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Abstract In this paper, a multivariate integer-valued autoregressive model
of order one with periodic time-varying parameters, and driven by a peri-
odic innovations sequence of independent random vectors is introduced and
studied in detail. Emphasis is placed on models with periodic multivariate
negative binomial innovations. Basic probabilistic and statistical properties of
the novel model are discussed. Aiming to reduce computational burden aris-
ing from the use of the conditional maximum likelihood method, a composite
likelihood-based approach is adopted. The performance of such method is com-
pared with that of some traditional competitors, namely moment estimators
and conditional maximum likelihood estimators. Forecasting is also addressed.
Furthermore, an application to a real data set concerning the monthly number
of fires in three counties in Portugal is presented.
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1 Introduction

Recently, there has been a considerable interest in univariate thinning-based
operators integer-valued time series models and nowadays, a voluminous liter-
ature has resulted from such interest in specialized books (Weiß 2018a; Davis
et al. 2016; Turkman et al. 2014) and review papers (Scotto et al. 2015; Weiß
2008). However, the literature on multivariate integer-valued time series is
much less developed. Extensions of univariate integer-valued autoregressive
(INAR) processes to the multivariate case have been introduced by several
authors. Franke and Subba Rao (1993) made an important contribution by
introducing the multivariate INAR (MINAR) model of order one based upon
a matrix of univariate independent binomial thinning operators. Karlis and
Pedeli (2013) and Pedeli and Karlis (2011, 2013a,b) restrict their attention to
the diagonal case, which means that the thinning operators causes no cross-
correlation in the counts. Popović (2015) also considers the diagonal case,
although the author assumes that the model is based on random coefficient
thinning operators. Another important extension of Franke and Subba Rao’s
MINAR model was proposed by Latour (1997), in which the binomial thinning
operators are replaced by generalized thinning operators (that is, thinning op-
erators based on non-necessarily Bernoulli-distributed counting random vari-
ables). The MINAR model introduced by Boudreault and Charpentier (2011)
and Pedeli and Karlis (2013c) also resembles Franke and Subba Rao’s model
and therefore accounts for cross-correlation in the counts. Moreover, models
based on random coefficient thinning operators allowing for cross-correlation
in the counts have been proposed by Popović (2016), Popović et al. (2016),
Nastić et al. (2016) and Ristić et al. (2012). However, a major drawback of
the aforementioned models is that they only allow for positive correlations be-
tween the time series. In order to also account for negative correlation Karlis
and Pedeli (2013) introduced a bivariate INAR(1) model, in which negative
cross-correlation is induced through the innovations, by defining its distribu-
tion in terms of appropriate bivariate copulas. Also to this end, Bulla et al.
(2017) introduced the bivariate integer-valued autoregressive model (B-SINAR)
based on the signed thinning operator (Kim and Park 2008). The advantage
of the B-SINAR model is to fit integer-valued time series with positive and neg-
ative observations. A different approach was adopted by Scotto et al. (2014b)
who introduced the so-called bivariate binomial thinning operator. Upon this
new thinning operator the authors proposed a bivariate extension of the bi-
nomial autoregressive model of order one of McKenzie (1985), based on the
bivariate binomial distribution of type II, which used to be referred to as
BVBII-AR(1) model. It is important to stress the fact that the bivariate bino-
mial thinning operator induces both positive and negative cross-correlation.
An empirical application of such models, in statistical process control, can be
found in He et al. (2016). Moreover, Möller et al. (2016) proposed an extension
of the BVBII-AR(1) model for the analysis of the temporal characterization of
integer-valued time series exhibiting piecewise-type patterns. More recently,
Ristić and Popović (2019) have introduced a new bivariate binomial time se-



On the theory of periodic multivariate INAR processes 3

ries model with identical binomial marginal distribuitons.

Multivariate models for time series of counts based on moving average mod-
els have been also proposed in the literature. A remarkable contribution is
due to Quoreshi (2006, 2008) who introduced the class of bivariate moving
average time-series (BINMA) models and also the class of vector integer-valued
moving average (VINMA) models. The BINMA class can be seen as an exten-
sion of the conventional integer-valued moving average introduced by Al-Osh
and Alzaid (1988) and McKenzie (1988). The VINMA model is more general
than the BINMA model and allows for both negative and positive correlation
in the counting series. Extensions of Quoreshi’s models have been proposed
by Ristić et al. (2019), Sunecher et al. (2018) and Jowaheer et al. (2018) who
consider BINMA models driven by COM-Poisson innovations and negative bi-
nomial innovations, respectively, under very general non-stationary moment
assumptions. For further approaches and references on multivariate integer-
valued time series models see Mamode Khan et al. (2019), Sunecher et al.
(2019), Weiß (2018a), Karlis (2016), Scotto et al. (2015) and the references
therein.

It is worth to mention here that all references given in the previous para-
graphs deal with the case of non-periodically integer-valued time series. Such
models, however, are useless to cope with periodically correlated processes.
Although a large variety of integer-valued time series encountered in practice
are periodically stationary (e.g. time series of tourism demand, fire activity
and social science), the analysis of periodically correlated series of counts has
not received much attention in the literature. Aiming this issue, Monteiro et
al. (2010) introduced a class of univariate INAR models based on periodically
varying thinning parameters. More recently, Monteiro et al. (2015) generalized
the class of univariate INAR models of Monteiro et al. (2010) to the bivariate
case. Two different distributional forms of the innovations were considered
by the authors, namely: bivariate Poisson and bivariate negative binomial. In
practice, however, the negative binomial distribution can better account for
overdispersion (variance exceeds mean), a common feature in real data appli-
cations.

In this paper, we extend the results of Monteiro et al. (2015) to the mul-
tivariate case. Keeping an eye on practical applications, we will restrict our
attention to the diagonal matrix case (Pedeli and Karlis 2011). Furthermore,
the distribution of the innovation processes will be assumed to be periodic
multivariate negative binomial. Motivation for considering the diagonal ma-
trix case comes from the fact that in the application presented in section 5 to
a multivariate data set of time series concerning the monthly number of fires
in three counties in mainland Portugal, the assumption of independent counts
is tenable.

The remainder of the paper is organized as follows. In section 2 the periodic
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multivariate integer-valued autoregressive model of order one is introduced.
Parameter estimation is addressed in section 3. Furthermore, the performance
of the estimation procedures is illustrated through a simulation study. Fore-
casting is covered in section 4. A real environmental data application based
on fire activity is presented in section 5. Finally, some concluding remarks are
summarized in section 6.

2 Periodic MINAR model of order one

Let (Xt) be a periodic m-variate integer-valued autoregressive process of first-
order defined by the recursion

Xt = Mt ◦Xt−1 + Zt, t ∈ Z, (1)

where Xt,Xt−1 and Zt are randomms-vectors with Xt = [X1,t X2,t · · · Xm,t]
′

for t = v + ns, v = 1, . . . , s and n ∈ N0, and Xj,t = [Xj,1+ns · · · Xj,s+ns]
′,

j = 1, . . . ,m. The ms-dimensional vector Zt = [Z1,t Z2,t · · · Zm,t]
′ consti-

tutes a periodic sequence of independent random vectors with

Zj,t = [Zj,1+ns Zj,2+ns · · · Zj,s+ns]′. (2)

The matrix Mt in (1) is a (ms×ms)-diagonal matrix defined as

Mt =


φ1,t 0 · · · 0
0 φ2,t · · · 0
...

...
. . .

...
0 0 · · · φm,t

 ,
which includes the periodic autoregressive coefficients for season v (v = 1, . . . , s).
Moreover, the 0’s are (s × s)-null matrices and the φj,t’s (j = 1, . . . ,m) are
(s× s)-diagonal matrices. Note that for a fixed t = v + ns (v = 1, . . . , s) and
n ∈ N0, diagonal elements of φj,t = αj,v ∈ (0, 1), i.e.,

φj,t = diag(αj,1, αj,2, . . . , αj,s). (3)

The model in (1) will be referred to as Periodic Multivariate INteger-valued
AutoRegressive model of order one (PMINAR(1) in short) with period s ∈ N.
The PMINAR(1) model admits the following matricial representation

X1,t

X2,t

...
Xm,t

 =


φ1,t 0 · · · 0
0 φ2,t · · · 0
...

...
. . .

...
0 0 · · · φm,t

 ◦


X1,t−1
X2,t−1

...
Xm,t−1

+


Z1,t

Z2,t

...
Zm,t

 . (4)

For each t, Zj,t is assumed to be independent of Xj,t−1 and φj,t ◦Xj,t−1. Note
that the j-th component in (4) is

Xj,t = φj,t ◦Xj,t−1 + Zj,t (5)
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and each element of the vector φj,t ◦Xj,t−1, for t = v + ns fixed, is given by

αj,v ◦Xj,v+ns−1
d
=

Xj,v+ns−1∑
r=1

Ur,v (αj,v) ,

where {Ur,v(αj,v)}r∈N is a periodic sequence of i.i.d. Bernoulli-distributed ran-
dom variables with probability of success P (Ur,v (αj,v) = 1) = αj,v. Since the
autocorrelation matrix Mt is diagonal, the only source of dependence between
the series (X1,t, . . . ,Xm,t) in (4) is provided through Zt. Therefore, the inno-
vations will play a central role in the specification of the PMINAR(1) process.

Due to the fact that t = v + ns, it follows that Xj,t−s
d
= Xj,v+(n−1)s, for

v = 1, . . . , s. Now, take element

Xj,1+ns = αj,1 ◦Xj,1+ns−1 + Zj,1+ns

and replace it in Xj,2+ns, then

Xj,2+ns = αj,2 ◦Xj,2+ns−1 + Zj,2+ns = αj,2 ◦Xj,1+ns + Zj,2+ns =
= αj,2 ◦ (αj,1 ◦Xj,ns + Zj,1+ns) + Zj,2+ns =
= αj,2αj,1 ◦Xj,ns + αj,2 ◦ Zj,1+ns + Zj,2+ns

and recursively

Xj,3+ns = αj,3 ◦Xj,3+ns−1 + Zj,3+ns = αj,3 ◦Xj,2+ns + Zj,3+ns =
= αj,3αj,2αj,1 ◦Xj,ns + αj,3αj,2 ◦ Zj,1+ns + αj,3 ◦ Zj,2+ns + Zj,3+ns

and so on allowing the j-th component Xj,t in (5) to be expressed in matricial
notation as

Xj,t = Aj ◦Xj,t−s + Bj ◦ Zj,t, (6)

where the (s× s)-matrices Aj and Bj (j = 1, . . . ,m) are given by

Aj =



0 · · · 0 αj,1
0 · · · 0 αj,2αj,1
0 · · · 0 αj,3αj,2αj,1
...

...
. . .

...

0 · · · 0
s−1∏
k=0

αj,s−k


(7)

and

Bj =



1 0 0 . . . 0
αj,2 1 0 . . . 0

αj,3αj,2 αj,3 1 . . . 0
...

...
...

. . .
...

s−2∏
k=0

αj,s−k
s−3∏
k=0

αj,s−k
s−4∏
k=0

αj,s−k . . . 1


, (8)

respectively, with coefficients αj,v ∈ (0, 1), j = 1, . . . ,m and v = 1, . . . , s. All
columns of matrices Aj , except the last one, are null. The matrices Bj are



6 Santos et al.

lower triangular matrices.

Taking all m components, the PMINAR(1) model in (1) can be rewritten in
the form

Xt = Ã ◦Xt−s + B̃ ◦ Zt, (9)

with matricial representation


X1,t

X2,t

...
Xm,t

 =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am

 ◦


X1,t−s
X2,t−s

...
Xm,t−s

+


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bm

 ◦


Z1,t

Z2,t

...
Zm,t

 .

The (ms×ms)-matrices Ã and B̃ in (9) are block-diagonal matrices, that is

Ã = diag(A1,A2, . . . ,Am) (10)

and

B̃ = diag(B1,B2, . . . ,Bm) (11)

with matrices Aj and Bj (j = 1, . . . ,m) as in (7) and in (8), respectively.

