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abstract Viscoelastic damping treatments, as passive damping control mechanism,
have a wide application due to their high efficiency and reduced structural
modification. The strong frequency and temperature dependency of these
material’s properties, and the representation of the deformation pattern de-
veloped in the dissipative layer are key elements to the numerical simulation
of such damping treatments.
Free layer damping configurations provide a simple solution, but despite
being characterized by an expeditious and simple application procedure, its
efficiency is comparatively reduced and therefore are usually disregarded as
valid solutions for critical structures. To increase the efficiency of these
damping treatments, while maintaining the advantages of an application
procedure based on a simple deposition of a single layer of material on the
structure surface, a new configuration – Interlaced damping layer – is herein
proposed and assessed.
This new configuration takes advantage of the shear effect and border ef-
fect provided by a three-dimensional interlaced layering scheme combining
one or several materials. The numerical and experimental results demon-
strate the feasibility of this proposed and promising configuration, that can
provide a valid replacement for constrained damping layers, which often
require a time consume and laborious placement procedures, and in some
cases, such those where the target component has a complex geometry, is
even impracticable or severely damaged during the application.





palavras-chave Tratamentos viscoelásticos, Controlo passivo de vibrações, Modelação de
tratamentos viscoelásticos, Modelos Combinados, Energia de deformação
modal, Tratamentos viscoelásticos entrelaçados.

resumo Os tratamentos de amortecimento viscoelástico, como controlo passivo de
vibrações, têm uma ampla aplicação devido à sua elevada eficiência e re-
duzida modificação estrutural. A forte dependência das propriedades destes
materiais em relação à frequência e temperatura, e a representação do
campo de deformações correspondente a essa camada dissipativa são as-
petos fulcrais na modelação espacial de estruturas que apresentam estes
tratamentos.
Os tratamentos superficiais sem restrição proporcionam uma solução sim-
ples, porém mesmo caracterizados por simples e rápida aplicação, a sua
eficiência é reduzida e por essa razão, são normalmente desconsiderados
como solução de estruturas cŕıticas. Com o intuito de aumentar a eficiência,
mantendo as vantagens de um procedimento baseado na simples deposição
de uma camada material sobre a superf́ıcie da estrutura, uma nova con-
figuração - Tratamentos entrelaçados - é aqui proposta e analisada.
Esta nova configuração beneficia do efeito de corte e fronteira proporcionado
pela camada tridimensional entrelaçada, que combina um ou vários mate-
riais. Os resultados numéricos e experimentais demonstram a viabilidade
desta inovadora configuração, que pode proporcionar uma válida alterna-
tiva para os tratamentos superficiais com restrição. Estes são caracterizados
por longos e laboriosos procedimentos de aplicação e, para geometrias com-
plexas, podem ser impraticáveis ou sofrerem danos durante a sua aplicação.





Contents

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objective of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State-of-art review 7

2.1 Viscoelastic damping treatments . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Configuration of viscoelastic treatments . . . . . . . . . . . . . . . . . . . 8

2.2.1 Unconstrained layer or free layer damping treatments . . . . . . . 9

2.2.2 Constrained layer damping treatments . . . . . . . . . . . . . . . . 9

2.2.3 Integrated layer damping treatments . . . . . . . . . . . . . . . . . 10

2.3 Optimization of viscoelastic treatments . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Partial damping treatments . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Optimized multilayer and multi material damping treatments . . . 12

2.3.3 Special spatial configurations . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Hybrid damping treatments . . . . . . . . . . . . . . . . . . . . . . 13

2.3.5 Broad spectrum materials . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Design of viscoelastic damping treatments: fundamental rules . . . . . . . 14

2.5 Applicability of viscoelastic treatments . . . . . . . . . . . . . . . . . . . . 15

2.6 Characterization and modelling of viscoelastic treatments . . . . . . . . . 16

2.7 Analysis of viscoelastic damping treatments . . . . . . . . . . . . . . . . . 17

3 Viscoelastic Damping Treatments 21

3.1 Viscoelastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Experimental characterization of VEMs . . . . . . . . . . . . . . . 22

3.1.2 Experimental data analysis and constitutive model . . . . . . . . . 24

3.2 Numerical Simulation of Viscoelastic damping treatments . . . . . . . . . 24

3.2.1 Spatial model of VEM damping treatments . . . . . . . . . . . . . 25

3.2.2 Viscoelastic constitutive models . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Methodology 33

4.1 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 1D waves configuration . . . . . . . . . . . . . . . . . . . . . . . . 35

i



4.1.3 2D waves configuration . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.4 Interlaced configuration . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.5 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Experimental Specimens . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Experimental modal analysis . . . . . . . . . . . . . . . . . . . . . 51

5 Numerical Results 53

5.1 Preliminary Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Combined model approach . . . . . . . . . . . . . . . . . . . . . . 53

5.1.2 VEM thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Beam-kind models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Plate-kind models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Square plate models . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.2 Rectangular plate models . . . . . . . . . . . . . . . . . . . . . . . 66

6 Experimental Results 73

6.1 MDOF system modal identification (PolyMAX) . . . . . . . . . . . . . . 73

6.1.1 Beam specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.2 Plate specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 SDOF system modal identification (Circle Fit) . . . . . . . . . . . . . . . 75

6.2.1 Beam specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.2 Plate specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Results Analysis 77

7.1 Preliminary Numerical Results Analysis . . . . . . . . . . . . . . . . . . . 77

7.1.1 Combined model approach . . . . . . . . . . . . . . . . . . . . . . 77

7.1.2 VEM thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Beam-kind models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.1 Numerical results analysis . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.2 Experimental results analysis . . . . . . . . . . . . . . . . . . . . . 79

7.2.3 Numerical/Experimental comparison . . . . . . . . . . . . . . . . . 80

7.3 Plate-kind models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.1 Numerical results analysis . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.2 Experimental results analysis . . . . . . . . . . . . . . . . . . . . . 85

7.3.3 Numerical/Experimental comparison . . . . . . . . . . . . . . . . . 86

8 Conclusions and future work 89

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Pre-processing: Model 91

B Representation of the interlaced configurations developed 93

ii



C MSE method based code 97

D Circle Fit method 99
D.1 SDOF Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
D.2 Properties of the Modal Circle . . . . . . . . . . . . . . . . . . . . . . . . 99

E Numerical Results for the other natural modes 103
E.1 Beam-kind models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
E.2 Plate-kind models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

E.2.1 Square plate models . . . . . . . . . . . . . . . . . . . . . . . . . . 106
E.2.2 Rectangular plate models . . . . . . . . . . . . . . . . . . . . . . . 133

References 141

iii



.

Intentionally blank page.



List of Tables

4.1 Characteristics of the sandwich beam to evaluate the combined model
strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Plates developed for comparison. . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Characteristics of the developed 1D wave beams. . . . . . . . . . . . . . . 36

4.4 Characteristics of the developed 2D wave plates. . . . . . . . . . . . . . . 37

4.5 Nomenclature of square interlaced models. . . . . . . . . . . . . . . . . . . 39

4.6 Nomenclature of rectangular interlaced models. . . . . . . . . . . . . . . . 42

4.7 Characteristics of the FLD experimental specimens. . . . . . . . . . . . . 45

4.8 Characteristics of the CLD experimental specimens. . . . . . . . . . . . . 46

4.9 Characteristics of the ILD1 experimental specimen. . . . . . . . . . . . . . 47

4.10 Characteristics of the beam experimental specimens. . . . . . . . . . . . . 48

5.1 Natural frequencies and modal loss factor for the developed combined
model approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Natural frequencies and normalized loss factor for the Brick+Brick ap-
proach with two different VEM thicknesses. . . . . . . . . . . . . . . . . . 54

5.3 Natural frequency values for the Plate with offset+Brick approach with
two different VEM thicknesses. . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Distribution of the modal strain energy (1st mode) for the beam models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 55

5.5 Natural frequencies and normalized loss factor for the developed beam-
kind models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 Distribution of the modal strain energy (1st mode) for the 2D wave models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 57

