Tuning the Behaviour of a Hydrotalcite-Supported Sulfonated Bithiophene from Aggregation-Caused Quenching to Efficient Monomer Luminescence

Estefanía Delgado-Pinara), Ana L. Costab), Isabel S. Gonçalvesb), Marta Pineiroa), Martyn Pillingerb)* and J. Sérgio Seixas de Melo a)*

a) University of Coimbra, Department of Chemistry, CQC, P3004-535 Coimbra, Portugal
b) CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

E-mail: sseixas@ci.uc.pt (JSSM); mpillinger@ua.pt (MP)
ABSTRACT
The synthesis, electronic spectral and photophysical properties of a new bithiophene derivative, (2,2'-bithiophene)-3,5,5'-trisulfonic acid, $\text{a2-SO}_3\text{H}$, were investigated in organic or aqueous solution, in neat oil form, and in the solid state by cointercalation with different amounts of the surfactant 1-heptanesulfonate (HS) into a layered double hydroxide (LDH). In solution the fluorescence quantum yield (ϕ_F) of $\text{a2-SO}_3\text{H}$ increases by one order of magnitude when compared to the unsubstituted bithiophene (a2) counterpart. However, the most dramatic change is obtained when $\text{a2-SO}_3\text{H}$ is incorporated with HS into a Zn,Al-LDH, where values of ϕ_F up to 58% are obtained in comparison with values of 4% for neat $\text{a2-SO}_3\text{H}$ (as an oil) and 2% for an LDH containing only $\text{a2-SO}_3\text{H}$. In the solid state (LDH), in addition to the monomeric form of $\text{a2-SO}_3\text{H}$, H- and other types of aggregates are present, which are found to be dependent on the percentage HS content. Time-resolved fluorescence studies further rationalize this behaviour with single and double exponential decays mirroring the contributions of monomers and aggregates. The study validates a strategy of increasing fluorescence in the solid state by introduction of electrodonating groups and isolation of the $\text{a2-SO}_3\text{H}$ units within the LDH structure with an appropriate surfactant (HS).

KEYWORDS: solid state luminescence, layered double hydroxides, cointercalation, bithiophene, aggregates.
1. INTRODUCTION

Research on highly fluorescent emissive organic molecules has received increasing interest in recent years for various applications in sensors, displays, storage and photoelectronic devices.1-6 Thiophenes, particularly conjugated thiophene oligomers or polymers, are often used in the synthesis of optical and electronic materials owing to their good electron-transferring ability, high conductivity, and structural rigidity.2-3, 7 In fact, functional oligothiophenes have evolved as one of the most used classes of π-conjugated materials, in particular as active components in organic electronic devices and molecular electronics.8-10 Positional and orientational control of oligothiophenes is important for these potential applications, particularly for optimizing the efficiency of light-harvesting systems and controlling orientation-dependent charge transfer.11-16

However, when aggregation is not well-controlled, significant aggregation-caused quenching (ACQ) appears due to the formation of less emissive species.17 Challenging issues are therefore to control the domain separation at a supramolecular level and the randomness in orientation of the fluorophores.18 This approach takes its inspiration from crucial life processes where clusters or aggregates of individual elements are held together by weak intermolecular forces and are considered as single units.19-20

The simplest aggregate to model is the dimer. Dimers are made of two molecules and, therefore, two interacting transition dipole moments.21 By combining dipole–dipole interactions with molecular geometry, two scenarios arise: one where the molecules are parallel with each other (H-aggregates), and the other where the monomeric units are arranged in an “in-line” fashion (J-aggregates).21

The self-assembly of individual organic chromophores into ordered nanostructures has been the focus of many investigations by supramolecular chemists in the last years.22 An alternative to self-assembly of individual molecules into supramolecular aggregates is the incorporation of the organic molecules into an inorganic matrix where the spectroscopic properties of the confined emitters can be tuned to modify, for example, the average distance between the confined dyes, control the molecular conformation or suppress vibrational and translational motion, amongst others.18, 23-26

Layered double hydroxides (LDHs) are a class of inorganic layered materials that have received great attention due mainly to their anion exchange properties, which make them promising in such diverse fields as catalysis, corrosion inhibition, environmental
remediation, UV-Vis photodetection and drug delivery.27-28 These hydrotalcite-type materials have the general formula \([M_{1-x}^{2+}M_{x}^{3+}(OH)_{2}]^{x+}(A^{m-})_{x/m} \cdot nH_{2}O\) where \(M^{2+}\) and \(M^{3+}\) are divalent and trivalent cations, respectively, and \(A^{m-}\) is an interlayer anion with charge \(-m\). The structure is derived from that of brucite \([Mg(OH)_{2}]\) by isomorphous replacement of some of the divalent cations by trivalent ones to give positively charged layers that require the presence of charge-balancing interlayer anions.29 Some reports exist on the incorporation of thiophene derivatives into hydrotalcite-type materials. LDHs were used as adsorbents for thiophene removal from aqueous solution (desulfurization).30 Tronto \textit{et al.} intercalated 2-thiophencarboxylate and 2-(thiophen-3-yl)acetate anions into Zn,Al and Zn,Cr LDHs by the direct coprecipitation method at constant pH.31-32 The former materials were studied for their electrochemical behaviour, while the latter were thermally treated to promote \textit{in situ} polymerization and/or oligomerization of the intercalated monomers.

