (AFR) and the engine 

volumetric efficiency (ηengine). Garmin GPS receivers recorded latitude, longitude, and altitude. A linear 

regression of altitude versus distance was used to estimate road grade for sequential 100-m segments of 

each trip [35], and using the corrected instantaneous vehicle altitude data, as described elsewhere [36]. 

 

3.3. Data processing and quality assurance 

Time alignment of iPEMS, OBD and GNSS signals was done prior to doing the emissions calculations 

following a method described here [34], [37]. This alignment was based on engine parameters using 

engine speed reported by the ECU. For each pair of data sets to be synchronized, an indicator variable 

exhibiting concurrent trends (e.g., rise in engine speed and concordant rise in concentration of exhaust 

gas) was used. To assess the quality of synchronization, the Pearson Correlation Coefficient (PCC) 

measured the linear statistical dependence between engine RPM and iPEMS NOx (as suggested for Light 

Duty Vehicles [34]) using NOx volumetric concentration as the primary indicator variable and RPM as the 

secondary indicator variable. Figs. S2-S4 exhibit time series plots before and after synchronization and 

PCC values by each set of measurement, i.e., every time the iPEMS was started. A correct synchronization 

between x-axis and y-axis was achieved after adjusting RPM time stamps by +2, −8 and +5 s in sets 1, 2 



and 3, respectively. The maximum PCC values ranged from 0.35 and 0.65, which signifies that data sets 

were well-synchronized [34]. 

Erroneous data were checked by taking into account quality assurance screening criteria [34], [37], along 

with the synchronization of data from all equipment into one database. The most typically errors included 

unusual AFR values, constant engine values, concentrations lower than zero or conditions where external 

factors (e.g., temperature) were found to affect sensors outputs. AFR values can be erroneous due to air 

leaks into the sampling line. Constant OBD values mean that data was no longer being updated during 

short periods (usually between 5 and 10 s). Negative concentrations occurred more often with NOx and 

represented low values that are not statistically different from zero. These negative concentration values 

were zeroed for data analysis. 

 

3.4. Data analysis 

3.4.1. Verification of trips 

The criteria in the Real Driving Emissions (RDE) procedure, which is based on the ninety-five percentile of 

the product of 1 Hz of vehicle speed and positive accelerations higher than 0.1 m/s2 (here denoted as 

vapos_[95]), and relative positive acceleration (RPA) metrics, were applied to validate PEMS trips [36]. 

The verification analysis confirmed that all trips fulfilled the RDE criteria, as depicted in Fig. S3. 

3.4.2. Emission rates 

The method described by Regulatory Information 40 CFR 86.144 was used to compute mass per-time 

exhaust emissions [38]. It uses engine MAF and AFR reported via the OBD [34]. Supplementary Materials 

provides full details concerning the calculations of mass per time-based tailpipe emission rates. The 

method for computing PM mass emission rates from the voltages of the scattering, ionization, and opacity 

sensors is also provided. 

Almost every driving behavior can be characterized as calm or volatile. While calm driving can be 

characterized as maintaining speed without high accelerations or decelerations, volatile driving can have 

a negative impact on emissions generated by vehicles. For volatile driving behaviors, vehicular jerk can be 

defined as the instantaneous change of driving acceleration within two seconds, as follows [27]: 

 (1) 

where j is the vehicular jerk (m.s−3), v is the vehicle speed (m.s−1), and a is the acceleration (m.s−2). 

Having in mind that jerk expresses how a driver changes acceleration and deceleration rates by 

adjusting pressure on the pedals, Zhang et al. [29] defined nine jerk types to represent volatile and cruise 

states at each sampling speed, as presented in Table 3. 

 

Table 3. Driver behavior classification based on jerk [29] 

 



It must be stressed that cruise states can account for a large proportion of total jerk and 

emissions on a trip. For this reason, a model in the form of Eqs. (2), (3), (4) was used: 

 

where  is the predicted trip emissions based on vehicular jerk of specie g (g),  is the amount of emissions 

of specie  during the cruise state (g),  is the amount of emissions of specie g during volatile states 

represented by jerk types 1 to 8 (g), Nh is the number of seconds in jerk type 9,  is the emission rate (g.s−1) 

in the second of travel h and specie g, m is the index of jerk type, , is the number of seconds in jerk type 

m; and  is the emission rate (g.s−1) in the second of travel w, jerk type m and specie g. 