5.7 Natural frequencies and loss factor for the 2D wave models with amplitude
A1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 Natural frequencies and loss factor for the ILD2 2D 0.5 model with two
different amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.9 Distribution of the modal strain energy (1st mode) for the ILD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 59

5.10 Natural frequencies and normalized loss factor for the developed ILD
square models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.11 Distribution of the modal strain energy (1st mode) for the CLD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 61

5.12 Natural frequencies and normalized loss factor for the developed CLD
square models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



5.13 Distribution of the modal strain energy (1st mode) for the FLD square
models without constraining stripes developed with free boundary condi-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.14 Natural frequencies and normalized loss factor for the FLD square models
without constraining stripes. . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.15 Distribution of the modal strain energy (1st mode) for the FLD square
models with single layered constraining stripes developed with free bound-
ary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.16 Natural frequency and normalized loss factor (1st mode) for the FLD
square models with single layered constraining stripes. . . . . . . . . . . . 64

5.17 Distribution of the modal strain energy (1st mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - top view. . . . . . . . . . . . . . . . . . . . . . 65

5.18 Distribution of the modal strain energy (1st mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - bottom view. . . . . . . . . . . . . . . . . . . . 65

5.19 Natural frequency and normalized loss factor (1st mode) for the FLD
square models with single and double layered constraining stripes. . . . . 66

5.20 Distribution of the modal strain energy (1st mode) for the CLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 67

5.21 Natural frequency values for the developed CLD rectangular models. . . . 67

5.22 Loss factor values for the developed CLD rectangular models. . . . . . . . 68

5.23 Distribution of the modal strain energy (1st mode) for the FLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 68

5.24 Natural frequency values for the developed FLD rectangular models. . . . 69

5.25 Loss factor values for the developed FLD rectangular models. . . . . . . . 69

5.26 Distribution of the modal strain energy (1st mode) for the ILD rectangular
model developed with free boundary conditions. . . . . . . . . . . . . . . . 70

5.27 Natural frequency values for the developed ILD rectangular model. . . . . 70

5.28 Loss factor values for the developed ILD rectangular model. . . . . . . . . 70

5.29 Distribution of the modal strain energy (1st mode) for the plain plate with
free boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.30 Natural frequency values for the plain plate. . . . . . . . . . . . . . . . . . 71

6.1 Natural Frequency values for the beam specimens obtained by the Poly-
MAX method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Damping ratio values for the beam specimens obtained by the PolyMAX
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Natural frequency values for the plate specimens obtained by the Poly-
MAX method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Damping ratio values for the plate specimens obtained by the PolyMAX
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Natural frequency values for the beam specimens obtained by the Circle
Fit method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Loss factor values for the beam specimens obtained by the Circle Fit
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



6.7 Natural frequency values for the plate specimens obtained by the Circle
Fit method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.8 Loss factor values for the plate specimens obtained by the Circle Fit method. 76

B.1 Characteristics of the developed interlaced square plates. . . . . . . . . . . 96

E.1 Distribution of the modal strain energy (2nd mode) for the beam models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 103

E.2 Distribution of the modal strain energy (3rd mode) for the beam models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 104

E.3 Distribution of the modal strain energy (4th mode) for the beam models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 105

E.4 Distribution of the modal strain energy (2nd mode) for the 2D wave models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 106

E.5 Distribution of the modal strain energy (3rd mode) for the 2D wave models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 107

E.6 Distribution of the modal strain energy (4th mode) for the 2D wave models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 108

E.7 Distribution of the modal strain energy (5th mode) for the 2D wave models
developed with free boundary conditions. . . . . . . . . . . . . . . . . . . 109

E.8 Distribution of the modal strain energy (2nd mode) for the ILD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 110

E.9 Distribution of the modal strain energy (3rd mode) for the ILD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 111

E.10 Distribution of the modal strain energy (4th mode) for the ILD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 112

E.11 Distribution of the modal strain energy (5th mode) for the ILD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 113

E.12 Distribution of the modal strain energy (2nd mode) for the CLD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 114

E.13 Distribution of the modal strain energy (3rd mode) for the CLD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 114

E.14 Distribution of the modal strain energy (4th mode) for the CLD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 115

E.15 Distribution of the modal strain energy (5th mode) for the CLD square
models developed with free boundary conditions. . . . . . . . . . . . . . . 116

E.16 Distribution of the modal strain energy (2nd mode) for the FLD square
models without constraining stripes developed with free boundary condi-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

E.17 Distribution of the modal strain energy (3rd mode) for the FLD square
models without constraining stripes developed with free boundary condi-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

E.18 Distribution of the modal strain energy (4th mode) for the FLD square
models without constraining stripes developed with free boundary condi-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vii



E.19 Distribution of the modal strain energy (5th mode) for the FLD square
models without constraining stripes developed with free boundary condi-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

E.20 Distribution of the modal strain energy (2nd mode) for the FLD square
models with single layered constraining stripes developed with free bound-
ary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E.21 Natural frequency values (2nd mode) for the FLD square models with
single layered constraining stripes. . . . . . . . . . . . . . . . . . . . . . . 121

E.22 Normalized loss factor values (2nd mode) for the FLD square models with
single layered constraining stripes. . . . . . . . . . . . . . . . . . . . . . . 121

E.23 Distribution of the modal strain energy (3rd mode) for the FLD square
models with single layered constraining stripes developed with free bound-
ary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

E.24 Natural frequency values (3rd mode) for the FLD square models with
single layered constraining stripes. . . . . . . . . . . . . . . . . . . . . . . 122

E.25 Normalized loss factor values (3rd mode) for the FLD square models with
single layered constraining stripes. . . . . . . . . . . . . . . . . . . . . . . 122

E.26 Distribution of the modal strain energy (4th mode) for the FLD square
models with single layered constraining stripes developed with free bound-
ary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E.27 Natural frequency values (4th mode) for the FLD square models with
single layered constraining stripes. . . . . . . . . . . . . . . . . . . . . . . 124

E.28 Normalized loss factor values (4th mode) for the FLD square models with
single layered constraining stripes. . . . . . . . . . . . . . . . . . . . . . . 124

E.29 Distribution of the modal strain energy (5th mode) for the FLD square
models with single layered constraining stripes developed with free bound-
ary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.30 Natural frequency values (5th mode) for the FLD square models with
single layered constraining stripes. . . . . . . . . . . . . . . . . . . . . . . 125

E.31 Normalized loss factor values (5th mode) for the FLD square models with
single layered constraining stripes. . . . . . . . . . . . . . . . . . . . . . . 125

E.32 Distribution of the modal strain energy (2nd mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - top view. . . . . . . . . . . . . . . . . . . . . . 126

E.33 Distribution of the modal strain energy (2nd mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - bottom view. . . . . . . . . . . . . . . . . . . . 126

E.34 Natural frequency values (2nd mode) for the FLD square models with
single and double layered constraining stripes. . . . . . . . . . . . . . . . . 127

E.35 Normalized loss factor values (2nd mode) for the FLD square models with
single and double layered constraining stripes. . . . . . . . . . . . . . . . . 127

E.36 Distribution of the modal strain energy (3rd mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - top view. . . . . . . . . . . . . . . . . . . . . . 127

E.37 Distribution of the modal strain energy (3rd mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - bottom view. . . . . . . . . . . . . . . . . . . . 128

viii



E.38 Natural frequency values (3rd mode) for the FLD square models with
single and double layered constraining stripes. . . . . . . . . . . . . . . . . 129

E.39 Normalized loss factor values (3rd mode) for the FLD square models with
single and double layered constraining stripes. . . . . . . . . . . . . . . . . 129

E.40 Distribution of the modal strain energy (4th mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - top view. . . . . . . . . . . . . . . . . . . . . . 129

E.41 Distribution of the modal strain energy (4th mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - bottom view. . . . . . . . . . . . . . . . . . . . 130

E.42 Natural frequency values (4th mode) for the FLD square models with
single and double layered constraining stripes. . . . . . . . . . . . . . . . . 131

E.43 Normalized loss factor values (4th mode) for the FLD square models with
single and double layered constraining stripes. . . . . . . . . . . . . . . . . 131

E.44 Distribution of the modal strain energy (5th mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - top view. . . . . . . . . . . . . . . . . . . . . . 131