To the best of our knowledge, the possibility of tuning the photoluminescence behaviour of functional oligothiophenes by intercalation in LDHs has not been reported. In the present work, 2,2′-bithiophene has been sulfonated in three positions with the specific aim of obtaining a derivative that could be selectively incorporated as an anionic guest in an LDH host. This structural modification proved to be a judicious choice, allowing the trisulfonated bithiophene to be intercalated in a Zn,Al LDH by a direct coprecipitation method at constant pH. To modify the microenvironment and hence the photophysical properties of the incorporated anions, composite materials were prepared in which the sulfonated bithiophene and a surfactant were cointercalated in different proportions. The synthetic strategy leads to an enhancement of photoluminescence of the sulfonated bithiophene in the solid state.
2. EXPERIMENTAL

2.1 Materials and methods

The chemicals chlorosulfonic acid, sodium bicarbonate, tert-butylamine, Zn(NO$_3$)$_2$.6H$_2$O (98%, Fluka), Al(NO$_3$)$_3$.9H$_2$O (98.5%, Riedel de-Haën), 1 M NaOH (Fluka) and 1-heptanesulfonic acid sodium salt (98%, Sigma-Aldrich) were obtained from commercial sources and used as received. 2,2’-Bithiophene was purified by sublimation with a cold-finger. Water was twice distilled and passed through a Millipore apparatus. All the solvents (spectroscopic or equivalent grade) were used without further purification. The pH values were measured with a Jenway 3510 pH-meter and adjustments of the hydrogen ion concentration of the solutions were made with dilute HClO$_4$ and NaOH solutions. All LDH preparations were performed under nitrogen atmosphere using deionized and decarbonated (DD) water. The preparation and characterization of Zn,Al LDHs intercalated by nitrate (Zn$_4$Al$_2$(OH)$_{12}$(NO$_3$)$_2$.2.5H$_2$O, denoted NO$_3$-LDH) and 1-heptanesulfonate (Zn$_4$Al$_2$(OH)$_{12}$(C$_7$H$_{15}$O$_3$S)$_{1.7}$(CO$_3$)$_{0.15}$.5.5H$_2$O, denoted HS-LDH) were described previously.33

1H NMR and 13C NMR spectra were recorded on a Bruker-AMX spectrometer with operating frequencies of 400 and 101 MHz, respectively. High-resolution mass spectrometry (HRMS) was performed on a Bruker microTOF-Focus mass spectrometer equipped with an electrospray ionization time-of-flight (ESI-TOF) source. Solid-state 13C cross-polarization (CP) magic-angle spinning (MAS) NMR spectra were recorded using a wide-bore Bruker Avance III 400 spectrometer (9.4 T) at 100.62 MHz with 3.7 μs 1H 90° pulses, 3500 ms contact time, spinning rates of 12 kHz, and 5 s recycle delays.

Microanalyses for C, H and N were carried out with a Truspec Micro CHNS 630-200-200 elemental analyzer. Powder X-ray diffraction (PXRD) data were collected at ambient temperature on a Philips Analytical Empyrean diffractometer equipped with a PIXcel 1D detector, with automatic data acquisition (X’Pert Data Collector software version 4.2) using monochromatized Cu-Kα radiation ($\lambda = 1.54178$ Å). Intensity data were collected by the step-counting method (step 0.02°), in continuous mode, in the 2θ range 3–70°. Scanning electron microscopy (SEM) images were obtained on a Hitachi SU-70 microscope at 15 kV. Samples were prepared by deposition on aluminium sample holders followed by carbon coating using an Emitech K 950 carbon evaporator. TGA was
performed using a Shimadzu TGA-50 system at a heating rate of 5 °C min\(^{-1}\) under air. FT-IR spectra were collected using KBr pellets and a Mattson-7000 infrared spectrophotometer.

Absorption spectra were obtained with a Cary 5000 spectrophotometer. Excitation and emission spectra were recorded in solution and the solid state with a Horiba-Fluoromax spectrofluorimeter. All the fluorescence spectra were corrected for the wavelength response of the system. The fluorescence quantum yields were measured using the absolute method with a Hamamatsu Quantaurus QY absolute photoluminescence quantum yield spectrometer model C11347 (integration sphere). The absorption of the solutions was kept under 0.1 at the excitation wavelength to avoid the inner filter effect.\(^{34}\) Fluorescence decay times were obtained by the Time-Correlated Single Photon Counting (TCSPC) technique with nanosecond and picosecond time resolution using an equipment described elsewhere.\(^{35,36}\) The fluorescence decays obtained were deconvoluted by employing the method of modulating functions implemented by George Striker.\(^{37}\)

The fluorescence intensity response with time, \(I(t)\), is given by equation 1 with decay times \(\tau_1\) and \(\tau_2\), and pre-exponential factors \(a_1\) and \(a_2\) mirroring the excited state concentrations at time zero:

\[
I(t) = a_1 e^{-\frac{t}{\tau_1}} + a_2 e^{-\frac{t}{\tau_2}}
\]

Eq. (1)

Fractional contribution \((C_i)\) of each lifetime. An additional parameter obtained from the decays, the fractional contribution \((C_i)\) of each species, allows a better interpretation of these results. The \(C_i\), in Table 3 below, for each species (1 and 2) is given by the following equation\(^{38}\)

\[
C_i(\%) = \frac{a_i}{\sum_{i=1}^{n} a_i \tau_i} \times 100
\]

(2)

where \(n\) stands for the number of exponential terms, \(a_i\) the contribution of each exponential term at \(t = 0\) and \(\tau_i\) are the associated decay times.

Structural models and representations were generated using CrystalMaker software.\(^{39}\)

2.2. Synthesis

\((2,2′-\text{bithiophene})-3,5,5′-\text{trisulfonyltrichloride}, \ \mathbf{a}2\)-Cl. 2,2′-bithiophene (\(\mathbf{a}2\)) (0.6 g, 3.61 mmol) was placed in a round bottom flask under nitrogen in an ice-bath. Keeping an inert atmosphere, chlorosulfonic acid (13 mL, 180 mmol) was added. The mixture was
stirred at 0 ºC for 12 h and then overnight at room temperature. The solution was neutralized with saturated NaHCO₃ (aq) and the solid was then filtered and washed with water (2.01 g, 82% yield (90% purity by NMR)).

