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1. Introduction

The Human Immunodeficiency Virus (HIV) is responsible for a very high number of deaths world-
wide. Acquired Immuno Deficiency Syndrome (AIDS) is a disease of the human immune system
caused by infection with HIV. The HIV virus can be transmitted by several ways but there is no cure
or vaccine for AIDS. Nevertheless, antiretroviral (ART) treatment improves health, prolongs life and
reduces the risk of HIV transmission. The ART treatment increases life expectation but has some
limitations. For instance, it doesn’t restore health, has some side effects, and is very expensive. Indi-
viduals infected with HIV are more likely to develop tuberculosis because of their immunodeficiency,
so a model that considers HIV and tuberculosis is very interesting to investigate. One can find many
studies in the literature [1–3]. A TB-HIV/AIDS co-infection model, that contains the celebrated SICA
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(Susceptible–Infected–Chronic–AIDS) model as a sub-model, was first proposed in [4]:

Ṡ (t) = Λ − λ(t)S (t) − µS (t),

İ(t) = λ(t)S (t) − (ρ + φ + µ)I(t) + αA(t) + ωC(t),

Ċ(t) = φI(t) − (ω + µ)C(t),

Ȧ(t) = ρ I(t) − (α + µ + d)A(t),

(1.1)

where
λ(t) =

β

N(t)
[
I(t) + ηCC(t) + ηAA(t)

]
(1.2)

with
N(t) = S (t) + I(t) + C(t) + A(t) (1.3)

the total population at time t. The meaning of the parameters that appear in the SICA model (1.1)–(1.3)
are given in Table 1.

Table 1. Parameters of the SICA model (1.1)–(1.3).

Symbol Description
N(0) Initial population
Λ Recruitment rate
µ Natural death rate
β HIV transmission rate
φ HIV treatment rate for I individuals
ρ Default treatment rate for I individuals
α AIDS treatment rate
ω Default treatment rate for C individu-

als
d AIDS induced death rate
ηC Modification parameter
ηA Modification parameter

The model considers a varying population size in a homogeneously mixing population, subdividing
the human population into four mutually-exclusive compartments:

- susceptible individuals (S );
- HIV-infected individuals with no clinical symptoms of AIDS (the virus is living or developing in

the individuals but without producing symptoms or only mild ones) but able to transmit HIV to
other individuals (I);

- HIV-infected individuals under ART treatment (the so called chronic stage) with a viral load
remaining low (C);

- HIV-infected individuals with AIDS clinical symptoms (A).

The SICA model has some assumptions. It can be seen in [5] that the susceptible population is in-
creased by the recruitment of individuals into the population, assumed susceptible at a rate Λ. All
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individuals suffer from natural death at a constant rate µ. Susceptible individuals S acquire HIV infec-
tion, following effective contact with people infected with HIV, at rate λ (1.2), where β is the effective
contact rate for HIV transmission. The modification parameter ηA ≥ 1 accounts for the relative in-
fectiousness of individuals with AIDS symptoms, in comparison to those infected with HIV with no
AIDS symptoms. Individuals with AIDS symptoms are more infectious than HIV-infected individ-
uals because they have a higher viral load and there is a positive correlation between viral load and
infectiousness. On the other hand, ηC ≤ 1 translates the partial restoration of the immune function
of individuals with HIV infection that use correctly ART. The SICA mathematical model (1.1)–(1.3)
is well-studied in the literature [5]. It has shown to provide a proper description with respect to the
HIV/AIDS situation in Cape Verde [6] and recent extensions include stochastic transmission [7] and
fractional versions with memory and general incidence rates [8]. Here our main aim is to propose, for
the first time in the literature, a discrete-time SICA model.

For most nonlinear continuous models in engineering and natural sciences, it is not possible to
obtain an exact solution [9], so a variety of methods have been constructed to compute numerical so-
lutions [10, 11]. It is well known that numerical methods, like the Euler and Runge–Kutta, among
others, often fail to solve nonlinear systems. One of the reasons is that they generate oscillations and
unsteady states if the time step size decreases to a critical size [12]. Among available approaches to ad-
dress the problem, the nonstandard finite discrete difference (NSFD) schemes, introduced by Mickens
in [13, 14], have been successfully applied to several different epidemiological models [15, 16]. Pre-
cisely, the NSFD schemes were created to eliminate or reduce the occurrence of numerical instabilities
that generally arise while using other methods. This is possible because there are some designed laws
that systems must satisfy in order to preserve the qualitative properties of the continuous model, such
as positivity, boundedness, stability of the equilibrium points, conservation laws, and others [17]. The
literature on Mickens-type NSFD schemes is now vast [18, 19]. The paper [20] considers the NSFD
method of Mickens and apply it to a dynamical system that models the Ebola virus disease. In [21], a
NSFD scheme is designed in which the Metzler matrix structure of the continuous model is carefully
incorporated and both Mickens’ rules on the denominator of the discrete derivative and the nonlocal
approximation of nonlinear terms are used. In that work the general analysis is detailed for a MSEIR
model. In [22], the authors summarize NSFD methods and compare their performance for various
step-sizes when applied to a specific two-sex (male/female) epidemic model; while in [23] it is shown
that Mickens’ approach is qualitatively superior to the standard approach in constructing numerical
methods with respect to productive-destructive systems (PDS’s). NSFD schemes for PDS’s are also
investigated in [24]; NSFD methods for predator-prey models with the Beddington–De Angelis func-
tional response are studied in [25]. Here we propose and investigate, for the first time in the literature,
the dynamics of a discretized SICA model using the Mickens NSFD scheme.