E.45 Distribution of the modal strain energy (5th mode) for the FLD square
models with single and double layered constraining stripes developed with
free boundary conditions - bottom view. . . . . . . . . . . . . . . . . . . . 132

E.46 Natural frequency values (5th mode) for the FLD square models with
single and double layered constraining stripes. . . . . . . . . . . . . . . . . 132

E.47 Normalized loss factor values (5th mode) for the FLD square models with
single and double layered constraining stripes. . . . . . . . . . . . . . . . . 132

E.48 Distribution of the modal strain energy (2nd mode) for the CLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 133

E.49 Distribution of the modal strain energy (3rd mode) for the CLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 133

E.50 Distribution of the modal strain energy (4th mode) for the CLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 134

E.51 Distribution of the modal strain energy (5th mode) for the CLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 134

E.52 Distribution of the modal strain energy (2nd mode) for the FLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 135

E.53 Distribution of the modal strain energy (3rd mode) for the FLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 136

E.54 Distribution of the modal strain energy (4th mode) for the FLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 136

E.55 Distribution of the modal strain energy (5th mode) for the FLD rectan-
gular models developed with free boundary conditions. . . . . . . . . . . . 137

E.56 Distribution of the modal strain energy (2nd mode) for the ILD rectangu-
lar model developed with free boundary conditions. . . . . . . . . . . . . . 138

E.57 Distribution of the modal strain energy (3rd mode) for the ILD rectangular
model developed with free boundary conditions. . . . . . . . . . . . . . . . 138

E.58 Distribution of the modal strain energy (4th mode) for the ILD rectangular
model developed with free boundary conditions. . . . . . . . . . . . . . . . 138

ix



E.59 Distribution of the modal strain energy (5th mode) for the ILD rectangular
model developed with free boundary conditions. . . . . . . . . . . . . . . . 139

E.60 Distribution of the modal strain energy (2nd mode) for the plate without
treatment with free boundary conditions. . . . . . . . . . . . . . . . . . . 139

E.61 Distribution of the modal strain energy (3rd mode) for the plate without
treatment with free boundary conditions. . . . . . . . . . . . . . . . . . . 140

E.62 Distribution of the modal strain energy (4th mode) for the plate without
treatment with free boundary conditions. . . . . . . . . . . . . . . . . . . 140

E.63 Distribution of the modal strain energy (5th mode) for the plate without
treatment with free boundary conditions. . . . . . . . . . . . . . . . . . . 140

x



List of Figures

2.1 Viscoelastic damping treatment configurations, FLD configuration (on the
left) and CLD configuration (on the right) [1]. . . . . . . . . . . . . . . . . 9

2.2 ILD configuration [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Strain energy distribution inside the VEM layer for FLD, CLD and ILD
(free-free beam – first mode) [1]. . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 3D representation of the complex modulus of VEM [3]. . . . . . . . . . . . 22

3.2 Beam configurations [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Combined models: a)plate+beam, b) plate with rigid link + brick, c)
plate with offset + brick, d) brick + brick [3]. . . . . . . . . . . . . . . . . 26

3.4 Layerwise model [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 1D waves configuration module representation. . . . . . . . . . . . . . . . 36

4.2 2D waves configuration module representation. . . . . . . . . . . . . . . . 37

4.3 Interlaced configuration concept. . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Representation of the interlaced configuration using 2 different materials. 39

4.5 Representation of the interlaced rectangular plates: a) CLD0.5 IL2; b)
FLD2 IL2 C70 and c) FLD2 IL2 C70 2b. . . . . . . . . . . . . . . . . . . 43

4.6 Representation of the FLD rectangular plates: a) FLD2; b) FLD2 IL2 C70
and c) FLD2 IL2 C70 2b. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Experimental FLD specimens: a) FLD2; b) FLD2 IL2 C70 and c) FLD2
IL2 C70 2b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 Representation of the CLD rectangular plates: a) CLD0.5 and b) CLD0.5
IL2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Experimental CLD specimens: a) CLD0.5 and b) CLD0.5 IL2. . . . . . . 46

4.10 Representation of the ILD1 rectangular plate. . . . . . . . . . . . . . . . . 47

4.11 Experimental ILD1 specimen. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.12 Representation of the 20 x 20 mm modules for 140 x 20 mm beams: a)
ILD2 and b) ILD2 1D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.13 Experimental beam specimens: a) ILD2 and b) ILD2 1D 4. . . . . . . . . 49

4.14 Experimental ILD2 1D 4 beam specimen during the phase of assembly. . . 49

4.15 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.16 Experimental Setup for the plate specimens. . . . . . . . . . . . . . . . . . 50

4.17 Experimental Setup for the beam specimens. . . . . . . . . . . . . . . . . 50

4.18 Measuring mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Mode shapes of the first four natural modes of the sandwich beam. . . . . 55

5.2 Mode shapes of the first five natural modes of the aluminium square plate. 57

xi



5.3 Mode shapes of the first five natural modes of the aluminium rectangular
plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Mode shapes of the first two natural modes of the sandwich beam. . . . . 73
6.2 Mode shapes of the first five natural modes of the aluminium rectangular

plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Comparison between the analysed combined model approaches. . . . . . . 77
7.2 Normalized loss factor comparison between the two VEM thicknesses. . . 78
7.3 Normalized loss factor comparison between the beam-kind models. . . . . 79
7.4 Modal loss factor comparison between the beam specimens. . . . . . . . . 80
7.5 Natural frequencies comparison between numeric and experimental study. 80
7.6 Loss factor comparison between numeric and experimental study. . . . . . 81
7.7 Modal loss factor comparison between the 2D wave models with A1 am-

plitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.8 Modal loss factor comparison between the ILD2 2D 0.5 with two different

amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.9 Normalized loss factor comparison between the ILD square models. . . . . 83
7.10 Normalized loss factor comparison between the CLD square models. . . . 83
7.11 Normalized loss factor comparison between the FLD square models. . . . 84
7.12 Normalized loss factor comparison between the FLD square models. . . . 85
7.13 Normalized loss factor comparison between the rectangular plate models. 85
7.14 Modal loss factor comparison between the plate specimens - PolyMax. . . 86
7.15 Modal loss factor comparison between the plate specimens - Circle Fit. . . 86
7.16 Comparison between numeric and experimental study - CLD0.5. . . . . . 87
7.17 Comparison between numeric and experimental study - CLD0.5 IL2. . . . 87
7.18 Comparison between numeric and experimental study - FLD2. . . . . . . 87
7.19 Comparison between numeric and experimental study - FLD2 IL2 C70. . 88
7.20 Comparison between numeric and experimental study - FLD2 IL2 C70 2b. 88
7.21 Comparison between numeric and experimental study - ILD1. . . . . . . . 88

B.1 Representation of the ILD interlaced square plates: a) ILD2 IL2; b)
ILD2 IL4; c) ILD2 IL8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.2 Representation of the CLD interlaced square plate: CLD0.25 IL2. . . . . . 94
B.3 Representation of the FLD interlaced square plates: a) FLD2 IL2; b)

FLD2 IL4; c) FLD2 IL2 C4; d) FLD2 IL4 C4; e) FLD2 IL8 C4; f)
FLD2 IL2 C70 2a; g) FLD2 IL4 C70 2a; h) FLD2 IL8 C70 2a; i) FLD2 IL2
C70 2b; j) FLD2 IL4 C70 2b and k) FLD2 IL8 C70 2b. . . . . . . . . . . 95

D.1 Properties of modal circle [4]. . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



Nomenclature

Acronyms

ADF Anelastic Displacement Fields

ATF Augmenting Thermodynamics Fields

CLD Constrained Layer Damping

CMA Complex Modulus Approach

DFA Direct Frequency Analysis

FD Fractional Derivative model

FEM Finite Element Method

FLD Unconstrained or Free Layer Damping

FRF Frequency Response Function

GA Genetic Algorithms

GHM Golla-Hughes-McTavish model

ILD Integrated Layer Damping

ILLD Interlaced Layer Damping

MAC Modal Assurance Criterion

MDOF Multiple degree of freedom

MSE Modal Strain Energy method

PCLD Partial Constrained Layer Damping

RKU Ross-Kerwin-Unger model

SDOF Single degree of freedom

TDA Time Domain Analysis

V EM Viscoelastic Material

Model Treatments

xiii



CLD� Constrained layer damping, � mm of constrained layer

CLD� IL© Constrained layer damping, � mm of constrained layer and © interlaced
VEM stripes in each direction