Generally, matrix Ã has entries ajik satisfying 0 ≤ ajik < 1 and matrix B̃ has

entries bjik satisfying 0 ≤ bjik ≤ 1 with i, k = 1, . . . ,ms and j = 1, . . . ,m.
Furthermore, it will be assumed that the innovations Zt have finite first- and
second-order moments being

E[Zt] ≡ E


Z1,t

Z2,t

...
Zm,t

 =


δ1,t
δ2,t

...
δm,t

 =: δt. (12)

The ms-mean vector δt with t = v + ns; v = 1, . . . , s and n ∈ N0 has m
(s× 1)-vectors, i.e.,

E[Zj,t] = δj,t =


λj,1
λj,2

...
λj,s

 , (13)

for j = 1, . . . ,m. For a fixed v, each element in (13) is

E[Zj,v+ns] = λj,v. (14)
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Turning to the variance-covariance matrix of Zt, it follows that

∑∑∑
Zt

:=


V ar[Z1,t] Cov(Z1,t,Z2,t) · · · Cov(Z1,t,Zm,t)

Cov(Z2,t,Z1,t) V ar[Z2,t] · · · Cov(Z2,t,Zm,t)
...

...
. . .

...
Cov(Zm,t,Z1,t) Cov(Zm,t,Z2,t) · · · V ar[Zm,t]



=


Ψ11,t Ψ12,t . . . Ψ1m,t

Ψ22,t . . . Ψ2m,t

. . .
...

Ψmm,t

 =: Ψt, (15)

where Ψjk,t (j, k = 1, . . . ,m; t = v + ns; v = 1, . . . , s;n ∈ N0) are (s × s)-
diagonal matrices of the form

Ψjk,t =


σjk,1 0 . . . 0

0 σjk,2 . . . 0
...

...
. . .

...
0 0 . . . σjk,s

 . (16)

Note that for a fixed v, each element of the diagonal in matrix (16) takes the
form

σjk,v = Cov(Zj,v+ns, Zk,v+ns). (17)

For notational simplicity, we use σ2
j,t instead of σjj,t for j = k (j = 1, . . . ,m)

and for t = v + ns; v = 1, . . . , s,

Ψjj,t ≡ V ar[Zj,t] =


σ2
j,1 0 . . . 0
0 σ2

j,2 . . . 0
...

...
. . .

...
0 0 . . . σ2

j,s

 . (18)

For a fixed v, each element of the diagonal in matrix (18) is given by

σ2
j,v = V ar[Zj,v+ns].

Furthermore, the (ms × ms)-matrix Ψt in (15) has m on-diagonal matrices
equal to Ψjj,t in (18) and (m−1)m off-diagonal matrices equal to Ψjk,t in (16)
with j 6= k; j, k = 1, . . . ,m.

2.1 Strictly periodically stationary distribution

The existence of a periodically stationary solution to (9) depends on the largest

eigenvalue of the non-negative matrix Ã in (10), whose coefficients αj,v ∈ (0, 1)

for all components. Take the (ms×ms) block-diagonal matrix λI− Ã, where
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I denotes the identity matrix as usual, then λI − Ã = diag(C1,C2, . . . ,Cm)
with (s× s)-matrix Cj (j = 1, . . . ,m) defined by

Cj =



λ 0 · · · 0 −αj,1
0 λ · · · 0 −αj,2αj,1
...

...
. . .

...
...

0 0 · · · λ −
s−2∏
k=0

αj,s−1−k

0 0 · · · 0 λ−
s−1∏
k=0

αj,s−k


.

The determinant of the matrix λI− Ã, denoted by det(λI− Ã), can easily be
determined since the matrices Cj (j = 1, . . . ,m) are upper triangular matrices

(Harville 2008). The characteristic polynomial of Ã is

det(λI− Ã) =
(
λs−1

)m m∏
j=1

(
λ−

s−1∏
k=0

αj,s−k

)
.

For convenience in notation let
s−1∏
k=0

αj,s−k =: Tj . The polynomial takes the

form

det(λI− Ã) = λmsλ−m
m∏
j=1

(λ− Tj) = λms +

m∑
j=1

(−1)jβjλ
ms−j

with coefficients βj (j = 1, . . . ,m) given by

β1 =

m∑
j=1

Tj ; β2 =

m−1∑
j=1

m∑
i=j+1

TjTi; . . . ; βm−1 =

m∑
j=1

m∏
i=1
i6=j

Ti; βm =

m∏
j=1

Tj .

Let ρ be the maximal eigenvalue of Ã, then by Proposition B in Dion et al.

(1995),
m∑
j=1

βj < 1 if and only if ρ < 1.

Lemma 1 For a fixed v (v = 1, . . . , s), αj,v ∈ (0, 1) where j = 1, . . . ,m and
for t = v + ns, 0 < P (Zt = 0) < 1. Furthermore, any solution to (Xt),
t = v + ns and n ∈ N0 in (9) is an irreducible and aperiodic Markov chain.

Proof Let r = [r1 · · · rm]′ where rj = [rj1 · · · rjs] and d = [d1 · · · dm]′ with
dj = [dj1 · · · djs] for each j = 1, . . . ,m. Note that

Pr,d := P (Xt = r|Xt−s = d) =

= P


 A1 ◦X1,t−s + B1 ◦ Z1,t

...
Am ◦Xm,t−s + Bm ◦ Zm,t

 = r

∣∣∣∣∣∣∣∣ Xt−s = d

 =
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=
m∑

j=1

(
dj1∑

ij1=0

dj2∑
ij2=0

· · ·
djs∑

ijs=0

[
s∏

v=1
P (Zj,v+ns = ijv)P

(
v−1∏
k=0

αj,v−k ◦Xm,s+(n−1)s+

+
v−1∑
l=1

(
l−1∏
k=0

αj,v−k

)
◦ Zj,v−l+ns = rjv − ijv |Zj,1+ns = ij1, . . . , Zj,s+ns = ijs

)])

≥
m∑

j=1

(
s∏

v=1
P (Zj,v+ns = rjv)P

(
v−1∏
k=0

αj,v−k ◦ djs+

+
v−1∑
l=1

(
l−1∏
k=0

αj,v−k

)
◦ Zj,v−l+ns = 0|Zj,1+ns = rj1, . . . , Zj,s+ns = rjs

))

≥
m∑

j=1

(
s∏

v=1
P (Zj,v+ns = rjv)

(
1−

v−1∏
k=0

αj,v−k

)djs

×

×
v−1∏
k=1

P

((
v−1∏
k=0

αj,v−k

)
◦ Zj,v−l+ns = 0|Zj,1+ns = rj1, . . . , Zj,s+ns = rjs

))

≥
m∑

j=1

(
s∏

v=1
P (Zj,v+ns = rjv)

(
1−

v−1∏
k=0

αj,v−k

)djs v−1∏
k=1

(
1−

v−1∏
k=0

αj,v−k

)rjv−k
)

> 0.

Therefore,

P0,d =

m∑
j=1

 s∏
v=1

P (Zj,v+ns = 0)

(
1−

v−1∏
k=0

αj,v−k

)djs > 0

and similarly Pr,0 = P (Xt = r|Xt−s = 0) > 0, leading to conclude that (Xt)
is irreducible. Moreover,

P0,0 =

m∑
j=1

s∏
v=1

P (Zj,v+ns = 0) > 0,

which, in turn, implies that for a fixed v (v = 1, . . . , s), the process (Xt) with
t = v+ns and n ∈ N0 is an aperiodic Markov chain. This concludes the proof.

The main result of this subsection is formalized through the theorem below.

Theorem 1 For a fixed v (v = 1, . . . , s), let (Xt) with t = v + ns and n ∈
N0 as in (9) be an irreducible, aperiodic Markov chain on Nm0 . If E||Zt|| is

finite and if the largest eigenvalue of Ã is less than one, then there exists a
strictly periodically stationary (or cyclostationary) m-variate INAR(1) process
satisfying recursion (9).
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Proof From Lemma 1, (Xt) with t = v + ns and fixed v = 1, . . . , s is an irre-

ducible and aperiodic Markov chain being the eigenvalues of matrix Ã are less
than one. Thus, by Franke and Subba Rao (1993) a strictly periodically sta-
tionary m-variate non-negative integer-valued process satisfying the equation
(9) exists.

The PMINAR(1) model in (9) can be expressed as

Xt = Ã ◦Xt−s + Rt, (19)

where Rt = B̃ ◦ Zt with matrix B̃ in (11). Let

Rt = [R1,t R2,t · · · Rm,t]
′ = [B1 ◦ Z1,t B2 ◦ Z2,t · · · Bm ◦ Zm,t]

′.

The innovation series (Rt) is a sequence of independent non-negative integer-
valued random vectors with periodic structure.

2.2 Mean vector of cyclostationary PMINAR(1)

In this subsection, the periodic mean and autocovariance function of the
PMINAR(1) model are derived. First note that the expectation of Rt is

E[Rt] = E[B̃ ◦ Zt] = B̃E[Zt] = B̃δt

with matrices B̃ and δt as in (11) and (12), respectively. Furthermore, for each
component j = 1, . . . ,m, the mean vector of Rj,t takes the form

E[Rj,t] =



λj,1
λj,1αj,2 + λj,2

λj,1αj,3αj,2 + λj,2αj,3 + λj,3
...

λj,1
s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s


.

Moreover,

µt = E[Xt] = E[Ã ◦Xt−s + Rt] = (I− Ã)−1B̃δt (20)

with matrices Ã and B̃, and vector δt as in (10), (11) and (12), respectively.

Next we prove that I− Ã is regular and therefore (I− Ã)−1 exists. Note that

matrix I− Ã is a (ms×ms) block-diagonal matrix given by

I− Ã = diag(C1,C2, . . . ,Cm)
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with (s× s)-matrix Cj (j = 1, . . . ,m) as

Cj =



1 0 · · · 0 −αj,1
0 1 · · · 0 −αj,2αj,1
...

...
. . .

...
...

0 0 · · · 1 −
s−2∏
k=0

αj,s−1−k

0 0 · · · 0 1−
s−1∏
k=0

αj,s−k


.

The determinant of the matrix I− Ã is

d := det(I− Ã) =

m∏
j=1

(
1−

s−1∏
k=0

αj,s−k

)
6= 0,

since αj,v ∈ (0, 1) for j = 1, . . . ,m and v = 1, . . . , s, leading to conclude that

I−Ã is regular. The ms-dimensional mean vector µt for t = v+ns; v = 1, . . . , s
and n ∈ N0 in (20) takes the form

µt =
[
µ1,t µ2,t . . . µm,t

]′
,

where

µj,t =



λj,1 +
d(−j)

d
αj,1

(
λj,1

s−2∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)

λj,1αj,2 + λj,2 +
d(−j)

d

2−1∏
k=0

αj,2−k

(
λj,1

s−2∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)
...
d(−j)

d

(
λj,1

s−2∏
k=0

αj,s−k + λj,2
s−3∏
k=0

αj,s−k + · · ·+ λj,s−1αj,s + λj,s

)


with d(−j) :=

m∏
r=1
r 6=j

(
1−

s−1∏
k=0

αr,s−k

)
. Now consider for each j = 1, . . . ,m and

l ≥ i,

ϕ
(j)
l,i =


i−1∏
k=0

αj,l−k, i ≥ 1

1, i = 0
. (21)

It follows by tedious (although straightforward) calculations that for a fixed
v and j, each entry in µj,t = [E(Xj,1+ns) E(Xj,2+ns) · · ·E(Xj,s+ns)]

′ is given
by

E(Xj,v+ns) =

v−1∑
k=0

ϕ
(j)
v,kλj,v−k + ϕ

(j)
v,v

s−(v+1)∑
i=0

ϕ
(j)
s,iλj,s−i

1− ϕ(j)
s,s

. (22)
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Hence, µj,t can be expressed as

µj,t =
1

1− ϕ(j)
s,s



1−1∑
k=0

ϕ
(j)
1,kλj,1−k + ϕ

(j)
1,1

s−2∑
i=0

ϕ
(j)
s,iλj,s−i

2−1∑
k=0

ϕ
(j)
2,kλj,2−k + ϕ

(j)
2,2

s−3∑
i=0

ϕ
(j)
s,iλj,s−i

...
s−1∑
k=0

ϕ
(j)
s,kλj,s−k + ϕ

(j)
s,s

s−(s+1)∑
i=0

ϕ
(j)
s,iλj,s−i


,

for j = 1, . . . ,m; t = v + ns; v = 1, . . . , s and n ∈ N0. Here, we adopt the
convention

s−(s+1)∑
i=0

ϕ
(j)
s,iλj,s−i = 0.