The paper is organized as follows. Some considerations, regarding the continuous SICA model
and the stability of discrete-time systems, are presented in section 2. The original results are then
given in section 3: we start by introducing the discretized SICA model; we find the equilibrium points,
prove the positivity, Theorem 3, and boundedness of the solutions, Theorem 4; we also establish the
local stability of the disease free equilibrium point of the discrete model, Theorem 5, as well as the
global stability of the equilibrium points, Theorems 6 and 7. In section 4, we provide some numerical
simulations to illustrate the stability of the NSFD discrete SICA model using a case study. We end
with section 5 of conclusion.
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2. Preliminaries

In this section, we collect some preliminary results about the continuous SICA model [4], as well
as results for the stability of discrete-time systems [26], useful in our work.

2.1. The continuous SICA model

All the information in this section is proved in [4]. Each solution (S (t), I(t),C(t), A(t)) of the contin-
uous model much satisfy S (0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, and A(0) ≥ 0, because each equation represents
groups of human beings. Adding the four equations of (1.1), one has

dN
dt

= Λ − µN − dA ≤ Λ − µN,

so that

N(t) ≤
Λ

µ
+

(
N0 −

Λ

µ

)
e−µt .

Therefore, the biologically feasible region is given by

Ω =

{
(S , I,C, A) ∈ (R4

0)+ : 0 ≤ S + I + C + A ≤
Λ

µ

}
, (2.1)

which is positively invariant and compact. This means that it is sufficient to study the qualitative
dynamics in Ω. The model has two equilibrium points: a disease free and an endemic one. The disease
free equilibrium (DFE) point is given by

(S ∗, I∗,C∗, A∗) =

(
Λ

µ
, 0, 0, 0

)
.

Following the approach of the next generation matrix [27], the basic reproduction number R0 for model
(1.1), which represents the expected average number of new infections produced by a single HIV-
infected individual in contact with a completely susceptible population, is given by

R0 =
β(C3C2 + ρηAC3 + φηCC2)
ρC3(µ + d) + µC2(C3 + φ)

=:
N

D
,

where along all the manuscript we use C1 = ρ + φ + µ, C2 = α + µ + d, and C3 = ω + µ. The endemic
point has the following expression:

(S ∗, I∗,C∗, A∗) =

(
Λ

λ∗ + µ
,−
λ∗ΛC2C3

D
,−
φλ∗ΛC2

D
,−
ρλ∗ΛC3

D

)
,

where D = −(λ∗ + µ)(µ(C3(ρ + C2) + C2φ + ρd) + ρωd) and

λ∗ =
β(I∗ + ηCC∗ + ηAA∗)

N∗
=

D(R0 − 1)
C2C3 + φC2 + ρC3

, (2.2)

which is positive if R0 > 1. The explicit expression of the endemic equilibrium point of (1.1) is given
by

S ∗ =
Λ(D− ρdC3)
µ(N − ρdC3)

, I∗ =
ΛC2C3(D−N)
D(ρdC3 − N)

, C∗ =
ΛC2φ(D−N)
D(ρdC3 − N)

, A∗ =
ΛρC3(D−N)
D(ρdC3 − N)

.
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Regarding the stability of the equilibrium points, Theorem 3.1 and Proposition 3.4 of [4] establish the
persistence of the endemic point. The disease is persistent in the population if the infected cases with
AIDS are bounded away from zero or the population S disappears. The local stability of the endemic
point is given in Theorem 3.8 of [4]. Lemma 3.5 of [4] states that the DFE is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1. Finally, Theorem 3.6 of [4] asserts that, under suitable
conditions, the DFE point is globally asymptotically stable. Here we prove similar properties in the
discrete-time setting (section 3). For that we now recall an important tool for difference equations.

2.2. The Schur–Cohn criterion

One of the main tools that provides necessary and sufficient conditions for the zeros of a nth-degree
polynomial

p(λ) = λk + p1λ
k−1 + · · · + pk (2.3)

to lie inside the unit disk is the Schur–Cohn criterion [26]. This result is useful for studying the stability
of the zero solution of a kth-order difference equation or to investigate the stability of a k-dimensional
system of the form

x(n + 1) = Ax(n),

where p(λ) in (2.3) is the characteristic polynomial of the matrix A. Let us introduce some preliminaries
before presenting the Schur–Cohn criterion. Namely, let us define the inners of a matrix B = (bi j). The
inners of a matrix are the matrix itself and all the matrices obtained by omitting successively the first
and last columns and first and last rows. A matrix B is said to be positive innerwise if the determinant
of all its inners are positive.

Theorem 1 (The Shur–Cohn criterion [26]). The zeros of the characteristic polynomial (2.3) lie inside
the unit disk if, and only if, the following holds:

i) p(1) > 0;
ii) (−1)k p(−1) > 0;

iii) the (k − 1) × (k − 1) matrices

B±k−1 =



1 0 · · · 0
p1 1 · · · 0
...

...

pk−3 p1

pk−2 pk−3 · · · p1 1


±



0 0 · · · 0 pk

0 0 · · · pk pk−1
...

...
...

0 pk p3

pk pk−1 · · · p3 p2


are positive innerwise.

Using the Schur–Cohn criterion, one may obtain necessary and sufficient conditions on the pi coef-
ficients such that the zero solution of (2.3) is locally asymptotically stable.