¹H NMR (DMSO, 400 MHz): δ (ppm) = 7.04 (d, J = 3.7 Hz, 1H), 7.22 (s, 1H), 7.49 (d, J = 3.7 Hz, 1H).

¹³C NMR (DMSO, 101 MHz): δ (ppm) = 126.4, 128.1, 129.3, 132.3, 134.3, 142.9, 146.4, 151.0.

(2,2'-bithiophene)-3,5,5'-trisulfonic acid, α₂-SO₃H. The chlorosulfonic acid intermediate α₂-Cl was suspended in 500 mL of water for 48 h under vigorous stirring until an orange solution was obtained. After water evaporation under vacuum the orange-brown oil obtained was dried at 100 ºC for 12 h and purified by column chromatography, TLC (SiO₂, CH₂Cl₂/Methanol/isopropylamine, 60:40:drops) to provide the desired compound α₂-SO₃H.

¹H NMR (MeOD, 400 MHz): δ (ppm) = 7.36 (d, J = 3.9 Hz, 1H), 7.58 (d, J = 3.9 Hz, 1H), 7.66 (m, 1H), 7.85 (m, 0.23H).

¹³C NMR (MeOD, 101 MHz): δ (ppm) = 129.1, 130.0, 131.1, 136.4, 136.9, 141.9, 145.8, 149.7.

HSQC NMR spectra of α₂-SO₃H is given in Fig. S1.

2.3 LDH composites synthesis

α₂-SO₃-LDH. An aqueous solution (20 mL) of the sodium salt of α₂-SO₃H was prepared by mixing α₂-SO₃H (0.32 g, 0.79 mmol), 0.35 M NaOH (3 eq.) and water. A solution of Zn(NO₃)₂·6H₂O (0.47 g, 1.57 mmol) and Al(NO₃)₃·9H₂O (0.30 g, 0.79 mmol) in deionized water (DD) water (20 mL) was added dropwise to the solution of α₂-SO₃Na under vigorous mixing. During the addition of the Zn²⁺/Al³⁺ solution, the pH of the reaction mixture was maintained at 8.4 by dropwise addition of 0.35 M NaOH. After the addition was complete, the resultant dark yellow suspension was aged at 65 ºC for 18 h. The solid product was filtered, washed with DD water (5 × 100 mL), and finally dried at room temperature in a vacuum desiccator. Anal. Calcd for Zn₄Al₂(OH)₁₂(C₈H₃O₆S₃)₀.₅₆(NO₃)₀.₀₂(CO₃)₀.₁₅·5H₂O (845.85): C 6.57, H 2.82, N 0.03, S 10.61. Found: C 6.59, H 2.67, N 0.03, S 10.28. TGA showed a mass loss of 9.9% at 150
\[\delta = 148.2, 143.2, 137.9, 133.7, 129.2 \text{ ppm.} \]

\(\alpha_2\text{-SO}_3(n\%) / \text{HS-LDH composites.} \) Aqueous solutions (80 mL) of the sodium salt of \(\alpha_2\text{-SO}_3\text{H} \) were prepared by mixing \(\alpha_2\text{-SO}_3\text{H}, 0.35 \text{ M NaOH (3 eq.) and water.} \) Two solutions (A and B) were prepared containing different amounts of 1-heptanesulfonic acid sodium salt (\(a \) mmol) and \(\alpha_2\text{-SO}_3\text{Na} (b \text{ mmol}; a + b = 10 \text{ mmol}; b = 0.23 \) (solution A) or 0.046 (solution B) mmol). A solution of \(\text{Zn(NO}_3\text{)}_2 \cdot 6\text{H}_2\text{O (2.97 g, 10 mmol) and Al(NO}_3\text{)}_3 \cdot 9\text{H}_2\text{O (1.88 g, 5 mmol) in DD water (60 mL) was added dropwise to solution A or B with vigorous mixing.} \) During the addition of the \(\text{Zn}^{2+} / \text{Al}^{3+} \) solution, the \(\text{pH of the reaction mixture was maintained at 8.20-8.45 by dropwise addition of 0.35 M NaOH.} \) After the addition was complete, the resultant gel-like slurry was aged at 65 \(^\circ \text{C} \) for 18 h. The solid product was filtered, washed with DD water (5 \(\times \) 100 mL), and finally dried at room temperature in a vacuum desiccator. The samples are denoted as \(\alpha_2\text{-SO}_3(n\%) / \text{HS-LDH} \) where the final mol\% content of \(\alpha_2\text{-SO}_3 \) (\(n \)) is calculated by considering that uptake of the trianion of \(\alpha_2\text{-SO}_3\text{H} \) in the synthesized LDH will be selective and quantitative, and that the remaining layer positive charge will be compensated by cointercalated HS anions.
3. RESULTS AND DISCUSSION

3.1 Synthesis and characterization

α2-SO₃H. Scheme 1 depicts the procedure used for the synthesis of the novel bithiophene derivative (2,2′-bithiophene)-3,5,5′-trisulfonic acid (α2-SO₃H). Briefly, chlorosulfonation of bithiophene (α2) through electrophilic aromatic substitution with neat chlorosulfonic acid at 0 °C during 24 h gave the trisulfonyl chloride derivative α2-Cl as a dark brown solid in almost quantitative yield.⁴⁰ The resulting solid was then suspended in water for 48 h to hydrolyze the chlorosulfonic groups. Finally, the product α2-SO₃H was obtained as an oil by solid chromatography purification. Attempts to get crystals of α2-SO₃H or the corresponding sodium salts have revealed unsuccessful.

