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abstract Increasing popularity of cryptocurrencies lead to the rapid development of
blockchain-based distributed ledger keeping systems. Industrial applications
for the new technologies were soon found, enhanced by needs of security,
trust and transparency along the value-chain in traceability of products, parts
and processes, particularly when transactions are being maintained through
several different entities. Traceability solutions are also increasingly being
built upon IoT or IIoT platforms. Although this allows for highly modu-
lar and flexible architectures, severe security deficiencies make these designs
inapplicable to most real-life production lines. Lack of research and prac-
tical advances in the creation of modular and easily deployable frameworks
motivated development of the project underlying this dissertation.
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resumo O aumento da popularidade de criptomoedas levou ao rápido crescimento
e desenvolvimento de sistemas baseados em blockchain de registos dis-
tribuídos. Aplicações industriais para estas novas tecnologias foram rapida-
mente encontradas, exacerbadas pelas necessidades de segurança, confiança
e transparência ao longo da cadeia de valores na rastreabilidade de produtos,
peças e processos, em particular quando as transações são mantidas através
de várias entidades díspares. Soluções de traçabilidade são crescentemente
construídas tendo por base plataformas de dispositivos IoT ou IIoT. Em-
bora isto leve à criação de arquiteturas extremamente modulares e flexíveis,
graves deficiências de segurança tornam estas inaplicáveis a um largo número
de linhas de produção. A falta de avanços práticos nesta área, motivou o
desenvolvimento do projeto subjacente a esta dissertação.
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Chapter 1

Introduction

1.1 Context

Stringent demands have been placed all throughout manufacturing processes, with greater
product liability, rising quality standards and more complex customer requirements, par-
ticularly in fields that carry real harm risk to end users, such is the case of the automotive
industry. Auto manufacturing is truly global, with parts being sourced and assembled
from multiple entities worldwide, resulting in an intricate Supply Chain that requires
constant monitoring to assure quality needs. However, the Fourth Industrial Revolution
(Industry 4.0) set a higher priority towards Traceability, supporting the idea that every
part of the supply chain must be monitored and controlled at all times by employing
methodologies that work systematically, requiring minimal to none human interference.

Outdated solutions that rely heavily in manual or partially manual tracking tech-
niques proved themselves to be inadequate for the extremely competitive automotive
sector, as the unreliable and slow influx of data can not be promptly accessible. The
operation of tracking a singular event within the value chain is a time and resource con-
suming action that is heavily hampered by information skewing or even absence along
the intermediary steps taken in storing it, creating uncertainty regarding veracity. The
concept of a traceability system that applies a network consisting of a central data storage
server aided by Industrial Internet of Things (IIoT) devices then appears as a proposed
cost-effective alternative to ensure real time data acquisition whilst it still being readily
available through all participants of the supply chain. Nonetheless, these IIoT based
platforms deploy highly centralized architectures, suffering from numerous technical lim-
itations, and ultimately compromising the security of data being acquired by the means
of a cyber-attack or single points of failure [1]. Alternatively, several processes are still
based off and monitored by legacy devices that have to be adapted to achieve compliance
with these newfound technologies.

In this dissertation, it is proposed a template architecture that allows not only for
full integration of the IIoT technologies found in Renault CACIA’s facilities, but also
interfacing with older legacy devices; whilst working alongside existing enterprise trace-
ability systems. With trust and credibility at the forefront of concerns, the solution must,
therefore, be based on an auditable and transparent system. A Blockchain based, immut-
able distributed-ledger is proposed, avoiding issues typically associated with centralized
architectures, as, for instance, single points of failure. Trust is created as historical data
is maintained throughout all the network’s participants, whether they might be differ-
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2 1.Introduction

ent business units within a manufacturing facility or a distinct corporation all together.
Transactions in the network are secured by Cryptography, and must be approved by all
adhering members through a previously agreed upon consensus algorithm or method [2].

Credibility then becomes a cost-saving measure as data being kept on-chain can be
quickly and accurately verified against the internal ledgers distributed across multiple
peers, assuring that only truthful information is being used in subsequent operation
management processes such as root defect cause analysis.

A master thesis by D.F.Rocha [3] was used as an entry point on the subject due
to the author’s previous efforts in integrating Renault CACIAS’s production lines with
Internet of Things (IoT) platforms.

1.2 Methodology and Expected Results

This dissertation aims for the creation of an IIoT and legacy device based solution,
integrating blockchain technologies, allowing for deployment of a traceability system
fully capable of tracking products during each stage of the manufacturing process, since
the arrival of raw materials to the completed products’ shipping. The final platform
must be capable of assuring real-time information with digital certification allowing for
rapid verification of data and transactions by not only internal (i.e., Renault CACIA
employees), but also external entities. As any traceability solution that strives to be
competitive in the marketplace, final outcome must ensure a low-latency, private and
secure inflow of data, while keeping development and integration costs reduced.

This will be achieved by first analysing existing technologies and advances in the
field, and assessing whether or not they are viable for final implementation. All software
development will be based on high-level, general purpose programming languages, for
example, Python for web-serving or JavaScript/AJAX for web interfaces. To keep devel-
opment and deployment costs low, hardware used for testing will be based on powerful
IoT devices such as ESP32 or ESP8266, applying Edge Computing concepts when needed
(e.g., data encryption happening on edge).

Three main objectives can be pinpointed as mandatory characteristics for the success
of the proposed architecture:

1. Data must be immutable and securely kept, guarded against cyber-attacks.

2. Allow for a high throughput and swift data access, as to not become a bottleneck
to currently implemented manufacturing and traceability systems.

3. Underpinning framework must be lightweight and modular, assuring compatibility
with most current enterprise systems, technologies and layouts, for rapid deploy-
ment and guaranteeing a hot-swappable architecture.

1.3 Document Organization

This document is divided into six distinct chapters, the first of which is this introduc-
tion. Chapter 2, Renault CACIA, provides an overview of the manufacturing facilities
found at Renault CACIA, and a more detailed explanation of the Variable Displacement
Oil Pumps and their production lines, for which the proposed architecture was initially
devised for.
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Chapter 3, Blockchain Concepts and Supporting Technologies, will look into Industry
4.0 and associated concepts, cryptographic and network security notions, followed by a
deep analysis of what are blockchain and distributed ledger technologies, finalizing with
studying other authors’ work done in the field and existing commercial solutions.

Chapter 4, Proposed Blockchain Framework, displays the conceptual stacked-layer ar-
chitecture, laying ground-work for the final implementation, and explaining the reasoning
behind the chosen design path.

Chapter 5, Blockchain Framework Implementation, explains how the architecture was
conceived, used technologies and hardware, programming methodology and deployment
instructions.

The last chapter, 6 - Testing and Conclusions, contains security and performance
testing with final concluding notes.
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Chapter 2

Renault CACIA

2.1 Introduction to Renault CACIA

Founded in September of 1981 as Companhia Aveirense de Componentes para a Indústria
Automóvel (C.A.C.I.A.), Renault CACIA is one of 40 plants throughout 16 countries
that comprise Groupe Renault’s industrial facilities [4]. Initially producing gearboxes
and other mechanical components for a wide range of automotive manufacturers, as of
2001, Renault CACIA produces exclusively for the Renault-Nissan-Mitsubishi Alliance.
The following figure, 2.1, depicts an aerial view of the Renault CACIA manufacturing
plant.

Figure 2.1: Aerial View of the Renault CACIA Plant. Sourced from: [4]

Currently, Renault CACIA produces gearboxes as well as other engine components,
namely, oil pumps and differentials. The Variable Displacement Oil Pump (VDOP)
production line will be used as proving ground for the solution developed in this thesis,
thus meriting an overview of its operational procedures, given in section 2.2.

2.2 The VDOP Production Line

Oil pumps are a pivotal mechanical component in any automobile, being responsible for
the constant feed of oil to the engine and several other critical elements in the assembly.
Variable displacement oil pumps, figure 2.2, control the amount of work performed by
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6 2.Renault CACIA

the pump, by matching pressure and volume to conditions such as engine temperature,
load or speed.

Figure 2.2: Variable Displacement Oil Pump.

These oil pumps are constituted by a multitude of different components, figure 2.3,
being assembled across two production lines, Line 1 and Line 2. These lines are located
at the Mechanical Components building at Renault CACIA.

Figure 2.3: Exploded View of a Variable Displacement Oil Pump.

The production lines have a combined yearly throughput of 1 616 112 pumps, with
each line accounting for roughly half of the sum amount. Line 2 shows a greater level
of automated processes, compared to Line 1. However, the processes themselves, apart
from minor differences, are fundamentally the same. Figure 2.4 provides an overview of
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VDOP production. Operations relative to Line 1 are shown highlighted in yellow, and
to Line 2 highlighted in green. Components that make up the pump’s housing are fed
into the production line in the areas pointed by the arrows marked Corpo and Tampa -
Body and Cover, respectively.

Figure 2.4: Overview of the Variable Displacement Oil Pump Production Line.

A description of each operation is present in figure 2.5. This diagram provides a more
accurate recollection of the operations that take place at Line 2, although most of it is
directly translatable into Line 1, apart from a few added manual tasks, due to its less
automated nature.

Operation 91, highlighted in brown in figure 2.4, is a Retouche station, meaning a
re-working station for parts with defects that are deemed fixable and can be retouched
and corrected. Three operations are absent from the figure 2.4: OP 110, 120 and 130.
Operations 110 and 120 involve the machining procedure of the pump’s body and cover.
OP 130 is a washing and drying process of the machined parts.
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8 2.Renault CACIA

Figure 2.5: Characterization of Operations at VDOP line.

A wide range of suppliers are responsible for providing the production line with
POEs (Externally Worked Parts) and raw materials. These suppliers include ALPEN,
BONTAZ, PIERBURG, SIMO, SOFRASTOCK and SONAFI.

2.3 Traceability System at the VDOP Line

When a defective oil pump is returned, both Quality Services and Logistics Services at
Renault CACIA must be capable of identifying other oil pumps likely to possess the
same type of defect, as well as the engine to which they were later coupled. To achieve
this, each batch of completed parts (VDOPs) is accompanied by a GALIA tag, figure
2.6. Likewise, whenever a POE batch is received, it is marked with a GALIA tag. This
tag identifies the part reference, barcode, supplier, batch and number of parts within the
batch.

The implemented traceability system at the VDOP line is carried out on a part-by-
part basis, meaning that it is possible to access the production parameters of each and
every part produced. Firstly, the operator at OP 110 is responsible for registering the
GALIA tag present at the POE batch. A barcode - figure 2.7 - is then glued onto the
pump body and pump cover. This will allow for each individual pump to be traced along
the production line.

During each subsequent operation, the barcode is read at the start of the station.
After all production processes are completed, and the pump passes quality requirements
at the test bench, it is marked with a Datamatrix tag. This tag contains the completed
part’s reference, year of fabrication and part number. Parts produced in Line 1 have
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Figure 2.6: Example of a GALIA Tag for Finished Products. Adapted from: [3].

Figure 2.7: Barcode Tag Used in the VDOP Production Line.

a part number raging from 0001 to 4999, while parts produced in Line 2 have a part
number raging from 5000 to 9999. In OP 170 a new GALIA tag is emitted after each
container is packed. Packing occurs for each container produced in the shift, and not at
the end of the shift. All the tracing data is stored in a central server, with a redundant
hard-drive responsible for data back-up.

2.3.1 Gathered Data at VDOP Line

The type of data gathered will depend on the kind of process conducted in a given
manufacturing cell. For example, OP140 - analogous to OP145 of diagram 2.5 - collects
information regarding the time and date in which the process was initiated and time
taken to completion; if the part passed quality control or not; respective scrap code
if part is not accepted; if the part was previously reworked; and several pressure and
torque readings, corresponding to each one of the different tests conducted. Each one
of these database entries is associated with each part’s barcode tag, used for tracing in
intermediate production stages. Figure 2.8, shows part of the used data tables.

A different example is found at OP160 - analogous to OP165 of diagram 2.5 - in
which DataMatrix marking of the finished product is done. The timestamp, scrap code,
reworking notice, quality control status and cycle-time metrics are maintained from the

D.F.D. Costa Master Degree



10 2.Renault CACIA

Figure 2.8: Partial Example of a Data Table for OP140 at the Renault CACIA VDOP
Production Line.

previous operations, however, in this table, the intermediate barcode tag is associated
with the product’s final DataMatrix marking string. Figure 2.9, shows the used data
tables at this operation.

Figure 2.9: Example of a Data Table for OP160 at the Renault CACIA VDOP Production
Line.
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Chapter 3

Blockchain Concepts and
Supporting Technologies

3.1 Supply Chain

A Supply Chain is a global network of organizations, people, information, resources and
activities that supply a firm with goods and services [5] in order to fulfill customers’ needs.
Through the functions of marketing, operations and management, value is created for
the customer, however seldom do firms create this value by themselves, relying on a
variety of suppliers who provide everything from raw materials to accounting services.
The primary goal of Supply Chain Management (SCM) is to ensure the most efficient
use of the supply chain network’s resources whilst fulfilling customer demands.

3.2 Traceability

Traceability is the capability of participants to trace products throughout the supply
chain by means of either the product and/or container identifiers in a forward and/or
backward direction [6]. Complete traceability allows for the entirety of the product’s
history to be known, from its inception to retail.

3.3 Industry 4.0

Industrial IoT created the never seen before possibility to merge the traditional opera-
tional technology found in most manufacturing plants, with enterprise grade information
technology systems. Connected industrial processes, large volume real-time data mon-
itoring and analysis coupled with complex analytical and event processing algorithms
allowed for the first appearance of flexible production systems. This marks the begin-
ning of Industry 4.0, presenting itself as an opportunity for more efficient manufacturing
process, higher integration of the supply chain, preventative maintenance of the shop-
floor and added flexibility to suppress ever-changing customer demands [7].

Industry 4.0 is a concept brought forth by the German Academy of Science and
Engineering, standing for the integration of industrial manufacturing and information
technology based on cyber-physical systems, IoT and Cloud-Based Manufacturing (CBM)
[7]. One of the major goals of Industry 4.0 is to enable decentralized decision making and
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12 3.Blockchain Concepts and Supporting Technologies

to allow for self-organizing production systems. Unlike any previous industrial revolution,
all principals defended by Industry 4.0 are spread through every phase of the product
life-cycle as well as the entirety of value-chain, from the company to suppliers and even
final costumers. The following sections discuss some of the major technological trends
considered instrumental in shaping the fourth Industrial Revolution [8].

3.3.1 Big Data and Analytics

As the amount of gathered data increases, so does the need to process and organize it
in a coherent manner. Data is generated in one of the multiple phases of the production
process, with correlations being analysed, allowing to identify faults and streamlining the
manufacturing process. Big data and analytics is based upon the six Cs:

Connection Connection of several sensors and networks together.

Cloud Computing

Cyber Cyber-physical models.

Content/Context

Community Collaboration and sharing of data between multiple stakeholders.

Customization

3.3.2 Internet of Things

Internet of Things, Industrial Internet of Things or simply Things, enable the connec-
tion of sensors, actuators, and devices to network allowing for the collection, exchange
and analysis of generated information [9]. In spite of the numerous advantages, con-
verting a traditional manufacturing process to a Smart Manufacturing process is not
a straightforward operation as several implementation challenges exist. For instance,
ageing machinery existing in current manufacturing operations might lack networking
capabilities, being refereed to as brownfield. Programming these existing machines to
perform additional data transport might not possible or simply deemed too costly.

Ideally, only up-to-date Programmable Logic Controller (PLC) and Industrial PC
(IPC) would be present in the shop-floor, forming a greenfield solution, but this is even
more unlikely as industrial equipment is expected to endure over a decade in use, and,
as such, at least some brownfield will always be present. A possible solution would be a
Gateway Aggregator : use of external sensors or an aggregation point inside the control
loop, connected to a gateway (e.g., an IoT module). This permits data extraction from
the real-time system, without the need to reprogram or retro-fit the PLC/IPC.

Another limiting factor is the proven lack of security associated with IoT devices,
with many exploits being already of note [1] [10]. This is one of the major concerns
of the Industrial Internet Consortium (IIC). Furthermore, very few IoT devices are de-
signed and engineered to such standard as to ensure reliability and fault tolerance for a
continuous manufacturing application. New network standards, such as LoRaWAN and
NB-IOT are being created for the deployment of low powered networks based upon small
embedded devices. Other standards developed allow for the communication between IoT
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peers, such as the MQTT standard. Furthermore, advances have been made towards in-
terconnectivity of these devices with data storage systems (e.g., traditional remote server
based or cloud services based databases). Coupled with new data analysis tools, like Ec-
lipse BIRT, Apache Hadoop, Apache Spark or Apache Storm, the real-time processing
and monitoring of the immense amount of data being gathered be the IoT is possible.