Theorem 2 (See [26]). Let A ∈ Mk×k and let (2.3) be its characteristic polynomial. Then, p(λ) is a
polynomial of degree k. Moreover, p(λ) has the form

p(λ) = (−1)kλk + (−1)k−1Tr(A)λk−1 + · · · + det(A). (2.4)
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3. Main results

We begin by proposing a discrete-time SICA model.

3.1. The NSFD scheme

One of the important features of the discrete-time epidemic models obtained by Mickens method
is that they present the same features as the corresponding original continuous-time models. Here, we
construct a dynamically consistent numerical NSFD scheme for solving (1.1) based on [13,14,17]. Let
us define the time instants tn = nh with n integer, h = tn+1 − tn as the time step size, and (S n, In,Cn, An)
as the approximated values of (S (nh), I(nh),C(nh), A(nh)). Thus, the NSFD scheme for model (1.1)
takes the following form:



S n+1 − S n

ψ(h)
= Λ − λ̃nS n+1 − µS n+1,

In+1 − In

ψ(h)
= λ̃nS n+1 − (ρ + φ + µ)In+1 + αAn+1 + ωCn+1,

Cn+1 −Cn

ψ(h)
= φIn+1 − (ω + µ)Cn+1,

An+1 − An

ψ(h)
= ρ In+1 − (α + µ + d)An+1,

(3.1)

where λ̃n =
β

Nn
(In + ηCCn + ηAAn). The nonstandard schemes are based in two fundamental principles

[14, 17]:

1. Regarding the first derivative, we have

dx
dt
→

xk+1 − ν(h)xk

ψ(h)
,

where ν(h) and ψ(h) are the numerator and denominator functions that satisfy the requirements

ν(h) = 1 + O(h2), ψ(h) = h + O(h2).

In general, the numerator function can be selected to be ν(h) = 1. We will make this choice here.
Generally, the denominator function is nontrivial. Based on Mickens work [28, 29], when we
write explicitly S n+1 using φ(h) = h, we have in the denominator the term 1 + µh, which means

that we can use ψ(h) =
eµh −1
µ

as the denominator function. Throughout our study, ψ(h) =
eµh −1
µ

but, for brevity, we write ψ(h) = ψ.
2. Both linear and nonlinear functions of x(t) and its derivatives may require a “nonlocal” discretiza-

tion. For example, x2 can be replaced by xkxk+1.
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Since model (3.1) is linear in S n+1, In+1, Cn+1, and An+1, we can obtain their explicit form:

S n+1 =
S n + Λψ

1 + µψ +
βψ

Nn
(In + ηCCn + ηAAn)

,

In+1 =

(
In +

βψS n+1(In+ηCCn+ηAAn)
Nn

)
(1 + C2ψ)(1 + C3ψ) + αψAn(1 + C3ψ) + ωφCn(1 + C2ψ)

(1 + C1ψ)(1 + C2ψ)(1 + C3ψ) − αρψ2(1 + C3ψ) − ωφψ2(1 + C2ψ)
,

Cn+1 =
φψIn+1 + Cn

1 + C3ψ
,

An+1 =
ρψIn+1 + An

1 + C2ψ
.

(3.2)

3.2. Positivity of solutions

The first result to be shown is the positivity of the solutions.

Theorem 3. If all the initial and parameter values of the discrete system (3.2) are positive, then the
solutions are always positive for all n ≥ 0 with denominator function ψ.

Proof. Let us assume that S (0), I(0),C(0), A(0) are positive. We only need to show that In+1 is positive.
The denominator is given by

(1 + C1ψ)(1 + C2ψ)(1 + C3ψ) − αρψ2(1 + C3ψ) − ωφψ2(1 + C2ψ), (3.3)

which can be rewritten as

1 + (C1 + C2 + C3)ψ + (C1C2 + C1C3 + C2C3 − φω − αρ)ψ2 + (C1C2C3 −C2φω − αρC3)ψ3

and, simplifying, we get

1 + (C1 + C2 + C3)ψ + (C2(2µ + φ + ω) + C3(ω + ρ) + µ(φ + ρ) + ρd)ψ2

+ (C3ρ(µ + d) + C2µ(C3 + φ))ψ3.

Since all parameter values are positive, (S n+1, In+1,Cn+1, An+1) is positive for all n ≥ 0. �

3.3. Conservation law

The second result to be shown is the conservation law or boundedness of the solutions.

Theorem 4. The NSFD scheme defines the discrete dynamical system (3.2) on

Ω̃ =

{
(S n, In,Cn, An) : 0 ≤ S n + In + Cn + An ≤

Λ

µ

}
. (3.4)

Proof. Let the total population be Nn = S n + In + Cn + An. Adding the four equations of (3.1), we have

Nn+1 − Nn

ψ
= Λ − µNn+1 − dAn+1 ⇔ (1 + µψ)Nn+1 = Λψ + Nn − dψAn+1
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and

Nn+1 ≤
Λψ

1 + µψ
+

Nn

1 + µψ
⇔ Nn ≤ Λψ

n∑
j=1

(
1

1 + µψ

) j

+ N0

(
1

1 + µψ

)n

.

By the discrete Grownwall inequality, if 0 < N(0) < Λ
µ

, then

Nn ≤
Λ

µ

(
1 −

1
(1 + µψ)n

)
+ N0

(
1

1 + µψ

)n

=
Λ

µ
+

(
N0 −

Λ

µ

) (
1

1 + µψ

)n

(3.5)

and, since
(

1
1 + µψ

)
< 1, we have Nn →

Λ
µ

as n → ∞. We conclude that the feasible region Ω̃ is

maintained within the discrete scheme. �

3.4. Elementary stability

A difference scheme that approximates a first-order differential system is elementary stable if, for
any value of the step size, its fixed-points are exactly those of the differential system. Furthermore,
when applied to the associated linearized differential system, the resulting difference scheme has the
same stability/instability properties [30].