2.3 Variance-covariance matrix

In order to derive the variance-covariance matrix of (Xt) we start by calcu-
lating the variance-covariance matrix

∑∑∑
Rt

of (Rt). From lemma 1 in Franke
and Rao (1993) [see also lemma 2.1 in Latour (1997)], it follows that∑∑∑

Rt

= V ar[Rt] = V ar[B̃ ◦ Zt] =

= V ar[E(B̃ ◦ Zt|Zt)] + E[V ar(B̃ ◦ Zt|Zt)] =

= V ar[B̃Zt] + diag(QE(Zt)) =

= B̃
∑∑∑

Zt

B̃
′
+ diag(Qδt)

= B̃ΨtB̃
′
+ diag(Qδt) (23)

with matrices B̃, δt and Ψt in (11), (12) and (15), respectively. Thus, matrix Q
is also block-diagonal with m (s×s)-matrices Qj , i.e., Q = diag(Q1, . . . ,Qm),
where

Qj =


0 0 . . . 0
αj,2(1− αj,2) 0 . . . 0
αj,3αj,2(1− αj,3αj,2) αj,3(1− αj,3) . . . 0
...

...
. . .

...
s−2∏
k=0

αj,s−k

(
1−

s−2∏
k=0

αj,s−k

)
s−3∏
k=0

αj,s−k

(
1−

s−3∏
k=0

αj,s−k

)
. . . 0

 ,
leading to

diag(Qδt) =


Q∗1 0 · · · 0
0 Q∗2 · · · 0
...

...
. . .

...
0 0 . . . Q∗m


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with Q∗j = diag(Qjδj,t) for j = 1, . . . ,m. Hence

Qjδj,t =



0
αj,2(1− αj,2)λj,1

αj,3αj,2(1− αj,3αj,2)λj,1 + αj,3(1− αj,3)λj,2
...

s−2∏
k=0

αj,s−k

(
1−

s−2∏
k=0

αj,s−k

)
λj,1 + . . .+ αj,s(1− αj,s)λj,s−1


and the variance-covariance matrix of Rt in (23) takes the form

∑∑∑
Rt

=


B1Ψ11,tB

′

1 + Q∗1 B1Ψ12,tB
′

2 . . . B1Ψ1m,tB
′

m

B2Ψ12,tB
′

1 B2Ψ22,tB
′

2 + Q∗2 . . . B2Ψ2m,tB
′

m
...

...
. . .

...

BmΨ1m,tB
′

1 BmΨ2m,tB
′

2 . . . BmΨmm,tB
′

m + Q∗m

 .
Furthermore, for each component j = 1, . . . ,m,

V ar[Rj,t] = BjΨjj,tB
′

j + Q∗j

and for j 6= k, k = 1, . . . ,m,

Cov(Rj,t,Rk,t) = BjΨjk,tB
′

k,

where combining (8) and (21) we have

Bj =



1 0 0 . . . 0

ϕ
(j)
2,1 1 0 . . . 0

ϕ
(j)
3,2 ϕ

(j)
3,1 1 . . . 0

...
...

...
. . .

...

ϕ
(j)
s,s−1 ϕ

(j)
s,s−2 ϕ

(j)
s,s−3 . . . 1

 .

Recall from (19) that Rt = B̃ ◦ Zt and Zt are independent of Xt−s, the
variance-covariance matrix,

∑∑∑
Xt

, of Xt is obtained from∑∑∑
Xt

= ÃV ar[Xt−s]Ã
′
+ diag (D · E[Xt−s]) +

∑∑∑
Rt

,

where D is a matrix with entries Dj for j = 1, . . . ,m,

Dj =


0 · · · 0 ϕ

(j)
1,1

(
1− ϕ(j)

1,1

)
0 · · · 0 ϕ

(j)
2,2

(
1− ϕ(j)

2,2

)
...

...
. . .

...

0 · · · 0 ϕ
(j)
s,s

(
1− ϕ(j)

s,s

)

 .
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Furthermore,

diag (D · E[Xt−s]) ≡ diag(Dµt) =


D∗1 0 · · · 0
0 D∗2 · · · 0
...

...
. . .

...
0 0 . . . D∗m

 ,
where

D∗j =

s−1∑
k=0

ϕ
(j)
s,kλj,s−k

1− ϕ(j)
s,s


ϕ
(j)
1,1

(
1− ϕ(j)

1,1

)
0 . . . 0

0 ϕ
(j)
2,2

(
1− ϕ(j)

2,2

)
. . . 0

...
...

. . .
...

0 0 . . . ϕ
(j)
s,s

(
1− ϕ(j)

s,s

)

 .

For simplicity in notation we define

∑∑∑
Xt

=


V ar[X1,t] Cov(X1,t,X2,t) . . . Cov(X1,t,Xm,t)

Cov(X2,t,X1,t) V ar[X2,t] . . . Cov(X2,t,Xm,t)
...

...
. . .

...
Cov(Xm,t,X1,t) Cov(Xm,t,X2,t) . . . V ar[Xm,t]



=:


∑∑∑

1,1

∑∑∑
1,2 . . .

∑∑∑
1,m∑∑∑

2,2 . . .
∑∑∑

2,m

. . .
...∑∑∑
m,m

 .
Note that

∑∑∑
j,j

=


V ar[Xj,1+ns] Cov(Xj,1+ns, Xj,2+ns) . . . Cov(Xj,1+ns, Xj,s+ns)

V ar[Xj,2+ns] . . . Cov(Xj,2+ns, Xj,s+ns)
. . .

...
V ar[Xj,s+ns]


with diagonal elements

V ar[Xj,v+ns] =
h(ϕ, λ)

1−
(
ϕ
(j)
s,s

)2 , (24)

where

h(ϕ, λ) :=

v−1∑
k=0

ϕ(j)
s,sϕ

(j)
v,kλj,v−k + ϕ

(j)
v,k

(
1− ϕ(j)

v,k

)
λj,v−k +

(
ϕ
(j)
v,k

)2
σ2
j,v−k +

+

s−(v+1)∑
m=0

ϕ(j)
s,sϕ

(j)
v,vϕ

(j)
s,mλj,s−m + ϕ(j)

v,vϕ
(j)
s,m

(
1− ϕ(j)

v,vϕ
(j)
s,m

)
λj,s−m +

+

s−(v+1)∑
m=0

(
ϕ(j)
v,vϕ

(j)
s,m

)2
σ2
j,s−k,
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for a fixed v (v = 1, . . . , s) and off-diagonal elements

Cov(Xj,v+ns, Xj,v+ns+l) = ϕ
(j)
v+l,lV ar[Xj,v+ns]. (25)

Moreoever,

∑∑∑
j,k

=


Cov(Xj,1+ns, Xk,1+ns) Cov(Xj,1+ns, Xk,2+ns) . . . Cov(Xj,1+ns, Xk,s+ns)
Cov(Xj,2+ns, Xk,1+ns) Cov(Xj,2+ns, Xk,2+ns) . . . Cov(Xj,2+ns, Xk,s+ns)

...
...

. . .
...

Cov(Xj,s+ns, Xk,1+ns) Cov(Xj,s+ns, Xk,2+ns) . . . Cov(Xj,s+ns, Xk,s+ns)


with diagonal elements

Cov(Xj,v+ns, Xk,v+ns) =
1

1− ϕ(j)
s,sϕ

(k)
s,s

v−1∑
i=0

ϕ
(j)
v,iϕ

(k)
v,i σjk,v−i +

+
ϕ
(j)
v,vϕ

(k)
v,v

1− ϕ(j)
s,sϕ

(k)
s,s

s−(v+1)∑
i=0

ϕ
(j)
s,iϕ

(k)
s,i σjk,s−i,

for a fixed v (v = 1, . . . , s) and off-diagonal elements

Cov(Xj,v+ns+h, Xk,v+ns) =
ϕ
(j)
v+h,h

1− ϕ(j)
s,sϕ

(k)
s,s

v−1∑
i=0

ϕ
(j)
v,iϕ

(k)
v,iσjk,v−i +

+
ϕ
(j)
v+h,hϕ

(j)
v,vϕ

(k)
v,v

1− ϕ(j)
s,sϕ

(k)
s,s

s−(v+1)∑
i=0

ϕ
(j)
s,iϕ

(k)
v,i σjk,s−i

and

Cov(Xj,v+ns, Xk,v+ns+h) =
ϕ
(k)
v+h,h

1− ϕ(j)
s,sϕ

(k)
s,s

v−1∑
i=0

ϕ
(j)
v,iϕ

(k)
v,iσjk,v−i +

+
ϕ
(k)
v+h,hϕ

(j)
v,vϕ

(k)
v,v

1− ϕ(j)
s,sϕ

(k)
s,s

s−(v+1)∑
i=0

ϕ
(j)
s,iϕ

(k)
v,i σjk,s−i

with σjk,v defined in (17). Now, for any positive lag h and each component
j = 1, . . . ,m it follows that

Cov(Xj,t,Xj,t+h) = Ah
jCov(Xj,t,Xj,t) = Ah

j V ar[Xj,t], (26)

and

Cov(Xj,t+h,Xk,t) = Ah
jCov(Xj,t,Xk,t),

Cov(Xj,t,Xk,t+h) = Ah
kCov(Xj,t,Xk,t).
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2.4 PMINAR(1) process with MVNB Innovations

In this subsection, we derive the first- and second-order moment structure
of the PMINAR(1) process driven by periodic multivariate negative binomial
(MVNB) innovations. First note that the joint probability mass function of
the innovations is given by

P (Z1,v+ns = z1, . . . , Zm,v+ns = zm) =

=
Γ
(
β−1v +

∑m
j=1 zj

)
Γ (β−1v )

(
β−1v

β−1v +
∑m
j=1 λj,v

)β−1
v

β−1v +

m∑
j=1

λj,v

−
∑m

j=1 zj

·

·
m∏
j=1

λ
zj
j,v

zj !
, (z1, . . . , zm) ∈ Nm0 . (27)

Notice the marginal distribution of Zj,t is univariate negative binomial with
parameters β−1v and pj,v (j = 1, . . . ,m; v = 1, . . . , s) with

pj,v =
β−1v

λj,v + β−1v
.

As previously mentioned, the innovation process (Zt), t = v+ns; v = 1, . . . , s
and n ∈ N0 is generally defined as a periodic sequence of independent ran-
dom vectors with mean as in (12) and variance-covariance matrix as in (15),
respectively. Thus,

λj,v = E[Zj,v+ns] = β−1v
1− pj,v
pj,v

, (28)

σ2
j,v = V ar[Zj,v+ns] = β−1v

1− pj,v
p2j,v

= λj,v(1 + βvλj,v), (29)

σjk,v = Cov(Zj,v+ns, Zk,v+ns) = βvλj,vλk,v, (30)

for a fixed v (v = 1, . . . , s), j 6= k; j, k = 1, . . . ,m. Note that V ar[Zj,v+ns] is
greater than E[Zj,v+ns], implying overdispersion. Thus, the first-order moment
and the auto- and cross-covariance structure PMINAR(1) process are obtained
from (22), (24) and (25) by plugging-in the values of λj,v, σ

2
j,v and σjk,v as in

(28)-(30).

3 Parameter estimation

Consider a finite time series (Xj,ts) with 1 ≤ t ≤ N, j = 1, . . . ,m (N -number
of complete cycles) from the PMINAR(1) model in (19) with MVNB innovations.
Without loss of generality it will be assumed that X0 = x0. The vector of
parameters θ is a (2m+ 1)s-dimensional vector

θ := (α1, . . . ,αm,λ1, . . . ,λm,β) (31)
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with s-vectors (j = 1, . . . ,m):

αj = (αj,1, . . . , αj,s) ; λj = (λj,1, . . . , λj,s) ; β = (β1, . . . , βs).

In order to estimate the unknown parameters in θ, three estimation methods
are proposed, namely: Yule-Walker (YW), conditional maximum likelihood
(CML) and composite likelihood (CL).