The emission rates by jerk type can be represented as a function of vehicle speed or specific 

internally observable variables (IOVs), such as RPM [39]. Thus, the relationship between CO2, NOx and PM 

and these variables and with different ICE operation rules was explored. 

 

4. Results 

The results section includes a summary of experimental results (Section 4.1), engine on-off operation rules 

(Section 4.2), exploratory data analysis (Section 4.3), empirical driving volatility-based emission models 

(Section 4.4) and comparative performance between VSP and driving volatility based approaches (Section 

4.5). The Supplementary Materials contain more details concerning routes, quality assurance, 

experimental measurements, jerk types by route, cycle emission rates and the relationship between jerk 

types and emissions. 

 

4.1. Summary of experimental results 

4.1.1. Driving behavior 

To explore the influence of the two drivers in acceleration and jerk distributions, a two-sample 

Kolmogorov- Sminorv test (K–S test) for 90% and 95% confidence levels was applied. The plots in Fig. 2 

show the acceleration and jerk distributions in terms of cumulative distributions on three routes. It can 

be verified that both acceleration and jerk distributions followed the same trends for both drivers, 

regardless of the confidence level. For example, the two-sample K–S test (D-value) results with a 95% 

confidence level for acceleration distributions were 0.025 (D-critical = 0.026), 0.036 (D-critical = 0.047) 

and 0.038 (D-critical = 0.062) for R1, R2 and R3, respectively. For jerk, the distributions of both drivers in 

all routes did not exhibit significant differences. Therefore, the data from both drivers as one was used in 

the development of driving volatility-based models in this paper. 

 



 

Fig. 2. Influence of drivers on performance measures: a) Acceleration – R1; b) Jerk – R1; c) Acceleration – 

R2; d) Jerk – R2; e) Acceleration – R3; and f) Jerk – R3. Note: The null hypothesis (H0) is that samples come 

from the same distribution. If D-value > D-critical, then H0 is rejected. 

 

4.1.2. HEV operation 

To understand the difference in HEV operation by route, a graphical comparison of OBD speed, slope 

(computed in each 100-m road segment as suggested in [35]), RPM, FFR, VSP and vehicular jerk is depicted 

in Fig. 3 for a 20 km subset comprising R1 and partially R2. The x-axis represents vehicle locations (in 

kilometers from the beginning of the R1), and vertical dotted lines indicate the location of traffic 

singularities. The plots indicated that both engine speeds and FFR widely varied across R1 because of the 

HEV ICE on-off operation rules. For instance, FFR was zero for approximately 50% of the R1 trip time, 

which means that the ICE was not used. Most of the reignition events for R1 occurred during acceleration 

due to traffic control or on positive slopes. However, this fact did not hold for R2, where RPM and FFR did 

not reach 0. It can be also noted that negative or low VSP values are found for many events with engine 

speeds of 0 RPM, which are associated with reignition events in urban areas where the vehicle is either in 

a stop-and-go situation or is accelerating at low speeds causing cyclical on/off states of the ICE. For 

vehicular jerk, a different pattern between R1 and R2 was observed. While vehicular jerk had considerable 

variations across R1 (perhaps due to the presence of intersections, speed bumps or pedestrians crossing 



the road that resulted in sharp accelerations or decelerations), its range of values was much lower across 

R2 (between −2 m.s−3 and 2 m.s−3). 

 

 

Fig. 3. Example of a driving route vehicle speed, slope, engine speed, FFR, VSP and vehicular jerk. 