An IoT architecture is an aggregation of multiple IoT devices, using some sort of
gateway and communicating through a network to a common enterprise back-end server.
Analogous to what is seen in web infrastructures, dominated by the LAMP (Linux -
Apache HTTP Server - MySQL - PHP) stack, three different software stacks can be
identified as crucial to any IoT architecture [9].

Stack for Constrained Devices

An IoT platform first starts with the IoT devices themselves. Usually very constrained
in terms of power, computational prowess and size, Things are normally based on Micro-
controller (MCU) architectures. As such, many of these run bare-metal or with simple
real-time operating systems.

Things need to interact with the physical world in order to gather data (through
GPIOs for instance), a software layer that provides hardware abstraction is needed.
Communication support is required for networking. Several different protocols can be
present, both wireless (Bluetooth, MQTT) and wired (serial connections like Universal
Serial Bus (USB), RS232, Serial Peripheral Interface (SPI) and Inter-Integrated Circuit
(I2C)). Lastly, as deployment of Things is usually done in large numbers, remote man-
agement of each unit is fundamental for system maintenance.

Stack for Gateways

Either a physical or a software gateway manages connectivity between IoT devices and
each other and to external networks. Usually featuring general purpose operating systems
(e.g., Linux), IoT gateways have the ability to run application code, sometimes supporting
high-level general use languages like Java, Python or Node.js. This makes these devices
suitable for data processing at the edge - Edge Computing - with sometimes even having
some type of storage capability. In essence, gateways are the backbone of the architecture
managing data, remotely managing the network and supporting the communications,
whilst needing to ensure reliability, security and confidentiality.

Stack for Cloud Platforms

IoT cloud platforms operate from cloud infrastructures, being the most high-level layer
of the stack. Besides needing to ensure connection to IoT gateways, this stack needs to
be able to support the large volume of data - Big Data - created by the IoT. Analytics,
user interfaces and web front-end might be integrated onto cloud platforms.

Deployment of these architectures must feature loosely coupled, modular and platform-
independent stacks. Any given type of hardware or cloud service should be compatible
with the architecture, allowing for the horizontal and vertical scaling of the platform,
aligning it with enterprise needs at any given time. IoT is still one of the major drivers
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of Industry 4.0 allowing for implementations of highly flexible production systems ap-
proaching ideal scenarios of lot size 1.

3.3.3 Autonomous Robotics

Although robotics is commonplace in industry for several decades, robots are subject to
improvement and evolution towards increasing self-sufficiency and autonomy. Departing
from just being tools used by humans, robots are quickly becoming integral work units
that function besides humans [8].

3.3.4 Simulation

Industry 4.0 allows for the diminishing of product development time, whilst increas-
ing production optimization. Employment of simulation modelling and testing by the
creation of a Digital Twin replaces trial and error experimentation in process testing.

3.3.5 Additive Manufacturing

Increasingly higher demand for more customized products produced in very small batches,
along with a need for the reduction of prototyping times has popularized addictive man-
ufacturing technologies. Addictive manufacturing is characterized by the creation of
three-dimensional objects by the addiction of layer-upon-layer of material.

Used materials are commonly of metallic or polymeric origin, and with each layer’s
thickness typically in the order of the tenths of millimetre. One currently very popular
example is 3D printing.

3.4 Cryptography Notions

3.4.1 Hashing Functions

As defined by Menezes et al. [11], a hash function is “a computationally efficient (one-
way) function mapping binary strings of arbitrary length to binary strings of some fixed
length, called hash-values”. In other words, hash functions allow the generation of fixed-
length hash-values or digests that are representative of any given input string, figure 3.1.
Furthermore, for a hash function to be useful in a cryptographic context, it must have
the following basic properties [11]:

Computationally Efficient Hash functions’ mathematical labour must be completed
in shorts amounts of time.

Deterministic For any given input, if the same input is given twice, the same output
has to be obtained from the hash function.

Pre-Image Resistant Given a specific hash value y, it has to be computationally in-
feasible to find an input (pre-image) x such that h(x)=y.

Collision Resistant Has to be computationally infeasible to find two different inputs
that return the same output (i.e., two colliding inputs x and y such that h(x)=h(y)).

There are several solutions for hashing functions, being the most relevant:
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1. Secure Hash Algorithm (SHA)

2. RACE Integrity Primitives Evaluation Message Digest (RIPEMD)

3. Message Digest Algorithm 5 (MD5)

4. BLAKE2

Figure 3.1: Exemplification of the Hashing Process.

Currently, the most broadly used method in a blockchain context is a subset of SHA-
2, SHA-256, where the extension to the “SHA” name reefers to the output value in bits.
In this case, a SHA-256 generated hash-value will consist of 256 bits (32-bytes).

Hash functions are commonly used in conjunction with digital signatures. The hash
functions are applied to a large message and only the resulting hash-value is signed and
not the entirety of the message. Receiving parties will then hash the incoming payload
and verify that the received signature is correct for the hash-value. This saves tremendous
amounts of time compared to signing the data directly, which would typically involve the
splitting of data into appropriately sized blocks and signing each one individually. Other
applications for hash values include virus protection in software distribution, in which
the hash-value of input data (i.e., software) is verified for equality with the original
hash-value in order to ensure that tampering did not occur.

SHA-2 Family of Hash Functions

Designed by the National Security Agency (NSA), and later standardized by the Na-
tional Institute of Standards and Technology (NIST), the first version of a Secure Hash
Algorithm was introduce as what is now known as SHA-0, with a later revision being
called SHA-1. Based on the MD5 algorithm, SHA-1 was eventually considered unsafe as
it is possible to find collisions due to the relatively small 160-bit result size [12]. In 2001,
a new draft standard containing three new hash functions was published, being updated
in 2004 to include a fourth hash function. These four hash functions are collectively
referred to as the SHA-2 family of hash functions, having 224-, 256-, 384-, and 512-bit
outputs. They were specifically designed for use with the key sizes found in Advanced
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Encryption Standard (AES). Table 3.1 compares the maximum allowed message size for
each of the SHA family’s hash functions, as well as the block and output digest sizes.

Hash Function Message Size [bits] Block Size [bits] Word Size [bytes] Digest Size [bits]

SHA-224 <264 512 32 224
SHA-256 <264 512 32 256
SHA-384 <2128 1024 64 384
SHA-512 <2128 1024 64 512

Table 3.1: Summary of SHA Hash Functions.

3.4.2 Symmetric vs. Asymmetric Encryption

Encryption schemes usually fall within two major categories: symmetric-key and asymmetric-
key. Each provide different advantages and disadvantages over the other.

Symmetric Encryption

Considering that a message is encrypted with a key, A, and then decrypted using another
key, B, if it is computationally easy to determine A from B and vice-versa, then it is said
to be symmetric-key encryption [11]. In most practical scenarios, both keys are indeed
the same (i.e., A=B), hence the term symmetric.

Most symmetric-key encryption techniques are based on block-ciphers, in which the
message is broken up into strings (called blocks) of fixed length, with each block being
encrypted one at a time. The current generation of block ciphers has a block size of
128 bits (16 bytes) [12]. In the very likely scenario that the message to encrypt is not
a multiple of 16, padding is used as to satisfy length requirements, whilst still being
reversible in order to determine the original message. Multiple block long messages
require the use of a block Cipher mode to establish how the various blocks of data are
going to be encrypted. Two of the most common methods used are Electronic Codebook
(ECB) and Cipher Block Chaining (CBC).

ECB is the simplest method with each block of data being encrypted separately.
Serious weaknesses are found in this method, seeing that for two equal blocks of data,
the Ciphertext blocks will also be identical. For highly repetitive payloads, information
leakage risks are high. Alternatively, CBC is presented, being one of the most widely
used block cipher modes. The drawbacks found in the ECB method are avoided by
a XOR operation of each Plaintext block with the previous ciphered block. This will
create "randomized" blocks of data, that unlike what is seen in ECB mode, will always
be different, even with each block’s payload being the same. However, there is still the
question of which value to use for the first operation, when no previous block exists. This
value is called an Initialization Vector (IV).

The most pressing disadvantage found in symmetric encryption methods is referred
to as the key distribution problem. As all parties within a communication channel have to
know the set of encryption/decryption transformations used (i.e., the key used to cipher
the data), the issue of an efficient method to agree upon and exchange keys securely
arouses.
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Asymmetric Encryption

Asymmetric or Public Key encryption starts by a party, A, generating a pair of keys:
a private key and a public key. The public key is then published over the network,
being universally accessible to everyone. A different party, B, may now use the publicly-
available public key of A to encrypt the data he wishes to send. Finally, A will decrypt the
data by using its own private key. This method solves the distribution of keys problem,
as different keys are used for encryption and decryption with one of them always being
kept private. However, this method is highly inefficient and expensive.

Most real-world applications rely on a combination of symmetric and asymmetric
encryption, using public keys to establish the first contact with the other party and define
secret keys, that will in turn encrypt the actual payload between them. This allows to
take advantage of the flexibility of public keys and the efficiency of symmetric keys.
Digital Signatures are the public key counterpart of message authentication codes [12].
Their working shares much of the same philosophy as asymmetric encryption, given that a
party might sign a message using its private key, for another party to verify the signature
in the message using the corresponding public key and thus assuring the provenance of
data. For further explanation of digital signatures for message authentication see section
3.5.2.

3.5 Network Security

Every network has to fulfil three different requirements - Confidentiality, Integrity and
Security (CIA) - in order to be classified as fully secured [13]:

Confidentiality Confidentiality is the protection or concealment of information, not
only applied to the storage of information, but also during transmission.

Integrity Information suffers constant alterations with integrity meaning that they can
only be carried out by authorized entities and through authorized mechanisms.
Integrity violations might not only be results of malicious acts; interruptions in the
system may also cause unwanted changes in information.

Availability Information is only useful if readily available to the authorized entities, as
such unavailability of information is as harmful to an organization as the lack of
confidentiality and integrity.

3.5.1 Attacks on the Network

Using the taxonomy proposed by Forouzan [13], attacks can be divided into three groups
related to the security goals, as seen in figure 3.2.

Attacks Threatening Confidentiality

Snooping Unauthorized access to or interception of data. To prevent snooping prac-
tices, encryption techniques are applied, making the data unintelligible.

Traffic Analysis Monitoring of online traffic might allow attackers to gain information
on the network, even if data is encrypted. As seen in section 3.4.2, use of ECB still
allows for data leakage in highly repetitive payloads.
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Figure 3.2: Taxonomy of Attacks With Relation to Security Goals. Sourced from: [13]

Attacks Threatening Integrity

Modification Modification or deletion of data after being intercepted.

Masquerading The attacker impersonates someone else, fooling the victim.

Replaying An intercepted message is re-sent by the attacker.

Repudiation Either the sender or the receiver of the communication denies the contents
of the message sent, or denies that the message was sent altogether.

Attacks Threatening Availability

Denial of Service One of the most common attacks, it may lead to a system slow
down or even complete interruption. Several exploits can be used to achieve this
attack, such as sending several dummy requests to the server causing a crash due
to heavy-load or by intercepting and deleting a data packet.

3.5.2 Message Authentication

Two common methods to authenticate messages are through the use of a Message Au-
thentication Code (MAC) or a digital signature.

Message Authentication Code

The following figure, 3.3, depicts the working of MAC. A MAC is created by concat-
enating a secret key together with the message [13] - h(K+M). The MAC is then sent
to the recipient through an insecure channel who will separate the message from the
MAC, and recalculate the MAC value. If both MAC values match, the message is con-
sidered authentic. Nested MAC, often referred to as Hashed Message Authentication
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Code (HMAC), is a more complex implementation of traditional MAC, standardized by
NIST.

Figure 3.3: Message Authentication Code. Sourced from: [13]

Digital Signature

Contrary to MAC, which uses a variation of what can be considered symmetric encryp-
tion, digital signatures rely on a private-public key pair [13]. Many analogies can be made
with digital and traditional pen-in-paper signatures, although there are fundamental dif-
ferences. For instance, a conventional signature is included in a document, whilst a
digital signature is usually sent separately. The process of signing messages by digital
signatures - as depicted in figure 3.4 - starts by the sender using a signing algorithm to
sign the message. Both the message and the signature are then sent to the recipient who
will apply the verifying algorithm to the combination [13]. In case the result is true, the
message is accepted as authentic.

Figure 3.4: Digital Signature Process. Sourced from: [13]

While an entity’s private key must be kept secret at all times, the public key sees
wide distribution. There exists a clear distinction between asymmetric cryptosystems
and digital signatures, as in the latter the sender’s key pair is used and in the former it
is the receiver’s key pair. Due to inefficiencies in asymmetric-key cryptosystems dealing
with long messages, typically only the digest of the message is signed.
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One of the more common digital signature schemes is RSA, which uses the private/pub-
lic key pair of the sender, with the sender using their own private key to sign documents
and the receiver using the sender’s public key for authentication. In broad terms, first
both the sender and receiver agree upon a hash function to generate digests from a mes-
sage, in such a way that: D = h(m). The sender will then sign the resulting digest - S =
Ddmod n - and send it to the receiver who will then use the sender’s public exponent to
retrieve the digest - D’ = Semod n. By re-applying the hashing algorithm to the message,
the receiver can then obtain D = h(M). If both resulting digests, D and D’, are equal,
the message is accepted as authentication was established. One of the major advantages
of RSA is its ability to both be used for message signing and message encryption [12], as
both operations use the same computations.

Alternatively, the Digital Signature Standard (DSS) was proposed as a more secure
(yet more complicated) digital signature only scheme, by NIST. DSS uses Digital Signa-
ture Algorithm (DSA). Nevertheless, both RSA and DSS meet acceptable requirements
for application in protocols such as Transport Layer Security (TLS) [14].

Recently it has been up for debate the security of public key cryptography against
quantum computer attacks, with claims even reaching that RSA will be broken by a 1/7
chance by 2026 and 1/2 chance by 2031 [15]. Current quantum-resistant schemes have
several limitations when compared with traditional alternatives - such as RSA - due to
larger public-keys, larger signatures, or slower runtime [16]. Notwithstanding, even if
large-scale quantum computing never exists, research into post-quantum cryptography
is still valuable, offering protection against (non-quantum) mathematical breakthroughs
that might jeopardize current scheme’s security [16].

3.5.3 Key Management

Key management is an essential aspect, regardless of the type of encryption being used.
For instance, in symmetric encryption, key distribution is one of its downsides due to the
difficulty of communicating keys between peers, seeing that insecure channels cannot be
used. Two possible solutions are either using a trusted third party to manage keys within
a network, referred to as a Key-Distribution Center (KDC); or through an agreement
such as the Diffie-Hellman (DH) protocol.

As for asymmetric-encryption, public keys are distributed freely across the network,
but it is still required to establish its provenance, as a malicious entity could generate a
public key claiming any identity. The common way to distribute public keys is through
the creation of public-key certificates [13]. A Certification Authority (CA), usually a
nationally or globally recognized organization, binds a public key to an entity, issuing
a certificate. This is done by proving one’s identity to the CA - using conventional
identifying elements such as passports - who will then sign a certificate with its private
key. As the CA’s public key is well-known, it is possible to verify that the certificate
used is genuine. Looking to standardize the structure of a certificate, the ITU created
the X.509 format, deterring public key fraud.

3.5.4 Transport Layer Security

Netscape developed the Secure Sockets Layer (SSL) protocol in 1994 [13] with four target
objectives: cryptographic security, interoperability, extensibility, and relative efficiency
[17]. Following two later revisions, SSL eventually evolved into the TLS protocol, with
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SSL now being considered deprecated. Nevertheless, the term SSL/TLS is still often used.
If both a client and server are capable of running SSL/TLS programs, the client may use
the Uniform Resource Locator (URL) https://... rather than the usual http://... to allow
Hypertext Transfer Protocol (HTTP) messages to be encapsulated in SSL/TLS packets.
These protocols operate at the transport layer and above other existing protocols such
as Transmission Control Protocol (TCP), offering an abstraction of secure sockets on top
of existing Transmission Control Protocol/Internet Protocol (TCP/IP) sockets.