FLD� Free layer damping, � mm of host structure

FLD� IL© Free layer damping, �mm of host structure and© interlaced VEM stripes
in each direction

FLD� IL© C4 Free layer damping, �mm of host structure and© interlaced stripes
of VEM and an alluminium with E=4 GPa

FLD� IL© C4 2a Free layer damping, � mm of host structure and double layer of
© interlaced stripes of VEM and an alluminium with E=4 GPa

FLD� IL© C4 2b Free layer damping, � mm of host structure and double layer
interleaved of © interlaced stripes of VEM and an alluminium with E=4 GPa

ILD� Integrated layer damping, � mm of host structure and constrained layer

ILD� IL© C4 Integrated layer damping, � mm of host structure and constrained
layer, and © interlaced stripes of VEM and an alluminium with E=4 GPa

ILD� IL© Integrated layer damping, � mm of host structure and constrained layer,
and © interlaced VEM stripes in each direction

ILD� 1D © Integrated layer damping beam, � mm of host structure and constrained
layer, and © 1D waves per modulus

ILD� 2D © Integrated layer damping, � mm of host structure and constrained layer,
and © 2D waves per modulus

Coordinate Systems

X,Y, Z Global cartesian coordinate system

x, y, z Local cartesian coordinate system

Indexes

i general index counter

j general index counter

k finite element index

r modal index

Matrices [ ]

[K̄] Complex stiffness matrix ∈ C

[C] Viscous damping matrix ∈ R

xiv



[K] Stiffness matrix ∈ R

[Ke] Extensional stiffness matrix ∈ R

[KI ] Stiffness matrix imaginary part ∈ R

[KR] Stiffness matrix real part ∈ R

[Ks] Transverse shear stiffness matrix ∈ R

[Kv] Viscoelastic component of the stiffness matrix ∈ R

[M ] Mass matrix ∈ R

[P ] Projection matrix ∈ R

Operators

[ ]H Complex conjugate transpose matrix operator

[ ]T Transpose matrix operator

¨(•) Second order in time derivative

˙(•) First order in time derivative

Dα (•) Fractional derivative of α order (0 < α < 1)

Scalars (•)

α(ω) Receptance function [m/N] ∈ C

λ̄ Complex eigenvalue ∈ C
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Chapter 1

Introduction

1.1 Motivation

The evolution of structural engineering in the last decades has contributed to the devel-
opment of more efficient structures. This has been achieved not only with improvements
on production and assembly processes, and the conception of new materials that allow
the construction of lighter, efficient and optimized structures, but also with innovative
structure configurations and the use of simulation tools that support the implementation
of new and ingenious ideas with optimized results [1, 3].

Structures made of light and stiff materials are commonly the first choice for struc-
tural engineering, but these are not an efficient energy dissipation mechanism. More
recently, starts to be more frequent the use of more efficient materials like aluminium
and titanium alloys, carbon and aramid composites, polymeric and metal foams. These
materials combine structural strength and lightness, but the problem of low energy dis-
sipation remains. Due to this, improvements have been made to combine these materials
with a way to recover the lost damping capacity. The damping treatments were conceived
to for this purpose [1].

Vibration is a mechanical phenomenon that is characterized as a cyclic or oscillate
movement from the rest position of the structure. Vibration is an inevitable natural
consequence and usually unwanted, due to the fact that high vibration levels can cause
expensive or life-threatening consequences. The effect of vibration caused by, for exam-
ple, earthquakes, wind or environmental noise in mechanical and structural components
of structures can carry major consequences, like fatigue or, in extreme cases, failure of
the structures. This effect can happen in every structure with low damping capacity,
but it has notorious impact in structures with large dimensions that cause uncontrolled
vibrational effects because of their low natural frequencies. It is important to note that
these consequences can be avoided if the vibration energy is efficiently dissipated [2].

The damping capacity of a structure has to be capable of dissipating the energy that
is continuously converted and accumulated during vibration, preventing thus the occur-
rence of accidents due to structural collapse. These accidents, generated in structures
such as vehicles, bridges and buildings, are related to fatigue induced by cyclic loads,
impact or even noise, that create irreversible damage, reducing the lifetime and security
level [2].

To prevent these situations, it is possible to add a material or device that intro-
duces additional damping capacity to structures. These dissipation mechanisms, that
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4 1.Introduction

are added, can be introduced in several ways into a structure, successfully increasing
the damping of the system. These are called passive damping treatments when there
are not active or induced by external means. One of the most effective passive damping
mechanism is titled as Viscoelastic damping treatment [1–3]. These and other types of
damping mechanisms are presented later.

The research carried out in this dissertation is directed towards finding some inno-
vative results that hopefully can serve by instrument for furthering the knowledge of
viscoelastic damping treatments. This is the principal motivation behind this work. In
order to achieve this, the objective of the dissertation is defined in the following section.

1.2 Objective of the dissertation

As aforementioned, viscoelastic damping treatments are effective passive control mech-
anisms able to mitigate vibration in light structures. This ability depends on two main
aspects: the energy that is stored inside the viscoelastic material (VEM) when the
structure deforms during vibration, and the material capability to dissipate that stored
energy as heat. In fact, despite the high loss factor that a material may have at a specific
temperature and frequency range, if the deformation imposed on the material is reduced
then the stored energy may not represent a significant part of the global energy of the
structure and the damping effect is thus negligible. This level of deformation depends
significantly on the damping treatment configuration. Therefore, an interesting way to
understand how to maximize the stored energy in the VEM layer is by research on new
configurations for these treatments, that represents the main topic of this thesis.

New and effective solutions can be achieved taking advantage from the already known
configurations, multi-layer, multi-material, partial configurations and other interesting
configurations that are going to be mentioned later in the document. The design of a
new configuration for VEM damping treatments can involve several design parameters,
such as layer thickness, material properties, natural modes, boundary conditions and the
location of the VEM patches for partial treatments. The process to obtain the highest
level of damping for a natural mode, or modes, entails finding a reasonable combination
having in consideration these parameters.

The main objective of this work is to propose a new configuration for VEM damping
treatments that can provide a valid replacement for other efficient configurations, which
often require a time-consuming and laborious placement procedures or may require spe-
cial care when handling complex geometries. This new configuration is hereby named as
the Interlaced Layer Damping (ILLD) configuration. The numerical and experimental
study have the objective of demonstrating the feasibility of this promising configuration.
To understand the mechanisms behind the interlaced layer configuration, it is initially
developed a set of other spatial configurations. This process includes the analysis of
beam-kind structures with 1D waves, plates with 2D waves and, finally, the assessment
of the proposed interlaced configuration, that is characterized by a three-dimensional
interlaced layering scheme combining one or several materials. It is made a numerical
study to compare these different spatial configurations with some of the usual config-
urations that can be found in the literature. Additionally, an experimental validation
was conducted on some of the configurations, those that were considered more promising
within the scope of this work.

F.M.M. Matos Master Degree



1.Introduction 5

Other objectives are focused on: present an analysis of the state-of-the-art relevant
for this work, allowing to gather important knowledge; establish a comparison between
the models developed; and propose efficient damping treatment solutions.

1.3 Outline of the dissertation

This dissertation is organised into eight chapters, that includes the present one, which
is dedicated to the motivation description for the work and main research goals followed
by the structure of the dissertation.

In the second chapter a brief introduction to some considerations is presented in-
cluding a review on the state-of-the-art, relevant for this work, divided in sections to
simplify the comprehension of the contents.

Chapter 3 presents a detailed analysis on viscoelastic damping treatments, focusing
on the characterisation of the properties of viscoelastic materials, including the methods
that are usually applied to determine the complex modulus of viscoelastic materials
applied on passive damping, and the modelling and analysis of these damping treatments.