 

4.1.3. Route emissions 

Following previous results, and as expected, CO2 emissions (mean g.km−1 ± standard deviation values) 

were on average lower for R1 (65 ± 5 g.km−1) than the R2 (142 ± 13 g.km−1) and R3 (114 ± 10 g.km−1), as 

shown in Fig. 4. R2 achieved higher energy use and exhaust emissions for two main reasons. First, there 

is a higher variability in road grade compared to R1 and R3 (see Fig. S6). While the range of road slopes 

from 2% to 11% represent less than 10% of R1 and R3 length, these uphill roads account for more than 



22% of R2 length. Second, vehicles drove at higher speeds for R2 than R3 (perhaps due to low traffic 

volumes), as it can be seen in Fig. S7, where a higher occurrence of speeds over 100 km/h can be found 

for R2. The findings for fuel consumption followed an identical trend because more than 99% of CO2 

resulted from the carbon in the fuel [40]. The average R1-trip fuel consumption was approximately 54% 

and 42% lower than R2 and R3, respectively. It was found that the trip values yielded CO2 (97 ± 16 g.km−1) 

and fuel consumption (4.2 ± 0.7 L.100 km−1) close to the vehicle type-approval values (see Table 2 for 

those details). From Fig. 4, it can be also observed greater variability in NOx than PM values, regardless of 

the studied route; the ratio of the standard deviation to the mean (coefficient of variability – CV) of NOx 

was 0.4, 2.3 and 0.9 in R1, R2 and R2, respectively, while for PM the resulting CV values were lower than 

0.3 in all routes. Despite the higher variability, the differences in the NOx emissions per kilometer in 

average per trip between the highway routes were not statistically significant (p-value < 0.05). 

 

 

Fig. 4. HEV energy and emissions performance by route (with standard deviation values): a) CO2 per 

kilometer; b) FC; c) NOx per kilometer; and d) PM per kilometer. 

 

It is worth to notice that the high range of HEV NOx values is mostly due to spikes during fuel injection 

after fuel cut, especially during low-speed and sudden heavy-load conditions, which are prone to induce 

instances where the engine runs under lean mixture [41]. These operation conditions translates into a 

lower capability from the engine to develop a cooler combustion from which results NOx emissions spikes. 

To demonstrate this, Fig. 5a exhibits two engine restarts in a subset of one trip from R1 (average NOx ≈ 

0.93 mg.km−1) at a higher engine load operating under lean fuel mixture (λ > 1.0). The high concentration 

levels combined with high exhaust mass flow rates during acceleration generated increases in NOx 

emissions per unit distance 55–75 times higher than the average trip value. Fig. 5b and c show another 

two spikes in mass NOx during heavy-load conditions on a subset of R2 (average NOx ≈ 3.4 mg.km−1) and 

R3 (average NOx ≈ 3.2 mg.km−1) trips. The increases in NOx emissions were found to be perceptible in 

both cases (16–55 times and 30–40 times higher than the R2 and R3 average values, respectively). Other 

trips also recorded these spikes in NOx emission rates when the ICE restarts. 



 

 

Fig. 5. Effect of engine restart on instantaneous NOx emissions: a) R1; b) R2; and c) R3. Note: Engine Load 

is expressed in decimal values. 

 

4.2. Engine on/off operation rules 

An important aspect of developing an emissions model for HEVs is that the pollutant emissions must be 

differentiated based on whether the ICE is “on” or “off”, in addition to parameters, such as vehicle speed 

and acceleration. ICE is typically “off” during idling mode, decelerations and cruise modes under low 

speed, and during positive accelerations at low speed, which can be interpreted as combinations of low 

accelerations with low to moderate speeds, or as moderate accelerations with low speeds [13]. Since HEV 

operates in ICE “on” most of the time, there is a need for developing a practical approach for estimating 

HEVs emission rates to avoid the use of the ICE in partial loads regimes. On the other hand, an emission 

characterization based on a well-defined ICE status operation can result in more reliable predictions of 

HEVs emission rates. 

 



Engine speed is an indicator of engine “on” or “off” operation [13]. As soon as an engine starts, the engine 

speed is usually around 600–1000 RPM during idling [42], [43]. Selecting a conservative approach, 500 

RPM was used as the threshold value, below which the ICE status is ‘‘off’’ [13]. It must be emphasized that 

the ICE status threshold may not be perfectly accurate when characterizing the ICE status between “on” 

and “off”, which may result in data corresponding to ICE status “on” being analyzed as if the ICE status 

was “off”. PEMS usually detects the remaining exhaust pollutants flowing out through the exhaust tailpipe 

during a few proceeding instants even in low engine speed values. 