Although use cases of TLS are plentiful, including Web servers, Secure Shell (SSH)
connections, and secure email servers, most websites delivering general purpose public
information choose to operate without it, as TLS introduces substantial overhead due to
computationally expensive RSA operations [17]. TLS has four protocols to accomplish
secure connections:

Handshake Protocol Negotiates the cipher suite used to authenticate both the server
and, optionally, the client. If required, it is exchanged information for building
cryptographic secrets. Most TLS implementations do not certify the client.

ChangeCipherSpec Protocol Special message exchanged during the Handshake Pro-
tocol that enables use of previously negotiated cipher suite and cryptographic
secrets.

Alert Protocol Used to report errors and abnormal conditions.

Record Protocol Carries messages from the other three protocols as well as from the
application layer itself. The message is fragmented and optionally compressed.
NIST recommends that all compression methods in TLS be disabled to protect
against attacks using compression-based side channels [14].

3.6 Blockchain

3.6.1 Blockchain Architecture

A Blockchain, first proposed by Nakamoto [18] in 2008 for use in cryptocurrency Bitcoin,
is based on a software network fully-distributed by it’s numerous comprising peers. Each
of the network’s peers is allowed to track, verify and create cryptographically protected
data to add to their shared ledger. In essence, this Distributed Ledger becomes a database
containing all of the data gathered by all of the chain’s nodes.

From a programming standpoint, it is possible to represent a blockchain as a data
structure where entries (blocks) are stored and linked in sequential order [19]. In this
fashion, the block immediately previous to the current block is called a parent block. All
the blocks in the chain possess a parent block, with the exception being the very first
entry in the chain, the genesis block, from which all the blockchain subsequently derives
from. The following figure 3.5, exemplifies the basic structure of a blockchain.

The linkage between each one of the blocks is assured by storing the hash value of the
previous block. Additionally, a network protocol is required to define a mode of operation
for the network. This will encompass rights and responsibilities of each participant as
well as providing means of communication, verification, validation and consensus [20].
Other factors such as incentive mechanisms might also be established by this protocol.
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Figure 3.5: Basic Structure of a Blockchain, from: [20]

3.6.2 Architecture of the Block

A block is composed by the block header and the block body or payload. The block
header is used to convey information about the contents of the block and in the case of
a typical blockchain such as Bitcoin, it includes [21]:

Block Version Determines the set of block validation rules to follow.

Parent Block Hash 256-bit SHA256 generated hash value of the previous block to
ensure linkage.

Merkle Tree Root Hash Calculated hash value of all the transactions contained within
the block.

Timestamp Current timestamp, given by seconds since Epoch (Unix Time).

nBits Sets the new target threshold bellow which any new block hash will have to be
in order for it to be validated.

Nonce 4-byte field, which usually starts with 0 and increases for every hash calculation.
Used in networks that enforce Proof Of Work algorithms.

The following figure, 3.6, illustrates the described block structure.
The block body will consist of the transactions that occurred over the network and

a transaction counter. In the case of Bitcoin, the number of transactions that can be
stored in any given block will depend on the size of the block as well as the size of the
transactions themselves [22].

3.6.3 Miners and Consensus Algorithms

In order to ensure that only valid transactions are authenticated, and seeing that a
decentralized blockchain can not rely on a central authority for validation, consensus
algorithms need to be implemented in order to maintain the integrity and security of
the distributed system. Consensus is one of the long standing hardships of distributed
computing, as it requires the formulation of agreement among a distributed number of
processes [23].

The first consensus algorithm to be created was Proof of Work (PoW), designed by
Nakamoto for implementation on Bitcoin, as a way to overcome the Byzantine Generals
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Figure 3.6: Block Structure, from: [22]

Problem (Lamport et al., 1982) [24]. Lamport et al. created an analogy between multi-
processes computer systems and a group of Byzantine army generals camped with their
troops around an enemy city. Communication between the generals is assured only by
the means of a messenger, who must agree upon a common attack plan. The problem is
to find an algorithm that allows for loyal generals to reach an agreement, impervious of
traitors that might exist trying to confuse others. Table 3.2 shows a comparison between
several consensus algorithms.

Proof of Work

The Proof of Work algorithm requires that each node in the network calculates through
numerous attempts the new hash value of the block header. This is achieved by iterating
the nonce value of the block header, until the final hash value is bellow a certain threshold.
When the target value is achieved, every other node in the network must mutually confirm
the correctness of the values, thus achieving consensus. The nodes calculating the hash
values are called miners and procedures such as PoW is refereed to as mining. Although
effective, this consensus algorithm receives criticism for being inefficient as a large amount
of the computational power is wasted causing high energy costs, leading to the appearance
of alternatives such as Proof of Stake (PoS).

Proof of Stake

The PoS consensus algorithm validates blocks according to the stake of each participant
on the basis that whoever controls the biggest portions of currency are the least likely
to attack the network. The blockchain is secured typically by pseudo-random elections
that consider the node’s wealth and the coins age (how long were the coins kept), but
variations of this method are plentiful. Seeing that the selection is based on account
balance, it is possible for a network that employs this type of algorithm to be dominated
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by the single richest node in the network, nevertheless, several popular cryptocurrencies
are considering transitioning to this type of consensus algorithm and away from PoW,
such as Ethereum [21].

Delegated Proof of Stake

Delegated Proof of Stake (DPoS) differs from both PoW and PoS in the sense that miners
work together in forging new blocks, instead of competing for completion [25]. Validation
of blocks is done by a delegate, elected by the stake holders of the network.

Proof of Authority

Compared to other consensus algorithms, Proof of Authority (PoA) is more efficient,
supporting a higher level of performance, by virtue of lighter message exchange. PoA
algorithms rely on a set of trusted nodes, called authorities, identified by a unique id.
It is assumed that a majority, at least 51 %, of the authorities acting on the network
are honest. Consensus in PoA is achieved through a mining rotation schema, which
allows to fairly distributed the mining load across all participants of the network. As
authorities act as sources of truth for other nodes, a central point of failure is introduced,
approximating the system to a centralized one. Nevertheless, PoA is one of the all-round
best performers for private blockchain networks, granting a high block output.

Practical Byzantine Fault Tolerance

Byzantine Fault-Tolerant (BFT) protocols are able to tolerate subverted nodes trying to
hinder the achievement of agreement in a network [23]. One such example is Practical
Byzantine Fault Tolerance (PBFT), a replication algorithm [21], in which three rounds
of message exchange occur before consensus is set. Hyperledger Fabric employs this
consensus algorithm, handling up to a third of malicious byzantine nodes acting on the
network [21].

Characteristic PoW PoS PoA DPoS PBFT
Node Identity Open Open Permissioned Open Permissioned

Energy Efficiency No Partial Yes Partial Yes

Tolerated Power
of Adversary

<25% com-
pute power

<51% stake <51% mali-
cious nodes

<51% val-
idators

<33.3% of
faulty rep-
licas

Table 3.2: Comparison between consensus algorithms.

3.6.4 Types of Blockchain

Although multiple definitions are found, a Blockchain System is usually categorized in
three different types: Public or Permissionless Blockchains, Private or Permissioned
Blockchains and Consortium (hybrid) chains. Table 3.3 gives a comparison between
different types of blockchains.
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Public Blockchain

A Public Blockchain has an open network with anyone being allowed to join and fully
participate by reading and writing to the shared ledger. This type of network is fully
decentralized and there is no governing or sovereign entity that can tamper the data
once it has been validated and appended to the blockchain. As the adhering nodes
are anonymous, the blockchain is maintained by delivering economic incentives for good
behaviour, as seen in cryptocurrencies like Bitcoin or Ethereum. This ensures correct
operation of the network and the rejection of invalid transactions. A Public Blockchain is
highly inefficient, due to the need to propagate data across a large number of nodes and
due to the need to implement some sort of consensus algorithm like the ones previously
refereed.

Private Blockchain

Private Blockchains are fully controlled by an organization which determines the entities
that are allowed to join the network, as well as limiting their power within it. This
concept of blockchain is interesting in business or enterprise applications in which the
participants are identified but not necessarily fully trusting of each other.

Nodes exist in a much smaller number and are distributed locally making transaction
times faster. It is also possible to add new nodes to the network to comply with current
demands greatly improving the solutions scalability. A private chain is not much different
to other kinds of distributed storage mechanisms [26].

Consortium Blockchain

The consortium or hybrid chain is a partially distributed (multicentre) blockchain [26].
Each generation of block is determined by pre-selected nodes. Through appropriate
consensus agreements, several organizations can participate to build a joint blockchain
for common goals. One of the most prominent examples is the Hyperledger Project, that
will be explained in greater detail in Section 3.8.

Characteristic Public Blockchain Private Blockchain Consortium Blockchain
Read/Write Permissions Public Public or restricted Public or restricted
Immutability Nearly impossible to tamper Can be tampered Can be tampered
Efficiency Low High High
Centralised No Yes Partial

Table 3.3: Comparison between public, private and consortium blockchains.

3.6.5 Characteristics of Blockchain [26]

Decentralization

There does not exist a central authority to tamper with the stored data. All information is
immediately spread out through all the adhering nodes without third-party intervention.
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Detrusting

A blockchain can perform even within an untrustworthy environment. Seeing that each
block is stored in all of the participating nodes, every peer can verify the ongoing trans-
actions. By applying hash functions - Section 3.4.1 - to link blocks of data together and
through consensus algorithms, the need for mutual-trust relationships does not exist.

Transparency

Due to the blockchain’s decentralized and distributed nature, all transactions that occur
over the network are transparent to every node.

Immutability

By using hash-values to link data-blocks together along with timestamps, it is possible to
keep a clear record and lineage of data. Traceability in these circumstances is facilitated
and any change made to the network is detected immediately.

Anonymity

In typical blockchains, anonymity is assured by the use of asymmetric encryption keys
that allow for data provenance to be determined, without revealing the participants
identity. Further explanation on asymmetric encryption in Section 3.4.2.

Credibility

Credibility in the blockchain is established by applying consensus algorithms. These
allow for conditions of complete anonymity whilst increasing the security and credibility
of the transaction.

3.6.6 Smart Contracts

A Smart Contract is a portion of code that is able to run within a blockchain, containing
a series of clauses that determine how the system is to perform should a given condition
be met, essentially enhancing the blockchain’s ability for data manipulation and asset
managing. Most smart contracts are produced using specific programming languages
such as Solidity, which might hinder smart contract use as it increases the technical
difficulty of implementing a blockchain solution.

The Bitcoin blockchain only allows for simplified versions of smart contracts, while for
instance Ethereum uses a Touring Complete language that is able to perform the same
tasks as any other general purpose programming language [20]. This unlocks potential
for a blockchain to become a general computational platform.

3.7 Previous Scholar Work

3.7.1 Blockchain Based Architecture Proposed by Hang et al.

One of the most prominent solutions found was proposed by Hang et al. [1], in which
figure, 3.7, shows the conceptual solution. A large number of IoT devices, data storages,
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user devices and servers are linked together around a peer-to-peer blockchain network.
The authors propose that data storage residing within the blockchain store environmental
data as well as each of the device owners’ profile. The most alluring factor of this
architecture is organization by layers, allowing for a high modularity of the solution. It
is possible to remove and add layers at any given time. Four major layers are presented
and can be consulted in figure, 3.8.

Figure 3.7: IoT Blockchain Platform Conceptual Scenario, Sourced From: Hang et al. [1]

The IoT layer manages physical devices, environmental data acquisition, data storage
and controls physical actuators. A connectivity layer will then route connections to
the IoT modules serving as a message broker and a network and security manager.
Only by the third layer is the blockchain present. The final layer allows for the web-
frontend, where a client may visualize the data stored in the ledger and manipulate
physical devices. Due to the architectural complexity, latency is quite high. Figure, 3.9,
shows the performance analysis done by the authors.

With a somewhat limited number of 50 devices, latency times were already as high
as 2286ms for a transaction request to be sent and acknowledgement to be received by
the client. For this reason only, a solution like this could not be applied to a scenario
such is seen in Renault CACIA where the required response latency might be as low
as two full transactions per second. Moreover, these proposed architectures are heavily
based in open-source third-party platforms, such as Hyperledger Fabric, that may bring
unforeseeable problems when applied to an industrial context.
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Figure 3.8: Layer-Based IoT Blockchain Platform Architecture, Sourced From: Hang et
al. [1]

Figure 3.9: Performance Analysis Graph of Device Creation, Sourced From: Hang et
al. [1]
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3.7.2 Blockchain Platform for Industrial IoT Proposed by Bahga and
Madisetti.

A decentralized, peer-to-peer platform for IIoT based on blockchain technologies was
proposed by Bahga and Madisetti [27]. The main focus of the solution is to enhance
the functionalities of CBM platforms while allowing legacy devices without networking
capabilities to be integrated into cloud environments. Their proposed platform, named
BPIIoT, comprises of a Single Board Computer (SBC) - that has networking capabilities
- and an interface board to allow monitoring of the legacy devices. Figure 3.10 shows
the proposed platform.

Figure 3.10: Blockchain Platform for Industrial Internet of Things (BPIIoT). Sourced
from: [27]

A blockchain network communicates with the SBC, sending/receiving transactions
to/from the network. The authors’ solution requires that each IoT device has an indi-
vidual account. The interface board - based on an Arduino module - contains sensors
external to that of the legacy device itself. This is an interesting concept, as is the idea of
retrofitting the current shop-floor equipment with IoT capabilities. Despite this, the solu-
tion offers little in the way of realist solutions for implementations such as on-demand
manufacturing or supply chain. Furthermore, much is relied on the computationally-
deficient IoT devices for the processing of data, which would be a limiting factor in
networks comprised of a large number of nodes. The scope of most current studies
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fails yet to establish concrete solutions in terms of a truly scalable, multiple node and
sustainable blockchain network.

3.7.3 Blockchain-Based Solution for Security and Privacy Enhance-
ments in Smart Factories by Wan et al.

Wan et al. [28] defend a multicentre, partially decentralized, IIoT architecture with sev-
eral security features to provide better privacy protection when compared to traditional
solutions. A major emphasis was given towards a higher-performing system, pointing out
shortcomings related to high latencies times in platforms such as BPIIoT [27]. Figure,
3.11, illustrates the smart factory tailored solution.

Figure 3.11: Blockchain-Based IIoT Architecture for Smart Factories. Sourced from: [28]

Five layers make up the architecture: sensing layer, management hub layer, firmware
layer, storage layer and application layer. The first of these, the sensing layer, includes
several sensors powered by a microcomputer, collecting and pre-processing data. The
management hub will then parse, encrypt and package this data into blocks, storing it
in the database. Storage layer will function as a data-centre recording the blockchain,
with the firmware layer bridging all the previous layers together. Lastly, application layer
retains functionalities seen in previous solutions, as it allows for the real-time monitoring
by users of the gathered data. As for the cyber-security feature-set, a whitelist/blacklist
mechanism was implemented to control the influx of data from the sensors into the
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management hub alongside a PoW consensus algorithm and a Statistical Process Control
(SCP), figure 3.12.

Figure 3.12: Flowchart of the Sensor-Management Hub Data Acceptance Procedure.
Sourced from: [28]

The same principle was applied to the user and management hub connection, figure
3.13.

Figure 3.13: Flowchart of the User-Management Hub Data Access Procedure. Sourced
from: [28]

The authors point out the lack of smart contract integration as one of the proposed
work’s flaws, being referenced as future work for the architecture’s development. How-
ever, the usage of a PoW consensus mechanism within a permissioned blockchain seems
to be an inefficient way to assure trust within an already somewhat trustworthy network.
Other consensus mechanisms could have been used, with potentially less computational
workload required.

3.7.4 Implementing a Blockchain From Scratch by Knirsch et al.

Authors of [29] set out to create a lightweight and highly customizable blockchain plat-
form, designed to manage energy trading of photovoltaic power between customers. Al-
though several of the already existing implementations of both private and permissioned
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blockchains were contemplated, ultimately it was decided to custom build a blockchain
architecture programmed in a high-level language, Java. This choice is backed by the
authors’ need for a highly tailored solution to conform to local legal requirements. Figure
3.14 depicts the work’s general setup.

Figure 3.14: Overview of the Energy Management Setup. Sourced from: [29]

Through the deployment of Raspberry Pi Model 2 B development boards to act as
smart-meters networked together by blockchain based technologies, it is possible to ac-
count for the energy transfers between residents of apartment buildings equipped with
photovoltaic power generators. Alongside the Raspberry Pi nodes act two other com-
ponents: the clearing server and the smartphone app. The clearing server exists as an
off-chain database containing relevant information for each of the customer’s utility pro-
viders’ internal use. A smartphone app was added to provide an user-accessible interface
for monitoring the network.