The continuous and discrete system have the same equilibria. The disease free equilibrium (DFE)
point is given by

E0 = (S ∗, I∗,C∗, A∗) =

(
Λ

µ
, 0, 0, 0

)
. (3.6)

The explicit expression of the endemic equilibrium point of (3.2) can be rewritten as the one of the
continuous case: when

λ∗ =
β(I∗ + ηCC∗ + ηAA∗)

N∗
=

D(R0 − 1)
C2C3 + φC2 + ρC3

,

we obtain the endemic equilibrium point. The explicit expression of the endemic equilibrium point of
(3.2) can be rewritten as the one of the continuous case:

S ∗ =
Λ(D− ρdC3)
µ(N − ρdC3)

, I∗ =
ΛC2C3(D−N)
D(ρdC3 − N)

, C∗ =
ΛC2φ(D−N)
D(ρdC3 − N)

, A∗ =
ΛρC3(D−N)
D(ρdC3 − N)

. (3.7)

After some computations, we get the following equalities:

S ∗ =
Λ

λ∗ + µ
=

Λ(C2C3 + C2φ + ρC3)
D(R0 − 1) + µ(C2C3 + C2φ + ρC3)

=
Λ(D− ρdC3)
µ(N − ρdC3)

,

I∗ =
S ∗λ∗C2C3

D
=

Λ(R0 − 1)C2C3

D(R0 − 1) + µ(C2C3 + C2φ + ρC3)
=

ΛC2C3(D−N)
D(ρdC3 − N)

,

C∗ =
S ∗λ∗φC2

D
=

Λ(R0 − 1)C2φ

D(R0 − 1) + µ(C2C3 + C2φ + ρC3)
=

ΛC2φ(D−N)
D(ρdC3 − N)

,

A∗ =
S ∗λ∗ρC3

D
=

Λ(R0 − 1)ρC3

D(R0 − 1) + µ(C2C3 + C2φ + ρC3)
=

ΛρC3(D−N)
D(ρdC3 − N)

.
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3.4.1. Local stability of the DFE point

Let us discuss the stability of the proposed NSFD scheme at the DFE point E0 (3.6).

Remark 1. Several articles use the next-generation matrix approach presented in [31]. For that,
however, the matrices F + T must be non-negative. Our model does not satisfy such condition.

The following technical lemma has an important role in our proofs.

Lemma 1. If R0 < 1, then β must be smaller than C1.

Proof. If R0 < 1, then

β(C2C3 + C3ηAρ + C2ηCφ)
C1C2C3 −C3αρ −C2ωφ

< 1⇔ β(C2C3 + C3ηAρ + C2ηCφ) < C1C2C3 −C3αρ −C2ωφ

⇔ β(C2C3 + C3ηAρ + C2ηCφ) −C1C2C3 −C3αρ −C2ωφ < 0
⇔ (β −C1)C2C3 < −βC3ηAρ − βC2ηCφ −C3αρ −C2ωφ < 0.

Since C2 and C3 are positive, we conclude that β −C1 < 0. �

Proposition 1. The first condition of Theorem 1, p4(1) > 0, is satisfied if R0 < 1.

Proof. The linearization of (3.2) at the DFE E0 is:

J(E0) =


−µ −β −βηC −βηA

0 β − (ρ + φ + µ) βηc + ω βηA + α

0 φ −(ω + µ) 0
0 ρ 0 −(α + µ + d)

 =


−µ −β −βηC −βηA

0 β −C1 βηc + ω βηA + α

0 φ −C3 0
0 ρ 0 −C2

 .
The characteristic polynomial of J(E0) has the following expression:

p4(λ) = λ4 + p1λ
3 + p2λ

2 + p3λ + p4 = (−µ − λ)p3(λ),

where p3(λ) is given by

p3(λ) = −λ3 + (β −C1 −C2 −C3)λ2 + ((β −C1)(C2 + C3) −C2C3 + (βηA + α)ρ + (βηC + ω)φ)λ
+ (−C1C2C3 + C2C3β + C3αρ + C3βηAρ + C2βηCφ + C2φω),

that is,

p3(λ) = −λ3 + (β −C1 −C2 −C3)λ2 + ((β −C1)(C2 + C3) −C2C3 + (βηA + α)ρ + (βηC + ω)φ) λ
+ (N −D).

Since p4(1) > 0, we have (−µ − 1)p3(1) > 0, and recalling that µ > 0, we conclude that

p3(1) = −1 + (β −C1 −C2 −C3) + (β −C1)(C2 + C3) −C2C3 + ρ(βηA + α) + φ(βηC + ω) −D(1 − R0)

is negative: p3(1) < 0. If R0 < 1, then

0 < ρ(βηA + α) < −(β −C1)C2 −
φC2(βηC + ω)

C3
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and
(C1 − β)C2 −

φC2(βηC + ω)
C3

> 0 or φ(βηC + ω) < C3(C1 − β).