Chapter 4 describes the methodology for both numerical and experimental study
developed within the context of this work. This fourth chapter includes the presentation
of the models proposed and analysed, and the procedure used to develop each analysis.

In the fifth and sixth chapters are presented the results of the numerical and exper-
imental study, respectively. Subsequently, chapter 7 is devoted to the analysis of the
results gathered and presented in the previous chapters and presents a comparison of
the obtained results.

Chapter 8 concludes this dissertation with the main conclusions and suggestions for
future research work.

F.M.M. Matos Master Degree
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Chapter 2

State-of-art review

In the fifties started to emerge the application of damping treatments to improve the
characteristics of structures. However, some scientific work on the subject started to be
published in the thirties. There have been many contributions since that time about
viscoelastic damping treatments. In this work it is merely mentioned the most important
ones due to the impossibility of describing all of the contributions in a concise and brief
revision.

When a natural consequence as damping results from adding a specific material,
fluid or electrical system that is able to dissipate a significant amount of the deforma-
tion energy into a structure exposed to the vibration field, the damping treatment that
results from that is designated passive damping treatment. Effective examples of these
treatments are the aforementioned Viscoelastic damping treatments, viscous dampers,
and piezo-shunt devices [3].

Another form of damping treatment is called active damping treatment. Active
devices have the ability to react against the vibratory movement of a structure or in
other cases modify the damping properties of the structure in an active way [2,3]. Piezo-
electric materials, electro- and magneto-rheological fluids, and shape memory alloys
and polymers are effective materials used for this purpose. These mechanisms, with a
variation of a strain, electrical, magnetic, or thermal field, can change some physical
or material properties. The adverse side of active control relies on the requirement of
complex control systems and external power supply [1, 3].

Hybrid damping treatments are the combination of both active and passive damping
treatments, retaining all their advantages, while removing or minimising the disadvan-
tages. An example of these treatments can be the use of viscoelastic patches with piezo-
electric constraining layers, allowing structures to obtain really good damping properties
with a controllable response [3].

Despite the benefits of the hybrid VEM treatments, the passive configurations using
these materials are massively used, provide an important damping effect and are still a
target of continuous and intensive research. This work is focused on viscoelastic damping
treatments as passive mechanisms.

2.1 Viscoelastic damping treatments

According to Denoyer and Johnson [5], among the existing passive damping treatments,
the distributed treatments and the localised dampers based on viscoelastic materials

7



8 2.State-of-art review

represent an efficient solution that is simple to apply, inexpensive, and provides a reduced
structural modification.

Viscoelastic damping treatments consist on adding, to the host structure, layers of
VEMs. These layers can be placed onto or inserted in the structure and can have various
placement strategies [3].

VEMs present low structural efficiency, due to its low mass and reduced mechanical
strength [2]. However, they are formed by long reticulated molecular chains that cause
an important energy dissipation effect when deformed cyclically and continuously [1,2].
These materials have the ability to convert strain energy into heat, this is possible by
the cyclic deformation caused by the adjacent vibrating structure, that is dissipated to
the surroundings [6]. Consequently, since this energy portion is dissipated as heat to
the surrounding environment, it contributes to a reduction of the kinetic energy of the
structure. This effect provides an effective vibration attenuation process with demon-
strated and assessed feasibility in several structural applications, including aeronautical,
aerospace, and automotive structures. This ability depends on the amount of energy
stored inside the VEM layer during the vibration of the structure. Therefore, it is pos-
sible to take advantage of this damping effect by integrating VEMs in structures made
of highly resistant and light materials, providing thus the required dissipative effect to
passively control unwanted levels of vibration [2].

The treatments using viscoelastic materials started to have a broad application in
the fifties, at the time that the aerospace development called for efficient passive treat-
ments with reduced added mass [2]. It was the high efficiency of these treatments, the
simple application and the reduced cost that provide its expansion to other industries,
like aeronautic and automotive, where it allowed the reduction of vibration levels in
structural panels and mitigation of acoustic transmission [7–9].

The VEM treatment effectiveness is closely related to the amount of deformation en-
ergy transferred to the dissipative mechanism, for that reason the treatment should be
designed in order to maximize the deformation imposed to the VEM layer [10]. There-
fore, it is necessary to consider the material modulus and the configuration of the VEM
patches into the structure, and the percentage of energy loss dissipated by this material,
that is affected only by the characteristics of the material [3]. Additionally, it is required
to consider the deformation of the viscoelastic layer, due to the pure bending motion of
the structure, and also the torsional deformation of the plate and the effect caused by
border of the treatment [6]. The placement of the VEM patches dictates if it is deformed
mainly in shear or mainly in extension [1].

Nakra [11] presents a general analysis of viscoelastic treatments, its configurations
and an analysis of the effects introduced in the treated structure. Jones [12] makes a
chronological presentation of the VEM treatment evolution up to the end of the twentieth
century, including its origins and perspectives for the future. It is worth noting that the
publications of Nashif et al. [13] and Jones [14] represent iconic literature related to the
concept of viscoelastic damping treatments.

2.2 Configuration of viscoelastic treatments

The different positioning strategies to place the VEM layer in a structure are: the
Unconstrained or Free Layer Damping (ULD or FLD, accordingly), the Constrained
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Layer Damping (CLD) and the Integrated Layer Damping (ILD) configurations. While
the first two are damping treatments that are applied onto the final structure, as depicted
in Figure 2.1, the last one is inserted during manufacture of the raw material [3].

Figure 2.1: Viscoelastic damping treatment configurations, FLD configuration (on the
left) and CLD configuration (on the right) [1].

2.2.1 Unconstrained layer or free layer damping treatments

In this configuration (left image of Figure 2.1) a homogeneous layer of VEM layer is
placed onto the surface of the structure. The application cost is reduced for these
treatments configuration and its numeric simulation is relatively simple. When the
structure vibrates, usually undergoing bending and torsion vibration modes, the layer
of VEM is cyclically deformed in extension and compression.

FLD treatments require thick layers to have a reasonable efficiency. According to [14],
the efficiency of these treatments increases significantly when the thickness of the VEM
layer is increased until one or two times that of the host structure; above this value, the
efficiency maintains constant. Therefore, the added mass makes these treatments not so
cost effective and limited in application [3].

The efficiency of these treatments also varies directly with the ratio between the
storage modulus of the VEM layer and Young’s modulus of the host structure, that is
why VEMs with high storage modulus are commonly used, like plasticised PVCs [13].

Additionally, due to the considerable VEMs thickness for this configuration, this
treatment is usually restricted to applications where the added mass is not an important
factor or when an efficient form of thermal insulation and acoustic isolation [2] is needed.
These treatments are usually applied in household appliances and automotive panels [3].

2.2.2 Constrained layer damping treatments

In this configuration (right side of Figure 2.1) the VEM layer is placed between the host
structure and a stiff thin layer known as constraining layer (usually a metal-based or high
modulus composite skin) [1]. According to Moreira and Rodrigues [6], the dissipation
of vibration energy to the structure surroundings as heat is larger when the viscoelastic
layer is covered by a stiff constraining layer which induces a considerable shear deforma-
tion. Moreira [2], mentions that normally a VEM layer with a thickness under 0.5 mm
is applied to this configuration. The deformation obtained in CLD treatments, contrary
to what happens with the previous treatment, is mainly shear strain due to the presence
of the constraining layer [1, 3].
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One of the advantages of this treatment is the possibility to use thin layers of VEM
that provide a reasonable damping efficiency. Therefore, it is a cost efficient damping
treatment, presenting minimal modification of the final structure, eliminating the impact
of the added VEM mass [3]; another advantage is an additional function of protection
caused by the constraining layer [2]. A disadvantage of CLD is the complexity of its
design, since it requires special care when representing the high shear strain levels in the
VEM layer due to the effect caused by the constraining layer [2,3,6]. Its use is limited to
structures with planar surfaces or surfaces with reduced curvature. In fact, when applied
to surfaces with complex geometry and curvilinear edges, the stiff constraining layer may
severely remove the VEM layer integrity, promoting the appearance of wrinkles, gaps
and defective bounding areas. For such structures, the placement of FLD treatments is
simpler and effective; but the damping achieved with this configuration may not justify
its use, especially if weight is a concern.