Communication links between the nodes (i.e., smart-meters) as well as between the
node and the app are secured with TLS v1.2 using a hybrid encryption scheme based
on Elliptic Curve Diffie-Hellman key exchange and AES-256 with CBC [29]. The link
between the app and clearing server uses standard HTTPS with authentication and
encryption. Due to the use of TLS-based secure sockets, the overhead created in the
network was significant causing high delays when compared to unencrypted connections,
even with reduced amounts of data. The time required to establish a connection both
through a secured socket as well as through a regular, unprotected socket, was measured,
with the results shown in figure 3.15.

The handshake, specifically the key exchange, requires about as much time as the
entire unencrypted connection does in total. However, in an application such as a private
blockchain network for enterprise use, priority must be placed on data integrity and
security, with potential overheads caused by encryption techniques such as TLS having
to be accepted as a necessary. The major drawback found in this solution was the
possibility of stability issues due to delays induced by the TLS-handshakes, as stated by
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Figure 3.15: Time in ms for Establishing a Connection With Sockets. Sourced from: [29]

the authors. Furthermore, use of the Java 8 language seemed somewhat inappropriate
for this application due to its limit on cryptographic key sizes - limited to 128 bits -
requiring workarounds to achieve better levels of security.

3.7.5 Summary of Previous Scholar Work

Previously studied work all suffer from one (or multiple) of the following shortcomings:

- Performance Insufficiencies or High Latency Times: final application must
ensure low latency times throughout the entire traceability chain due to the fast-paced
production found at Renault CACIA’s facilities coupled with the need for constant real-
time data access. Data might be gathered at a rate as high as two measurements per
second, with the final implementation having to cope flawlessly with the influx;

- Third-party Open-Source Solutions: open-source products have multiple ad-
vantages for both personal and corporate use, however an extremely reliable platform is
needed, with very specific requirements (e.g., must be incorporated into existing infra-
structure). Therefore, use of pre-existing and in-development platforms such as Hyper-
ledger Fabric prove to be unstable and unfitted for deployment at Renault CACIA;

- Found solutions lack clear Scalability and Flexibility enabling mechanisms: none
of the platforms let on exactly how it is possible to scale up or down the architectures.
For instance, shown layered-based solutions ( [1] and [28]) are conceptually scalable,
being only required the duplication of current hardware and software, but not in a real-
time fashion. An interesting proposition would be the ability to scale the solution during
operation, even on the lower layer (i.e., sensors and IIoT), without the need to essentially
recreate the traceability platform every time a change to the supply chain occurred.
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3.8 Commercial and Open Source Solutions

3.8.1 Hyperledger Fabric

Hyperledger is an open source effort hosted by The Linux Foundation towards the de-
velopment of cross-industry blockchain technologies, since 2016 [30]. Being a global
collaboration, it has gathered support from several high-profile members such as IBM,
Daimler, Intel, Systems, Applications and Products (SAP), Airbus, among many others.

Hyperledger seeks to provide enterprise grade distributed ledger frameworks and code
bases to support business transactions, through a neutral, open and community driven in-
frastructure. Currently, a range of enterprise blockchain technologies are being developed
and promoted including distributed ledger frameworks, graphical interfaces, client lib-
raries and smart contract engines. Among these is Hyperledger Fabric [31], a foundation
for developing distributed ledger applications or solutions.

Fabric’s biggest selling point is its ability to provide modular and extensible archi-
tectures, whilst providing mechanisms for the deployment of smart contracts (called
chaincode in Hyperledger Fabric). Unlike other blockchain systems, Fabric is private
and permissioned, with members having to enrol through a trusted Membership Service
Provider (MSP). Several options of data storage formats, consensus mechanisms and
MSPs are provided. Another uncommon trait is the ability for channel creation, allow-
ing different groups of participants to run separate ledgers of transactions. This feature
is important for when not all transactions are meant to be disclosed through all of the
network’s participants. An overview of the Hyperledger Fabric system is shown in figure
3.16

Figure 3.16: Overview of the Hyperledger Fabric System. Sourced from: [20]

3.8.2 Ethereum

Ethereum [32] follows Bitcoin’s footsteps, improving on the notion of the capabilities
of smart contracts when deployed within the blockchain. In Ethereum, smart contracts
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become a mean as to perform general computational tasks with the assurance that exe-
cution of code will be faithful. With a relatively short time interval between blocks (13
to 15 seconds on average) [20] Ethereum can assure high transactional throughput, how-
ever it is very prone to the creation of several concurrent blocks, figure 3.17. A modified
Greedy Heaviest Observed Subtree (GHOST) protocol is implemented to address the
concurrency issue, with the winning sub-chain of the blockchain not being the one with
the most length, but the heaviest chain. Weight in Ethereum, refers to the cumulative
difficulty of mining a chain.

Figure 3.17: Ethereum Blockchain and Concurrent Blocks. Sourced from: [20]

Smart contracts in Ethereum are first programmed in a high-level language called
Solidity [33] and then compiled into low-level bytecode, which is run by the Ethereum
Virtual Machine (EVM). As running intricate programs adds significant overhead to the
network, Ethereum uses the concept of gas to limit resource consumption. Deployment
of smart contracts costs the user a specified fee of gas plus a varying amount based on the
contract’s data and computational requirements. This gas value can then be converted
into Ether, Ethereum’s version of a crypto-currency.

3.9 Enterprise and Industry Applications

Numerous successful applications of blockchain technology can already be found in key
sectors including agriculture, manufacturing, retail, finance and governmental. For in-
stance, supply chain management can deeply benefit from blockchain when tracking
physical assets through changes in ownership or handling, with provenance certification
assured. Prominent example of this is the AgriDigital initiative (Section 3.9.1).

3.9.1 AgriDigital

Founded in 2015, AgriDigital [34] uses blockchain technologies as a means to ensure di-
gital trust within agriculture supply chains. The platform acts as the application layer
through which farmers and traders can be connected to manage contracts, deliveries,
inventory, invoices and payments [20]. Figure 3.18 shows a conceptual overview of Agri-
Digital’s solution.

The main focus of AgriDigital is to bring together otherwise disparate information
flows in a way that creates a single source of truth, providing supply chain assurance
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Figure 3.18: AgriDigital solution for data integration. Sourced from: [20]. ©2018 Agri-
Digital.

and transaction security whilst using that information to mitigate challenges such as
the lack of transparency within the agricultural industry and minimize the propagation
of counterfeit goods. Extensive use of smart contracts is enforced to provide proof of
ownership and quality assurance.

Technical requirements faced by the AgriDigital architecture are applicable to any
other blockchain-based supply chain [20]. For instance, the need for real-time transactions
completed with low-latency, high availability of data and high scalability are imperative
features in any industry-scale platform. Several pilot programs where already conducted,
with each iteration showing advances with added security mechanisms and more complex
smart contracts. Currently, AgriDigital is already present in the Australian, United
States and Canadian markets.
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Chapter 4

Proposed Blockchain Framework

4.1 Conceptual Architecture Layers

In light of what was previously found in works done namely by Hang et al. [1] and Wan
et al. [28], the most efficient way to ensure a modular and scalable architecture is by
stratifying into a multi-layer platform. As such, and as shown in figure 4.1, five layers
are proposed, including: the IoT and Sensing Layer; the Gateway Layer; the Blockchain
and Storage Layer; the Network and Security Layer; and lastly, the User Layer.

4.1.1 IoT and Sensing Layer

The IoT and Sensing Layer is the lowest level of the network and the one with
highest user abstraction. It deals in data collection from the field, through the use
of sensors and ID devices. Information regarding product, process, identification and
localization are gathered allowing for full traceability. Each sensor needs to identify
itself and attribute a timestamp to the collected data. Some of the sensors or IoT
devices might possess intelligence, enabling them for edge computing tasks, performing
additional actions and taking autonomous decisions at the edge level. On-edge analytical
analysis is also possible.

As a measure to increase the overall security of the architecture, each device in the
Sensing Layer is not connected to exterior networks, but instead operating in a local
intranet. Each one of these intranets consists in one or more sensing units, forming
a Business Unit. Connection with outer networks, and by extent, to the blockchain
network is only allowed by first interfacing with the Edge Staging Gateways Layer.

4.1.2 Gateway Layer

The Edge Staging Gateway Layer bridges communication between the sensing devices
and the decentralized ledger. Gateway devices are required a wide range of interfacing
capabilities: accommodating several different sensors and IoT; and if required, inter-
face existing brownfield equipment, effectively granting them with wireless capabilities
bringing one step closer to a greenfield industrial landscape.

Accessing the Blockchain and Storage Layer will require connection to external net-
works, as the physical location of devices operating as network Nodes might vary greatly.
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Figure 4.1: Architecture for the Proposed Solution

As external connections come with an inherently high risk, gateways will require deploy-
ment of several security features, such as the capability to establish secure connections
(e.g., TLS and Hypertext Transfer Protocol Secured (HTTPS)) and some sort of firewall
software. Appropriate hardware must be selected with sufficient compute power to al-
low a high inflow of input data coming from lower-level devices, whilst still maintaining
secure connections with other higher-level network elements. As data comes from mul-
tiple sources, with different formats and at varying collection rates, the Edge Staging
Gateways must temporarily store data and normalize it. Effectively, the Gateway might
function as a buffer. As each node in the network is required access to the all information,
Gateways have to transmit the collected, and normalized, data onto every node in the
blockchain network.
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4.1.3 Blockchain and Storage Layer

Two main functions are attributed to the Blockchain and Storage Layer: validation
of data by the mining nodes and its storage. As the blockchain network is desirable
to be as lightweight as possible, only the necessary information for certifying data on
the enterprise system is retained on-chain. As such, the simplified distributed ledger will
only contain the hash information characterizing each transaction. If the hash-value of a
database entry does not correctly correlate with the hash-value stored in the blockchain
network, across multiple entities (nodes), then it is possible to dismiss the database entry
as incorrect or as being tampered.

It must be possible to deploy and remove nodes, conforming the network’s architecture
to the current enterprise needs. This requires the establishment of a synchronization
mechanism across nodes, as the information kept on-chain is only relevant if it is possible
to trace it back onto every node element in the network. Both the IoT and Sensing
Layer and the Blockchain and Storage Layer must work side-by-side with the currently
implemented traceability solutions, meaning that these levels will be interfaced with
the enterprise systems, where all data is fully stored. Communication is maintained by
implementing several Application Programming Interface (API).

4.1.4 Network and Security Layer

The Network and Security Layer involves all underlying technologies that concern
secure operation of the network, for instance, implementation of cryptography tools and
transaction encryption. All communications, with the exception of ones occurring in
the IoT and Sensor Layer, are achieved using the TLS protocol with both server-side
and client-side certification required, establishing HTTPS connections. A certification
authority must be created, signing certificates that grant access to the network.

Other management roles credited to this layer include the establishment and enforce-
ment of rules that dictate the blockchain’s validation mechanisms. Lastly, information
restriction to external users of the network - it is expected that in-house users of the
network are granted with a higher level of information detail than third party entities.

4.1.5 User Layer

The upper-most layer, provides validated users access to the records gathered, allowing for
real-time monitoring of the network, through use of APIs. Two types of user permissions
are considered: private permissions and public permissions. Private permissions are only
granted to in-house users, having a higher level of access to information stored on the
network. Alternatively, public permissions can be granted to external agents, allowing
them access only to the required data, blocking out additional features. This selection
comes from enterprise decisions to assure process confidentiality. In-house or internal
users might be internal plant departments, external plants or corporate users. External
users may be suppliers, partners or even the final consumers.

4.2 Characterization of the Network Nodes

Network nodes can serve one of two functions: administrative responsibilities, section
4.2.1, or block mining, section 4.2.2. Nodes responsible for mining blocks can be deployed
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across multiple cells in a production line, different production lines, departments, factories
or even organizations. As the number of mining nodes increases, so does the overall trust
of the network, as more entities exist to validate and share the common ledger. On the
other end, Administrator Nodes are reserved for the sovereign entity that fundamentally
holds legislative power over the network, in this case Renault CACIA.

4.2.1 Blockchain Administrator

The Blockchain Administrator Node serves as a mediator between all the devices
acting on the blockchain network, whether they are mining nodes, gateways or even front-
end users. Main roles performed by the Blockchain Administrator include: managing
message flow between the several layers and the nodes; and validate front-end users’
access to the network and regulate the information to which they have access to.

Communication and access logs are also created and curated by the Administrator
Node, allowing for future fail analysis to be conducted, and the creation of user log-in
analytics. Lastly, the Administrator Node allows access to the system administrator
Human Machine Interface (HMI), where it is possible to conduct such tasks as enrolling
a new Mining Node or Gateway onto the network - admittedly, of course, that the to-
be-enrolled entities have provided validated certificates. This, however, does not mean
that the Blockchain Administrator has influenced over the data that circulates within
the network. Administrators only have access to data blocks on a viewing privilege basis.

4.2.2 Mining Nodes

Mining Nodes are responsible for creating new data blocks, according to the governing
rules deployed on the network. To increase the solutions modularity, they must be easily
deployed, with minimal configuration, in a plug-and-play fashion. The network must be
self-sustaining, requiring little in the way of maintenance. As such, Mining Nodes are
required to solve any conflicts that may arise in terms of block acceptance as well as
network synchronization between nodes, autonomously.

Each node will keep two copies of a simplified shared ledger : one in RAM for fast
data access and quick response to enquiries, done for instance by a user or Administrator
Node; and another kept in a auxiliary database, as a backup. This allows for both fast
data transfers and calculations, whilst assuring data integrity in case of system failure -
such as power loses. This simplified shared ledger is comprised only of the block headers,
as explained in further detail in section 4.4.

Blocks are approved according to a variation of the Proof of Authority consensus
algorithm. Any given miner cannot mine two consecutive blocks, with the miner that
has not mined a block the longest, first in line to forge a new block. The proposed
consensus mechanism is shown in figure 4.2.

Mining Nodes must agree upon an order for which to mine the blocks. If the order is
not maintained by a given node, the forged block will not be accepted by the network.
This mechanism allows for high data throughput, taking advantage of the high-level of
established trust that inherently can be found in a permissioned private network.
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Figure 4.2: Diagram of the Mining Order to Achieve Consensus.

4.3 Databases

One of the architecture’s main requirements is flexibility, and as such a malleable ap-
proach of handling data is fundamental. With that in mind, a non-relational, or also
commonly referred to as non-SQL or NOSQL, database is used. This brand of databases
does away with the tabular relations used in relational databases in a favour of other
data modelling means.

Three different types of collections, comparable to tables in a relational database,
can be identified as in use in the designed framework, figure 4.3. These include: the
main collection of data making up the entirety of the blockchain; the nodes’ simplified
distributed ledger backup; and a user information collection, storing users’ logs onto the
network and usage statistics.

Figure 4.3: Diagram of the Collections in the NoSQL Database.

Although some drawbacks are associated to non relational databases, such as the
cumbersome querying mechanisms resulting from the lack of tabular relations, and the
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potentially higher usage of disk space when compared to a Structured Query Language
(SQL) database, this does make the architecture more easily deployable in a large variety
of scenarios without any reconfiguration whatsoever.

4.4 Block Topology

Each block is constituted by two elements, the block header and the block transac-
tions, as seen in figure 4.4.

Figure 4.4: Topology of a Block of the Framework.

The block header contains the calculated hash-values of the block transactions portion
of the block, as well as a timestamp of when the block was forged. The block headers are
used to create the simplified distributed ledger in the nodes. As for the block transactions,
it encompasses several important metrics to characterize the data, such as the current
block number - an incremental counter, to account for the total sum of blocks; the
previous block’s transactions hash-value to keep the linkage in the chain; the address of
the node set to mine the block and the transaction payload. The transaction payload is
the data wished to store. As a non relational database is being used, there is a certain
freedom as to which format the stored data follows, however, for the use case of the
Variable Displacement Oil Pump Line, it is of reasonable assumption that the metrics
shown in figure 4.4 are of crucial importance.

4.5 Integration with Enterprise Systems

The proposed framework works alongside existing enterprise traceability technologies, as
illustrated in figure 4.5. For instance, data collected from the IoT and Sensing Layer and
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later processed at the Gateway Layer will still have to be stored in the existing corporate
databases. Additionally, information in the traditional systems will have to cross-checked
with the records found in the distributed ledger in the blockchain.

Figure 4.5: Framework Integration with Current Enterprise Systems.