3.1 Yule-Walker estimation

The YW estimator of θ, θ̂YW := (α̂YW1 , . . . , α̂YWm , λ̂YW1 , . . . , λ̂YWm , β̂YW ) are
calculated as follows: first, the YW estimators of parameters λj are calculated
through the solution of the system of s linear equations yielding

λ̂YWj,v =

{
Xj,v − α̂YWj,v Xj,s , v = 1

Xj,v − α̂YWj,v Xj,v−1 , v = 2, 3, . . . , s
,

where

Xj,v =
1

N

N−1∑
n=0

Xj,v+ns, j = 1, . . . ,m.

Further, from relation (26) and taking lag h = 1, it follows that γj,t(1) equals
Ajγj,t(0) and therefore, the YW estimators of parameters αj are

α̂YWj,v =


S2
j,v

S2
j,s

, v = 1

γj,v−1(1)

S2
j,v−1

, v = 2, 3, . . . , s

, (32)

where S2
j,v and γj,v(1) (j = 1, . . . ,m) are defined as

S2
j,v =

1

N − 1

N−1∑
n=0

(Xj,v+ns −Xj,v)
2,

and

γj,v(1) = Cov(Xj,v+ns, Xj,v+1+ns) =

=


1

N−1

N−1∑
n=0

(Xj,v+ns −Xj,v)(Xj,v+1+ns −Xj,v+1) , v = 1, . . . , s− 1

1
N−1

N−1∑
n=0

(Xj,v+ns −Xj,v)(Xj,1+(n+1)s −X
∗
j,1) , v = s

,

where X
∗
j,1 = 1

N

N∑
n=0

Xj,1+ns. Finally, the YW estimator of β is

β̂YWv =

(
1− ϕ̂(j)

s,sϕ̂
(k)
s,s

)
γjk,v(0)

v−1∑
i=0

ϕ̂
(j)
v,i ϕ̂

(k)
v,i λ̂j,v−iλ̂k,v−i + ϕ̂

(j)
v,vϕ̂

(k)
v,v

s−(v+1)∑
i=0

ϕ̂
(j)
s,i ϕ̂

(k)
s,i λ̂j,s−iλ̂k,s−i

,
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for v = 1, . . . , s and j, k = 1, . . . ,m (j 6= k). The Yule-Walker estimators of ϕ
are the product of estimators α̂YWj,v defined in (32).

3.2 Conditional maximum likelihood estimation

In order to obtain the CML estimator θ̂CML of θ we proceed as follows. First
note that the transition probabilities for the PMINAR(1) model can be expressed
as the convolution of m binomials with parameters (xj,v−1+ns, αj,v) where
j = 1, . . . ,m; v = 1, . . . , s with probability mass function

fj(rj) = Cxj,v−1+ns
rj α

rj
j,v(1− αj,v)

xj,v−1+ns−rj , (33)

and the periodic discrete m-variate distribution defined as in (27). Thus, the
conditional density is the multiple sum

pv(xv+ns|xv−1+ns) = P (Xv+ns = xv+ns|Xv−1+ns = xv−1+ns) =

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

 Γ
(
β−1v +

∑m
j=1(xj,v+ns − rj)

)
Γ (β−1v )

·

·

(
β−1v

β−1v +
∑m
j=1 λj,v

)β−1
v

β−1v +

m∑
j=1

λj,v

−
∑m

j=1(xj,v+ns−rj)

·

·
m∏
j=1

λ
(xj,v+ns−rj)
j,v

(xj,v+ns − rj)!
(34)

with gj := min(xj,v−1+ns, xj,v+ns) and fj(rj) as in (33) for j = 1, . . . ,m;
v = 1, . . . , s and n ∈ N0. Hence, the CML estimator is obtained by maximizing
the conditional log-likelihood

ln(L(θ|x)) =

N−1∑
n=0

s∑
v=1

ln (pv(xv+ns|xv−1+ns))

with transition probabilities pv(xv+ns|xv−1+ns) in (34). Explicit CML esti-
mators are not available so numerical procedures have to be employed. The
asymptotic properties of θ̂CML are given through the following result.

Theorem 2 The conditional maximum likelihood estimator θ̂CML of θ is
asymptotically normal

√
N(θ̂CML − θ)

d→ N(0, I−1(θ)),

where I(θ) represents the Fisher information matrix

I =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Ms


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with matrices Mv (v = 1, . . . , s) given by

(−1)×



E
[
∂2C(θ)
∂α2

1,v

]
· · · E

[
∂2C(θ)

∂α1,v∂αm,v

]
E
[

∂2C(θ)
∂α1,v∂λ1,v

]
· · · E

[
∂2C(θ)

∂α1,v∂λm,v

]
E
[
∂2C(θ)
∂α1,v∂βv

]
...

. . .
...

...
...

...
...

E
[

∂2C(θ)
∂αm,v∂α1,v

]
· · · E

[
∂2C(θ)
∂α2

m,v

]
E
[

∂2C(θ)
∂αm,v∂λ1,v

]
· · · E

[
∂2C(θ)

∂αm,v∂λm,v

]
E
[

∂2C(θ)
∂αm,v∂βv

]
E
[

∂2C(θ)
∂λ1,v∂α1,v

]
· · · E

[
∂2C(θ)

∂λ1,v∂αm,v

]
E
[
∂2C(θ)
∂λ2

1,v

]
· · · E

[
∂2C(θ)

∂λ1,v∂λm,v

]
E
[
∂2C(θ)
∂λ1,v∂βv

]
...

...
...

...
. . .

...
...

E
[

∂2C(θ)
∂λm,v∂α1,v

]
· · · E

[
∂2C(θ)

∂λm,v∂αm,v

]
E
[

∂2C(θ)
∂λm,v∂λ1,v

]
· · · E

[
∂2C(θ)
∂λ2

m,v

]
E
[

∂2C(θ)
∂λm,v∂βv

]
E
[
∂2C(θ)
∂βv∂α1,v

]
· · · E

[
∂2C(θ)

∂βv∂αm,v

]
E
[
∂2C(θ)
∂βv∂λ1,v

]
· · · E

[
∂2C(θ)

∂βv∂λm,v

]
E
[
∂2C(θ)
∂β2

v

]


.

Proof This result is a particular case of theorem 2.2 in Billingsley (1961). For
each v, with v = 1, . . . , s, pv(·|·) is the transition probabilities in (34) of the
PMINAR(1) model, therefore the regularity conditions in Billingsley’s theorem
are satisfied. We postpone those assumptions to the Appendix A.

3.3 Composite likelihood estimation

For periodic multivariate processes, the number of parameters can be quite
large. The inflation of parameters is due to season v (v = 1, . . . , s) with s
representing the period. Computational issues often arise when applying the
conditional maximum likelihood approach, the complexity of the method aug-
ments with dimensional increase. To overcome the limitations in computing
the exact likelihood, Lindsay (1988) proposed the composite likelihood as a
pseudo-likelihood for inference. The pseudo-likelihood may take various forms
such as combinations of likelihoods for small subsets of the data or combina-
tions of conditional likelihoods. These procedures adopt some features of the
full likelihood which are useful for inference while keeping the computation
feasible, producing answers in reasonable time.

Composite likelihood inherits many of the good properties of inference based
on the full likelihood function, but is more easily implemented with high-
dimensional data sets. Pairwise likelihood is one special case of a composite
likelihood, in which the pseudo-likelihood is defined as the product of the
bivariate likelihood of all possible pairs of observations. A more general dis-
cussion of pairwise likelihood can be found in Davis and Yau (2011). Issues
and strategies in the selection of composite likelihoods are given in Lindsay et
al. (2011).

Composite likelihood methods based on optimizing sums of log-likelihoods
of low-dimensional margins have become popular in recent years (Pedeli and
Karlis 2013a); being useful for multivariate models in which the likelihood of
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multivariate data is very time-consuming. The methodology has drawn con-
siderable attention in a broad range of applied disciplines in which complex
data structures arise (e.g. Varin et al. 2011; Varin 2008). Asymptotic results
and computational aspects of construction of, and inference from, composite
likelihood are available in Varin et al. (2011). Analogues of the Akaike informa-
tion criteria for model selection can be derived in the framework of composite
likelihoods, having a similar form, see e.g. Ng and Joe (2014).

Note that the bivariate marginal log-likelihood function between two random
elements, say Xa and Xb, can be defined as

lab(θ; xa,xb) =
1

Ns

N−1∑
n=0

s∑
v=1

logfXa,Xb
(xa,v+ns, xb,v+ns|xa,v−1+ns, xb,v−1+ns;θ),

where

fXa,Xb
(xa,v+ns, xb,v+ns|xa,v−1+ns, xb,v−1+ns;θ) =

=

g1∑
ka=0

g2∑
kb=0

(
xa,v−1+ns
xa,v+ns − ka

)
αxa,v+ns−ka
a,v (1− αa,v)xa,v−1+ns−xa,v+ns+ka ·

·
(

xb,v−1+ns
xb,v+ns − ka

)
α
xb,v+ns−kb
b,v (1− αb,v)xb,v−1+ns−xb,v+ns+kb · hRa,Rb

(ka, kb),

for g1 := min(xa,v+ns, xa,v−1+ns) and g2 := min(xb,v+ns, xb,v−1+ns). The bi-
variate function hRa,Rb

(ka, kb) represents the bivariate marginal probability
density with bivariate negative binomial innovations being a particular case
(m = 2) of the multivariate negative binomial distribution in (27).

The composite log-likelihood function, cl(θ; xa,xb), then arises as the sum
of all bivariate log-likelihood functions, i.e.,

cl(θ; xa,xb) =

m−1∑
a=1

m∑
b=a+1

wab lab(θ; xa,xb),

where wab is a constant weight for lab. Typically, the weights are chosen in order
to eliminate distant pairs of observations, which should be less informative
(Varin and Vidoni 2005). For sake of simplicity, it is common to set wab equal
to 1, 1 ≤ a ≤ b ≤ m. Further details on weighting of bivariate margins in
pairwise likelihood can be found in Joe and Lee (2009).

3.4 Simulation study

The performance of the three estimation methods (YW, CML, CL) for the
PMINAR(1) model driven by multivariate negative binomial innovations are
compared in this subsection through a simulation study for m = 3 (trivariate)
thus the vector of unknown parameters θ in (31) is (α1,α2,α3,λ1,λ2,λ3,β).
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Further, it will be assumed throughout the study that s = 4. This simulation
study contemplates the three scenarios displayed in Table 1. Notice that for set
A, parameters α are mainly above 0.5. For set B, parameters α take values
below and above 0.5 and for set C, parameters take at most the value 0.5.
Correlations between series for set A are 0.52 (series 1 and 2), 0.71 (series 1
and 3) and 0.64 (series 2 and 3). For set B, 0.48, 0.35 and 0.28 and for set C,
0.74, 0.18 and 0.37, respectively.

(Table 1 about here)

Three alternative samples sizes are considered: n = 400, 1000, 2000. Thus
n = sN , N = 100, 250, 500 complete cycles. For each experiment we con-
ducted 200 independent replications.

The simulated data sets that produced YW estimates in an inadmissible range
were disregarded and iterations were continued till reaching the specified num-
ber of 200 replications per experiment. The tendency of the YW method to
produce inadmissible estimates was greater for smaller sample sizes. YW es-
timates were used as initial values in numerical routines for the optimization
procedure of CML and CL methods.

Comparison of the YW, CML and CL estimators was carried out in terms
of their corresponding mean square error (MSE) and the biases of the pro-
duced point estimates. For set A, Table 2 displays point estimates for the
parameters of the periodic trivariate INAR(1) model with trivariate negative
binomial innovations. Each point estimate includes MSE in parenthesis. For
sets B and C, the corresponding point estimates are summarized in Tables 3
and 4, respectively. Those tables are available in Appendix B.

(Table 2 about here)

For set A, Table 2 reports the estimates for autocorrelation parameters αj
(j = 1, 2, 3) where small MSEs characterize all estimates of (α1,α2,α3). The

performance of the estimators λ̂j (j = 1, 2, 3) and estimator β̂ is slightly
worse. The same behavior can be observed for sets B and C in Tables 3-4 (see
Appendix B). The YW estimator does not perform well in general, revealing
to be a not so good estimator for the dispersion parameter β. The estimates
obtained by adopting either the CML or the CL method are very close to the
real parameter values, even in the case of a moderate sample size (n = 400).
For larger samples (n = 1000 and n = 2000) both estimators seem to perform
well and in a similar fashion.