The CLD configuration treatment has been applied successfully in aeronautic and
aerospace industry, and more recently in other industries like the automotive industry,
where it is important to increase the structural performance, reducing premature failure
and improving occupant safety [6].

2.2.3 Integrated layer damping treatments

In this configuration the VEM layer is placed symmetrically between the host structure
and a constrained layer, where the host structure and the constraining layer have the
same thickness and material properties [3]. This treatment takes advantage of its position
to obtain the maximum level of shear strain distribution and producing one of the
most effective damping solutions. However, this configuration cannot be considered as
a post-production or healing treatment since it must be considered at the initial stages
of product design [2]. ILD treatments are commercially available and are conceived
using stamping, riveting, and adhesive assembly manufacturing processes. Some of the
limitations present in this treatment are associated with the manufacturing processes,
like limited tolerance to heat during welding, the spring-back effect during stamping and
bending, and the core collapse during cutting and bending [3].

Figure 2.2: ILD configuration [2].

2.3 Optimization of viscoelastic treatments

Optimization of viscoelastic damping treatments can be an interesting approach to re-
duce their cost and weight, while maintaining their efficiency [1, 3].
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In FLD configuration treatments, the optimization is based on redesigning the cov-
erage area and the location of the damping treatment. Due to the underlying character-
istics of these configurations (that include the use of thick VEM layers), the reduction
of the coverage area and the correct location of the treatment allows for a significant
reduction of the damping treatment cost and added mass [1].

This optimization strategy can also be applied to CLD treatments. Numerical and
experimental studies [15] show that the ILD configuration, that can be seen as a sym-
metric configuration of a CLD treatment, represents the most effective solution when
the structure total thickness is maintained constant [1].

Moreira and Rodrigues [16] presented a possible division of optimization strategies in
groups. The three main groups are named as: localized optimal placement, multi-layered
distribution and shear strain amplification (includes special spatial configurations and
hybrid treatments based on the addition of active devices). Moreira [2] considered an
additional group called broad spectrum materials.

2.3.1 Partial damping treatments

An interesting way to reduce the cost and quantity of the VEM in damping treatments
is by reducing the treatment area without notoriously reducing its efficiency [6]. Several
results [17–19] show that this configuration can provide an efficient passive solution,
reducing the material cost and structural modification. The partial damping treatments
can be used in FLD treatments where, as was mentioned, the thick thickness of the VEM
layer represents the typical configuration used in this methodology. This methodology
in FLD treatments can be obtained by placing VEM layers with the same thickness [17]
or with different thicknesses [18].

Akanda et al. [19] proposed a solution where the FLD treatments are perforated.
With this solution a reduction of coverage between 40 and 50% is obtainable. The
efficiency of the treatment maintains while the mass added is undoubtedly reduced.

The application of this methodology is more common on FLD treatments, but it can
be also performed in CLD treatments [2]. However, most publications about application
in CLD treatments are related to treatments applied on beams [20, 21]. It is unknown
the existence of solutions for the application of this methodology in ILD configuration
treatments [2].

Some authors [10, 22] focusing on the direct relation between the shear strains and
the displacement first derivative of the mode shapes in the Mindlin’s plate theory, defend
that the ideal location for the partial treatments is over areas close to the nodes of each
mode. However, Jones et al. [13] defend that the treatment should be applied over areas
close to the anti-nodes of the natural mode, due to the deformations occurring mainly
in the form of extension. Moreira and Rodrigues [6] clarify that both opinions seem to
be correct since its efficiency depends on the relative position of the VEM layer inside
the composite structure.

The contribution on the total strain energy, caused by the different parts of the host
structure into the VEM layer, define the placing strategy. The areas that have less
contribution can be disregarded for the treatment. This means that, if a specific portion
of the viscoelastic layer is not deformed significantly, the amount of energy that can be
dissipated by this portion of viscoelastic material is also neglectful and therefore it does
not represent a valuable contribution to the to the overall damping treatment effect [3].
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These areas can be simply found using numerical methods, to analyse the shear strain
energy distribution into the VEM layer [6], or using numerical optimization methods,
like Genetic Algorithms (GA) and Topology optimization [23].

GA method is an evolutionary scheme where the individuals of a population are
evaluated and combined according to its fitness values. Combining these individuals
with a probability proportional to their relative fitness is possible to obtain a new and
improved population [24]. This iterative procedure ends when the population with the
best performance within the evaluated ones is found [1].

Topology optimization is a mathematical method that relies in the predefinition of
a treatment configuration evaluated in terms of its damping efficiency. The influence of
each subdomain, which corresponds to the domain of each finite element if the Finite
Element Method is used, is determined. This influence in the damping efficiency of
the entire structure defines if the VEM should be redistributed, removed or introduced
according to the topologic strategy [1].

2.3.2 Optimized multilayer and multi material damping treatments

A possible approach to Viscoelastic damping treatments is the insertion of one or more
thin layers on top of a CLD configuration structure. This configuration is called multi-
layer configuration. A possible advantage of the multilayer configuration is the extension
of the temperature range of the damping treatment, achieved by using thin layers of vis-
coelastic materials with different transition temperatures [16, 25, 26]. Therefore, the
treatment efficiency for this approach is obtained by the combination of the relative
efficiencies of each applied material [2].

The multi material configuration consists in combining materials with different tran-
sition temperatures that maintain the efficiency of the treatment within a temperature
range and larger than the one provided by a single material. This configuration results
in materials like VEM that present a peak in loss factor distribution around its transi-
tion temperature, so its damping efficiency outside this region is greatly reduced. By
combining with another materials, a larger temperature range is covered [3].

Multi material configuration can be really interesting in applications where a large
temperature range is necessary, such as aeronautic and aerospace structures. This con-
figuration is performed by adding a set of thin layers of VEM, that can have internal
constraining layers [3]. The order of this addition and the existence of internal con-
straining layers requires a complete numerical analysis due to the difficulty associated
with the planning. Moreira and Rodrigues [16] conclude that, even when using a VEM
with the same properties, but split into a set of thinner layers, can increase the stiff-
ness of the structure and efficiency levels. The use of multiple VEM layers intercalated
with constraining layers causes a maximization of the shear deformation in each VEM
layer [3].

According to Sher and Moreira [23], using thin viscoelastic layers can provide an
efficient solution. Multiple thin VEM layers can be more efficient than a single VEM
layer with the same total thickness. To attain this goal, the VEM layers should be
properly restrained.
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2.3.3 Special spatial configurations

Special spatial configurations can be an interesting way to optimise a VEM damping
treatment. These configurations can be divided in two strategies, in-plane and out-of-
plane arrangement [16].

In-plane arrangements can be performed by modifying the VEM layer to increase
shear strain on it or also by creating segmentation of the treatment to amplify shear
strain that is established into the VEM layer. The objective of this strategy is to pro-
mote the shear strain that can be provided to the VEM layer. Despite of the isotropic
behaviour that VEMs can present, if the loss factor and storage modulus have a direc-
tional behaviour, it is possible to benefit from it. For example, by a form of selective
treatment where, depending on the natural mode, different efficiencies are obtainable [1].

Alberts and Xia [27] proposed an application into FLD configuration, that added
fibers into the VEM layer. This strategy provided a way to improve the damping ef-
ficiency, since the fibers promote the localized shear deformation of the VEM, which
makes this configuration comparable, by efficiency levels, to CLD configurations. With
the added advantage introduced by the simplicity of FLD treatments.

Biggerstaff and Kosmatka [28] used this procedure to obtain an orthotropic viscoelas-
tic material, integrated in a composite material, with the objective of making it selective
to control by the natural modes.

Lepoittevin and Kress [29] explored other in-plane strategy introducing cuts into
the damping layer, called segmentation procedure, obtaining efficient results for a two-
dimensional beam model.

The other strategy, the out-of-plane arrangement, uses some kind of amplifying mech-
anism inserted between the host structure and the VEM layer, promoting this way, the
shear strain imposed to the VEM layer [30,31]. This amplification device, usually a light
structure with high shear modulus [19, 31], is designed with the intention of amplifying
the deformation that is imposed to the interior face of the VEM layer [1]. Usually, for
this purpose, honeycomb sandwich plates or polymeric foam plates are applied [2].