Therefore,

ρ(βηA + α) + φ(βηC + ω) < (C1 − β)C2 + φ(βηC + ω)
(
1 −

C2

C3

)
and

p3(1) < −1 + (β −C1 −C2 −C3) − (C1 − β)C3 −C2C3 −D(1 − R0) + φ(βηC + ω)
(
1 −

C2

C3

)
= −1 + (β −C1 −C2 −C3) − (C1 − β)C3 −C2C3 −D(1 − R0) + φ(βηC + ω) − φ(βηC + ω)

(
C2

C3

)
< −1 + (β −C1 −C2 −C3) −C2C3 −D(1 − R0) − φ(βηC + ω)

(
C2

C3

)
< 0.

We conclude that the first condition of Theorem 1 is satisfied if R0 < 1. �

Proposition 2. If R0 < 1, C2 < 1, C3 < 1 and β <
C2C3

(1 −C2)(1 −C3)
, then the second condition of

Theorem 1, that is, (−1)4 p4(−1) > 0, is satisfied.

Proof. Since (−1)4 · p4(−1) > 0, we have (−µ + 1)p3(−1) > 0 and µ < 1, so p3(−1) > 0. It can be seen
that

p3(−1) = 1 + β −C1 −C2 −C3 − (β −C1)(C2 + C3) + C2C3 − ρ(βηA + α) − φ(βηC + ω) +D(R0 − 1).

If R0 < 1, then

−ρ(βηA + α) > −(C1 − β)C2 +
φC2(βηC + ω)

C3

and
−(C1 − β)C2 +

φC2(βηC + ω)
C3

< 0 or − φ(βηC + ω) > C3(β −C1).

Thus,

−ρ(βηA + α) − φ(βηC + ω) > −(C1 − β)C2 + φ(βηC + ω)
(
C2

C3
− 1

)
(3.8)

and

p3(−1) > 1 + β −C1 −C2 −C3 + (C1 − β)C3 + C2C3 +D(R0 − 1) + φ(βηC + ω)
(
C2

C3
− 1

)
= 1 + β −C1 −C2 −C3 + (C1 − β)C3 + C2C3 +D(R0 − 1) − φ(βηC + ω) + φ(βηC + ω)

(
C2

C3

)
> 1 + β −C1 −C2 −C3 + C2C3 +D(R0 − 1) + φ(βηC + ω)

(
C2

C3

)
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= φ(βηC + ω)
(
C2

C3

)
+ (1 −C2)(1 −C3) + β −C1 +D(R0 − 1)

= φ(βηC + ω)
(
C2

C3

)
+ (1 −C2)(1 −C3) + β −C1 + (C1C2C3 −C3ρα −C2φω)(R0 − 1)

= φ(βηC + ω)
(
C2

C3

)
+ C1C2C3R0 + (C3ρα + C2φω)(1 − R0) + (1 −C2)(1 −C3) + β −C1(1 + C2C3).

We conclude that if C2 < 1, C3 < 1, and β <
C2C3

(1 −C2)(1 −C3)
are satisfied, then p3(−1) > 0. �

Proposition 3. If R0 < 1, µ <
1

D(1 − R0)
, p2 < 1 + p4, and

−(1 − p2
4)(1 + p2 + p4)

(p1 + p3)
< (p4 p1 − p3) <

(1 − p4)2(1 + p4 − p2)
(p1 − p3)

, (3.9)

then the third condition of Theorem 1 is satisfied.

Proof. The third condition of Theorem 1 is the following: the 3 × 3 matrices B±3 given by

B±3 =


1 0 0
p1 1 0
p2 p1 1

 ±


0 0 p4

0 p4 p3

p4 p3 p2

 (3.10)

are positive innerwise. Recall that p4(λ) = λ4 + p1λ
3 + p2λ

2 + p3λ + p4 = (−µ − λ)p3(λ) and

p1 = µ − (β −C1 −C2 −C3),
p2 = −µ(β −C1 −C2 −C3) − ((β −C1)(C2 + C3) −C2C3 + (βηA + α)ρ + (βηC + ω)φ),
p3 = −µ((β −C1)(C2 + C3) −C2C3 + (βηA + α)ρ + (βηC + ω)φ) − (N −D),
p4 = −µ(N −D),

or

p1 = C1 + C2 + C3 + µ − β,

p2 = µ(C1 + C2 + C3 − β) + (C1 − β)(C2 + C3) + C2C3 − (βηA + α)ρ − (βηC + ω)φ,
p3 = µ((C1 − β)(C2 + C3) + C2C3 − (βηA + α)ρ − (βηC + ω)φ) +D(1 − R0),
p4 = µD(1 − R0).

Also, if R0 < 1, then, by Lemma 1, β < C1. Therefore, p1 > 0. If we also consider (3.8), and apply it
to p2 and p3, we get

p2 > µ(C1 + C2 + C3 − β) + C2C3 +
C2φ

C3
(βηC + ω) > 0

and
p3 > µC2C3 +D(1 − R0) > 0.
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In other words, B+
3 and B−3 have the following form:

B+
3 =


1 0 p4

p1 1 + p4 p3

p2 + p4 p1 + p3 1 + p2

 and B−3 =


1 0 −p4

p1 1 − p4 −p3

p2 − p4 p1 − p3 1 − p2

 (3.11)

and their inners must be positive:

1. Regarding B+
3 , we must have

a) 1 + p4 > 0;
b) |B+

3 | = (1 + p4)(1 + p2) − p3(p1 + p3) + p4(p1(p1 + p3) − (1 + p4)(p2 + p4)) > 0.

2. Regarding B−3 , we must have

a) 1 − p4 > 0;
b) |B−3 | = (1 − p4)(1 − p2) + p3(p1 − p3) − p4(p1(p1 − p3) − (1 − p4)(p2 − p4)) > 0.