In the variable displacement oil pump production line, each part is initially marked
with a barcode tag, used to identify the components during production processes. In the
proposed framework, each one of these tags will be associated with a set of hash-values
characterizing the stored data-blocks. The manner in which data is saved, must remain
similar between existing traceability systems and the proposed blockchain-based system,
ensuring that hash-values can be easily determined and cross-checked between the two
systems.
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Chapter 5

Blockchain Framework
Implementation

Several stages of development are required to implement the complex framework proposed
at Chapter 4. In the first stage it is required to establish a working back-end of the
planned architecture with all the necessary security features to assure data protection,
integrity and immutability against malicious foreign agents whilst operating at high speed
and with great data throughput. The second stage involves the establishment of all the
front-end technologies that make possible the monitoring and access of data to authorized
users. All of the segments that make up the planned technological structure are shown
in figure 5.1.

5.1 IoT and Sensing Layer

The IoT and Sensing Layer is above anything, dependent on the existing equipment
on the production floor. As testing at the Renault CACIA facility is not practical,
three different IoT devices are used to simulate multiple interfacing possibilities with
the Gateway Layer. These include an Arduino Uno R3, an ESP8266 and an ESP32
development boards. The main objective behind the simulation assembly is to show
that connecting with the Gateway Layer is not dependent on one type of communication
interface or low-level hardware.

Production flow is replicated according to what is depicted in figure 5.2. The arriving
part is immediately identified by the first sensing unit - S001 - through an identifying
Radio-Frequency Identification (RFID) tag. At this station, environmental variables are
also monitored. In the real life production line at Renault CACIA, this up front part
identification is conducted through a barcode tag reading. As more closely resembling
hardware was not available, a RFID based system was chosen instead. Following the
initial part identification, two further manufacturing processes are simulated - S002 and
S003 - with each being activated by the press of a push button, representing the inductive
proximity sensors that acknowledge a part’s arrival at a station. Comprised by three IoT
devices - S001, S002 and S003 - along with the remaining of their respective hardware,
and an Edge Staging Gateway, the mock-up of a Business Unit, RBU01, is complete.
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Figure 5.1: Implementation Architecture.

5.1.1 Hardware and Assembly

Sensing Unit S001

The first of the sensing units, S001, is built upon an Arduino Uno Revision-3 development
board, which in itself is based on the Atmel ATmega328P microcontroller1. Figure 5.3

D.F.D. Costa Master Degree



5.Blockchain Framework Implementation 47

Figure 5.2: Diagram of Designed Production Flow Simulation.

depicts the IoT device, and figure 5.4 its respective pinout diagram.

Figure 5.3: Arduino Uno R3.
Source1.
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Figure 5.4: Arduino Uno R3 Pinout Diagram.
Source1.

Basic characteristics of the Arduino Uno development board include:

• 14 digital input/output pins (of which 6 are Pulse-Width Modulation (PWM) cap-
able);

• 6 analogue input pins;

• 16 MHz ceramic resonator (CSTCE16M0V53-R0);

• 32 KB of Flash memory;

• 1 KB of Electrically Erasable Programmable Read-Only Memory (EEPROM);

• 2 KB of Static Random Access Memory (SRAM);

• 5V operating voltage.

A MFRC522 module, figure 5.5, is used to enhance the Arduino board with RFID
read/write capabilities. This module allows for contactless communication at 13.56 MHz,
and is ISO/IEC 14443 A/MIFARE and NTAG compliant [35]. A wide range of host
interfaces, including Serial Universal Asynchronous Receiver/Transmitter (UART), I2C
bus interface or SPI are available, with the latter being used for communication in the
developed solution, allowing for up to 10 Mbit/s.

1Arduino Foundation - Arduino Uno REV3. Accessed 30 April, 2020. URL: https://store.arduino.
cc/arduino-uno-rev3
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Figure 5.5: Funduino MFRC522 RFID Module.

Measurement of temperature and humidity is done through a DHT11 module, figure
5.6. These sensors are extremely basic, containing a capacitive humidity sensor and a
thermistor, along with a microchip capable of performing analogue to digital conversions.

Figure 5.6: DHT11 Temperature and Humidity Module.

Lastly, luminosity is gathered by a Light Dependent Resistor (LDR). The complete
assembly schematic for the S001 sensing unit is shown in figure 5.7. Communication
between the Edge Staging Gateway and the Arduino is established through a Serial
RS232 connection, using the Arduino’s built-in full-size USB Type-B port.

Sensing Unit S002

Sensing unit S002, represents the second work post for which the part is subject to.
Based on an ESP32 TTGO T7 v1.3, figure 5.8, this development board has significantly
more processing capabilities compared to the Arduino, as a result of its much more
powerful Xtensa dual-core microprocessor. Specifications for each ESP32 board may
vary according to each manufacturer, but for the used model it is found [36]:

• Xtensa® dual-core 32-bit LX6 microprocessors;

• 448 KB Read-Only Memory (ROM);

• 520 KB SRAM;

• 16 KB SRAM in Real Time Clock (RTC);

• Internal 8 MHz oscillator;

• External 32 MHz crystal oscillator for RTC;
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Figure 5.7: Assembly Schematic for S001.
Designed in Fritzing2.

• 34 programmable General Purpose Input/Output (GPIO) Pins including SPI, I2C,
UART, TX/RX and PWM capabilities.

Furthermore, this module is capable of establishing WiFi connections (2.4 GHz up
to 150 Mbps) and has built-in cryptographic hardware acceleration, namely for hashing
functions (SHA-2 standard) and AES. Taking advantage of these capabilities, commu-
nication with the upper Gateway Layer is done over an encrypted wireless connection.

Assembly of the second simulated work post is done as shown in figure 5.9. A push
button is used to mimic the arrival of a new part into the work post, after which the
luminosity value is gathered and sent to the upper layers. A LED is used in the assembly
as a status indicator, used for debugging.

Sensing Unit S003

The final sensing unit, S003, has the same basic working principle as sensing unit S002,
with the only difference being it based on a ESP8266 ESP-12F NodeMCU, figure 5.10,
rather than on a ESP32. Specifications and features stay largely unchanged from the
ESP32, with the notable exception being the use of only a single-core 32-bit micro-
processor. For the light workloads being demanded from these modules, this loss of
computing power does not cause major limitations to the network.

Tasks performed by sensing unit S003 are cloned from S002, however the selected
ESP8266 development board already features an integrated photo-resistor as well as a

2Fritzing home-page. Accessed 30 April, 2020. URL: https://fritzing.org/home/
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Figure 5.8: ESP 32 TTGO T7 v1.3 Development Board.

Figure 5.9: Assembly Schematic for S002.
Designed in Fritzing2.

Figure 5.10: ESP8266 ESP-12F NodeMCU.

RGB LED, figure 5.11,therefore no additional hardware assembly was required. Much
like what is seen in S002, this sensing unit also communicates with the upper Gateway
Layer over an encrypted wireless connection.
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Figure 5.11: ESP8266 ESP-12F NodeMCU - Front 3/4 View.

5.1.2 Software and Programming

Much like how a wide range of communication protocols might be used for the IoT and
sensing devices to interface the Edge Staging Gateways, several programming languages
might also be used to achieve this purpose. As an example, programming of the Arduino
and the ESP devices followed two different routes: the former being programmed in a
more traditional language for microcontrollers, C/C++, and the latter being programmed
in a variation of Python, applied to microcontrollers, MicroPython. Further insights on
MicroPython are given in Appendix A. A flowchart describing the general operation of
the program created for the Arduino, simulating sensing unit S001, can be found in figure
5.12.

Figure 5.12: Flowchart of the Arduino Program.

The output string being sent over from sensing unit S001 follows a simple pattern
that can be easily parsed at the Gateway, as characterized in figure 5.13.

Figure 5.13: Diagram of the String Output at S001.
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As for sensing units S002 and S003, programming is more complex to ensure the
securing of established wireless connections with the Gateway Layer. Leveraging the
ESP’s cryptographic hardware acceleration, message payloads are encrypted using AES
CBC. Flowchart 5.14 shows operation of the program running in the ESP devices.

Figure 5.14: Flowchart of the ESP Devices Program.

Encryption is achieved by first creating a unique identifier for each machine. This
was generated using Python’s uuid module, which allows the creation of Universally
Unique Identifier (UUID) objects according to the RFC 4122 standard 3. The UUID is
then hardcoded into the IoT and sensing devices with network capabilities. Gateways
also have knowledge of these identifiers through an internally stored list that contains all
UUIDs from the authorized IoT and sensing devices operating in the network. During
communication between equipments, the key used for data encryption is the hash-value
calculated for the UUID using the SHA256 hash-function. Diagram 5.15 exemplifies the
encryption process.

Figure 5.15: Message Encryption Process in IoT Devices.

As symmetric-key encryption is used, the process becomes very efficient, even when
3Python 3 Documentation - uuid — UUID Objects According to RFC 4122. Accessed 4 May, 2020.

URL: https://docs.python.org/3/library/uuid.html
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used in relatively low-power IoT devices, granting a high data throughput. Collected
and sent data does not have to follow a specific format, requiring only to be encoded in
a JSON format. Listing 5.1 shows an example of the passed data-structure from the IoT
devices to the Gateway Layer.

1 # Data structure to send to Gateway Node.
2 data = {’sensing_unit ’: ’S002’, # Sensing Unit No.
3 ’LDR’: analog , # LDR read value
4 ’LED’: LED.value()} # Value of debug LED

Listing 5.1: Example of IoT Device Data-Structure.

This data-structure might not be a multiple of 16 bytes, as explained in 3.4.2, and
possible need of padding is contemplated in the devised solution. Furthermore, the
aforementioned section also mentions the need to produce an IV when using AES in
CBC mode. This value is randomly generated using the device’s built-in random number
generator.

5.2 Network and Security Layer

Securing a network is a complex task that requires an in-depth analysis of all possible
points of failure. The most blatant security feature found in the implemented framework
is in form of encrypted connections, of which both symmetric-key and asymmetric-key
encryption can be found. The creation of a Certification Authority is vital to the use of
asymmetric key encryption. Moreover, besides encrypted communication channels, other
more traditional means of cyber-security are applied, such as the need for passwords to
access the frontend HMI. Lastly, network security depends not only on maintaining the
network’s integrity against malicious attacks, but also preventing data loss or mutation
in case of hardware or software related failures.

5.2.1 Certification Authority

In the proposed framework, all elements operating above the IoT and Sensing Layer -
who only operate in a restricted intranet - maintain connections to outside networks,
foreseeing Mining Nodes in multiple remote locations, such as different departments,
production-plants or even in customers’ or suppliers’ facilities. This calls for additional
security measures, one of which comes in form of a CA, responsible for validating network
participants. Services provided by a CA consist in the binding of an element’s public
key to an entity, certifying it [13]. Commercial CA utilities exist, however, in order to
expedite the development process, a CA was implemented from the ground-up. These self
generated CA agents create what is often referred to as self-signed certificates. To create
a CA, OpenSSL4(v1.1.1f) was used, which is a commercial-grade toolkit for TLS/SSL, as
well as a general purpose cryptography library. Producing a local Certificate Authority
can be done with the following command using a UNIX Bash Shell, listing 5.2.

1 openssl req -newkey rsa :2048 -new -x509 -sha256 -extensions v3_ca -out
ca.cert -keyout ca.key -subj "/C=PT/ST=Aveiro/L=OAZ/O=UA-DEM/CN=
blockchain.com" -nodes

Listing 5.2: Creating a Local Certificate Authority.
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Used req command produces and processes certificate requests. With -newkey,
both a new certificate and private key are created, in this case with a RSA key of 2048
bits. To guarantee that a self signed root CA is outputted, -x509 command is used.
Setting a subject name is done through -subj, with the following argument string being
used to characterize the certificate recipient. For instance, in listing 5.2, the country
(C), state/province (ST), locality (L), organisation (O) and common name (CN) were
provided. Common names represent the name of the server verified by the certificate -
e.g., www.example.com.

Several servers are used in the framework, and each requires a different certificate.
However, during simulation of network operation, all servers are located within the same
remote machine. Therefore, common names were artificially created, through aliases
located in the /etc/hosts file. This file is used by the machine’s Operating System (OS)
when retrieving IP addresses: the system will first look in /etc/hosts for a matching
hostname; if not defined, then the Domain Name System (DNS) server will be used.
Figure 5.16 shows the implemented /etc/hosts file for simulation of the blockchain
network. Although added domain names mostly all point to the same IP address, they
fundamentally act as representing different entities.

Figure 5.16: Hosts File Created for Implemented Blockchain Network.

By applying the last command, -nodes, key encryption is suppressed. Note that key
encryption in this context means that the key file - .key - is encrypted and that a user
would be prompted to insert a password in order to read or modify it. The process of
signing a certificate and consequently granting an entity access to the network can now
take place. The following listing, 5.3, is a certificate creation and CA signage example,
for a generic certificate/private-key pair, client1.csr and client1.key, with the common
name client1.blockchain.com.

1 # Creating a certificate for client
2 openssl req -newkey rsa :2048 -new -sha256 -out client1.csr -keyout

client1.key -subj "/C=PT/ST=Aveiro/L=OAZ/O=UA-DEM/OU=user/CN=client1.

4OpenSSL Homepage. Accessed 5 May, 2020. URL: https://www.openssl.org/
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blockchain.com" -nodes
3

4 # Signing certificate by root CA
5 openssl ca -in client1.csr -out client1.cert -keyfile ca.key -cert ca.

cert -outdir .
6

7 # Concatenate key -file and certificate -file into one .pem file
8 cat client1.cert client1.key > client1.pem

Listing 5.3: Creating and Signing a Client Certificate.

5.2.2 Encrypted Connections

Both symmetric and asymmetric encryption is used. Devices with higher computational
constraints and that communicate over wireless connections, such as IoT, rely on sym-
metric encryption schemes, in this case AES in CBC mode. Machines with greater
hardware specifications and that require connections over external, unsafe, networks, use
the comparatively more resource demanding RSA public-key cryptosystem. Private and
public keys are generated and signed in according to what is shown in section 5.2.1.
When accessing the blockchain frontend interface through a common web-browser, it is
possible to infer that the connection is indeed encrypted. For instance, when accessing
the HMI via Mozilla Firefox 76.0 web browser, the following information is found - figure
5.17.

Figure 5.17: Security Features of Implemented Frontend Interface.

The most current version of TLS is being used, making it mandatory for all elements
operating in the network to be TLS 1.3 compliant. As seen in the previous figure,
TLS_AES_256_GCM_SHA384 ciphersuite is being used. This is an Elliptic Curve
Diffie Hellman Ephemeral (ECDHE) based ciphersuite5that provides forward secrecy as
sessions keys are generated for each new session, as well as faster performance, being
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based on Elliptic-Curve cryptography.

5.2.3 Identity Authentication

Other conventional methods of security and authentication are used. For example, when
trying to access the frontend interface, users are greeted with a login-screen, figure 5.18.

Figure 5.18: Frontend Interface Login Screen.

According to user permissions, different interfaces are shown. Only system admin-
istrators have access to network settings and configuration pages. User information,
such as passwords or usernames are indirectly kept in a database. In reality, only the
hash-values of the passwords and usernames are kept, assuring private data confiden-
tiality. Furthermore, login attempts are limited to once-per-second-per-user. This was
implemented in order to hinder possible brute-force attacks.

5OpenSSL Wiki (OpenSSL Documentation). Accessed 7 May, 2020. URL: https://wiki.openssl.
org/index.php/TLS1.3
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5.2.4 Preserving Network Integrity

Hardware and software failures were also contemplated, with existing safeguards acting
against power-failures or sudden stops in one of the network’s Nodes. For once, backups
of simplified distributed ledgers exist, one for each node. Furthermore, in the eventuality
that a network node is decommissioned, it can later be reaccepted without any setbacks,
as re-syncing with the network is done automatically. Lastly, all equipment that commu-
nicates through HTTPS requests, is subject to response wait period timeouts, avoiding
indefinite wait loops. Devices will stop expecting a response from the message recipient
once a timeout period expires. This also prevents Denial of Service attacks and avoids
stopping the entire network if suddenly one device stops responding.

5.3 Gateway Layer

To the Gateway Layer it is attributed two main functions: retrieve values from the IoT
and Sensing Layer; parse collected data into a normalized data-structure and pass it on to
the upper layers. Retrieval of data can be either through a wired RS232 communication
channel or over a wireless connection. Contemplating these functions, three main pro-
cesses occur at the gateway, as shown in figure 5.19. This results in a considerable usage
of computational power, with a Raspberry Pi 2 Model B+ running a lightweight Linux
distribution, Ubuntu Server 18.04 LTS. All features were built upon the Flask6micro web
framework.

Figure 5.19: Processes Running in Gateway.