![Scheme 1. Synthetic route for the trisulfonic acid derivative. The atom numbering for the NMR assignments is included.](image)

LDHs. Zn,Al layered double hydroxides (LDHs) containing solely the trisulfonate derivative α2-SO₃ (α2-SO₃-LDH) or 1-heptanesulfonate (HS) anions (HS-LDH), or a mixture with two different α2-SO₃/HS molar ratios (ca. 1.0 and 5.0 mol% α2-SO₃, samples α2-SO₃(1%)/HS-LDH and α2-SO₃(5%)/HS-LDH) were prepared by the direct coprecipitation method at constant pH.

The PXRD pattern of α2-SO₃-LDH displays four fairly broad, equally spaced, symmetric peaks between 3.5 and 30° 2θ, which are assigned as the 00l reflections of a hydrotalcite-type layered phase (Fig. 1). The basal (interlayer) spacing (d₆) can be calculated from averaging the positions of the four harmonics:

\[
d₆ = \frac{1}{4}(d_{003} + 2d_{006} + 3d_{009} + 4d_{012}) = 13.75 \text{ Å}
\]

Relatively weak and asymmetric peaks above 30° 2θ are assigned as overlapping non-basal reflections. The gallery height in α2-SO₃-LDH is estimated as 9.0 Å by subtraction of 4.75 Å for the layer thickness from the basal spacing. A model for the molecular structure of the anion (2,2′-bithiophene)-3,5,5′-trisulfonate, with realistic bond lengths and overall geometry, was generated by extracting relevant
structural features from two crystal structures deposited in the Cambridge Crystal Database (CSD)39: CSD-ROFLIK (containing the anion 5-bromothiophene-2-sulfonate) and CSD-QEDMAQ (containing the anion 2,2'-bithiophene-5,5'-dicarboxylate).41 A credible model for the interlayer orientation of the bithiophene guest in a2-SO_3-LDH can be advanced by considering that the following criteria must be met: (i) hydrogen-bonding interactions between the sulfonate oxygen atoms and the layer hydroxyl groups should be maximized, while positioning the hydrophobic bithiophene moiety in the centre of the interlayer region; (ii) the orientation must be consistent with a gallery height of 9.0 Å (taking into account van der Waals (vdW) radii for the sulfonate oxygen atoms); (iii) the anionic guest must be spatially capable of compensating the host layer positive charge. Fig. 2 shows an interlayer arrangement that meets these requirements. In this orientation, the cross-sectional area occupied by the guest molecules in a plane parallel with the layers is estimated as 71 Å2, which corresponds to an area per unit charge of 23.7 Å2. The area per unit charge for an LDH is given by \((1/x)a_o^2\sin60^\circ\), where \(x\) is the mole fraction \([\text{Al}^{3+}]/[\text{Zn}^{2+} + \text{Al}^{3+}]\), and \(a_o\) is the hexagonal unit cell parameter. For an LDH with Zn/Al = 2, \(x = 0.33\) and \(a_o \approx 3.1\) Å, which lead to a calculated area per unit positive charge of 25.0 Å2. For this simplified model, the average perpendicular distance between thiophene planes of adjacent molecules is estimated as 5.6 Å. Hence, a monolayer of closely packed (2,2'-bithiophene)-3,5,5'-trisulfonate anions, as depicted in Fig. 2, should be fully capable of compensating the host layer charge. Finally, the perpendicular interplanar distance between adjacent bithiophene guest molecules in a2-SO_3-LDH (estimated as 5.6 Å) is too large to produce effective $\pi-\pi$ intermolecular electronic coupling.
Figure 1. PXRD patterns of (a) NO$_3$-LDH, (b) α2-SO$_3$-LDH, (c) HS-LDH, (d) α2-SO$_3$(5%)/HS-LDH and (e) α2-SO$_3$(1%)/HS-LDH.

The PXRD patterns of the materials HS-LDH and α2-SO$_3$(n%)/HS-LDH are very similar, showing six fairly sharp, equally spaced, symmetric 00l reflections between 3.5 and 30° 2θ, from which a basal spacing of 19.4 Å is calculated for all three materials (Fig. 1). As reported previously for HS-LDH, this basal spacing is most likely to arise from an ordered interlayer packing arrangement in which the surfactant molecules adopt an almost perpendicular (or slightly tilted) bilayer arrangement with extensive interdigitation (i.e., an antiparallel interpenetrating style). None of the patterns contain basal reflections characteristic of nitrate-LDH or carbonate-LDH phases. Also, the sample with the higher loading of α2-SO$_3$H does not display any weak reflections corresponding to an LDH phase intercalated solely by the bithiophene guest, i.e. with d_{003} ~13.8 Å.
Figure 2. Structural model for the monolayer arrangement of bithiophene guests in the material α2-SO$_3$-LDH.

The phase purity of the materials α2-SO$_3$-LDH and α2-SO$_3$(n%)/HS-LDH was further checked by SEM (Fig. S1). The morphology of the intercalated LDHs consisted of aggregates of irregular sheet-like nanoparticles. No evidence was found for secondary phases such as ZnO or Al$_2$O$_3$.