Note that p4 = µD(1 − R0) = det(J(E0)) and, if R0 < 1, then p4 > 0. Therefore, 1 a) is satisfied. For
2 a) to be satisfied, it is necessary that

p4 < 1⇔ µ <
1

D(1 − R0)
. (3.12)

Considering 1 b) and 2 b), after some computations, we can rewrite them as

|B+
3 | = (1 − p2

4)(1 + p2 + p4) + (p1 + p3)(p4 p1 − p3) > 0,
|B−3 | = (1 − p4)2(1 + p4 − p2) − (p1 − p3)(p4 p1 − p3) > 0.

Thus, from (3.12), p2 < 1 + p4, and (3.9), the third condition of Theorem 1 is satisfied. �

We are now in condition to prove the main result of this section.

Theorem 5. If C2 < 1, C3 < 1, β < C2C3
(1−C2)(1−C3) , p2 < 1 + p4, and (3.9) and (3.12) are satisfied, then,

provided R0 < 1, the disease free equilibrium point of the discrete system (3.2) is locally asymptotically
stable. If the previous conditions are not satisfied, then the disease free equilibrium point is unstable.

Proof. The result follows by Theorem 1 and Propositions 1, 2 and 3. If any of the conditions enu-
merated are not satisfied, at least one of the roots of the characteristic polynomial lies outside the unit
circle, so the disease free equilibrium point is unstable. �

3.4.2. Global stability of the equilibrium points

Now we prove that R0 is a critical value for global stability: when R0 < 1, the disease free equi-
librium point is globally asymptotically stable; when R0 > 1, the endemic equilibrium is globally
asymptotically stable.

Theorem 6. If R0 < 1, then the DFE point of the discrete-time SICA model (3.1) is globally asymptot-
ically stable.
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Proof. For any ε > 0, there exists an integer n0 such that, for any n ≥ n0, S n+1 <
Λ
µ

+ ε. Consider the
sequence {V(n)}+∞n=0 defined by

V(n) = In +
ω

C3
Cn +

α

C2
An + ψλ̃nS n+1. (3.13)

For any n ≥ n0,

V(n + 1) − V(n) = In+1 +
ω

C3
Cn+1 +

α

C2
An+1 + ψλ̃n+1S n+2 − In −

ω

C3
Cn −

α

C2
An − ψλ̃nS n+1

= −ψC1In+1 + αψAn+1 + ωψCn+1 +
ω

C3
Cn+1 +

α

C2
An+1 + ψλ̃n+1S n+2 −

ω

C3
Cn −

α

C2
An

= ψλ̃n+1S n+2 +
ω

C3
(Cn+1 −Cn) +

α

C2
(An+1 − An) − ψC1In+1 + αψAn+1 + ωψCn+1

= ψ

(
λ̃n+1S n+2 +

ω

C3
(φIn+1 −C3Cn+1) +

α

C2
(ρIn+1 −C2An+1) −C1In+1 + αAn+1 + ωCn+1

)
= ψ

(
λ̃n+1S n+2 +

(
ωφ

C3
+
αρ

C2
−C1

)
In+1

)
= ψ

(
λ̃n+1S n+2 + (C2ωφ + C3αρ −C1C2C3)

In+1

C2C3

)
= ψ

(
λ̃n+1S n+2 −D

In+1

C2C3

)
.

Since

λ̃n+1S n+2 ≤ β(In+1 + ηCCn+1 + ηAAn+1) ≤ β
(
In+1 + ηC

φIn+1

C3
+ ηA

ρIn+1

C2

)
,

we have

V(n + 1) − V(n) ≤ ψ
(
β

(
In+1 + ηC

φIn+1

C3
+ ηA

ρIn+1

C2

)
−D

In+1

C2C3

)
=
ψIn+1

C2C3
(βC2C3 + βηCC2φ + βηAC3ρ −D)

=
ψIn+1

C2C3
D(R0 − 1).

If R0 < 1, and because ε is arbitrary, we conclude that V(n + 1) − V(n) ≤ 0 and lim
n→∞

In = 0 for any

n ≥ 0. The sequence {V(n)}+∞n=0 is monotone decreasing and lim
n→∞

S n = Λ
µ

. �

Theorem 7. If R0 > 1, then the endemic equilibrium point of the discrete-time SICA model (3.1) is
globally asymptotically stable.

Proof. We construct a sequence {Ṽ(n)}+∞n=1 of the form

Ṽ(n) =
1
ψI∗

g
(S n

S ∗

)
+

1
ψS ∗

g
( In

I∗

)
+

ωC∗

ψC3S ∗I∗
g
(Cn

C∗

)
+

αA∗

ψC2S ∗I∗
g
(An

A∗

)
,

where g(x) = x− 1− ln(x), x ∈ R+. Clearly, g(x) ≥ 0 with equality holding true only if x = 1. We have

g
(S n+1

S ∗

)
− g

(S n

S ∗

)
=

S n+1 − S n

S ∗
− ln

(
S n+1

S n

)
≤

(S n+1 − S ∗)(S n+1 − S n)
S n+1S ∗
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=
S n+1 − S ∗

S n+1S ∗
ψ

(
Λ − λ̃nS n+1 − µS n+1

)
=

S n+1 − S ∗

S n+1S ∗
ψ

(
λ̃∗S ∗ + µS ∗ − λ̃nS n+1 − µS n+1

)
= −

µψ(S n+1 − S ∗)2

S n+1S ∗
− ψλ̃∗

(
1 −

S ∗

S n+1

) (
λ̃n

λ̃∗
S n+1

S ∗
− 1

)
.