Graphical inspection is provided through the boxplots of the biases of the
produced estimates. Regarding set A, Figure 1 displays the boxplots of biases’
estimates of parameters αj = (αj,1, αj,2, αj,3, αj,4), for j = 1, 2, 3. Further-
more, Figures 2-3 refer to the boxplots of biases’ estimates for the param-
eters of the trivariate negative binomial distributed innovation distribution
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λj = (λj,1, λj,2, λj,3, λj,4), for j = 1, 2, 3, and β = (β1, β2, β3, β4), respectively.
Likeliwise, boxplots regarding set B are in Figures 4-6 and regarding set C
in Figures 7-9. Due to space constraints, figures related to sets B and C are
displayed in Appendix B. Also, the effect of sample size on the behavior of the
estimators can be checked throughout Figures 1-9.

(Figures 1-3 about here)

As expected, increasing the sample size improves the performance of all estima-
tors in terms of both location (median closer to zero) and dispersion (narrower
interquartile ranges). Therefore, this indicates the superiority of CML and CL
estimators over the YW estimators.

Closing this section, it is worth mentioning that numerical maximization of the
conditional maximum likelihood is very time-consuming. The composite likeli-
hood method was suggested in order to overcome the computational difficulties
of the conditional maximum likelihood approach in multivariate models. The
main advantage of the CL approach is the replacement of the full likelihood
with a pseudo-likelihood which effectively captures the model properties while
at the same time is computationally less demanding. Through this simula-
tion study, the CL method revealed a good performance within a reasonable
amount of time. One estimate with the CL method took about 25 sec, 66 sec
and 129 sec for the three sample sizes n = 400, 1000, 2000 respectively; with
the CML method the time increased to 54 sec, 162 sec and 324 sec. The CL
method requires significantly less time for the optimization of the likelihood
function without obvious losses in precision.

4 Forecasting

In this section we consider the problem of predicting the future values Xt+h

(t = v+ns; v = 1, . . . , s) of the periodic MINAR(1) process given past observa-
tions through time t = v + ns for v = 1, . . . , s. Set h = u+ ls for u = 1, . . . , s.
Due to model’s definition and by iterating equation (5), the j-th component
Xj,t can be expressed as

Xj,t
d
=

(
n−1∏
i=0

φj,t−i

)
◦Xj,t−n +

n−1∑
k=1

(
k−1∏
i=0

φj,t−i

)
◦ Zj,t−k + Zj,t

with Zj,t in (2) and φj,t defined in (3). Then each element of Xj,t for a fixed
t can be written as

Xj,t
d
= ζ

(j)
t,n ◦Xj,t−n +

n−1∑
k=0

ζ
(j)
t,k ◦ Zj,t−k,

where, for t ≥ i

ζt,i :=


i−1∏
k=0

φt−k , i > 0

1 , i = 0
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and also ζt,i := ζt,v(ζs,s)
l for i = v + ls; v = 1, . . . , s, leading to

Xj,v+ns+h
d
= ζ

(j)
v+ns+h,h ◦Xj,v+ns +

h−1∑
k=0

ζ
(j)
v+ns+h,k ◦ Zj,v+ns+h−k.

Since h = u+ ls for u = 1, . . . , s, it follows that

Xj,v+ns+h
d
= ζ

(j)
v+u+(n+l)s,u+ls ◦Xj,v+ns +

u+ls−1∑
k=1

ζ
(j)
v+u+(n+l)s,k ◦ Zj,v+u+(n+l)s−k

d
= ζ

(j)
v+u,u

(
ζ(j)s,s

)l
◦Xj,v+ns + Yj,v+u+ls

with

Yj,v+u+ls =

v−1∑
k=0

ζ
(j)
v+u,k ◦ Zj,v+u+ns−k+

+

l−1∑
w=0

s−1∑
k=0

ζ
(j)
v+u+(n+l)s,k+u+ws ◦ Zj,v+(n+l−w)s−k.

As usual, to generate the h-step ahead prediction we can employ the mean,
median or mode of the predictive distribution of Xv+ns+h|Xv+ns as a point
forecast. The median and mode are considered as coherent predictions but the
mean is not. The h-step ahead point predictor that minimizes the mean square
error (MSE) is given by

X̂j,v+ns+h = E[Xj,v+ns+h|Xj,v+ns]

= E

[
ζ
(j)
v+u,u

(
ζ(j)s,s

)l
◦Xj,v+ns|Xj,v+ns

]
+ E[Yj,v+u+ls],

where

E[Yj,v+u+ls] =

= E

[
v−1∑
k=0

ζ
(j)
v+u,k ◦ Zj,v+u+ns−k +

l−1∑
w=0

s−1∑
k=0

ζ
(j)
v+u+(n+l)s,k+u+ws

◦ Zj,v+(n+l−w)s−k

]

=

v−1∑
k=0

ζ
(j)
v+u,kλj,v+u−k +

l−1∑
w=0

s−1∑
k=0

ζ
(j)
v+u+(n+l)s,k+u+ws

λj,v+(n+l−w)s−k (35)

with E[Zj,v+ns] = λj,v in (14). For the particular case, h = 1, the one-step
ahead predictive function is

pv(xv+ns+1|xv+ns) =

=

g1∑
r1=0

g2∑
r2=0

. . .

gm∑
rm=0

 m∏
j=1

fj(rj)

 k(x1,v+ns+1 − r1, . . . , xm,v+ns+1 − rm)
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with gj = min(xj,v+ns, xj,v+ns+1), j = 1, . . . ,m. In particular, for the MVNB
distribution defined in (27) function k(·) above takes the form

k(x1,v+ns+1 − r1, x2,v+ns+1 − r2, . . . , xm,v+ns+1 − rm) =

=
Γ
(
β−1v +

∑m
j=1(xj,v+ns+1 − rj)

)
Γ (β−1v )

(
β−1v

β−1v +
∑m
j=1 λj,v

)β−1
v

×

×

β−1v +

m∑
j=1

λj,v

−
∑m

j=1(xj,v+ns+1−rj)
m∏
j=1

λ
(xj,v+ns+1−rj)
j,v

(xj,v+ns+1 − rj)!
.

Furthermore, from equations (22) and (35), the one-step ahead predictor of
Xj,v+ns+1 takes the form

X̂j,v+ns+1 = E[Xj,v+ns+1|Xj,v+ns]

=

v∑
k=0

ϕ
(j)
v+1,kλj,v+1−k + ϕ

(j)
v+1,v+1

s−(v+2)∑
i=0

ϕ
(j)
s,iλj,s−i

1− ϕ(j)
s,s

+

+

v−1∑
k=0

ζ
(j)
v+1,kλj,v+1−k +

l−1∑
w=0

s−1∑
k=0

ζ
(j)
v+1+(n+l)s,k+1+wsλj,v+(n+l−w)s−k.

5 An application to time series of fire activity

This section illustrates the performance of the PMINAR(1) model to the anal-
ysis of a trivariate real environmental data set. The data refers to the num-
ber of fires collected in three counties in Portugal, namely Anadia, Oliveira
do Bairro (O.Bairro) and Vagos, during 32 consecutive years, from 1986 to
2017 (www2.icnf.pt/portal/florestas/dfci/inc/estat-sgif). The data represents
monthly observations of daily fires in those counties. This collection of fires is
showed in Figure 10.

(Figure 10 about here)

Forest fires are a major problem in many European countries of the northern
arch of the Mediterranean Sea, namely Portugal, Spain, France, Italy and
Greece, as they are a threat not only to forests but also to people and their
surroundings. In Europe, Portugal is the country with the highest number of
forest fires per unit surface and per number of inhabitants (San Miguel-Ayanz
and Camia 2009). Fire frequency is markedly different from north to south
and from east to west (Nunes et al. 2016; Nunes 2012). The distribution of
fires across the year follows a regular pattern, strongly influenced by seasonal
variations of temperature and rainfall. Hence, it is expected to find the highest
number of fires in the summer season, with a peak in July/August and the
lowest number of fires in the rainy season. For further details see Tonini et al.
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(2017) and Scotto et al. (2014a). The sample autocorrelation function (ACF)
in Figure 11 reveals a periodic pattern of 12 months.

(Figure 11 about here)

The mean values and variances of the number of fires per month are shown
in Figure 12 and cross-correlations in Figure 13. In the three counties, most
months have variance greater than the mean, implying overdispersion.

(Figure 12 about here)

(Figure 13 about here)

As stressed above, the distribution for the innovations is assumed to be trivari-
ate negative binomial. It is worth to mention that for this particular applica-
tion, the Yule-Walker approach produces non-admissible point estimates for
some months and, hence, is disregarded for further analysis. Table 5 summa-
rizes the CL and CML estimates and the corresponding standard errors (SE)
obtained by fitting the periodic trivariate INAR(1) model with period s = 12
and trivariate negative binomial innovations. The SE are calculated numeri-
cally from the Hessian matrix during the optimization procedure in R.

(Table 5 about here)

In many cases, the estimates from both methods (CL and CML) are very close.
Some loss of efficiency is noticed when the CL method is employed although
it is important to emphasize here that the CL is an approximate likelihood,
leading to inevitable losses. The CL method could be regarded as a satisfac-
tory approach for the estimation of the unknown parameters of the PMINAR(1)
process, especially when other alternatives are not available. The CL estimates
were used to initialize the CML method. Some estimates of the autocorrelation
parameters in Table 5 are not statistically significant, suggesting that on those
months the number of fires is being mainly modeled through the innovation
process.

In order to check the adequacy of the periodic trivariate model for the con-
sidered data of the monthly number of fires in Anadia, O.Bairro and Va-
gos counties, two approaches will be adopted: residual-based and parametric
bootstrap-based methods. The use of the parametric bootstrap method relies
on a resampling exercice proposed by Tsay (1992). Such techniques to assess
model adequacy have also been employed by Ristić and Popović (2019).

Concerning the residual-based method, the standardized Pearson residuals are
calculated through the expression

R∗j,t =
Xj,t − E[Xj,t|Xj,t−1]√

V ar[Xj,t|Xj,t−1]
,
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where j = 1, 2, 3, t = v+ns and v = 2, . . . , s. The analysis of the standardized
residuals for the trivariate model reveal sample means of −0.003 for Anadia,
−0.001 for O.Bairro and −0.007 for Vagos county. The sample variances are
quite close to one namely, 0.97, 1.01 and 1.03 for Anadia, O.Bairro and Vagos
counties, respectively. Figure 14 displays the sample autocorrelation function
of Pearson residuals in Anadia, O.Bairro and Vagos counties. Overall, the
results are consistent with the assumptions of zero-mean, unit variance and
uncorrelatedness of the standardized residuals.

(Figure 14 about here)

Pursing with the parametric bootstrap method, we generated 5000 artificial
data sets using the fitted periodic trivariate INAR(1) model with period s = 12
and trivariate negative binomial innovations with CML estimates as in Table
5. Based on these bootstrap data sets, we compared some fitted characteristics.
Namely, for each obtained simulated sample, the sample mean and the sample
standard deviation were calculated. Bootstrap confidence intervals for such
characteristics based on their corresponding 2.5% and 97.5% quantiles were
obtained and graphically displayed in Figures 15 and 16, respectively.

(Figure 15 about here)

(Figure 16 about here)

Considering the bootstrap data sets, 5000 autocorrelation functions were com-
puted. For each fixed lag, the sample ACF, 2.5% and 97.5% quantiles were
determined to constitute the lower and upper bounds, displayed in Figure
17. Almost all of the sample autocorrelation values lie within the confidence
bounds. Note that in this case we also need to compute the sample pairwise
cross-correlation function between the three time series. Therefore, for the ear-
lier bootstrap samples the cross-correlation is computed between pairs of time
series. The bootstrap confidence intervals for lags from −10 to 10 were derived
based on their 2.5% and 97.5% quantiles. Figure 18 reveals no evidence of
model inadequacy for the cross-correlation structure between the three time
series. Hence, we conclude that the fitted periodic trivariate INAR(1) model is
adequate for fitting to the monthly number of fires in Anadia, O.Bairro and
Vagos counties.