 

To test the applicability of the proposed RPM threshold value, Table 4 summarizes the average values of 

FFR, CO2, NOx and PM in both ICE operation modes. The results indicated that, regardless of the route 

type, fuel consumption and emissions were near zero, thus confirming 500 RPM as a suitable threshold 

to categorize ICE as “on” and “off”. With these concerns in mind, the developed models based on ICE “on” 

data consider zero emission rates for engine speed values lower than 500 RPM. 

 

Table 4. Summary of cycle average FFR, CO2, NOx, and PM. 

 
Note: Values represent all measurements. 

 

 

4.3. Exploratory data analysis 

Analysis of variance (ANOVA) statistical test was used to explore the significance of the effect of variation 

in dependent variables (route type, speed interval and vehicular jerk) on variation in measured emission 

rates and ICE engine state. The null hypothesis of the test is that the emission mean values among route 

types (R1, R2 and R3), speed intervals (s1, s2 and s3), and jerk types (1–9) are equal at a significance level 

of 5%. For this comparison, speed values were divided into three main intervals: s1 ≤ 50 km.h−1; 50 < s2 ≤ 

90 km.h−1; s3 > 90 km.h−1. 

Table 5 lists ANOVA results performed for the ICE “on” and ICE “off” datasets. For CO2, speed and jerk 

type variables were found to be significant in explaining the variability in the mean emission rates in ICE 

status “off”, whereas for NOx, a significant correlation was only found when using route type as the input 

variable. For PM, only speed and jerk type explained the variability in the mean emission rates. It must be 

stressed that almost all data corresponding to engine speeds lower than 500 RPM had, although very low, 

positive emissions rates for NOx and PM (about 30% of PEMS raw data is characterized by zero-value 

emission rates for RPM < 500), thereby justifying why the input variables were able to significantly explain 

the variability in the mean emission rates during the ICE “off” operation. Route type and speed interval 

were typically significant factors in explaining the variability in the mean emission rates during ICE status 

“on” (p-value < 0.05, and thus mean values are not equal). The reported p-values also confirmed that jerk 

type was useful in explaining the variability in the mean emission rates, but these were higher for PM than 

for CO2 and NOx. Jerk type was thus found as an appropriate explanatory variable to be applied in the 

development of emissions models of this hybrid car. 

 



Table 5. ANOVA results (p-value) for emission rates with respect to route type, speed, and jerk type by ICE 

status. 

 

 

To fully understand group differences in prior ANOVA, multiple pairwise tests between routes (Table S10), 

speed intervals (Table S11) and jerk types (Table S12) were conducted. For each pollutant and ICE 

operation status, and based on pairwise comparisons, R1 emission rates were found to be statistically 

significant in relation to the R2 and R3 at a 5% significance level. R2 and R3 did not exhibit statistically 

significance for CO2 and NOx during ICE “off” operation, and for NOx and PM during ICE “on” operation, 

which can be explained by the similar driving conditions of these routes. The analysis of pairwise 

comparisons between speed intervals revealed that s2 and s3 emission rates were not statistically 

significant in ICE “off”, which is expected since electric motor usually works at low speeds. The analysis of 

jerk resulted in a statistically significance found in the jerk types comprising between 2–5, 2–7, and 2–9, 

and in jerk types comprising between 3–5, 3–6, and 3–9, when ICE was “on”. For the remaining cases, the 

multiple pairwise analysis did not detect statistically significance at a 5% significance level. This can be 

due to a fewer number of occurrences in some jerk types. Thus, a dataset was created from all trips to 

analyze emission rates by jerk type. 