Similarly,

g
( In+1

I∗

)
− g

( In

I∗

)
=

In+1 − In

I∗
− ln

(
In+1

In

)
≤

(In+1 − I∗)(In+1 − In)
In+1I∗

≤
(In+1 − I∗)

In+1I∗
(
λ̃nS n+1 −C1In+1 + αAn+1 + ωCn+1

)
=

(In+1 − I∗)
In+1I∗

(
λ̃nS n+1 −

In+1λ̃
∗S ∗

I∗
−
αIn+1A∗

I∗
−
ωIn+1C∗

I∗
+ αAn+1 + ωCn+1

)
=

(
1 −

I∗

In+1

) (
ψA∗α

I∗

(An+1

A∗
−

In+1

I∗

)
+
ψωC∗

I∗

(Cn+1

C∗
−

In+1

I∗

))
+

(
1 −

I∗

In+1

)
ψS ∗λ̃∗

I∗

(
λ̃n

λ̃∗
S n+1

S ∗
−

In+1

I∗

)
,

g
(Cn+1

C∗

)
− g

(Cn

C∗

)
=

Cn+1 −Cn

S ∗
− ln

(
Cn+1

Cn

)
≤

(Cn+1 −C∗)(Cn+1 −Cn)
Cn+1C∗

≤
(Cn+1 −C∗)

Cn+1C∗
(φIn+1 −C3Cn+1) = C3ψ

(
1 −

C∗

Cn+1

) ( In+1

I∗
−

Cn+1

C∗

)
,

g
(An+1

A∗

)
− g

(An

A∗

)
=

An+1 − An

A∗
− ln

(
An+1

An

)
≤

(An+1 − A∗)(An+1 − An)
An+1A∗

≤
(An+1 − A∗)

An+1I∗
(ρIn+1 −C2An+1) = C2ψ

(
1 −

A∗

An+1

) ( In+1

I∗
−

An+1

A∗

)
.

The difference of Ṽ(n) satisfies

Ṽ(n + 1) − Ṽ(n) =
1
ψI∗

(
g
(S n+1

S ∗

)
− g

(S n

S ∗

))
+

1
ψS ∗

(
g
( In+1

I∗

)
− g

( In

I∗

))
+

ωC∗

ψC3S ∗I∗

(
g
(Cn+1

C∗

)
− g

(Cn

C∗

))
+

αA∗

ψC2S ∗I∗

(
g
(An+1

A∗

)
− g

(An

A∗

))
≤ −

µ(S n+1 − S ∗)2

I∗S ∗S n+1
−
λ̃∗

I∗

(
I∗

In+1

λ̃n

λ̃∗
S n+1

S ∗
− 2 −

λ̃n

λ̃∗
+

S ∗

S n+1
+

In+1

I∗

)
−
ωC∗

S ∗I∗

(
I∗Cn+1

In+1C∗
+

C∗In+1

Cn+1I∗
− 2

)
−
αA∗

S ∗I∗

(
I∗An+1

In+1A∗
+

A∗In+1

An+1I∗
− 2

)
≤ −

µ(S n+1 − S ∗)2

I∗S ∗S n+1
−
λ̃∗

I∗

(
g
(

S ∗

S n+1

)
+ g

( In+1

I∗

)
+ g

(
S n+1λ̃nI∗

S ∗λ̃∗In+1

)
− g

(
λ̃n

λ̃∗

))
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−
ωC∗

S ∗I∗

(
g
(

I∗Cn+1

In+1C∗

)
+ g

(
C∗In+1

Cn+1I∗

))
−
αA∗

S ∗I∗

(
g
(

I∗An+1

In+1A∗

)
+ g

(
A∗In+1

An+1I∗

))
.

Therefore, {Ṽ(n)}+∞n=1 is a monotone decreasing sequence for any n ≥ 0. Since Ṽ(n) ≥ 0 and
lim
n→∞

(
Ṽ(n + 1) − Ṽ(n)

)
= 0, we obtain that lim

n→∞
S n+1 = S ∗, lim

n→∞
In+1 = I∗, lim

n→∞
Cn+1 = C∗ and

lim
n→∞

An+1 = A∗. This completes the proof. �

4. Numerical simulations

In this section, we apply our discrete model to a case study of Cape Verde [5, 6]. The data is the
same of [5] and the parameters too. We present here a resume of the information.

Since the first diagnosis of AIDS in 1986, Cape Verde try to fight, prevent, and treat HIV/AIDS
[6, 32]. In Table 2, the cumulative cases of infection by HIV and AIDS in Cape Verde from 1987 to
2014 is given. Based on [32, 33], the values for the initial conditions are taken as

Table 2. Cumulative cases of infection by HIV/AIDS and the total population in Cape Verde
in the period from 1987 to 2014 [5, 6, 32].