(Figure 17 about here)

(Figure 18 about here)

As a final remark we would like to point out the fact that analytic expressions
concerning the resulting marginal distribution for the proposed periodic model
are not known, so marginal goodness-of-fit statistics cannot be computed for
this model, see e.g. Weiß (2018b, p. 627) for further details.
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6 Conclusions

In this paper, a class of periodic multivariate integer-valued autoregressive
models of order one with period s has been introduced and explained in de-
tail. The PMINAR(1) model can be viewed as a generalization of the bivariate
model in Monteiro et al. (2015) to the multivariate case. Emphasis was placed
upon models with periodic negative binomial innovations in order to account
for overdispersion. To overcome the computational difficulties arising from the
use of the conditional maximum likelihood method a composite likelihood-
based approach is discussed. An application to a real data set related with the
analysis of fire activity was presented.

It is worth mentioning here that the autoregression matrix of the PMINAR(1)
process considered is diagonal, meaning no cross-correlation in the counts,
which implies that the marginals behave like the univariate model in (5).
Hence, extensions for PMINAR models accounting for cross-correlation is a topic
for future investigation. Furthermore, it is also important to stress that beyond
this extension, there are a number of open problems for future research in this
area. For example, in order to make the PMINAR models more flexible with re-
spect to real data applications, such as the one presented in this paper, it may
be of interest to include covariates in the model to account for dependence
through the thinning parameters on several factors. Moreover, extensions of
periodic multivariate models to fit multivariate count data time series with a
finite range of counts will be also very welcome.
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A Assumptions of Billingsley’s theorem

For a fixed v (v = 1, . . . , s), let the vector of parameters from the innovation
process be

ξv = (λ1,v, λ2,v, . . . , λm,v, βv) = (ξ1,v, ξ2,v, . . . , ξm,v, ξm+1,v) ∈ B.

(C1) The set {a : P (Zv+ns = a) = f(a, ξv)} does not depend on ξv;

(C2) E[Z3
v+ns] <∞;

(C3) f(a, ξv) is three times continuously differentiable on the set of parame-
ters B;

(C4) For any ξv ∈ B, there exists a neighbourhood U of ξv such that

∞∑
a=0

sup
ξv∈U

f(a, ξv) <∞ ,

∞∑
a=0

sup
ξv∈U

∣∣∣ ∂
∂ξu,v

f(a, ξv)
∣∣∣ <∞, u = 1, . . . ,m+ 1,

∞∑
a=0

sup
ξv∈U

∣∣∣ ∂2

∂ξu,v∂ξw,v
f(a, ξv)

∣∣∣ <∞, u, w = 1, . . . ,m+ 1;

(C5) For any ξv ∈ B there exists a neighbourhood U of ξv and increasing
sequences ψu(n), ψu,w(n), ψu,w,y(n), n ≥ 0 such that for all ξv ∈ B and all
a ≤ n with nonvanishing f(a, ξv)∣∣∣ ∂

∂ξu,v
f(a, ξv)

∣∣∣ ≤ ψu(n) f(a, ξv),∣∣∣ ∂2

∂ξu,v∂ξw,v
f(a, ξv)

∣∣∣ ≤ ψu,w(n) f(a, ξv),∣∣∣ ∂3

∂ξu,v∂ξw,v∂ξy,v
f(a, ξv)

∣∣∣ ≤ ψu,w,y(n) f(a, ξv), u,w, y = 1, . . . ,m+ 1;

and also concerning the cyclostationary distribution of Xt, with t = v + ns:

E[ψ3
u(Xv)] <∞, E[Xvψu,w(Xv+1)] <∞,

E[ψu(Xv)ψu,w(Xv+1)] <∞, E[ψu,w,y(Xv)] <∞;

(C6) The Fisher information matrix, I(θ), is nonsingular.
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B Tables and Figures for Sets B and C from simulation study

(Table 3 about here)

(Figures 4-6 about here)

(Table 4 about here)

(Figures 7-9 about here)
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33. Popović PM (2015) Random coefficient bivariate INAR(1) process. Facta Univ Ser
30:263–280
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Table 1 Parameters: αj = (αj,1,αj,2,αj,3,αj,4), λj = (λj,1,λj,2,λj,3,λj,4), j = 1, 2, 3
and β = (β1, β2, β3, β4).

α1 = (0.53, 0.75, 0.62, 0.83) ; λ1 = (4, 2, 3, 5)

Set A α2 = (0.72, 0.85, 0.56, 0.91) ; λ2 = (5, 3, 1.2, 2) ; β = (1.6, 0.9, 1.8, 1.2)

α3 = (0.83, 0.60, 0.41, 0.58) ; λ3 = (3, 1.6, 2, 4)

α1 = (0.23, 0.45, 0.72, 0.33) ; λ1 = (5, 3, 4, 2)

Set B α2 = (0.31, 0.54, 0.26, 0.15) ; λ2 = (2, 4, 3, 1) ; β = (1.2, 1.4, 1.8, 1.5)

α3 = (0.73, 0.16, 0.31, 0.82) ; λ3 = (3, 1.6, 2, 4)

α1 = (0.20, 0.35, 0.12, 0.43) ; λ1 = (5, 3, 4, 2)

Set C α2 = (0.30, 0.50, 0.20, 0.12) ; λ2 = (2, 4, 3, 1) ; β = (2, 1.8, 3, 1)

α3 = (0.44, 0.16, 0.31, 0.22) ; λ3 = (3, 1.6, 2, 4)
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Table 2 YW, CML and CL estimates for parameters in set A: α1 = (0.53, 0.75, 0.62, 0.83),
α2 = (0.72, 0.85, 0.56, 0.91), α3 = (0.83, 0.60, 0.41, 0.58); λ1 = (4, 2, 3, 5), λ2 = (5, 3, 1.2, 2),
λ3 = (3, 1.6, 2, 4) and β = (1.6, 0.9, 1.8, 1.2). MSE in parenthesis.

n =400 n =1000 n =2000
YW CML CL YW CML CL YW CML CL

α̂1,1 0.521 0.531 0.531 0.528 0.531 0.531 0.528 0.529 0.529
(0.0056) (0.0005) (0.0002) (0.0021) (0.0002) (0.0001) (0.0016) (0.0001) (0.00003)

α̂1,2 0.746 0.752 0.751 0.750 0.751 0.751 0.752 0.749 0.748
(0.0023) (0.0006) (0.0008) (0.0009) (0.0002) (0.0007) (0.0004) (0.0001) (0.00002)

α̂1,3 0.608 0.618 0.617 0.617 0.621 0.620 0.615 0.620 0.619
(0.0065) (0.0008) (0.0016) (0.0029) (0.0003) (0.0013) (0.0014) (0.0001) (0.0001)

α̂1,4 0.789 0.833 0.832 0.826 0.830 0.830 0.825 0.830 0.830
(0.0086) (0.0007) (0.0006) (0.0050) (0.0003) (0.0002) (0.0023) (0.0001) (0.0001)

α̂2,1 0.717 0.718 0.717 0.739 0.719 0.719 0.740 0.720 0.720
(0.0136) (0.0008) (0.0038) (0.0059) (0.0004) (0.0003) (0.0039) (0.0001) (0.00006)

α̂2,2 0.845 0.854 0.852 0.845 0.851 0.851 0.849 0.851 0.850
(0.0025) (0.0005) (0.0003) (0.0009) (0.0002) (0.0005) (0.0005) (0.0001) (0.00003)

α̂2,3 0.552 0.559 0.560 0.559 0.559 0.559 0.561 0.560 0.560
(0.0017) (0.0003) (0.0004) (0.0007) (0.0001) (0.0001) (0.0003) (0.0001) (0.00002)

α̂2,4 0.894 0.910 0.910 0.910 0.910 0.911 0.906 0.909 0.910
(0.0029) (0.0002) (0.0005) (0.0013) (0.0001) (0.0003) (0.0006) (0.00001) (0.00002)

α̂3,1 0.823 0.832 0.832 0.832 0.831 0.831 0.830 0.830 0.830
(0.0063) (0.0005) (0.0013) (0.0028) (0.0002) (0.0001) (0.0016) (0.0001) (0.00003)

α̂3,2 0.596 0.603 0.603 0.601 0.600 0.600 0.599 0.601 0.602
(0.0021) (0.0006) (0.0020) (0.0008) (0.0003) (0.0002) (0.0004) (0.0002) (0.0004)

α̂3,3 0.391 0.411 0.410 0.411 0.409 0.409 0.407 0.411 0.411
(0.0052) (0.0009) (0.0110) (0.0024) (0.0004) (0.0041) (0.0013) (0.0002) (0.00002)

α̂3,4 0.545 0.587 0.588 0.566 0.580 0.580 0.578 0.580 0.580
(0.0171) (0.0020) (0.0046) (0.0070) (0.0007) (0.0026) (0.0043) (0.0005) (0.0008)

λ̂1,1 4.182 3.909 3.927 3.986 3.981 3.988 3.995 3.999 4.033
(1.2512) (0.3968) (0.1027) (0.3894) (0.1241) (0.0059) (0.3336) (0.0777) (0.0018)

λ̂1,2 2.011 2.008 2.012 2.001 1.997 2.005 1.977 2.009 2.007
(0.2480) (0.0915) (0.2645) (0.1180) (0.0430) (0.1500) (0.0440) (0.0173) (0.0057)

λ̂1,3 3.146 3.024 3.027 3.078 2.980 2.984 3.063 2.978 2.986
(0.8247) (0.2198) (0.0103) (0.3777) (0.1018) (0.0076) (0.1835) (0.0487) (0.0052)

λ̂1,4 5.289 5.059 5.067 5.011 5.027 5.031 5.031 4.983 4.997
(1.1822) (0.3725) (0.0304) (0.4751) (0.1528) (0.0176) (0.2622) (0.0698) (0.0157)

λ̂2,1 5.243 4.924 4.954 4.965 5.010 5.022 4.965 5.005 5.042
(1.8476) (0.5629) (0.2708) (0.7502) (0.2207) (0.0247) (0.4609) (0.1228) (0.0108)

λ̂2,2 3.071 3.005 3.017 3.040 2.970 2.986 3.009 3.005 3.008
(0.4659) (0.1812) (0.0124) (0.1605) (0.0622) (0.0460) (0.0828) (0.0356) (0.0009)

λ̂2,3 1.324 1.220 1.215 1.221 1.196 1.201 1.203 1.188 1.184
(0.2941) (0.0630) (0.0309) (0.1310) (0.0311) (0.0021) (0.0600) (0.0135) (0.0016)

λ̂2,4 2.110 2.026 2.029 1.986 1.992 1.993 2.027 1.998 2.001
(0.3135) (0.0825) (0.0143) (0.1231) (0.0322) (0.0089) (0.0586) (0.0174) (0.0007)

λ̂3,1 3.061 2.929 2.942 2.950 2.986 2.994 2.989 2.992 3.017
(0.4700) (0.1983) (0.0318) (0.1782) (0.0720) (0.0020) (0.1111) (0.0438) (0.0008)

λ̂3,2 1.619 1.587 1.590 1.591 1.587 1.592 1.598 1.606 1.601
(0.1874) (0.0663) (0.0891) (0.0750) (0.0286) (0.0764) (0.0358) (0.0150) (0.0096)

λ̂3,3 2.150 2.004 2.008 2.027 2.006 2.003 2.036 1.987 1.989
(0.2810) (0.0989) (0.0204) (0.1419) (0.0474) (0.0100) (0.0723) (0.0238) (0.0084)

λ̂3,4 4.167 4.009 4.015 4.039 3.981 3.978 4.001 3.997 4.001
(0.6816) (0.2625) (0.2086) (0.2484) (0.1016) (0.0882) (0.1515) (0.0566) (0.0582)

β̂1 1.085 1.607 1.609 1.201 1.607 1.614 1.175 1.599 1.611
(0.4304) (0.1179) (0.2239) (0.1419) (0.0418) (0.0211) (0.1045) (0.0168) (0.0007)

β̂2 1.481 0.915 0.902 1.529 0.903 0.903 1.554 0.895 0.897
(0.4640) (0.0399) (0.1054) (0.3124) (0.0175) (0.0137) (0.2970) (0.0098) (0.00001)