 

4.4. Estimation emission model based in driving volatility 

Fig. 6a show the time distribution by jerk type of all the combined ICE on/off dataset while Fig. 6b contains 

stacked columns with percentage of time with ICE “on” and “off” in each jerk type. It must be stated that 

driving volatility-based models were calibrated using 70% of the trips [44]. Fig. 6a allows to conclude that 

cruise state (type 9) represented 28% of the combined ICE on/off dataset and that jerk types 2, 3, 5, and 

6 also represented appreciable amounts of operation in the range of ~16–19%. In contrast, the proportion 

of alternate accelerating and decelerating (types 7 and 8), and uniform acceleration (type 1) and 

deceleration (type 4) accounted for about 1% of the driving time. The frequency of each jerk type ranging 

from 1 to 3 in ICE status “on” was over 73% of the driving time, while between jerk types 4 and 7, more 

than 40% of the driving time are defined as belonging to ICE status “off”, as depicted in Fig. 6b. This latter 

result is reasonable because driving behavior for types 4, 5, and 6 represents two consecutive instants of 

deceleration during which the electric motor is restoring energy while providing power to the auxiliary 

systems, and thus less or no fuel injections is expected. 

 

 



 

Fig. 6. Time distribution by jerk type using the training dataset: a) percentage of time using all ICE on/off 

data; and b) percentage of time using separated ICE on/off data. 

 

4.4.1. Cruise state 

It must be mentioned that speed cannot represent, per se, the HEV mass emissions during a cruise state. 

The analysis of experimental data confirmed that the instantaneous emission rate was often different at 

the same cruise speed and equal at different cruise speeds (see Figs. S14 to S16). For instance, values 

encompassing all the range of the engine speeds were found for vehicle speeds of 50 km.h−1, 70 km.h−1 

or 100 km.h−1. Thus, Ecruise was represented as a function of engine speed instead. 

 

Fig. 7 examines the relationship between CO2, NOx and PM emission rates and RPM. The coefficient of 

determination (R2) values for CO2 and PM applying quadratic polynomial functions of RPM were higher 

than 0.90 regardless of the ICE operation rules. The p-values for both linear and quadratic parameters 

were less than 0.05, indicating statistical significance. The scatter plots show a cluster of data with low 

emission rates between 500 RPM and 2000 RPM that might be associated with electric mode operation 

for short periods (2–3 s). Since NOx formation depends on combustion flame temperature, and is 

therefore less sensitive to variations in engine speed, the fit between NOx and RPM was worse than those 

obtained for CO2 or PM. To improve NOx predictions when the vehicle is in a cruise condition, data for 

emissions higher than 0.2 mg.s−1 were disregarded when developing the models, which represents less 

than 10% of data (but approximately 35% of total NOx emissions). The fitted equation for emission rates 

versus RPM can be given by: 



 

 

 

Fig. 7. Speed counter map for cruise state: a) RPM versus CO2 with ICE on/off data; b) RPM versus CO2 

with ICE on data; c) RPM versus NOx with ICE on/off data; d) RPM versus NOx with ICE on data; e) RPM 

versus PM with ICE on/off data; and f) RPM versus PM with ICE on data. 

 



4.4.2. Volatile state 

Similar to the cruise conditions, HEV emission rates in volatile states were predicted based on engine 

speed. Fig. 8 illustrates the relationship between CO2 emission rates and RPM for volatile states (jerk type 

1–8) considering both ICE on/off data. The data was analyzed considering the vehicle as a black box 

without distinction between ICE and electric operation. The fitting functions of jerks 4 and 5 were similar 

such that one equation was used to represent both of these types. This assumption is in line with previous 

research conducted by Zhang et al. [29]. It is worth noticing that these models represent deceleration 

episodes for those jerks that are equal or higher than 0 m.s−3. Concerning the remaining jerk types, the 

scatter plots revealed that most of the data points followed a polynomial function (R2 values using a 

quadratic polynomial of RPM ranged from 0.77 to 0.94, depending on the jerk type). Statistical significance 

(p-values < 0.05) was also confirmed in both linear and quadratic parameters. The fitting curves for NOx 

and PM by jerk type are exhibited in Fig. S17 and Fig. S18, respectively. The predictive emission models 

for volatile types and considering both ICE on/off data are as follows: 

 

 



 

Fig. 8. Relationship between CO2 and RPM considering both ICE on/off data: a) jerk type 1; b) jerk type 2; 

c) jerk type 3; d) jerk types 4 and 5; e) jerk type 6; and f) jerk types 7 and 8. 