Year 1987 1988 1989 1990 1991 1992 1993
HIV/AIDS 61 107 160 211 244 303 337
Population 323972 328861 334473 341256 349326 358473 368423

Year 1994 1995 1996 1997 1998 1999 2000
HIV/AIDS 358 395 432 471 560 660 779
Population 378763 389156 399508 409805 419884 429576 438737

Year 2001 2002 2003 2004 2005 2006 2007
HIV/AIDS 913 1064 1233 1493 1716 2015 2334
Population 447357 455396 462675 468985 474224 478265 481278

Year 2008 2009 2010 2011 2012 2013 2014
HIV/AIDS 2610 2929 3340 3739 4090 4537 4946
Population 483824 486673 490379 495159 500870 507258 513906

S 0 = 323911, I0 = 61, C0 = 0, A0 = 0. (4.1)

Regarding the parameter values, we consider ρ = 0.1 [34] and γ = 0.33 [35]. It is assumed that, after
one year, HIV infected individuals, I, that are under ART treatment, have low viral load [36] and are
transferred to class C, so that φ = 1. The ART treatment therapy takes a few years. Following [6],
it is assumed the default treatment rate to be 11 years (1/ω years, to be precise). Based in [37], the
induced death rate by AIDS is d = 1. From the World Bank data [33, 38], the natural rate is assumed
to be µ = 1/69.54. The recruitment rate Λ = 13045 was estimated in order to approximate the values
of the total population of Cape Verde, see Table 2. Based on a research study known as HPTN 052,
where it was found that the risk of HIV transmission among heterosexual serodiscordant is 96% lower
when the HIV-positive partner is on treatment [39], we take here ηC = 0.04, which means that HIV
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infected individuals under ART treatment have a very low probability of transmitting HIV [40]. For
the parameter ηA ≥ 1, which accounts the relative infectiousness of individuals with AIDS symptoms,
in comparison to those infected with HIV with no AIDS symptoms, we assume, based on [41], that
ηA = 1.35. For (ηC, ηA) = (0.04, 1.35), the estimated value of the HIV transmission rate is equal
to β = 0.695. Using these parameter values, the basic reproduction number is R0 = 4.5304 and
the endemic equilibrium point (S ∗, I∗,C∗, A∗) = (145276, 48136.4, 461146, 3580.57). In Figure 1, we
show graphically the cumulative cases of infection by HIV/AIDS in Cape Verde given in Table 2,
together with the curves obtained from the continuous-time SICA model (1.1) and our discrete-time
SICA model (3.1). Our simulations of the continuous and discrete models were done with the help
of the software Wolfram Mathematica, version 12.1. For the continuous model, we have used the
command NSolve, that computes the solution by interpolation functions. Our implementation for the
discrete case makes use of the Mathematica command RecurrenceTable.

Continuous

Real Data

Discrete

5 10 15 20 25

1000

2000

3000

4000

5000

Figure 1. Cumulative cases of infection by HIV/AIDS in Cape Verde in the period from
1987 (year 0) to 2014 (year 27): real data (red); prediction from the continuous-time SICA
model (1.1) (blue); and prediction from our discrete-time SICA model (3.1) (green).

To illustrate the global stability of the endemic equilibrium (EE), predicted by our Theorem 7, we
consider different initial conditions borrowed from [5], from different regions of the plane:

(SD1,ID1,CD1,AD1) = (S 0, I0,C0, A0),
(SD2,ID2,CD2,AD2) = (S 0/2, I0 + S 0/2,C0 + 104, A0 + 4 × 104),
(SD3,ID3,CD3,AD3) = (S 0/3, I0,C0 + 4 × 104, A0 + S 0/3),
(SD4,ID4,CD4,AD4) = (3S 0/2, I0 + S 0/4,C0 + 5 × 105, A0 + S 0/5).

(4.2)

The obtained results are given in Figure 2.
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(SD1,ID1)
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(a) HIV-infected individuals with no clinical symp-
toms (I) versus Susceptible individuals (S ).
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(b) HIV-infected individuals with AIDS (A) versus
HIV-infected individuals under treatment (C).

Figure 2. Illustration of the fact that the endemic equilibrium point (S ∗, I∗,C∗, A∗) =

(145276, 48136.4, 461146, 3580.57) of the discrete-time SICA model (3.1) is globally
asymptotically stable. This is in agreement with Theorem 7, since R0 = 4.5304 > 1.

5. Conclusions

In this work, we proposed a discrete-time SICA model, using Mickens’ nonstandard finite difference
(NSFD) scheme. The elementary stability was studied and the global stability of the equilibrium
points proved. Finally, we made some numerical simulations, comparing our discrete model with the
continuous one. For that, we have used the same data, following the case study of Cape Verde. Our
conclusion is that the discrete model can be used with success to describe the reality of Cape Verde, as
well as to properly approximate the continuous model. All our simulations have been done using the
numerical computing environment Mathematica, version 12.1, running on an Apple MacBook Pro i5
2.5 GHz with 16Gb of RAM. The solutions of the models were found in “real time”.

Mickens was a pioneer in NSFD schemes. Throughout the years, other NSFD schemes were devel-
oped. Roughly speaking, different Mickens-type methods differ on the denominator functions and the
discretization, depending on concrete conditions that the continuous model under study must satisfy.
In [20], the incidence rate is combined, while in [21] all parameters are constant. Other types of NSFD
are presented, e.g., in [22–25], which can be used if the system satisfy some conditions and a suit-
able denominator function is constructed. For such schemes, the incidence functions are different from
ours. In [23], for example, it is fundamental to rewrite the system and the discretization method and the
denominator function are different from the ones we use here. The article [24] uses the same approach
of [23] and the model has a bilinear incidence function. Positive and elementary stable nonstandard
finite-difference methods are also considered in [25]. Mickens set the field, but several different authors
developed and are developing other related discretization methods. For the SICA model, however, as
we have shown, a new NSFD scheme is not necessary and the standard Mickens’ method provides a
well posed discrete-time model with excellent results, without the need to impose additional conditions
to the model.
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