Figure 3 shows the FT-IR spectra of the intercalated materials. In the region of the S–O stretching vibrations (900-1450 cm$^{-1}$), the spectra of α2-SO$_3$-LDH and α2-SO$_3$(n%)/HS-LDH ($n = 0, 1.0$ and 5.0%) are typical of dissociated sulfonate groups with a broad peak at 1179 cm$^{-1}$ or doublet at ca. 1202/1222 cm$^{-1}$ (asymmetric SO$_3^-\cdot$ stretching vibration for HS and α2-SO$_3$, respectively) and a sharper absorption at 1049 cm$^{-1}$ (symmetric SO$_3^-\cdot$ stretching vibration). The corresponding spectra for the neat compounds α2-SO$_3$H and NaHS are similar, showing bands centred at 1056 and 1190 cm$^{-1}$ for NaHS, and 1046 and 1202 cm$^{-1}$ for α2-SO$_3$H. The spectrum for α2-SO$_3$H does not contain bands typical of undissociated sulfonic acid groups (asymmetric SO$_2$ stretching mode at ca. 1400 cm$^{-1}$, and S–O stretching mode at ca. 900 cm$^{-1}$). This can be attributed to the presence of water and ionization of the SO$_3$H groups to give sulfonate–hydronium ionic pairs, which will present S–O stretching vibrations that resemble those for sulfonate salts. Figure 3 shows that the FT-IR spectra for the two samples containing ca. 1.0 and 5.0 mol% α2-SO$_3$H are practically identical and that bands assignable to the bithiophene
guest species are not visible. These bands are obscured by the absorptions due to the
cointercalated HS anions, even for the sample with the higher α2-SO₃H loading.

In the region 300-650 cm⁻¹, the FT-IR spectra of α2-SO₃-LDH and α2-SO₃(𝑛%)/HS-LDH present three main bands at about 425, 555 and 615 cm⁻¹, which are attributed to the characteristic Zn/Al-OH lattice translation modes of Zn,Al LDHs. Similar bands are observed for the nitrate-form material NO₃-LDH (Fig. 3(a)). The spectra indicate that the samples only contain minor or insignificant amounts of carbonate or nitrate ions (characteristic bands: ν₃(CO₃²⁻) ~1365 cm⁻¹, ν₅(NO₃⁻) ~1385 cm⁻¹).

Figure 3. FT-IR spectra in the region 300-2000 cm⁻¹ of (a) NO₃-LDH, (b) α2-SO₃H, (c) α2-SO₃-LDH, (d) NaHS, (e) HS-LDH, (f) α2-SO₃(5%)/HS-LDH and (g) α2-SO₃(1%)/HS-LDH.

The solid-state ¹³C{¹H} CP MAS NMR spectrum of α2-SO₃-LDH displays five resolved broad lines and several shoulders in the aromatic region between 110 and 160 ppm (Fig. 4(a)). These signals can be assigned in accordance with the liquid ¹³C NMR spectrum of α2-SO₃H which displays five main groups of resonances attributed to C², C²', C⁵', C₃,₅, and C³⁴,₄⁴ (Fig. 4). The ¹³C{¹H} CP MAS NMR spectra of α2-SO₃(𝑛%)/HS-
LDH \((n = 0, 1.0 \text{ and } 5.0\%)\) are very similar in the aliphatic region \((10-40 \text{ ppm})\), exhibiting six single peaks for the carbon atoms of the \(n\)-heptyl group (\(C^3\) and \(C^4\) are not resolved as separate resonances). In contrast, while the spectrum of NaHS also displays a single line for the methyl carbon atom (\(C^7\)), multiple sharp resonances are observed for each type of methylene carbon atom (Fig. 4(b)), possibly due to conformational heterogeneity in the solid state. The spectra of the HS-containing LDHs are therefore consistent with an ordered, essentially all-anti, conformation of the methylene chains. In accordance with the FT-IR data, signals due to the cointercalated biothiophene guest could not be discerned in the \(^{13}\text{C} \text{NMR}\) spectra of \(\alpha2-\text{SO}_3\text{(n\%)/HS-LDH} \,(n = 1.0 \text{ and } 5.0\%).\)

Figure 4. \(^{13}\text{C} \{^1\text{H}\} \text{ CP MAS NMR spectra of (a) \(\alpha2-\text{SO}_3\)-LDH, (b) NaHS, (c) HS-LDH, (d) \(\alpha2-\text{SO}_3\text{(5\%)/HS-LDH, and (e) \(\alpha2-\text{SO}_3\text{(1\%)/HS-LDH. A magnified view of the aromatic region for spectrum (a) is shown and compared with the liquid }^{13}\text{C NMR}\) spectrum of \(\alpha2-\text{SO}_3\text{H in MeOD. Scheme 1 shows the carbon atom numbering for }\alpha2-\text{SO}_3\text{H.} \)
The thermal decomposition behaviours of $\text{a}_2\text{-SO}_3\text{-LDH}$ and $\text{a}_2\text{-SO}_3(n\%)/\text{HS-LDH}$ ($n = 1.0$ and 5.0%) were examined by TGA (Fig. 5). For $\text{a}_2\text{-SO}_3\text{-LDH}$, the weight loss of 9.9% from ambient temperature up to $150\,^\circ\text{C}$ is due to the removal of physisorbed and interlayer water molecules. From this water content and CHN microanalyses, the formula $\text{Zn}_4\text{Al}_2(\text{OH})_{12}(\text{C}_8\text{H}_3\text{O}_9\text{S}_5)_{0.56}(\text{NO}_3)_{0.02}(\text{CO}_3)_{0.15}\cdot5\text{H}_2\text{O}$ is proposed for the as-prepared organic-inorganic hybrid. Upon further heating, dehydroxylation of the host hydroxide layers gives rise to a weight loss step of 8.6% between 280 and $350\,^\circ\text{C}$, which is followed by a 16.6% weight loss between 400 and $550\,^\circ\text{C}$ corresponding to thermal decomposition of the intercalated bithiophene guest. The TGA curves for $\text{a}_2\text{-SO}_3(n\%)/\text{HS-LDH}$ ($n = 1.0$ and 5.0%) are similar to that described previously for HS-LDH. Three main weight loss steps are observed from ambient temperature up to $500\,^\circ\text{C}$: loss of water up to $130\,^\circ\text{C}$ (10.4-10.8%), dehydroxylation between 165 and $225\,^\circ\text{C}$ (8.9-9.7%), and surfactant decomposition between 225 and $450\,^\circ\text{C}$ (24.2-25.4%).