6Flask. Accessed 7 May, 2020. URL: https://flask.palletsprojects.com/en/1.1.x/
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The Raspberry Pi 2 Model B+, figure 5.20, has the following, abridged, feature-set7.

• 900MHz quad-core ARM Cortex-A7 CPU;

• 1GB RAM;

• 100 Base Ethernet;

• 4 USB ports;

• 40 GPIO pins.

Figure 5.20: Raspberry Pi 2 Model B+.
Source7.

Sending data to the upper Blockchain and Storage Layer requires use of external
networks. As this poses high security risks, a firewall is implemented to avoid unsolicited
connections to the Gateway. For implementation simulation and testing, the built-in
Ubuntu firewall - ufw - is used, and network traffic restricted to only IP addresses
operating within the same local network. Figure 5.21, shows the created firewall rules
table. Likewise, the Raspberry’s /etc/hosts file is reconfigured to accommodate the
attributed common names of the created TLS/SSL certificates.

5.3.1 Program Operation

As previously mentioned, three processes occur simultaneously within each gateway
device: a serial communication handler; a wireless communication handler; and a main
process responsible for interfacing the upper layers. Incoming serial data is decoded and
immediately sent to the main process. Alternatively, data-packets received by HTTP
requests require first a decryption procedure before conveying the data. In the main
process, data gets parsed into a normalized form-factor. Every data-parcel being sent
by a gateway contains the respective business unit in which the inputs were gathered;
the part or component identification - the RFID tag reading in case of the simulation,
in real-life Renault CACIA it would be the barcode tag; a timestamp of when data first
arrived at the gateway; and lastly the information itself making up the message payload.

7Raspberry Pi Organization - Raspberry Pi 2 Model B. Accessed 6 May, 2020. URL: https://www.
raspberrypi.org/products/raspberry-pi-2-model-b/
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Figure 5.21: Firewall Rule Table.

After finishing the data-processing stage, it is sent via a HTTP over TLS, i.e. HTTPS,
POST-request to all the existing nodes on the network.

Communication between the Gateway Layer and the upper levels of the network is
bi-directional. On one hand, the gateway is responsible for acting as an intermediary
with the blockchain and the low-level hardware; on the other hand, gateways must also
be made aware of the participants of the network to know where to send data to. When
first adhering to a network, or whenever any changes occur to the list of active Mining
Nodes, it is of the Blockchain Administrator’s responsibility to notice gateways of these
alterations. Whenever a HTTP request is performed, a response is expected. If this
response is intercepted, hindering its arrival to the original sending device, the program
execution comes to a halt, possibly jeopardizing the entire network. To avoid these Denial
of Service attacks, all HTTPS requests performed on the network are subject to timeout
periods, after which the sender stops expecting a response from the recipient, avoiding
indefinite waiting periods.

5.3.2 Gateway Deployment

Creation of a modular and scalable solution demands not only forethought in questions
regarding compatibility with a wide range of technologies, but also the ability to quickly
and easily deploy and demise network elements, such as in this case, gateways. To
facilitate deployment process, a configuration file exists - config.json - in which all
customizable fields are present and can be quickly altered. When first starting one
of the three processes required for gateway operation, they all search for the standard
config.json file, however a user can provide a different configuration file by starting the
program with –config or -c options, followed by the file-path. Second and last step to
fully adhere a gateway to a network is done by the Blockchain Administrator when he
officially registers a gateway’s address into the Blockchain system. Figure 5.22 depicts
an example of a configuration file.

Worthy of note is the existence of a sensing_units field in the configuration file.
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Figure 5.22: Example of a Gateway Configuration File.

Wireless sensors or IoT devices with their ID here declared are the only ones from which
payloads are accepted by the gateway. This was implemented as to prevent unauthorized
devices from pinging the network with malicious information. Furthermore, authorized
serial ports also require an initial declaration - SERIAL_DVC. Removing a gateway,
stopping it from further operating in the network, is done through the Blockchain Ad-
ministrator’s frontend interface.

5.4 Blockchain and Storage Layer

The Blockchain and Storage Layer has two main acting agents: the Database and the
Mining Nodes. The Database contains a complete record of the gathered data, both
the one generated by the IoT and sensing devices, as the one collected through network
analytics systems. To simulate implementation deployment, three different types of col-
lections within the database exist: the full record of all the data gathered by the sensing
devices; the backup of the node’s simplified distributed ledger (one per node); and the
user access credentials and network activity journal.

Mining Nodes are responsible for forging new blocks, according to the established
rule-set, and thus storing the data within an immutable shared ledger. Although each
node does not store the entirety of the forged data-block, it does store the block’s header,
which contains enough information to fully identify a transaction latter on.

5.4.1 Database

The Database is based in MongoDB, a non-relational database. This grants a high degree
of freedom on how the data is structured and accessed. For instance, instead of requiring
two distinct tables in a traditional SQL database, both authorized users’ credentials and

D.F.D. Costa Master Degree



62 5.Blockchain Framework Implementation

users’ login activities can be stored in a single, non-relational, collection. Of course, this
comes at the cost of speed, as querying the database is not as fast as it otherwise would
be with a SQL ledger. Nevertheless, this adds flexibility to the implemented framework,
as gathered data does not have to follow an overly rigid structure.

The first of existing collections is the User Collection, which serves three main
functions, namely storing usernames and respective passwords; login information such
as a timestamp of when a login occurred; and the clearance level that each user has on
the network (e.g., it could be a Administrator account or a Client account). Figure
5.23 exemplifies two possible entries found within the User Collection, one storing user
credentials and another saving a new frontend access timestamp from a certain user.

Figure 5.23: Example of Data in the User Collection.

Both usernames and passwords are indirectly stored, through the storing of their cor-
responding hash-values. Information regarding each user’s clearance level is also present,
but hidden in plain-sight: before being hashed, the username is associated with a clear-
ance level. This means that a malicious entity that somehow might have gained access
to the network, would not even know which registries were of Client or Administrator
accounts. A Node Collection is associated to every Mining Node on the network
serving as a backup of the simplified distributed ledger. Full record of data is kept on the
Blockchain Collection. This record could be replaced by existing traditional enterprise
database systems, however, in this manner, storage of a wider range of data types that
might not have been contemplated when the traditional systems where put into action,
is feasible.

Secure Deployment of MongoDB

When deploying a MongoDB server, one can either use the standard configuration file
or provide a custom one. As the default MongoDB set-up does not contemplate the
use of secure TLS connections, a bespoke configuration file was created, by adding the
following commands, figure 5.24, to the originalmongod.conf file. This leads to ensuing
behaviour from the MongoDB server:

• The server is bound to the mongodb.blockchain.com address, in accordance with
the common name in its authentication certificate;

• TLS connections are now required to access the server, and connections without
valid certificates are no longer allowed;

• Path to the server’s own .pem file containing its private and public-key is specified,
permitting server-side authentication;
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• By stipulating a CA file in the configuration, client-side authentication is enabled.

Figure 5.24: Modifications Done to MongoDB Configuration File.

5.4.2 Mining Nodes

In the created architecture, mining nodes are not only responsible for creating and val-
idating data blocks, through an agreed upon consensus mechanism, but are also capable
of confirming past transactions. Data entries found in enterprise systems can easily be
cross-checked with historical information gathered within the blockchain, simply by calcu-
lating the hash-value correspondent to the transaction wished to verify. If that hash-value
can be found stored on-chain, then it is verifiably considered true. Centralized systems,
such as traditional databases found in enterprises, inherently introduce single-points of
failure. Data losses might occur for a wide range of reasons, since hardware failure to
malicious tampering done by a third-party. Tampering in the blockchain, on the other
hand, while not impossible, poses a much bigger challenge, as it is unlikely for several
wide-spread machines to suffer simultaneous black-out, or in case of deliberate malice,
to be synchronously attacked by a malign agent.

Mining nodes function at a core-level as web-servers who accept HTTPS requests
via specific remote-addresses, and are, much like gateways, based on the Flask micro-
framework with additional extensions used to provide integration with the MongoDB
database. Comparable to what is seen in the deployment of gateways, mining nodes
allow for a config.json file to expedite the configuration of several parameters, figure
5.25.

5.5 Blockchain Administrator

The Blockchain Administrator is also based on the Flask micro-framework, now using
a number of additional extensions to add not only database integration, but also form
validation (e.g., login forms) and user authentication. Operation of the administrator
node is not intrusive to the remaining of the blockchain network, having no influence
over the data being stored or on how the mining nodes validate transactions. However,
administrators do have the power to add and remove nodes - and by extension gateways -
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Figure 5.25: Example of a Mining Node Configuration File.

from the network, which is a hallmark of permissioned blockchain networks. Whenever a
node is added to the blockchain system, a request for synchronization is sent to all nodes.
This will ensure that all nodes will sync their internally kept simplified distributed ledgers,
as to not disrupt the mining process. During this procedure, the agreed upon consensus
mechanism, which is based in a pre-determined order for the next mining node, is also
updated as to include the newly added nodes. This update will also happen in case one
or multiple nodes are removed.

From a web-frontend standpoint, due to the innate exposure the blockchain adminis-
trator is subject to, added security measures are in use. Namely, Flask-Login extension
is used to limit login attempts to one per remote address per second, dodging denial-of-
service attacks through flooding of the web-server with multiple HTTPS requests. Routes
on the web-server that are user accessible, such as https://admin.blockchain.com:5000/settings
or https://admin.blockchain.com:5000/dashboard are also protected from being accessed
if the user login procedure is bypassed. User credentials and network permission attrib-
utes are verified by the administrator, in conjunction with the User Collection kept in
the NoSQL database.

Dynamic update of information shown in the frontend is handled by this web-server,
along with the JavaScript/AJAX script embedded in the .html templates rendered.
Most of the data processing is done at a server level and not on the users’ browser. Data
passed on to the user might, or not, be cross-checked with the data kept in the blockchain
network beforehand. If data is requested directly using the Query D.B. function deployed
in the frontend interface, it is checked with all nodes the validity of the block(s) being
displayed. In case of data being used for real-time analytics, this step is skipped as
to avoid further stressing the mining nodes with a high number of validation requests,
hindering the block mining operation, and, therefore, block throughput. As all other
Flask-based scripts deployed, a config.json file contains all configurable parameters.
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5.6 User Layer

The amount of information shown to a given user will depend upon permissions granted
to him by the corporation managing the network. For instance, it is not desirable or
required that an external entity (e.g., an outside costumer or supplier) has access to all
network analytics, but these are fundamental metrics for the systems administrator in
charge with maintaining and supervising the system. As seen in figure 5.1, a Public and
Private HMI are both implemented in the final solution, making up the web frontend
and dashboard to the blockchain network.

Hypertext Markup Language (HTML) is used as the backbone of rendered web-pages,
with a combination of JavaScript/AJAX to access the implemented API to retrieve data
from the server. Stylization is provided mostly by custom Cascading Style Sheets (CSS),
although the open source Bootstrap library was also lightly used. Figure 5.26(a) shows
the final web frontend interface for an internal user account and figure 5.26(b) for an
external user account.

As seen in figures, the Settings and Dashboard pages are inaccessible to external
accounts. Furthermore, if the address of these pages is inserted manually (i.e., ht-
tps://admin.blockchain.com:5000/settings or https://admin.blockchain.com:5000/dashboard)
in the browser URL search, unauthorized users will be re-routed back to the home-page.
For a fully authorized user, the frontend has the following main features:

• Manage network settings such as adding and removing Mining Nodes; adding and
removing Gateways; and adding and revoking user accounts.

• Real time blockchain system dashboard, with data visualization and plotting of
main network parameters.

• Blockchain may be directly queried to check validity of a specific hash-value or find
matches of a certain block number, business unit or part ID.

This last feature is also available to external users, in case it is desired to check historic
values of a certain transaction. For example, a customer might be given this hash-value
along with the purchased part or batch of parts. The costumer, wishing to validate the
quality assurance given, merely has to query the hash-value from the blockchain. The
process that happens server-side is illustrated in diagram 5.27.

Data queries to the blockchain can follow one of two processes: either a hash-value is
given and it is directly used, checking its existence within all the simplified distributed
ledgers in all nodes; or in case the query is done for a specific business unit, block
number or part ID, possible hash-values are first retrieved from the centralized database
- Blockchain Collection - and only then are those hash-values cross-checked along the
blockchain. If hash-values match those stored in the distributed ledger, query response
is displayed in the frontend interface.

From the Dashboard page, it is possible to see in real-time the last block forged and
on the blockchain, network information such as total frontend visits or number of active
user accounts, and graphed data of time between each block being forged and of the
distribution of mined blocks in a per-node basis. Metrics directly being measured by the
MongoDB server are also available, like the average block size. Plotting of data is done
based on the Google Charts API, being fed dynamic data updates. Figure, 5.28, shows
the designed dashboard in operation.
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(a) Internal Account Interface.

(b) External Account Interface.

Figure 5.26: Frontend Interfaces for Different User Permissions.
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Figure 5.27: Diagram of Querying Mechanism.
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Figure 5.28: Designed Frontend Interface.
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Chapter 6

Testing and Conclusions

For testing, two distinct methodologies were used: firstly, the aforementioned simula-
tion platform was assembled and used to test the network’s functionalities; secondly, a
simulation program was devised to test response times and possible shortcomings of the
architecture. As the platform, being based on physical hardware, requires manual input
to operate, testing done by software allows for a greater exploit of the limits able to
achieve.

6.1 Network Security Testing

In order to test if correct network protocols are in place, namely if connections being
established are in fact TLS encrypted, Wireshark1was used. As all software procedures
for communication follow the same routines, testing was done mostly on what might be
considered one of the most data-sensible operations: user input of the login password.
As seen in figure, 6.1, connections are in fact TLS encrypted. Highlighted in blue, is the
message payload corresponding to the user login credentials.

Although version 1.3 of TLS was used in the web-servers, Wireshark displays TLS
1.2. This is likely caused by the not-yet optimized implementation of the newest TLS
version in the Flask micro web framework. However, using Mozilla’s Firefox Developer
Tools2, connections are shown being based on TLS 1.3, figure 6.2.

Lastly, connections performed using ESP devices also have encrypted payloads, albeit
in a symmetric-key scheme. Figure 6.3 shows one of the ESPs’ encrypted payloads,
monitored used Wireshark.

6.2 Network Performance Testing

6.2.1 Mining Node Performance

Performance testing with a varying amount of Mining Nodes was done by measuring
response times of the Query D.B. feature of the frontend interface. Seeing that the
network querying operation not only depends on the acting speed of the Blockchain

1Wireshark. Accessed 26 May, 2020. URL: https://www.wireshark.org/
2MDN Web Docs - Firefox Developer Tools. Accessed 26 May, 2020. URL: https://developer.

mozilla.org/en-US/docs/Tools?utm_source=devtools&utm_medium=tabbar-menu
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Figure 6.1: Wireshark TCP Packet Analysis.

Figure 6.2: Firefox Developer Tools Connection Security Analysis.

Administrator, but also of the Mining Nodes and of the MongoDB database, it becomes
representative of the latency seen all across the network. During this operation the
Blockchain Administrator must maintain the frontend’s functions whilst verifying hash-
values all along the blockchain, and, likewise, Mining Nodes must maintain regular mining
procedures as well as confirming hash-values and receiving new value submissions from
Gateways.

To see how well adding additional Mining Nodes scales in the network, a test sample
of 3, 5, 10, 15 and 20 nodes, along with one gateway pinging data at a random interval
between 0.5 and 3 seconds, were used. The gateway had a payload of five sensor value
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Figure 6.3: Wireshark HTTP Packet Analysis of a ESP Device Communication.

readings. Request timings, i.e., the time taken for a request to be sent and a response
to be received, was measure using Mozilla’s Firefox Developer Tools. Each manner of
blockchain query has a different impact on the network, for instance, queries that use a
hash-value directly are comparably much faster than those done using a part ID. This is
due to the amount of data being gathered - it is expected that a part ID returns more
than one match on-chain vs. one exact result for the hash-value - and differing amounts of
accesses required to the enterprise or centralized data-storage systems. Queries sampled
for testing were of three types: by block number; by hash-value or using each part’s ID.
All of the shown results were based on the average of 100 samples for each one of the
number-of-nodes combinations. Timings in queries by block number, plotted in figure
6.4, were the fastest seen during testing.

Figure 6.4: Request Timing in Query by Block Number.