β̂3 2.668 1.844 1.814 2.826 1.839 1.832 2.880 1.793 1.798
(0.3708) (0.3042) (0.5293) (0.1777) (0.0955) (0.2481) (0.1492) (0.0446) (0.0031)

β̂4 1.045 1.227 1.231 1.139 1.196 1.205 1.128 1.203 1.202
(0.1562) (0.0516) (0.1194) (0.1025) (0.0151) (0.0051) (0.0767) (0.0092) (0.0015)
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Table 3 YW, CML and CL estimates for parameters in set B: α1 = (0.23, 0.45, 0.72, 0.33),
α2 = (0.31, 0.54, 0.26, 0.15), α3 = (0.73, 0.16, 0.31, 0.82); λ1 = (5, 3, 4, 2), λ2 = (2, 4, 3, 1),
λ3 = (3, 1.6, 2, 4) and β = (1.2, 1.4, 1.8, 1.5). MSE in parenthesis.

n =400 n =1000 n =2000
YW CML CL YW CML CL YW CML CL

α̂1,1 0.264 0.234 0.234 0.229 0.231 0.232 0.234 0.229 0.229
(0.0227) (0.0025) (0.0026) (0.0086) (0.0010) (0.0010) (0.0057) (0.0005) (0.0006)

α̂1,2 0.447 0.446 0.447 0.452 0.451 0.450 0.448 0.451 0.451
(0.0057) (0.0012) (0.0013) (0.0022) (0.0004) (0.0005) (0.0012) (0.0003) (0.0003)

α̂1,3 0.719 0.723 0.724 0.714 0.720 0.720 0.726 0.720 0.719
(0.0131) (0.0012) (0.0012) (0.0058) (0.0004) (0.0004) (0.0032) (0.0002) (0.0002)

α̂1,4 0.325 0.330 0.330 0.327 0.331 0.330 0.329 0.330 0.331
(0.0024) (0.0007) (0.0007) (0.0011) (0.0002) (0.0002) (0.0005) (0.0001) (0.0001)

α̂2,1 0.332 0.316 0.318 0.312 0.312 0.313 0.307 0.311 0.313
(0.0235) (0.0047) (0.0047) (0.0086) (0.0019) (0.0020) (0.0050) (0.0010) (0.0010)

α̂2,2 0.517 0.532 0.533 0.513 0.535 0.534 0.534 0.540 0.540
(0.0285) (0.0053) (0.0055) (0.0153) (0.0016) (0.0017) (0.0074) (0.0008) (0.0008)

α̂2,3 0.261 0.261 0.261 0.256 0.260 0.260 0.263 0.258 0.258
(0.0065) (0.0009) (0.0009) (0.0029) (0.0004) (0.0004) (0.0016) (0.0002) (0.0002)

α̂2,4 0.146 0.149 0.149 0.149 0.151 0.151 0.150 0.150 0.150
(0.0020) (0.0007) (0.0008) (0.0007) (0.0003) (0.0003) (0.0004) (0.0001) (0.0001)

α̂3,1 0.733 0.735 0.736 0.73 0.732 0.732 0.729 0.729 0.729
(0.0061) (0.0008) (0.0009) (0.0021) (0.0003) (0.0003) (0.0009) (0.0002) (0.0002)

α̂3,2 0.152 0.157 0.156 0.160 0.160 0.160 0.161 0.160 0.160
(0.0026) (0.0006) (0.0006) (0.0009) (0.0002) (0.0002) (0.0004) (0.0001) (0.0001)

α̂3,3 0.311 0.311 0.313 0.310 0.313 0.315 0.312 0.310 0.309
(0.0151) (0.0032) (0.0031) (0.0067) (0.0008) (0.0009) (0.0031) (0.0004) (0.0004)

α̂3,4 0.779 0.817 0.816 0.797 0.821 0.821 0.819 0.820 0.820
(0.0203) (0.0019) (0.0019) (0.0093) (0.0007) (0.0008) (0.0058) (0.0004) (0.0005)

λ̂1,1 4.829 4.961 4.961 4.948 4.937 4.925 5.033 5.056 5.055
(0.8452) (0.4022) (0.4076) (0.3379) (0.1728) (0.1734) (0.1750) (0.0692) (0.0685)

λ̂1,2 3.027 3.029 3.022 2.981 2.985 2.997 3.028 3.013 3.016
(0.3279) (0.1775) (0.1805) (0.1157) (0.0660) (0.0667) (0.0660) (0.0338) (0.0345)

λ̂1,3 4.047 4.028 4.033 4.020 3.989 3.983 3.943 3.980 3.987
(0.7396) (0.3361) (0.3460) (0.2564) (0.1248) (0.1318) (0.1789) (0.0781) (0.0764)

λ̂1,4 2.034 1.993 1.993 2.030 2.003 2.008 1.996 1.983 1.980
(0.2273) (0.1156) (0.1171) (0.0913) (0.0361) (0.0379) (0.0487) (0.0197) (0.0208)

λ̂2,1 1.972 1.982 1.980 1.986 1.981 1.977 2.021 2.012 2.010
(0.1087) (0.0716) (0.0716) (0.0474) (0.0312) (0.0334) (0.0252) (0.0135) (0.0133)

λ̂2,2 4.056 4.017 4.012 4.047 3.996 4.010 4.043 4.027 4.033
(0.3943) (0.2576) (0.2574) (0.1913) (0.1080) (0.1073) (0.0892) (0.0532) (0.0540)

λ̂2,3 2.987 2.990 2.991 3.007 2.987 2.982 2.973 2.997 2.999
(0.3245) (0.1839) (0.1879) (0.1415) (0.0770) (0.0818) (0.0781) (0.0417) (0.0407)

λ̂2,4 1.011 1.000 1.001 1.005 0.996 0.999 0.999 1.001 1.000
(0.0589) (0.0389) (0.0401) (0.0239) (0.0146) (0.0142) (0.0117) (0.0055) (0.0055)

λ̂3,1 2.949 2.946 2.941 2.938 2.935 2.925 3.024 3.027 3.023
(0.3563) (0.1546) (0.1577) (0.1354) (0.0664) (0.0704) (0.0632) (0.0316) (0.0312)

λ̂3,2 1.670 1.638 1.637 1.594 1.596 1.596 1.600 1.610 1.613
(0.1955) (0.0769) (0.0764) (0.0709) (0.0279) (0.0281) (0.0295) (0.0128) (0.0137)

λ̂3,3 1.982 1.981 1.979 2.005 1.998 1.990 1.981 1.986 1.988
(0.1993) (0.0919) (0.0924) (0.0860) (0.0403) (0.0414) (0.0422) (0.0194) (0.0196)

λ̂3,4 4.123 4.019 4.014 4.058 3.992 3.997 3.995 3.989 3.986
(0.5285) (0.3366) (0.3426) (0.2113) (0.1129) (0.1098) (0.0943) (0.0470) (0.0485)

β̂1 1.310 1.217 1.216 1.229 1.200 1.208 1.201 1.188 1.186
(0.2967) (0.0490) (0.0523) (0.0801) (0.0192) (0.0188) (0.0335) (0.0136) (0.0138)

β̂2 1.334 1.366 1.359 1.351 1.402 1.396 1.348 1.404 1.405
(0.1501) (0.0803) (0.0836) (0.0562) (0.0327) (0.0342) (0.0416) (0.0152) (0.0151)

β̂3 1.695 1.809 1.809 1.724 1.819 1.825 1.728 1.798 1.791
(0.3098) (0.1462) (0.1579) (0.1398) (0.0592) (0.0586) (0.0783) (0.0252) (0.0258)

β̂4 1.505 1.492 1.477 1.534 1.502 1.502 1.538 1.487 1.488
(0.2289) (0.0627) (0.0625) (0.0969) (0.0336) (0.0327) (0.0594) (0.0147) (0.0152)
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Table 4 YW, CML and CL estimates for parameters in set C: α1 = (0.20, 0.35, 0.12, 0.43),
α2 = (0.30, 0.50, 0.20, 0.12), α3 = (0.44, 0.16, 0.31, 0.22); λ1 = (5, 3, 4, 2), λ2 = (2, 4, 3, 1),
λ3 = (3, 1.6, 2, 4) and β = (2, 1.8, 3, 1). MSE in parenthesis.

n =400 n =1000 n =2000
YW CML CL YW CML CL YW CML CL

α̂1,1 0.252 0.200 0.200 0.211 0.202 0.203 0.205 0.202 0.202
(0.0325) (0.0022) (0.0025) (0.0126) (0.0006) (0.0007) (0.0079) (0.0004) (0.0004)

α̂1,2 0.345 0.349 0.349 0.347 0.352 0.352 0.351 0.351 0.351
(0.0047) (0.0012) (0.0013) (0.0016) (0.0004) (0.0004) (0.0009) (0.0002) (0.0002)

α̂1,3 0.162 0.127 0.125 0.130 0.120 0.120 0.125 0.121 0.121
(0.0177) (0.0009) (0.0009) (0.0063) (0.0003) (0.0003) (0.0035) (0.0002) (0.0002)

α̂1,4 0.434 0.432 0.433 0.433 0.433 0.433 0.430 0.431 0.431
(0.0025) (0.0012) (0.0013) (0.0011) (0.0006) (0.0007) (0.0006) (0.0002) (0.0003)

α̂2,1 0.351 0.301 0.303 0.305 0.304 0.305 0.304 0.301 0.301
(0.0370) (0.0046) (0.0050) (0.0141) (0.0014) (0.0014) (0.0088) (0.0008) (0.0008)

α̂2,2 0.498 0.492 0.491 0.489 0.500 0.499 0.492 0.499 0.500
(0.0303) (0.0035) (0.0037) (0.0134) (0.0016) (0.0016) (0.0056) (0.0008) (0.0009)

α̂2,3 0.222 0.204 0.203 0.206 0.201 0.201 0.201 0.201 0.201
(0.0101) (0.0009) (0.0009) (0.0034) (0.0003) (0.0003) (0.0017) (0.0001) (0.0002)

α̂2,4 0.122 0.123 0.123 0.121 0.121 0.121 0.119 0.120 0.120
(0.0015) (0.0009) (0.0009) (0.0005) (0.0003) (0.0004) (0.0003) (0.0001) (0.0001)

α̂3,1 0.457 0.436 0.437 0.440 0.439 0.439 0.446 0.443 0.443
(0.0143) (0.0013) (0.0014) (0.0049) (0.0005) (0.0005) (0.0025) (0.0002) (0.0003)

α̂3,2 0.155 0.158 0.158 0.159 0.161 0.161 0.159 0.160 0.160
(0.0039) (0.0008) (0.0008) (0.0012) (0.0003) (0.0003) (0.0006) (0.0001) (0.0001)

α̂3,3 0.331 0.315 0.315 0.315 0.312 0.312 0.312 0.309 0.310
(0.0216) (0.0020) (0.0021) (0.0077) (0.0009) (0.0008) (0.0040) (0.0004) (0.0004)

α̂3,4 0.238 0.231 0.232 0.219 0.224 0.223 0.225 0.223 0.223
(0.0155) (0.0046) (0.0047) (0.0058) (0.0020) (0.0021) (0.0036) (0.0011) (0.0010)

λ̂1,1 4.838 5.049 5.051 4.945 4.986 4.990 4.968 4.981 4.976
(1.0134) (0.6116) (0.6205) (0.3983) (0.2376) (0.2410) (0.2398) (0.1192) (0.1201)

λ̂1,2 3.023 3.011 2.998 3.052 3.025 3.024 2.970 2.973 2.974
(0.3318) (0.2036) (0.2022) (0.1231) (0.0852) (0.0842) (0.0599) (0.0411) (0.0410)

λ̂1,3 3.791 3.992 3.967 3.920 3.970 3.977 3.996 4.015 4.010
(0.8439) (0.5827) (0.5914) (0.3598) (0.2218) (0.2211) (0.1739) (0.0993) (0.1036)

λ̂1,4 1.989 1.998 1.986 1.991 1.991 1.992 2.001 1.994 1.993
(0.1049) (0.0723) (0.0749) (0.0403) (0.0289) (0.0287) (0.0221) (0.0155) (0.0163)