SPADD ® [32] developed by ARTEC Aerospace (France), has the form of dis-
crete elements that are applied locally onto the structure. These elements can amplify
deformation by its metallic arms bonded in the structure, and creates shear deforma-
tion leading to an efficient dissipation method by the VEM layer that interconnects the
metallic arms.

2.3.4 Hybrid damping treatments

Viscoelastic damping treatments are considered a highly dissipative mechanism. VEMs
characteristics make it safe, reliable, and autonomous. But the strong dependency on
temperature and frequency of vibration in these materials, make it a vulnerable solution
for low excitation frequencies (f < 10− 20Hz) and is highly dependent on application
conditions (specially the temperature range). To overcome this limitation, hybrid damp-
ing treatments combine viscoelastic damping treatments with active control mechanisms.
The addition of active control mechanisms to the treatment covers the limitation pre-
sented by VEM damping mechanisms, due to the fact that active control systems are
effective for low excitation frequencies (f < 10− 20Hz). They are, however, limited for
high frequencies and that is why the combination of both mechanisms represents an
effective solution for a wide frequency range [3].
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A single hybrid dynamic control system can combine the efficiency provided by vis-
coelastic materials with the ability of control, by the high efficiency at low frequencies
provided by active or smart materials, such as, piezoelectric crystals [33, 34] and mag-
netic tape [35]. The high efficiency of viscoelastic materials as a dissipative mechanism,
especially for medium or high frequencies, can lead to an attenuation of the spillover
effect (effect of instability control) adding piezoelectric devices [36].

Among all the literature related to this topic, the work from Liao and Wang [37]
stands out. In this work the effects of VEM properties and the VEM layer thickness, in
its passive and active form, are analysed. They concluded that the performance of the
active control mechanism strongly depends on the VEM storage modulus, that should
be high enough to transfer the actuation effect to the structure. It is important to note
that a very high storage modulus could compromise the passive damping mechanism
due to the attenuation of the shear effect [3].

2.3.5 Broad spectrum materials

It is important to note that the limitation of the efficient range of the viscoelastic material
is imposed by the VEM itself. Therefore, one way of increasing the efficiency range of
the treatment is by using VEMs with a high loss factor and a low storage modulus,
approximately constant, within a broad frequency range. Pritz [38] verified that it is
possible to develop materials with a high loss factor within a broad temperature or
frequency range. Allen et al. [39] developed a set of viscoelastic materials that fulfill this
requirement. The efficiency of these materials is directly related with their high thermal
conductivity.

2.4 Design of viscoelastic damping treatments: fundamen-
tal rules

The design of viscoelastic damping treatments requires full understanding of the mech-
anism behind this dynamic control technology. It is important to note that the main
advantage of viscoelastic materials for damping treatments is the ability to dissipate part
of the strain energy as heat [3]. For that reason, the design of VEM damping treatments
has to be focused mainly on how to maximize the strain energy produced and dissipated
in the VEM layer [3].

There are several parameters that affect the strain energy developed inside the VEM
layer, but the most important parameters to have in consideration when choosing the
VEM are the temperature range of the application and the frequency range of interest [1].
These two important parameters are not easy to fulfil, because it is necessary that the
glass transition temperature of the VEM is within the temperature range of interest. For
that, some strategies can be considered such as, the multilayer configuration discussed
previously, and the introduction of new viscoelastic materials with broader ranges of
temperature and/or frequency for applications with high temperature gradients, like
aerospace, aeronautic and automotive structures [3].

Another critical parameter for the design of these damping treatments is the thickness
of the VEM layer related to the host structure and the constraining layer thicknesses.
For FLD configurations, it is known that thicker viscoelastic layers increase damping
levels. However, for CLD configurations the approach is not so simple [1], since it
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usually requires numerical simulation tools to find a reasonable solution. For CLD
configurations, a thicker VEM layer adds volume of VEM, leading to an increase in
the potential of energy dissipation, but also a decrease of shear strain imposed on the
VEM layer [1, 3]. The relation between VEM thickness and the damping efficiency of
the total structure is not proportional, it is asymptotic for treatments with thicker VEM
layer and, for cases where the VEM layer is significantly thin and the host structure
thick, a peak in its curve efficiency is observed that depends on geometry and material
parameters [23].

The damping treatments with in-plane localization can be divided in two solutions,
total or partial placements. The total placement treatments are effective for every mode
shape configuration. The partial placement treatments are a reasonable choice when
the objective is to reduce cost of the treatment, weight, and structural modification. It
is the responsibility of the designer to be aware of the importance of the placement of
each patch, that can be designed using experimental or numerical studies. For CLD
treatments the main focus of the correct placement is to increase shear strain and for
FLD is to increase the extensional strain [3].

In Figure 2.3, it is possible to observe the strain energy distribution inside the VEM
layer for FLD, CLD and ILD configurations for a free-free beam (first mode). In the FLD
configuration, the maximum of strain deformation energy occurs near the antinodes of
the first flexural model. For CLD and ILD treatments it is observed that this maximum
of strain energy occurs along the nodal lines. Figure 2.3 supports this observation.
However, one must be aware that is this specific structure and mode shape, the edge
effect is more pronounced. This second observation is in fact the foundation of the
Interlaced configuration proposed in this work.

Figure 2.3: Strain energy distribution inside the VEM layer for FLD, CLD and ILD
(free-free beam – first mode) [1].

In [3] a comparison between several partial (localized) constrained layer damping
configurations (PCLD) is made, analyzing the modal damping ratio of each configuration
and the ratio between it and the mass of the applied patch.

2.5 Applicability of viscoelastic treatments

The viscoelastic surface treatments can be applied on any structure material, from a
variety of metallic materials to polymer matrix composites. However, it is necessary
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to ensure the adherence between the VEM layer and the substrate surface, and the
conditions imposed by the material, like the temperature range, the chemical products
that VEM does not tolerate and the humidity and steam limited conditions.

For the integrated layer damping (ILD) configuration, it is necessary to have extra
precautions. As aforementioned, for this configuration the VEM is added into the raw
material in an early production phase. Therefore, taking in consideration that these
materials cannot support extreme high temperatures, the production processes should
be selected according to this. There has been no, or almost no, publication about possible
solutions for this limitation. For this reason, Moreira [2] suggests that the assembly using
thermal processes should be replaced by mechanical coupling or adhesive joints.

The application of ILD treatments in composites requires also some care during the
manufacturing process, even if apparently does not show any type of restriction. Be-
sides the limitations concerning pressure and temperature, it is also important having
in consideration the increase in the storage modulus and the decrease in the loss factor
verified in the embedded VEMs, originated from the penetration of the resin into the
molecular structure of the material during the productive process. Biggerstaff and Kos-
matka [40,41] experimentally verified this effect and proposed a solution that consists on
adding a barrier layer between the viscoelastic material layer and the composite layer.

2.6 Characterization and modelling of viscoelastic treat-
ments

One of the most important aspects when working on the optimization of passive treat-
ments is the accurate development of models representing the VEMs behaviour and its
properties.

The experimental characterization of the mechanical properties, noting the strong
dependency on temperature and frequency of excitation, represents one of the most
difficult and complex tasks to accomplish during the development of such treatments.
Another difficulty is the representation of the material properties through an accurate
model.

The development of the dynamic behaviour of polymeric materials started to generate
interest among several authors in the decade of 1950. The important work published
by Ferry [42, 43], specially with the book “Viscoelastic Properties of Polymers” [44],
but also by Maxwell [45] and Oberst [46], among many others, is a reference for the
characterization of the polymeric materials behaviour and its dissipative mechanism.

Over the years, it was possible to use these same referenced methodologies for ex-
perimental characterization with more evolved treatment and verification methods using
powerful numerical tools.