The data clearly shows the linear increase of request processing times, with the num-
ber of nodes deployed. However, even for a somewhat large network, in terms of permis-
sioned blockchain standards, latency times are bellow those that are noticeable for the
end user. To see where the majority of time is being spent, for each request, distribution
of time between each stage of a HTTP request was plotted for the most extreme scenarios
- 3 and 20 nodes, figures 6.5(a) and 6.5(b) respectively.

It becomes clear that in both cases, the Waiting procedure is the biggest bottleneck,
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(a) 3 Nodes on Network.

(b) 20 Nodes on Network.

Figure 6.5: Request Timing Subset Stages Division for Query by Block Number.

contemplating the time taken by the server, i.e., the Blockchain Administrator, to gather
the queried data and check hash-values with each one of the Mining Nodes individually.
Remaining of stages stay consistent with each other, regardless of number of nodes, which
is to be expected. Timings for queries by hash-values took longer, compared to queries
by block number, figure 6.6, in spite of a more reduced procedural workload.

Figure 6.6: Request Timing in Query by Hash-Value.

However, analysis of the timing divisions for extreme cases, figures 6.7(a) and 6.7(b),
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hints at the possibility that additional delay might have been caused by network connec-
tion as both the Blocked and SSL/TLS set-up stages also took longer, and they are not
dependent on server procedures.

(a) 3 Nodes on Network.

(b) 20 Nodes on Network.

Figure 6.7: Request Timing Subset Stages Division for Query by Hash-Value.

Lastly, plot of querying by Part ID, figure 6.8. This is the most work-intensive task
that can be placed on the network. Not only are all nodes always asked to cross-check
their internal ledgers with a given hash-values, as in the case of query by Part ID,
typically, more than one hash-value has to be validated. For the purpose of testing, each
query uses a part ID for which 3 results, blocks, are returned.

The trend of Waiting stage taking longest, continues, figures 6.9(a) and 6.9(b). As
3 blocks are returned to the user, this operation also takes roughly three times as much
time to render results, compared to other queries. Nonetheless, user experience of the
frontend is still perceived as quick.

On a final note, TLS connections introduce very little overhead in the final, imple-
mented architecture. This is a testament to the Python language web-capabilities, and
by extent the Flask web framework. Testing was also conducted with multiple gateways,
showing little to none influence over query times. However, due to the synchronous-
process nature of the Flask framework, complications could arise when two gateways
submit a transaction for mining at, roughly, the same time. Furthermore, the architec-
ture was also successfully deployed under a Windows10 environment, with very minimal
alterations done. Only the configuration files required, as expected, small tweaking.
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Figure 6.8: Request Timing in Query by Part ID.

(a) 3 Nodes on Network.

(b) 20 Nodes on Network.

Figure 6.9: Request Timing Subset Stages Division for Query by Part ID.

6.2.2 Mining Node RAM Usage

As Mining Nodes keep two simplified distributed ledgers, one on RAM and another as
a backup in a MongoDB collection, RAM usage was measured. To test this, a simple
Python script was devised to mimic procedures in the Mining Node. The hash-value of
a string was calculated and then appended to a Python dictionary, representing what
happens on a real node. As the output of a hash-function is always the same length,
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in this case 256 bits, the format or contents of the input string are not important. For
a more realistic test, this appending process took place until the dictionary contained
17.733.232 objects within it. This value was not chosen at random. Considering the
VDOP production line output of 1.616.112 yearly parts (as stated in section 2.2), and in
a worst case scenario, that each one of the 11 OPs at Line 2 produce one block per part,
17.733.232 blocks per year are mined, and as such, the same number of hash-values are
appended to the chain.

Dictionary object sizes were measured using Python’s built-in getsizeof() function,
present in the sys module. Returned values are in bytes. Python object sizes do not
scale linearly, as additional overhead is given by the interpreter to avoid overflow. To
study this, calculations were done for 17.733.232, representing one year of use, and for
88.666.160, representing five years of use. Obtained results are shown in figure 6.10.

Figure 6.10: Results of RAM Usage Testing.

As seen, for an entire year’s worth of block mining, space occupied in RAM for the
simplified ledger stayed under 0.15 Gigabytes. Furthermore, the amount of overhead
added is minimal, with the expected value for five years of use scaling roughly linearly
with the one year value.

6.2.3 MongoDB Space Usage

Total storage space used by the MongoDB was tested to assess the viability of its use
as an enterprise system, opposed to a traditional SQL ledger. To do this, several sizes
of block payloads were used, simulating 5, 10, 20 and 50 sensor readings within a block.
Figure 6.11 shows an example of a block with five of these sensor readings.

Using the MongoDB shell, it is possible to retrieve statistical data of the stored col-
lections. Using this feature, total storage space used and average block size was collected.
As MongoDB allocates space in an almost linear fashion, all tests were conducted for a
sample of 1000 blocks, for later extrapolation of results. Table 6.1 summarizes found
results. As stated in the MongoDB reference manual3, Collection Size returns the total
uncompressed size in memory of all records in a collection. An yearly estimate of space
usage was calculated, shown in table 6.2, assuming the same value of 17.733.232 blocks
per year. Even for the highest tested scenario, a value of around 20 Gigabytes per year
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Figure 6.11: Example of a Block With Five Sensor Readings. As Stored in MongoDB.

of storage is not impractical, although higher than what would be seen if used a SQL
database.

# Payload Values Collection Size [Bytes] Average Block Size [Bytes]

5 359120 358
10 429120 428
20 570120 569
50 989120 988

Table 6.1: MongoDB storage space used with varying number of payload values.

# Payload Values Yearly Estimate [Gigabytes]

5 6.35
10 7.59
20 10.09
50 17.52

Table 6.2: Estimate of yearly storage space used by MongoDB, for each number of
payload values.

6.3 Conclusions

Overall, the devised architecture performs adequately, accomplishing all initially set-out
objectives. Mining and access of data happens at a fast pace, allowing for fast transac-
tion certification. By choosing a highly supported general-use programming language,

3MongoDB Reference Manual - collStats. Accessed 27 May, 2020. URL: https://docs.mongodb.
com/manual/reference/command/collStats/#output
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Python, for the framework’s foundations, it not only allowed for compatibility across mul-
tiple platforms, as also supports future expansion of the architecture by easily adding or
improving functionalities. Compatibility with multiple different interfacing devices, such
as sensors or IoT, was also assured. With minimal alteration, this framework could be
used to highly strengthen the security of IoT powered network architectures, typically
associated with serious security shortcoming. Security measures were implemented all
throughout the solution, from device-to-device communications; personal user-data; to
the securing of used databases. All selected security and cryptographic protocols, are
among, if not the very best, currently on the market.

Choosing MongoDB for data-storage has both advantages and disadvantages. For
one, not requiring a strict data format is an obvious selling point, allowing to miss-match
different information all within the same collection. This does come at the cost of storage
space and query speed. If a SQL database were to be used, total storage space would be
considerably smaller. However, during all the tests performed, database read and write
speeds were never an issue; even when a very specific query was made (e.g., a certain
payload value within a block). To reduce storage size, small alterations were done, such
as using hash-values as _id fields, and by shortening the name of each field (e.g., pl
instead of payload).

For a commercial deployment, instead of using the built-in web-server of the Flask
micro framework, a commercial grade server should be used. This transaction process is
eased, as Flask’s main objective is to be deployed within a Web Server Gateway Inter-
face (WSGI) server, such as Heroku, Microsoft Azure, Google App Engine or Apache.
Nonetheless, to manage multiple gateways submitting data, within a very short interval
of each other, an asynchronous server should be deployed. Currently, this is the biggest
limitation in the framework. Another alternative, would be the use of a queuing method,
to avoid having two nodes mining blocks at an almost simultaneous time. Node scalabil-
ity and performing real-time changes to the network layout is also guaranteed, as special
care was given into adding a degree of abstraction between each network component.
Lastly, this is a cost-effective way of strengthening any existing network, with the only
expenditure being associated with cost of hardware used for testing and time required
for development, as all software is open-source.

6.4 Future Work

Combined scholar and enterprise work has made possible new advances in quantum com-
puting. Recent efforts have proven that quantum technology has the potential to largely
outperform current computational platforms, solving in a matter of a few seconds, prob-
lems that would otherwise take several hundred years [37]. Although, existing quantum
processors are not yet fully developed, it is expected that they will be capable of breaking
Elliptic Curve Digital Signature Algorithm (ECDSA) digital signature schemes within
the next decade [38]. Post-Quantum digital signature schemes then emerge as having the
potential to withstand quantum attacks.

These post-quantum cryptographic primitives have several tradeoffs when compared
with traditional algorithms, often-times having significantly slower computation times.
Nevertheless, Google, Cloudflare and Microsoft have all reported positive results of in-
tegrating post-quantum key exchange algorithms with the current TLS 1.3 protocol [39].
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Likewise, NIST Post-Quantum Cryptography Standardization project has began work in
preparing the existing TLS mechanisms for post-quantum cryptography; and a fork of
OpenSSL called OQS-OpenSSL has been created to provide an open-source tool-set for
prototyping quantum-resistant cryptography4.

With these new emerging technologies, it is not unfeasible the integration of quantum-
resistant cryptography into the devised architecture as to ensure confidence in a long
standing deployment of the platform, particularly with the use of newer, quantum com-
pliant, versions of TLS.

4Open Quantum Safe - Open Quantum Safe. Accessed 26 June, 2020. URL: https://
openquantumsafe.org/
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Appendix A

MicroPython

A.1 What is MicroPython?

MicroPython, or µPython, was created by Damien George, and is a reimplementation
of the Python programming language, developed for use with microcontrollers and em-
bedded systems [40]. Most features of Python 3 are present in MicroPython, such as
Python’s style of object orientation; data types and data structures; Python objects;
functions as first-class objects; and exception handling.

MicroPython is designed to work under extremely constrained devices, some with as
little as 16 kilobytes of Random Access Memory (RAM). As such, concessions were made,
namely, the full Python library is not present by default, although it is possible to import
desired modules later. Standard libraries included in MycroPython’s firmware will vary
according to the device at hand, but modules for interacting with low-level hardware;
GPIO pins; and peripherals are universal.

Compared with other programming languages traditionally used in constrained devices,
like for instance the C language, MicroPython runs slower as additional overheads are
required. However, in many situations, MicroPython might actually outperform C, as
prototyping is much faster due to the wide range of built-in features inherited from
conventional Python.

In any case, it is still possible to write MicroPython modules entirely in C, as well as
using inline assembler, for use cases that require every-bit of speed or memory efficiency.

A.2 Installing MicroPython Firmware on ESP8266/32 Devices

A wide range of embedded and IoT devices are capable of running MicroPython, among
the most notable are:

PyBoard Development board designed and sold directly by the MicroPython Organiz-
ation. It was the first device to have MicroPython support, and is one of the most
powerful of this list.

BBC micro:bit Beginner computing device, created by the British Broadcasting Com-
pany (BBC).
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Adafruit Circuit Playground Express Development board with a high number of
built-in inputs/outputs. This board runs a fork of MicroPython called CircuitPy-
thon, developed by Adafruit themselves.

ESP8266/32 Two of the most well-known IoT devices, with the ESP32 being an evol-
ution of the ESP8266. They are both powerful boards that include a full TCP/IP
network stack built-in.

All of the previously mentioned devices run MicroPython natively, with the excep-
tion of the ESP8266/32 boards. For these two microcontrollers, manual installation of
firmware is required.

Firstly, download the most recent build of the firmware from MicroPython’s release
page [41]. The appropriate build must be chosen considering the board and device variant.
If the wrong firmware is used, an error will appear during flashing.

To flash the firmware, the device must be in boot-loader mode. Placing a device in
boot-loader mode depends upon the device itself, but as a general rule of thumb, if a
built-in USB connector is present, the process happens automatically.

A Python utility is required to start flashing the firmware, or alternatively, by using
tools provided by an appropriate Integrated Development Environment (IDE) (further
details on section A.3). To use the utility, first install it by typing the following command
in the terminal/command line:

1 $ pip install esptool

Note that, dependent on what Python version is used, "pip3" might be necessary.
Once esptool.py is installed, erase the flash memory, and with it previously installed
firmwares:

1 $ esptool.py --port PORT erase_flash

PORT should be replaced with the actual port in the PC to which the device is
connected. In Windows this would be a numbered COM port (e.g., COM4) and in *NIX
operating systems it would be a tty interface (e.g., /dev/ttyUSB0).

Next, the firmware can finally be flashed:

1 $ esptool.py --port PORT --baud 460800 write_flash \
2 --flash_size=detect 0 PATH/TO/firmware.bin

"PATH/TO/" must state the path to the firmware. Additionally, the name of the
firmware will replace "firmware.bin". If any error occurs, reduce the baudrate to 115200
bauds.

To check if the board is now MicroPython complaint, start the Read, Evaluate, Print,
Loop (REPL):

1 $ picocom --baud =115200 /dev/ttyUSB0

If no errors are prompted, check the pre-installed modules for the used device:

1 >>> help(’modules ’)

A full list of modules should now be printed to the Command Line Interface (CLI).
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A.3 MicroPython IDEs

MicroPython is still very much in its infancy, and third-party support is yet hard to find.
As such, not many options for IDEs exist, however the following are available:

Thonny IDE A Python development IDE that also supports MicroPython.

PyCharm-Community Another Python development IDE, it is possible to install a
plug-in allowing for MicroPython frameworks. Community is freeware, but a paid
version also exists.

µPyCraft IDE An IDE specifically designed to work with MicroPython.

All of above mentioned software allows scripting and transfer of programs; device
filesystem browsing; firmware installation tools; and live REPL. Other viable options
exist, but were not tested. Out of the three mentioned, Thonny IDE seems the most stable
under *NIX environments and the easiest to use to browse MicroPython filesystems.

Complementary, and not an IDE, WebREPL is instead a web application hosted at
MicroPython’s website that allows access to the device’s filesystem and live REPL.

A.4 MicroPython Code

MicroPython syntax varies very little from that of standard Python, with most differences
residing on the availability of modules.

Some of the modules built-in to the firmware will have the µ prefix, indicating that
it is a MicroPython variation of a standard Python module. Usually, most features are
ported over, with a few deprecated or niche-use functions being removed, and others
adapted for use in constrained devices.

Modules will also vary from device to device. For instance, accessing an analogue pin
in the ESP32 is done in a slightly different manner compared to the ESP8266.

Lastly, there are two special file names: boot.py and main.py. When a boot.py
file is uploaded to the device, the script is always ran after a hard-reset or startup. Any
variables declared in boot.py will stay in memory.

After boot.py script ends, the device will automatically run main.py - the main loop
is declared here. If no boot.py file is present, the device will search for main.py instead
on start-up.

Other file names can be used, but they will require a manual run command. Best
practice would be to use the boot.py file for constant variable declaration and module
import; main.py for scripts with the main loop; and any other name for user created or
non-standard modules wished to import.

GPIO Control

1 # main.py
2

3 # Code compatible with both
4 # the ESP32 /8266
5

6 # machine module allows for
7 # low -level hardware control
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8 from machine import Pin
9

10 # Define GPIO pins to use
11 # Digital Output
12 X1 = Pin(16, Pin.OUT)
13 # Digital Input
14 btn1 = Pin(18, Pin.IN)
15

16 # Activate a digital output
17 X1.on()
18 # Deactivate a digital output
19 X1.off()
20

21 # Read digital input
22 read_val = btn1.value()
23

24 # Analogue input (ESP8266)
25 # Declaring Pin 0 as ADC input
26 # No other pin is ADC capable
27 # in the ESP8266
28 an_pin = ADC(0)
29

30 # Analogue input (ESP32)
31 an_pin = ADC(Pin (36))
32

33 # Following line is optional
34 # ESP32 internal ADC can be
35 # configured with several
36 # macros , e.g.:
37 # Full 3.3V range for ADC conversion
38 an_pin.atten(ADC.ATTN_11DB)
39

40 # Read value (ESP32 /8266)
41 read_an = an_pin.read()

Listing A.1: Controlling GPIO in MicroPython.

Using Callback Functions

1 # main.py
2

3 # Using callbacks to functions to
4 # handle an interrupt caused by a
5 # button click
6

7 from machine import Pin
8

9 def callback_funct(p):
10 ’’’
11 callback_funct Callback function to
12 handle button press interrupt.
13

14 Arguments:
15 p {int} -- Pin number wished to print
16 ’’’
17 print(’Pin’, p)
18

19 p0 = Pin(0, Pin.IN)
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20 p0.irq(trigger=Pin.IRQ_FALLING ,
21 handler=callback_funct)
22

Listing A.2: Using Callback Functions in MicroPython.