Figure 5. TGA curves for $\text{a}_2\text{-SO}_3\text{-LDH}$ (—), $\text{a}_2\text{-SO}_3(5\%)/\text{HS-LDH}$ (— —), and $\text{a}_2\text{-SO}_3(1\%)/\text{HS-LDH}$ (——).

3.2. Absorption and Fluorescence Studies

Absorption and fluorescence emission spectra for $\text{a}_2\text{-SO}_3\text{H}$ were obtained in water and methanol and are depicted in Fig. 6 (See Fig. S4 for other spectra including the excitation
In general, the spectra of \(\text{a}_2\text{-SO}_3\text{H} \) display the characteristic features of the parent oligothiophene (with a broad absorption band-lacking vibronic structure- and a more structured fluorescence emission).

![Normalized absorption and fluorescence emission spectra](image)

Figure 6. Normalized absorption and fluorescence emission spectra of a) \(\text{a}_2\text{-SO}_3\text{H} \) in water at pH\~5.5 (\(\lambda_{\text{exc}} = 306 \text{ nm} \)) and b) \(\text{a}_2\text{-SO}_3\text{H} \) together with \(\text{a}_2 \) (black lines) in methanol; (\(\lambda_{\text{exc}} = 315 \text{ nm} \)) obtained at \(T = 293 \text{ K} \). [\(\text{a}_2\text{-SO}_3\text{H} \)] = \(1 \times 10^{-5} \text{ M} \). The vertical dashed lines are visual guides.

Table 1 gives the spectral data and the fluorescence quantum yields for \(\text{a}_2\text{-SO}_3\text{H} \) in water and methanol, with literature data for \(\text{a}_2 \) included for comparison. A blue-shift with the increase in the polarity of the media is observed in the absorption spectra whereas no observable change in the fluorescence is found. These results point, as with \(\text{a}_2 \), to a quinoidal-like structure in the excited state of \(\text{a}_2\text{-SO}_3\text{H} \) and likely the presence of a transition with a partial intramolecular charge transfer character; the similar Stokes’ shift value of \(\text{a}_2\text{-SO}_3\text{H} \) and \(\text{a}_2 \) (Table 1) likely indicates a same nature in the transition and
excited state.42 Indeed, α_2-SO$_3$H exhibits large spectral solvent-dependent red-shifts of the absorption and emission wavelength maxima when compared to α_2 (see Table 1 and Figure 6). The spectral shape of the absorption and emission spectra of α_2-SO$_3$H are relatively similar to those of α_2 with a broad and devoid of vibronic resolution absorption and an emission with a vibronic shoulder at shorter wavelengths. Furthermore, the addition of sulfonic acid groups in the structure of bithiophene results in a 10-fold increase in the absolute quantum yield in the case of methanol (reported to be 0.01 for α_2 in ethanol) and a 20-fold increase when dissolved in water.42

Table 1. Spectral data (including absorption, λ_{abs}, excitation, λ_{exc}, and emission, λ_{em}, wavelength maxima; Stokes-shifts and quantum yield, Φ_F, for α_2 and α_2-SO$_3$H at $T= 293$ K.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solvent</th>
<th>η (cP)b</th>
<th>εc</th>
<th>λ_{Abs} (nm)</th>
<th>λ_{em} (nm)</th>
<th>λ_{exc} (nm)</th>
<th>Stokes Shift (cm$^{-1}$)</th>
<th>Φ_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_2 a</td>
<td>MeOH</td>
<td>0.593</td>
<td>32.66</td>
<td>302</td>
<td>358</td>
<td>302</td>
<td>5180</td>
<td>0.014</td>
</tr>
<tr>
<td>α_2-SO$_3$H</td>
<td>MeOH</td>
<td>0.593</td>
<td>32.66</td>
<td>315</td>
<td>393</td>
<td>315</td>
<td>6301</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>H$_2$O</td>
<td>1.009</td>
<td>80.16</td>
<td>308</td>
<td>393</td>
<td>307</td>
<td>7128</td>
<td>0.20</td>
</tr>
</tbody>
</table>

a) data for Φ_F is in ethanol from ref. 42
b) $\eta =$ Viscosity
c) $\varepsilon =$ Dielectric constant of the solvent

\textit{pH-dependence studies}

The derivatization of the bithiophene unit with sulfonic acid groups increases the solubility in water, which makes it possible to study the spectroscopic and photophysical properties of α_2-SO$_3$H across a wide pH range. Figure 7 shows that no changes in the absorbance and emission spectral profiles are observed on going from low to intermediate to high pH values, indicating that no protonation of the sulfonate group has occurred under these experimental conditions. (please see Fig. S5 in the Supporting Information for additional pH values).
Figure 7. Normalized absorption (red), fluorescence excitation ($\lambda_{em} = 370$ nm yellow; $\lambda_{em} = 394$ nm green; $\lambda_{em} = 430$ nm pink; these show an almost full overlap) and fluorescence emission spectra ($\lambda_{ex} = 275$ nm blue) of $\text{a}_2\text{SO}_3\text{H}$ in water at different pH values at $T = 293$ K. $[\text{a}_2\text{SO}_3\text{H}] = 1\times10^{-5}$ M. The vertical dashed lines are visual guides.

3.3. Time-resolved fluorescence measurements

Time resolved fluorescence studies provided additional information on the excited state behaviour of $\text{a}_2\text{SO}_3\text{H}$. The fluorescence decays of $\text{a}_2\text{SO}_3\text{H}$ in water at different pH values were obtained with excitation at 275 nm and emission at 393 nm at $T = 293$ K. The study of the variation of the decay time values for $\text{a}_2\text{SO}_3\text{H}$ at different pH values was carried out. No changes in the maximum wavelength allow us to verify that the sulfonate groups remained deprotonated over the whole pH range studied (See experimental material for further information, eq. 1). The fluorescence decay times and pre-exponential factors obtained as a function of pH are depicted in Figure S6 and values are collected in Table S1. The two components, showing dependence with pH, are associated with short (varying between 190 ps and 250 ps) and long (varying between 400 and 600 ps) decay times. The larger difference is observed at pH < 0. However, the
most interesting feature is the dependence of the pre-exponential factors on pH, where it can be seen that the α_1 pre-exponential factor decreases whereas α_2 increases with pH, plateauing from pH = 4 thereon.