 

Fig. 9 depicts CO2 emission rates predictions versus each volatile jerk type for ICE status “on” data. Most 

CO2 data, ranging from 0 to nearly 13 g.s−1, followed a polynomial quadratic trend versus RPM. The R2 

values were between 0.78 and 0.93 for jerk types 8 and 1, respectively. The results for PM also showed 

R2 values of 0.72 or higher between predicted and measured emission rates. However, the analysis of 

fitting curves for NOx by jerk type did not identify a correlation between RPM and emissions using only 

engine speed data higher than 500 RPM, as shown in Fig. S19. So, the prediction of NOx for volatile states 

was based on Equation (12). For CO2 and PM (see Fig. S20), the fitted models are as follows: 



 

 

Fig. 9. Relationship between CO2 and RPM considering ICE on data: a) jerk type 1; b) jerk type 2; c) jerk 

type 3; d) jerk types 4 and 5; e) jerk type 6; and f) jerk types 7 and 8. 

 

4.4.3. Validation of the jerk-based models 



To assess the goodness of fit, measured and estimated emission rates were compared using testing data. 

Table 6 summarizes the coefficients of determination between jerk types estimated emission rates and 

measured emission rates by ICE operation rules, shown by pollutant. R2 values of RPM versus CO2 emission 

rates were 0.64 or higher, considering both ICE on/off data. If only engine speed data higher than 500 

RPM were used, then R2 values between estimated and measured emission rates would be 0.59 or higher. 

For NOx, R2 values for the driving-volatility based models ranged from 0.04 to 0.35, indicating a poor fit. 

This is due to the fact that NOx concentrations were below the instrument detection limit for 

approximately 47% of the data, which in turn led to random variability in the data [34]. The results for PM 

were generally good in jerk types associated with cruise speed (9), and alternate positive and negative 

accelerations (7–8), with R2 values ranging from 0.70 and 0.93, considering both ICE on/off data. Driving 

volatility-based models established for ICE “on” data had R2 values higher than 0.60 for both CO2 and PM. 

Overall, in terms of R2, the models based on jerk behavior, and using RPM as explanatory variable showed 

robustness in estimating HEV CO2 and PM emission rates, regardless of the ICE operation rules. 

 

Table 6. Coefficients of determination for ICE on/off versus ICE “on” for emission rates. 

 

 

4.5. Performance comparison with VSP model 

To complement the analysis, the performance of the proposed driving volatility-based models was 

compared against the VSP-modal approach [45]. The vehicle specific power (or the instantaneous force 

required to overcome all road loads) is a useful exploratory variable for HEV emissions [16], [13]. Thus, 

second by-second speed, acceleration and slope road data (using training set) were grouped in 14 modes, 

where each mode is associated with an emission factor of CO2, NOx and PM (see Table S2 and Fig. S21 for 

full details). After that, emissions for four trips from the testing data were computed using the developed 

ICE on/off and ICE “on” models, and VSP, and then compared against field values. 

Table 7 summarizes trip information and the CO2, NOx, and PM predictions for each model per unit 

distance. The results showed that driving volatility-based models’ ability to estimate CO2 emissions was 

acceptably accurate when compared to field values, especially for the ICE “on” model; the differences 

ranged from 1% to 16%, depending on the trip. A comparison with VSP confirmed that driving volatility-

based models resulted in better CO2 predictions. For instance, the differences between VSP using ICE “on” 

data and measured values ranged from 7% to 25%, depending on the trip. The analysis of NOx estimates 

also confirmed that the proposed models were aligned with VSP for almost all trips. However, the VSP-

modal approach resulted in a higher overestimation of field NOx (8–15 times on average) than the driving 

volatility-based approach (2–3 times on average). Concerning PM, the VSP model appeared to predict 

similar values to field data (up to 29%) for different types of routes using ICE “on” data. The driving 

volatility-based models underpredicted the average PM per unit distance for both ICE operation rules (on 

average 25% less than the field trip values). 