Network Connection

1 # main.py
2

3 import network
4

5 ssid = ’NETWORK_SSID ’
6 password = ’PASSWORD ’
7

8 station = network.WLAN(network.STA_IF)
9 station.active(True)

10 station.connect(ssid , password)
11

12 while station.isconnected () == False:
13 pass
14

15 # Device should be connected ,
16 # but to check , use:
17

18 if station.isconnected ():
19 print(’Successful Connection ’)
20

21 # You can see the IP of your
22 # device:
23 station.ifconfig ()
24

Listing A.3: Managing Network Connections in MicroPython.
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Appendix B

Programming of ESP Devices

This appendix shows code used in encrypting communications done by the ESP devices,
ESP32 and ESP8266.

B.1 ESP32

1 # main.py - ESP32
2

3 ’’’
4 Main file for uPython edge/sending layer devices.
5 For use in ESP32.
6 ’’’
7 import gc
8 import select
9 import sys

10 import esp
11 import machine
12 import network
13 import ubinascii
14 import uhashlib
15 import ujson
16 import uos
17 import urequests
18 from machine import ADC , Pin
19 from ucryptolib import aes
20 from time import sleep
21

22 # Machine Unique ID
23 ID = "c86a301a -d227 -4ea1 -96a0 -40 f96de728cf".encode(’utf -8’)
24

25 # Disable on bootloader mode OS debug
26 # Enable garbage colector (free unused mem.)
27 esp.osdebug(None)
28 gc.collect ()
29

30 # Encryption constants
31 MODE_CBC = 2
32 BLOCK_SIZE = 16
33

34 # Pin declaration and configuration
35 LDR = ADC(Pin (36))
36 LDR.atten(ADC.ATTN_11DB)
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37 BTN = Pin(16, Pin.IN)
38 LED = Pin(17, Pin.OUT)
39

40 # Network settings
41 SSID = ’Cabovisao -8A6C’
42 PASSW = ’e0ca94b08a6c ’
43

44 STATION = network.WLAN(network.STA_IF)
45 STATION.active(True)
46

47 STATION.ifconfig ((’192.168.1.200 ’,
48 ’255.255.255.0 ’,
49 ’192.168.1.1 ’,
50 ’213.228.128.99 ’))
51

52 def j_encode(data):
53 ’’’
54 j_encode Function to encode data in a JSON format.
55

56 Arguments:
57 data {str} -- Data to convert to JSON object.
58

59 Returns:
60 Converted JSON object.
61 ’’’
62 return ujson.dumps(data).encode(’utf -8’)
63

64

65 def hash_data(data):
66 ’’’
67 hash_data Calculate hash -value of any input string using SHA -256
68 hash -function.
69

70 Arguments:
71 data {str} -- String from which to calculate the hash -value.
72

73 Returns:
74 Calculate hash -value.
75 ’’’
76 return uhashlib.sha256(data).digest ()
77

78

79 def pad_data(data , block_size=BLOCK_SIZE):
80 ’’’
81 pad_data Create padding for plaintext string , making it possible to
82 use AES block ciphers.
83

84 Arguments:
85 data {str} -- Plaintext data to pad.
86

87 Returns:
88 Padded data , using blank spaces as pads.
89 ’’’
90 pad = BLOCK_SIZE - len(data) % BLOCK_SIZE
91 padded_data = data + " "*pad
92 return padded_data
93

94

D.F.D. Costa Master Degree



B.Programming of ESP Devices 93

95 def encryption(plaintext):
96 ’’’
97 encryption Function to encrypt plaintext , using AES block ciphers -
98 CBC.
99

100 Arguments:
101 plaintext {str} -- Unecrypted plaintext.
102

103 Returns:
104 Encryption of plaintext.
105 ’’’
106 plaintext = j_encode(plaintext)
107

108 key = uhashlib.sha256(ID).digest ()
109

110 plaintext = pad_data(plaintext)
111

112 iv = uos.urandom(BLOCK_SIZE)
113 cipher = aes(key , MODE_CBC , iv)
114

115 encrypted = iv + cipher.encrypt(plaintext)
116

117 return encrypted
118

119

120 def check_LDR_vals ():
121 ’’’
122 check_LDR_vals Send data to gateway node through a HTTP request.
123 The LED status is changed upon a certain threshold of the analog
124 read to simulate further inputs.
125 ’’’
126 analog = LDR.read()
127

128 if analog > 2000:
129 LED.on()
130 else:
131 LED.off()
132

133 # Data structure to send to Gateway Node.
134 data = {’sensing_unit ’: ’S002’, # Sensing Unit No.
135 ’LDR’: analog , # LDR read value
136 ’LED’: LED.value()} # Value of debug LED
137

138 # Send HTTP request.
139 r = urequests.post(’http ://192.168.1.12:5500/ esp/vals’,
140 data=( encryption(data)))
141

142 # Using limited hardware , connection has to be manually
143 # terminated.
144 r.close()
145

146

147 STATION.connect(SSID , PASSW)
148

149 while STATION.isconnected () == False:
150 pass
151

152 print(’Ready ’)
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153

154 while True:
155

156 if BTN.value():
157 check_LDR_vals ()
158 else:
159 LED.off()
160

161 sleep (0.1)

Listing B.1: Script for Encrypting ESP32 Communications.

B.2 ESP8266

1 # main.py - ESP8266
2

3 ’’’
4 Main file for uPython edge/sending layer devices.
5 For use in ESP8266.
6 ’’’
7 import gc
8 import select
9 import sys

10 import esp
11 import machine
12 import network
13 import ubinascii
14 import uhashlib
15 import ujson
16 import uos
17 import urequests
18 from machine import ADC , Pin
19 from ucryptolib import aes
20 from time import sleep
21

22 # Machine Unique ID
23 ID = "6042b3be -0e40 -4a7f -9454 - c2fd2b8dc8ec".encode(’utf -8’)
24

25 # Disable on bootloader mode OS debug
26 # Enable garbage colector (free unused mem.)
27 esp.osdebug(None)
28 gc.collect ()
29

30 # Encryption constants
31 MODE_CBC = 2
32 BLOCK_SIZE = 16
33

34 # Pin declaration and configuration
35 LDR = ADC(0)
36 BTN = Pin(4, Pin.IN)
37 LED = Pin(12, Pin.OUT)
38

39 # Network settings
40 SSID = ’Cabovisao -8A6C’
41 PASSW = ’e0ca94b08a6c ’
42

43 STATION = network.WLAN(network.STA_IF)
44 STATION.active(True)
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45

46 STATION.ifconfig ((’192.168.1.201 ’,
47 ’255.255.255.0 ’,
48 ’192.168.1.1 ’,
49 ’213.228.128.99 ’))
50

51

52 def j_encode(data):
53 ’’’
54 j_encode Function to encode data in a JSON format.
55

56 Arguments:
57 data {str} -- Data to convert to JSON object.
58

59 Returns:
60 Converted JSON object.
61 ’’’
62 return ujson.dumps(data).encode(’utf -8’)
63

64

65 def hash_data(data):
66 ’’’
67 hash_data Calculate hash -value of any input string using SHA -256
68 hash -function.
69

70 Arguments:
71 data {str} -- String from which to calculate the hash -value.
72

73 Returns:
74 Calculate hash -value.
75 ’’’
76 return uhashlib.sha256(data).digest ()
77

78

79 def pad_data(data , block_size=BLOCK_SIZE):
80 ’’’
81 pad_data Create padding for plaintext string , making it possible to
82 use AES block ciphers.
83

84 Arguments:
85 data {str} -- Plaintext data to pad.
86

87 Returns:
88 Padded data , using blank spaces as pads.
89 ’’’
90 pad = BLOCK_SIZE - len(data) % BLOCK_SIZE
91 padded_data = data + " "*pad
92 return padded_data
93

94

95 def encryption(plaintext):
96 ’’’
97 encryption Function to encrypt plaintext , using AES block ciphers -
98 CBC.
99

100 Arguments:
101 plaintext {str} -- Unecrypted plaintext.
102
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103 Returns:
104 Encryption of plaintext.
105 ’’’
106 plaintext = j_encode(plaintext)
107

108 key = uhashlib.sha256(ID).digest ()
109

110 plaintext = pad_data(plaintext)
111

112 iv = uos.urandom(BLOCK_SIZE)
113 cipher = aes(key , MODE_CBC , iv)
114

115 encrypted = iv + cipher.encrypt(plaintext)
116

117 return encrypted
118

119

120 def check_LDR_vals ():
121 ’’’
122 check_LDR_vals Send data to gateway node through a HTTP request.
123 The LED status is changed upon a certain threshold of the analog
124 read to simulate further inputs.
125 ’’’
126 analog = LDR.read()
127

128 if analog > 2000:
129 LED.on()
130 else:
131 LED.off()
132

133 # Data structure to send to Gateway Node.
134 data = {’sensing_unit ’: ’S003’,
135 ’LDR’: analog ,
136 ’LED’: LED.value()}
137

138 # Send HTTP request.
139 r = urequests.post(’http ://192.168.1.15:5500/ esp/vals’,
140 data=( encryption(data)))
141

142 # Using limited hardware , connection has to be manually
143 # terminated.
144 r.close()
145

146

147 STATION.connect(SSID , PASSW)
148

149 while STATION.isconnected () == False:
150 pass
151

152 print(’ESP Ready!’)
153

154 while True:
155

156 if not BTN.value():
157 check_LDR_vals ()
158 else:
159 LED.off()
160
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161 sleep (0.1)

Listing B.2: Script for Encrypting ESP8266 Communications.
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Appendix C

Frontend Interface

This appendix contains all the developed frontend interface features not shown previously.

Figure C.1: User Account Settings.
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Figure C.2: User Activity Log.
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Figure C.3: User Password Change Option.
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Figure C.4: Blockchain Network Settings.
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Figure C.5: Query D.B. Function - Open in Internal User/Administrator Account.
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Appendix D

MongoDB

D.1 Installing MongoDB

Download resources and a detailed installation guide are both available at the MongoDB
official website1. Instructions are provided for all major operating systems, complete
with debbuging and troubleshooting tips.

D.2 MongoDB Configuration

The primary daemon process for the MongoDB system is called mongod, and handles
data requests, data access management, and performs background management opera-
tions. To allow control of the configurations used by mongod on startup, a configuration
file written in YAML Ain’t Markup Language (YAML) may be provided. Note that,
YAML, a superset of JSON, does not support tab characters for indentation, requiring
the use of spaces.

The default configuration file is shown in figure D.1. This file is created during
installation of the MongoDB database, but is not used when the mongod is initialized,
unless specifically requested by the user. For example, the following uses mongod –
config <configuration file>:

1 $ mongod --config /etc/mongod.conf

D.3 Interfacing the MongoDB Database

The mongo shell is an interactive JavaScript interface to MongoDB, allowing the user
to query and update data, as well as perform administrative operations. Launching
the mongo shell in its default mode can easily be done by typing the following in the
command line or terminal:

1 $ mongo

This prompt can be further built-upon by adding options when launching themongo
shell. For instance, in case of the developed framework, as all connections are TLS
encrypted, so does need be the mongo session. Additionally, to avoid certificate conflict,

1MongoDB Documentation - Install MongoDB. Accessed 26 May, 2020. URL: https://docs.
mongodb.com/manual/installation/
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Figure D.1: Default MongoDB Configuration File.

a URL was bound to the MongoDB’s IP address, which also needs to be provided.
Under these circumstances, the following command is required to allow a successful shell
connection to the database:

1 $ mongo --tls --tlsCertificateKeyFile /etc/Certificates/client1.pem --
tlsCAFile /etc/Certificates/ca.pem --host mongodb.blockchain.com

D.3.1 Basic MongoDB Shell Commands

For a correct configuration of the mongod instance and deployment of the mongo shell,
the following result should be obtained, figure D.2. Using the show dbs command, all
existing databases should be listed. In a clean MongoDB install three databases are
present: admin; config; and local. Creating or choosing an existing database is done
with the use command. For instance use TestDatabase, would create a database
named TestDatabase. Within databases, collections exist and they can also be viewed
using show collections.

Figure D.3 shows the creation of a database, TestDatabase, and figure D.4 the
creation of a collection, TestCollection. Some data is inserted in the TestCollection
collection, figure D.5, and the output is visualized. It is possible to see that a ObjectID
is created, as no _id field was provided by the user. If this value is given manually, this
field is no longer created automatically by MongoDB.

To see what data is present in a collection, the find() method is called, figure D.6.
Using the second, pretty(), command, parses the JSON data in a more human-readable
format. Lastly, deleting an entry is shown in figure D.7, with the new find() method
output returning nothing, as expected.

A more detailed explanation into the available commands and their uses is found in
the MongoDB reference guide2.

2MongoDB Documentation - Guides - Getting Started. Accessed 26 May, 2020. URL: https://docs.
mongodb.com/guides/
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Figure D.2: MongoDB Shell.

Figure D.3: Creating a Database.

Figure D.4: Creating a Collection.

Figure D.5: Inserting Values in Created Collection.

Figure D.6: Querying for Values in Collection.
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Figure D.7: Deleting Values in Collection.
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Appendix E

Proposed Framework Step-by-Step
Deployment Guide

E.1 Step 1 - Software Installation

Firstly it is necessary to retrieve all required software for the framework’s deployment,
including: MongoDB database (as per appendix D instructions); and Python, version
3.7.x or higher, along with the correct version of the pip installer. Python can be down-
loaded for all major operating systems directly from the Python Foundation’s website1,
but note that in the case of a Linux-based OS, most distributions come with Python
pre-installed.

Next are the requirements for use with Python itself, with necessary modules being
installed using the pip command. A requirements.txt file exists within the Truth-Of-
Chain source code folder to aid in the process, and the following command in a UNIX
Bash terminal or Windows command line is sufficient:

1 $ pip install -r requirements.txt

Note that it is first recommend to check the installed pip version using pip -V. If an
error occurs, it is likely that pip3 is installed, which would lead to the command used
being:

1 $ pip3 install -r requirements.txt

E.2 Step 2 - Hosts Table Modification

This step depends on whether or not the platform is being used for a simulation or
for commercial deployment. In case it is used for simulation, fictitious addresses must
be provided to the hosts table found in any major operating system. Otherwise, this
step can either be skipped or the real-life external IP address of the several network
elements (i.e., Blockchain Administrator, Mining Nodes, Database, and Gateways) can
be bound to a different common name. For instance, instead of using a public IP such
as 217.129.220.139, bind this IP to admin.blockchain.com.

1Python - Download the Latest Source Release. Accessed 26 May, 2020. URL: https://www.python.
org/downloads/
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E.3 Step 3 - Configure MongoDB

MongoDB does not, by default, use TLS encrypted connections. This must be addressed
through the edit of the configuration file, such as is shown in figure E.1. As seen,
parameters referring to the mongod.log file are commented out of use, as sometimes
the location of this file is problematic and might hinder the database’s deployment.

Figure E.1: Proposed MongoDB Configuration File.

The value inserted in the bindIP parameter is merely suggestive, with the actual
value depending on values attributed on the hosts table or the public IP address of the
server running the MongoDB. The mongod daemon is now ready to be initiated, as
demonstrated in appendix D.

E.4 Step 4 - Configure the Remaining Network Elements

Three more configuration files - config.json - need to be edited for each one of the
remaining network elements: Blockchain Administrator, Mining Nodes and Gateways.
After this step, within each corresponding source code folder, the Python scripts can be
run using the command: python3 <file name>.

Attention: file paths under Windows follow different rules from Linux-based oper-
ating systems; and as such this must be corrected.
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E.5 Step 5 - Accessing the Frontend Interface

After Step 5, access to the frontend interface is possible. To achieve this, it is first neces-
sary to provide the appropriate TLS certificates to the browser, otherwise connection will
be refused by the Blockchain Administrator. As an example, Mozilla’s Firefox Browser
77.0.1 (64 b-bit) is used. Go to Preferences -> Security -> Certificates and choose
the View Certificates option, figure E.2. The Certificate Manager will pop-up and
now the user’s public key can be imported in the Your Certificates tab, figure E.3, and
a new authority must be added in the Authorities tab, figure E.4. This is the public
key corresponding to the custom CA created.

Figure E.2: Security Preferences in Firefox Browser.
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Figure E.3: Adding a Personal Certificate in Firefox Browser.

E.6 Step 6 - Configuring the Network in the Frontend In-
terface

The last step is done in the fronted interface, with the network elements deployed in Step
4 being added to the blockchain system in the Settings page. Note that access for this
procedure is reserved to an administrator account.
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Figure E.4: Adding a Certificate Authority in Firefox Browser.
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