This contrasts with the single exponential behaviour of the model compound α_2, and likely indicates the presence of two species or two (structurally similar) compounds. Indeed, with α_2 an ensemble of conformers are present in the ground state with the dominant with a dihedral angle of ~ 20 degrees, whereas in the excited state a quinoidal structure is present, with a mono-exponential decay. The bi-exponential nature of the decay in of α_2-SO$_3$H suggests the presence of two stable conformers in the ground and excited state. As can be observed in Fig. 7, the emission spectra (orange and yellow plots) are independent of the excitation wavelength. This indicates that the emission is observed from a common chromophore unit (basically identified with α_2), but that a mixture of two different trisulfonated derivatives of α_2-SO$_3$H may be present and would explain the absence of total overlap of the absorption and excitation spectra in the 250-270 nm region.

3.4. Spectral and photophysical study of LDH-supported α_2-SO$_3$

As shown above, derivatization of bithiophene with sulfonic acid groups increases the solubility of the compound and strongly promotes the deactivation of the S_1 excited state through the fluorescence channel.

Immobilization of α_2-SO$_3$ inside the LDH interlamellar region with and without surfactant spacers can further promote a change in the balance between monomer and dimer formation. The identification of the type of aggregates is relevant to the interpretation of the organization of the intercalated α_2-SO$_3$ guests. If parallel with each other (H-aggregates or H-type dimers) the absorption spectrum is blue shifted compared to the individual monomer. An important feature of H-type dimers is that their fluorescence is quenched. On the other hand, J-aggregates, or J-dimers, are characterized by absorption and emission spectra that are red shifted relative to those for the monomeric unit, with sharp and featureless spectra with very small Stokes shifts. However, as will be shown below, the increase of fluorescence in our systems is not due to formation of J-aggregates, but rather to the suppression of H-aggregate formation, and thus of ACQ, by cointercalation of α_2-SO$_3$ with a large excess of HS surfactant, leading to the emission of isolated α_2-SO$_3$ guest anions.
UV-Vis and emission spectra were collected for the solid samples α_2-SO$_3$-LDH and α_2-SO$_3$(n%)/HS-LDH ($n = 1.0$ and 5.0%) and are presented in Fig. 9; for the excitation spectra please see Figs. S7 and S8. From the absorption spectra, three bands are observed: at shorter wavelengths, a band at around 260 nm together with a second (and more intense) band centred at 318 nm, and, at longer wavelengths, a band (appearing as a shoulder) with maxima at \sim452 nm. The existence of these three bands in the solid state (note that for the LDH in the absence of HS surfactant the three bands are present) likely indicates the simultaneous presence of the monomer, with bands at \sim260 nm and 318 nm, which are also found present in solution, see Figure 6 and of aggregates (band at 452 nm). Table 2 shows that the ϕ_F values for neat α_2-SO$_3$H (a viscous oil at room temperature) and α_2-SO$_3$-LDH are approximately identical. The gradual addition of the surfactant (HS) to the LDH system leads to an increase in emission from the solid. Increasing the amount (and proportion relative to α_2-SO$_3$) of HS leads to an increase in the formation of the monomer and a reduction of H-aggregates associated with quenching of the fluorescence (see Table 2). The emission spectra of α_2-SO$_3$-LDH and that of α_2-SO$_3$(5%)/HS-LDH display an additional broad band with maxima at around 550 nm which may be attributed to the emission of the H-aggregates. For the material with the highest relative proportion of HS surfactant, α_2-SO$_3$(1%)/HS-LDH, this band disappears, as does the longest wavelength absorption band, indicating that at a level of 1% of α_2-SO$_3$ the surfactant “isolates” the molecule inside the LDH galleries, leading to the emission of the monomer.

Table 2. Fluorescence quantum yields, ϕ_F, obtained for the different solid-state samples.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ϕ_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_2-SO$_3$(1%)/HS-LDH</td>
<td>0.58</td>
</tr>
<tr>
<td>α_2-SO$_3$(5%)/HS-LDH</td>
<td>0.33</td>
</tr>
<tr>
<td>α_2-SO$_3$-LDH</td>
<td>0.02</td>
</tr>
<tr>
<td>α_2-SO$_3$H*</td>
<td>0.04</td>
</tr>
</tbody>
</table>

* pure compound, a viscous oil at room temperature.
Figure 9. Normalized absorbance (red lines) and emission (blue lines) of a) α_2-SO$_3$-LDH, b) α_2-SO$_3$(5%)/HS-LDH and c) α_2-SO$_3$(1%)/HS-LDH. $\lambda_{exc} = 306$ nm. The
absorption spectrum of the sample containing 0% of surfactant was obtained by “diluting” the solid with BaSO₄.

Time-resolved fluorescence measurements

Further insight into the photoluminescence behaviour of the solid samples was obtained from time resolved fluorescence studies. The data summarized in Table 3 show that the decays fit to single (neat viscous oil sample of \(\alpha_{2-}\text{SO}_3\text{H} \)) or double (when incorporated into the LDH) exponential decays (See experimental material for further information about \(\%C_i \), eq. 2).