λ̂2,1 1.960 2.025 2.023 1.995 1.992 1.995 1.997 1.998 1.999
(0.1475) (0.1055) (0.1039) (0.0635) (0.0389) (0.0399) (0.0377) (0.0204) (0.0209)

λ̂2,2 3.993 4.009 3.993 4.044 4.019 4.020 3.990 3.974 3.976
(0.5393) (0.3643) (0.3616) (0.1779) (0.1297) (0.1284) (0.0832) (0.0597) (0.0600)

λ̂2,3 2.891 3.001 2.980 2.938 2.968 2.971 3.006 3.007 3.005
(0.5205) (0.3283) (0.3301) (0.2100) (0.1222) (0.1236) (0.1010) (0.0592) (0.0618)

λ̂2,4 1.002 0.997 0.993 1.006 1.005 1.007 0.998 0.995 0.995
(0.0353) (0.0246) (0.0248) (0.0155) (0.0113) (0.0113) (0.0073) (0.0053) (0.0052)

λ̂3,1 2.939 3.037 3.038 2.988 2.997 3.007 2.962 2.975 2.97
(0.4135) (0.2516) (0.2516) (0.1848) (0.0866) (0.0914) (0.0925) (0.0464) (0.0462)

λ̂3,2 1.615 1.602 1.592 1.618 1.611 1.610 1.591 1.588 1.59
(0.1523) (0.0701) (0.0714) (0.0435) (0.0249) (0.0244) (0.0223) (0.0108) (0.0108)

λ̂3,3 1.952 2.004 1.982 1.966 1.976 1.977 2.003 2.011 2.007
(0.2338) (0.1735) (0.1738) (0.0963) (0.0567) (0.0558) (0.0443) (0.0257) (0.0270)

λ̂3,4 3.957 3.966 3.957 3.991 3.977 3.983 3.982 3.988 3.985
(0.2641) (0.2071) (0.2243) (0.1152) (0.0821) (0.0809) (0.0653) (0.0455) (0.0455)

β̂1 2.122 1.960 1.954 2.062 1.994 2.003 2.007 2.008 2.005
(0.6502) (0.1164) (0.1180) (0.3060) (0.0515) (0.0531) (0.1328) (0.0282) (0.0289)

β̂2 1.813 1.797 1.794 1.819 1.801 1.795 1.822 1.823 1.820
(0.3010) (0.1272) (0.1389) (0.1315) (0.0525) (0.0553) (0.0565) (0.0250) (0.0254)

β̂3 3.271 3.100 3.079 3.029 2.996 2.991 2.947 2.979 2.983
(1.8467) (0.4217) (0.4428) (0.6518) (0.1485) (0.1432) (0.2928) (0.0605) (0.0618)

β̂4 1.537 1.025 1.021 1.450 0.973 0.972 1.467 1.005 1.004
(0.5490) (0.0377) (0.0401) (0.2966) (0.0171) (0.0173) (0.2689) (0.0077) (0.0078)
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Table 5 CL and CML estimates from fitting the periodic trivariate INAR(1) model with trivariate negative binomial innovations. Standard errors
in parenthesis.

Composite Likelihood (CL) Conditonal Maximum Likelihood (CML)
Anadia O.Bairro Vagos Anadia O.Bairro Vagos

α1 λ1 α2 λ2 α3 λ3 β α1 λ1 α2 λ2 α3 λ3 β
January 0.3138 0.4284 0.0004 0.2003 0.0018 0.2331 4.0031 0.3296 0.4098 0.0003 0.1936 0.0002 0.2258 4.1623

(0.1533) (0.1360) (0.0079) (0.0738) (0.0079) (0.0820) (1.4481) (0.1321) (0.0815) (0.0063) (0.0658) (0.0006) (0.1034) (0.1751)

February 2.4×10−04 0.8423 0.5238 0.3813 0.1598 0.3504 1.9601 0.0008 0.8125 0.5360 0.3683 0.1041 0.3522 2.0677
(1.3×10−05) (0.1799) (0.1954) (0.1021) (0.1942) (0.1007) (0.5981) (0.0028) (0.2727) (0.2689) (0.1489) (0.2816) (0.1462) (0.8986)

March 0.0137 2.5256 0.3015 0.9517 0.3617 1.0902 1.8017 0.0185 2.4692 0.0544 1.0368 0.2816 1.0818 1.9611
(0.1358) (0.4403) (0.1547) (0.1958) (0.2165) (0.2200) (0.3567) (0.3261) (0.7041) (0.2527) (0.3328) (0.3218) (0.3427) (0.6019)

April 0.3775 1.6122 0.1198 0.7392 0.0918 1.0211 1.4199 0.3826 1.5867 0.1242 0.7118 0.1031 0.9713 1.4330
(0.0552) (0.2875) (0.0638) (0.1563) (0.0735) (0.2034) (0.4152) (0.0767) (0.0854) (0.0981) (0.4241) (0.2226) (0.2877) (0.6154)

May 0.1608 2.0588 0.4898 0.6386 0.1343 1.0460 1.5132 0.1638 2.0228 0.5005 0.6090 0.0830 1.0654 1.4160
(0.0602) (0.3645) (0.0930) (0.1442) (0.0881) (0.2121) (0.3824) (0.0872) (0.1262) (0.1201) (0.5312) (0.2004) (0.3133) (0.5206)

June 0.1651 4.0059 0.4291 2.5060 0.0546 3.2998 0.6851 0.1565 3.8998 0.3723 2.5536 0.0164 3.2935 0.6456
(0.0877) (0.4894) (0.1541) (0.3380) (0.1673) (0.4270) (0.1436) (0.1164) (0.2238) (0.2262) (0.7065) (0.5070) (0.6242) (0.2072)

July 0.3829 5.5467 0.7075 4.1229 0.3899 3.5249 0.4738 0.3702 5.5399 0.6336 4.1700 0.3204 3.6262 0.3761
(0.0844) (0.6256) (0.0792) (0.4577) (0.0788) (0.4292) (0.0972) (0.1097) (0.1127) (0.1169) (0.8504) (0.6504) (0.6287) (0.1186)

August 0.4761 6.5477 0.3116 6.4485 0.0539 6.6102 0.5053 0.3966 7.4866 0.2949 6.5650 0.1043 6.2613 0.4062
(0.0614) (0.7256) (0.0648) (0.7007) (0.0783) (0.7115) (0.0992) (0.0911) (0.0881) (0.0954) (1.1461) (0.9976) (0.9379) (0.1270)

September 0.3359 3.6745 0.0725 4.2058 0.2783 2.2748 0.5909 0.3592 3.6391 0.0955 3.9529 0.2757 2.2953 0.5274
(0.0491) (0.6011) (0.0496) (0.6019) (0.0389) (0.3500) (0.1443) (0.0647) (0.0720) (0.0546) (0.8382) (0.8483) (0.5024) (0.1976)

October 0.0242 2.9897 0.0408 2.2900 0.0620 2.3881 2.5848 0.0287 2.9770 0.0330 2.2808 0.0851 2.2089 2.6112
(0.0194) (0.5716) (0.0351) (0.4632) (0.0510) (0.4961) (0.5708) (0.0385) (0.9424) (0.0448) (0.7316) (0.0623) (0.7235) (0.9358)

November 5.1×10−04 0.4189 0.0116 0.6807 0.0034 0.7104 6.0760 3.6×10−04 0.4063 0.0152 0.6506 0.0004 0.6875 6.1412
(0.0003) (0.1378) (0.0178) (0.2127) (0.0025) (0.2174) (1.6077) (1.4×10−04 ) (0.2195) (0.0247) (0.3224) (0.0295) (0.3304) (2.7802)

December 0.5025 0.1442 0.1072 0.1185 0.0187 0.0638 6.3424 0.4937 0.1434 0.1175 0.1067 0.0293 0.0625 6.9802
(0.1053) (0.0663) (0.0545) (0.0595) (0.0388) (0.0369) (2.8320) (0.1506) (0.1002) (0.0761) (0.0817) (0.1322) (0.0651) (2.6052)
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(a)

(b)

(c)

Fig. 1 Boxplots for the biases of the YW, CML and CL estimates of parameter α1 (a), α2

(b) and α3 (c) in set A. From left to right, the first three boxplots display the biases of α̂j,1

for the three methods with n = 400, 1000, 2000. The same information follows for α̂j,2, α̂j,3

and α̂j,4 (j = 1, 2, 3), respectively.
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(a)

(b)

(c)

Fig. 2 Boxplots for the biases of the YW, CML and CL estimates of parameter λ1 (a), λ2

(b) and λ3 (c) in Set A. From left to right, the first three boxplots display the biases of λ̂j,1
for the three methods with n = 400, 1000, 2000. The same information follows for λ̂j,2, λ̂j,3
and λ̂j,4 (j = 1, 2, 3), respectively.
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Fig. 3 Boxplots for the biases of the YW, CML and CL estimates of parameter β in set
A. From left to right, the first three boxplots display the biases of β̂1 for the three methods
with n = 400, 1000, 2000. The same information follows for β̂2, β̂3 and β̂4, respectively.
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(a)

(b)

(c)

Fig. 4 Boxplots for the biases of the YW, CML and CL estimates of parameter α1 (a), α2

(b) and α3 (c) in Set B. From left to right, the first three boxplots display the biases of α̂j,1

for the three methods with n = 400, 1000, 2000. The same information follows for α̂j,2, α̂j,3

and α̂j,4 (j = 1, 2, 3), respectively.
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(a)

(b)

(c)

Fig. 5 Boxplots for the biases of the YW, CML and CL estimates of parameter λ1 (a), λ2

(b) and λ3 (c) in set B. From left to right, the first three boxplots display the biases of λ̂j,1
for the three methods with n = 400, 1000, 2000. The same information follows for λ̂j,2, λ̂j,3
and λ̂j,4 (j = 1, 2, 3), respectively.
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Fig. 6 Boxplots for the biases of the YW, CML and CL estimates of parameter β in set
B. From left to right, the first three boxplots display the biases of β̂1 for the three methods
with n = 400, 1000, 2000. The same information follows for β̂2, β̂3 and β̂4, respectively.
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(a)

(b)

(c)

Fig. 7 Boxplots for the biases of the YW, CML and CL estimates of parameter α1 (a), α2

(b) and α3 (c) in set C. From left to right, the first three boxplots display the biases of α̂j,1

for the three methods with n = 400, 1000, 2000. The same information follows for α̂j,2, α̂j,3

and α̂j,4 (j = 1, 2, 3), respectively.
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(a)

(b)

(c)

Fig. 8 Boxplots for the biases of the YW, CML and CL estimates of parameter λ1 (a), λ2

(b) and λ3 (c) in set C. From left to right, the first three boxplots display the biases of λ̂j,1
for the three methods with n = 400, 1000, 2000. The same information follows for λ̂j,2, λ̂j,3
and λ̂j,4 (j = 1, 2, 3), respectively.
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Fig. 9 Boxplots for the biases of the YW, CML and CL estimates of parameter β in set
C. From left to right, the first three boxplots display the biases of β̂1 for the three methods
with n = 400, 1000, 2000. The same information follows for β̂2, β̂3 and β̂4, respectively.
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Fig. 10 Number of monthly fires in Anadia, O.Bairro and Vagos counties in Portugal.
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Fig. 11 Sample ACF for the number of monthly fires in Anadia, O.Bairro and Vagos.
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Fig. 12 Sample mean and variance for the number of monthly fires in Anadia, O.Bairro
and Vagos.
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Fig. 13 Sample cross-correlations for the number of monthly fires in Anadia, O.Bairro and
Vagos.
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Fig. 14 ACF of Pearson residuals for Anadia, O.Bairro and Vagos counties in Portugal.
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Fig. 15 Empirical mean with 95% bootstrap confidence intervals for Anadia, O.Bairro and
Vagos.
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Fig. 16 Empirical standard deviation with 95% bootstrap confidence intervals for Anadia,
O.Bairro and Vagos.
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Fig. 17 Empirical ACF with 95% bootstrap confidence intervals for Anadia, O.Bairro and
Vagos.
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Fig. 18 Empirical cross-correlation function with 95% bootstrap confidence intervals for
Anadia, O.Bairro and Vagos.