 

Table 7. Summary of the trip emission prediction results by model. 

 



 

 

The performance analysis of the CO2 driving volatility-based models with the prominent VSP model also 

resulted in a better fit based on the root mean square error (RMSE) metric on each trip (Table S13). 

Although models based on VSP and driving volatility achieved different trip-specific NOx and PM values in 

both ICE operation rules, RSME values were identical between trips. 

 

5. Conclusions and future work 

A method using real-world emissions and engine data to estimate hybrid electric vehicle emissions rates 

as a function of driving volatility was demonstrated. The modeling approach can be used by applying 

vehicle activity, engine and emissions data when hybrid electric vehicle operation is considered as a ‘‘black 

box” and a well-defined internal combustion engine status on and off is acquired. 

The results indicated that the vehicular jerk is a good explanatory variable in estimating emission rates. 

Time fraction estimates for both internal combustion engine status “on” and internal combustion engine 

on and off data for all jerk types agreed well with training data. Also, driving volatility-based models based 

on engine RPM showed a good fit in predicting both CO2 (R2 between 0.77 and 0.96, depending on the 

jerk type) and particulate matter (R2 between 0.72 and 0.99, depending on the jerk type) emission rates 

using quadratic polynomial regression analysis, but they were worse in predicting nitrogen oxides 

emissions (R2 values were 0.57 or less). For NOx emissions, this was mostly explained by the proportion 

of the measured concentrations lower than the instrument detection limit (~47%), which resulted in 

random variability. Driving volatility-based models yielded similar CO2 and particulate matter compared 

to measured values for different route types, and lower error values than a vehicle specific power-modal 

approach. 

This research can contribute to assessing transportation-related energy and emissions impacts through 

the definition of driving behavior based on vehicle acceleration and jerk types that represent different 

driving regimes. The proposed driving volatility-based models can be integrated into the electronic car 

unit to inform drivers about specific spikes in instantaneous emissions rates associated to volatile driving. 

Although there are different types of hybrids with different kick starts for the internal combustion engine 

and resultant emission impacts, the methodology developed in this research can be applied in other 

hybrid electric vehicles and conventional internal combustion engine vehicles with different engine speed 

ranges and torques. This can be done via the following steps: 1) obtain acceleration and jerk, engine speed 

and internal combustion engine status; 2) classify jerk type 1–9 based on acceleration and vehicular jerk; 

and 3) establish a relationship between engine speed and emission rates by jerk type. The use of driving 

volatility information can be useful to achieve more energy efficient driving behavior control systems for 

all autonomous vehicles, and in particular, for vehicles powered by hybrid electric technology. 

The engine speed threshold value applied to categorize internal combustion engine status was a 

conservative value that may not be in full accordance with this vehicle operation. The use of an engine 

speed threshold to define internal combustion engine on/off was less robust when predicting residual 

emissions between 500 and 2000 RPM which are associated with electric mode operation during 

deceleration episodes (2–3 s). The driving volatility-based models developed in this research did not take 

into account specific spikes in nitrogen oxides emission rates, which can represent a large fraction in total 

emissions for certain jerk types, since they were determined to be rare events. 



ICE and exhaust emissions data measured using PEMS in additional models of HEVs are needed to examine 

the variability in engine on/off rules and emission rates and provide higher robustness to the models. 

Emission rates were measured with a particular PEMS, but additional data from other vehicles can be 

measured either using a similar PEMS or other available equipment in the market. There is the potential 

to augment model performance by incorporating other Internally Observable Variables (e.g., torque, 

engine load or manifold absolute pressure), testing speed modal approaches, and using stratified emission 

data (e.g., NOx or PM). Future steps are the possibility of collecting real-time engine and activity 

information using connected vehicle technologies that can improve the relationship between driving 

volatility and HEVs, and between HEVs and road traffic systems. The definition of warning systems 

concerning instantaneous driver behaviors using recommended jerk and emission thresholds to define 

volatile driving should also be explored. 
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