Table 3. Time resolved fluorescence data (lifetimes, \(\tau \), pre-exponential factors, \(a \), and chi-squared values, \(\chi^2 \)) for the different solid-state samples.a

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\tau_1) (ps)</th>
<th>(\tau_2) (ps)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(\chi^2)</th>
<th>%C1</th>
<th>%C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{2-}\text{SO}_3\text{H})(^b)</td>
<td>0.43</td>
<td>1</td>
<td>-</td>
<td>0.82</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha_{2-}\text{SO}_3)-LDH</td>
<td>0.25</td>
<td>1.32</td>
<td>0.927</td>
<td>0.073</td>
<td>0.70</td>
<td>70.63</td>
<td>29.34</td>
</tr>
<tr>
<td>(\alpha_{2-}\text{SO}_3(5%))/HS-LDH</td>
<td>0.45</td>
<td>1.22</td>
<td>0.776</td>
<td>0.217</td>
<td>1.06</td>
<td>56.88</td>
<td>43.12</td>
</tr>
<tr>
<td>(\alpha_{2-}\text{SO}_3(1%))/HS-LDH(^c)</td>
<td>0.42</td>
<td>1.21</td>
<td>0.809</td>
<td>0.004</td>
<td>0.93</td>
<td>98.60</td>
<td>1.40</td>
</tr>
</tbody>
</table>

\(a \) The decays were obtained with \(\lambda_{\text{exc}} = 282 \text{ nm} \) and \(\lambda_{\text{em}} = 393 \text{ nm} \) at \(T = 293 \text{ K} \).

\(b \) Obtained for the pure compound, a viscous oil at room temperature.

\(c \) An additional long-lived component associated to a base-line is present in this decay.

A decay time of \(~ 430 \text{ ps}\) is observed for the pure compound \(\alpha_{2-}\text{SO}_3\text{H} \) (a viscous oil at room temperature). Incorporation of the trisulfonate derivative into the LDH leads to a double exponential decay with two components: a short lived one associated with the monomer, and a long-lived one associated with the aggregate species. A higher excess of the HS surfactant leads to a gradual loss of the aggregate component and the presence of the monomer as the major emissive species (98%), in clear agreement with the observed steady-state data. It is worth noting that the time resolved data were collected at the shorter emission band (393 nm) and therefore the \(C_i \) values in Table 3 are obtained in the monomer emission region.

4. CONCLUSIONS

A trisulfonated bithiophene (\(\alpha_{2-}\text{SO}_3 \)) has been synthesized and incorporated into a layered double hydroxide host by the direct coprecipitation method. Sole intercalation of \(\alpha_{2-}\text{SO}_3 \) leads to a well-ordered hybrid assembly with an interlayer spacing of 13.75 Å.
However, the material displays a low fluorescence quantum yield due to aggregate caused quenching (ACQ). A synthetic strategy involving the cointercalation of increasingly higher fractions of the surfactant 1-heptanesulfonate (HS) leads to the gradual emergence of the isolated monomer at the expense of the poorly emissive aggregates, resulting in a remarkable enhancement of the fluorescence emission, in the solid state, from 4% (for the neat compound α_2-SO$_3$H) to 58%. We conclude that the host-guest spatial confinement strategy used here can overcome ACQ with molecular bithiophene fluorophores and obtain solid-state emission, opening a route to highly emissive fluorescent materials.

Notes
The authors declare no competing financial interest.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/.
Representative SEM images of α_2-SO$_3$-LDH and α_2-SO$_3$(n%)/HS-LDH, with n=1 and 5%. HSQC NMR and MS spectra of α_2-SO$_3$H, absorption, fluorescence emission and excitation spectra of α_2-SO$_3$H in water (at different pH value) and methanol, fluorescence decay times and pre-exponential factors of α_2-SO$_3$H in water as a function of pH excitation spectra of α_2-SO$_3$(n%)/HS-LDH (with $n = 100, 5.0, 1.0$) with different λ_{em}.

ACKNOWLEDGEMENTS
This work was carried out with the support of Centro de Química de Coimbra [FCT (Fundação para a Ciência e a Tecnologia) Ref. UIDB/00313/2020 and UIDP/00313/2020], CICECO - Aveiro Institute of Materials [FCT Ref. UIDB/50011/2020 and UIDP/50011/2020], and the COMPETE 2020 Operational Thematic Program for Competitiveness and Internationalization (Project “Hylight”, 02/SAICT/2017, PTDC/QUI-QFI/31625/2017), co-financed by national funds through the FCT/MCTES and the European Union through the European Regional Development Fund (ERDF) under the Portugal 2020 Partnership Agreement. The research leading to these results has received funding from Laserlab-Europe (grant agreement no. 284464, EC’s Seventh Framework Programme). E.D.-P. thanks the “Concurso de Estímulo ao
Emprego Científico” for the junior contract CEECIND/04136/2018. The NMR spectrometers of the University of Aveiro are part of the National NMR Network (PTNMR) and are partially supported by Infrastructure Project Nº 022161 (co-financed by the EDRF through COMPETE 2020, POCI and PORL, and the FCT through PIDDAC). NMR data collected at the UC-NMR facility are supported in part by the EDRF through the COMPETE Program and by national funds from the FCT through grants RECI/QEQ-QFI/0168/2012 and CENTRO-07-CT62-FEDER-002012, and also through support to Rede Nacional de Ressonância Magnética Nuclear (RNRMN) and to Coimbra Chemistry Centre through grant UID/QUI/00313/2019.

TOC

Spatial isolation of an anionic bithiophene (BT) derivative by doping within a two-dimensional surfactant array assembled inside a lamellar inorganic host increases the solid-state photoluminescence emission from 4% to 58%.

Bibliography

42. Becker, R. S.; Seixas de Melo, J.; Maçanita, A. L.; Elisei, F., Comprehensive Evaluation of the Absorption, Photophysical, Energy Transfer, Structural, and Theoretical Properties of A-