It is also during this decade that is presented, for the first time, the complex modulus
concept [47] in the representation of VEMs behaviour. In that period, it was common to
use simple rheological models to represent VEMs dynamic behaviour by the combination
of elastic and viscous elements. Maxwell and Voigt elements are usually combined with
multiple models to obtain a better approximation for the real material behaviour. These
elements represent a simpler and more popular solution. However, the accurate repre-
sentation of the complex modulus for a broad frequency range, requires a high number
of adjustments.

F.M.M. Matos Master Degree



2.State-of-art review 17

Bagley and Torvik [48] brought, in the eighties, the concept of fractional derivatives
(FD) for the representation of VEM behaviour. This model is commonly used for the
analysis of passive treatments and describes the behaviour over a broad frequency range
with only one derivative term. Other models using FD constitutive model appears since
then, defined by a different number of parameters [49–52]. This model can be introduced
into a numerical integration scheme in the time domain [53,54] by the Grünwald concept
[55].

During the decade of 1990 alternative models that can represent the variation of the
material properties within the frequency range were proposed. Lesieutre et al. [56, 57],
proposed the Anelastic Displacement Field (ADF) model. This model establishes the
variation effect by a set of inelastic variables. To represent the same effect, Golla-
Hughes-McTavish (GHM) model [58] uses a set of oscillators. Both of these models
can be easily implemented. The disadvantage is that it requires the use of more than
a set of relaxation parameters, normally 3 to 5 oscillators [59, 60] or inelastic terms
to accurately represent the VEM properties for passive treatments. The GHM model
is commonly used to represent VEM properties of hybrid damping treatments [59–62].
Wagner and Adhikari [63] made a comparison between the aforementioned models and
the ones proposed by them, and extend the traditional state-space approach for its
application.

The spatial model is an important step for a passive damping treatment project. It
is important to note that this step has special importance when CLD and ILD configu-
rations take place due to the high shear strain caused by the high damping capacity of
VEMs.

The combined models are based on conventional finite elements applied in layers.
Each layer is represented separately and solid elements are used to obtain the three-
dimensional representation of the VEM layer [64, 65]. Beams, plates and hexahedral
solids are the common finite elements used for this spatial model [3]. These models pro-
vide a good representation of the deformation pattern for the VEM damping treatments.
However, the modelling can be complex and expensive, computationally speaking, for
multi-layer configurations.

Other possible spatial model is named layerwise model. This model ensures the
continuity of the layers when the definition of the finite element displacements takes
place [66, 67]. It has the advantage of reducing the problem complexity. It is normally
restricted to particular treatment geometries like single layer beams based on approxi-
mations for the displacements field [67]. However, Moreira et al. [68] based their work
on this theory applied on multi-layer damping treatments. The Euler-Bernoulli and
Kirchhoff-Love are the main assumptions applied in the external layers for beams and
plates, respectively. Timoshenko–Ehrenfest and Reissner-Mindlin theories can also be
used for this purpose.

2.7 Analysis of viscoelastic damping treatments

Oberst [69] and his team were one of the pioneers on analysing and applying the FLD
configuration for viscoelastic damping treatments. The equations of Oberst [69], based
on the assumption that the beam flat sections remain flat, are still an important tool to
establish the FLD treatment effect and characterize VEMs.
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In 1959, Kerwin Jr. [70] proposed an analytical model to determine the efficiency
of CLD treatments on beam-kind structures. The model, based on the propagation of
bending waves, can only be applied on treatments with a constrained layer thickness,
much thinner than the thickness of the host structure. The efficiency of the treatment
depends on the wavelength of vibration in the damped plate and on the thickness and
Young’s modulus of each layer of the treatment.

Ross, Ungar and Kerwin [71] proposed a fourth-order equation of differential motion
for the behaviour of CLD configuration treatments applied in beam-kind structures.
The proposed equations, named Ross-Kerwin-Ungar (RKU), were developed in 1959
and are still considered in the study of CLD and ILD configuration treatments with
viscoelastic materials. These equations were developed carrying a set of assumptions,
such as, imposing that the modal forms are sinusoidal and not considering the shear
strain present in the VEM layer. Even with this restrictive assumptions, the equations
mentioned are broadly used for plate and beam-kind structures with CLD configuration,
being considered the methodology that supports most of the experimental procedures of
the complex modulus of VEMs.

In 1994, the RKU equations were extended to be applied in CLD damping treated
structural cables by Yamaguchi and Adhikari [72]. Bhimaraddi [73] proposed a numer-
ical comparison between the RKU equations and an analytical model that intends to
overcome some restrictions imposed by the RKU equations. The work of Bhimaraddi
allowed him to understand that the RKU model underestimates the loss factor of simply
supported beams for VEMs with a high storage modulus. Teng and Hu [74] evaluate
the effects on CLD treatment parameters using RKU equations applied on beam-kind
structures.

DiTaranto [75] proposed a sixth-order equation of motion for a sandwich beam with
VEM core based on Ross, Kerwin and Ungar’s work, where was eliminated the assump-
tion of simply supported end and adapted for any end conditions. The DiTaranto work
allowed the simplification of the general forced vibration problem by his discussion of
natural frequencies and modes that constitute a special class of resonance frequencies
and forced modes of vibration for sandwich beam structures. Mead and Markus [76,77]
took DiTaranto’s theory and applied it to fixed ended beams. Rao [78] proposed a refor-
mulation of the mentioned theory to obtain the exact solution for beams under various
boundary conditions.

It is more common to find publications about analytical models related to beam-kind
structures. However, there is also work on analytical models applied to FLD and CLD
treatments on plates. Yan and Dowell [79] adapted the fourth-order differential equation
of motion for the behaviour of isotropic and homogeneous layers on sandwich beams and
plates. Rao and Nakra [80] proposed the analysis of unsymmetrical sandwich beams
and plates. In addition to the transverse inertia effects, the longitudinal translatory and
rotary inertial effects were included in the equation of motion.

The intention of reducing the treatments cost and the structural modification by
partial treatments, led to the development of approximated analytical models based,
the majority, on the analysis of the modal strain energy of undamped plates or beams.
Ungar and Kerwin [81] proposed the definition of the loss factor by the strain energy of
host structure modal forms. Stevens and Hsu [82] used the model mentioned previously
to analyse the regular partial treatment efficiency with CLD configuration. Stevens et
al. [83] also uses this methodology to determine the efficiency of partial treatments with
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FLD configuration applied on fixed shafts with circular section, and Pei and Li [10]
use it to optimize CLD treatments placement on plate-kind structures. Dechang and
Zuguang [21] analysed the effect of CLD partial treatments applied on simply supported
beams, using the Galerkin method.

Chen and Levy [20] analysed symmetric CLD partial treatments applied on cantilever
beams. Based on the Hamilton’s principle, they developed a set of differential equations
of motion. This set of equations are compared with the ones proposed by Rao [78] in
1978.

The analytical models, exact or an approximation, allow the structural analysis of
simple structures with well-defined boundary conditions. However, the structures where
normally VEM damping treatments are applied, are three-dimensional structures with a
highly complex geometry. For that reason, over the years, techniques based on numerical
methods have been developed. Numerical methods of analysis create the possibility of
establishing the dynamic effects and estimating the efficiency of VEM damping treat-
ments, and also allow the development of improved methodologies for passive treatments
optimization.

The Finite Element Method (FEM) has a widespread application in the structural
engineering field. Therefore, the development of numerical models based on this method
led to efficient solutions for the behaviour analysis of VEM damping treatments. Nev-
ertheless, Lee and Kim [84] proposed the application of the finite difference method on
ILD configuration square plates with clamped boundary conditions.

FEM allows the representation of the spatial model by calculating the mass and
stiffness matrices of the structure. Therefore, to obtain the dynamic behaviour of the
treated structure, it is necessary to develop a specific analysis process.

Lumsdaine and Scott [18] proposed the optimization of partial damping treatments
with FLD configuration applied on plates with various boundary conditions. For this
optimization it was used the finite element method through the direct frequency analy-
sis (DFA) and the complex modulus method. These methods can be applied assuming
harmonic stationary vibration. It takes advantage of the material complex modulus rep-
resentation to develop a DFA where the VEM properties are updated for each frequency
value. This approach presents some downsides due to the high computational cost since
the equation system is solved for each frequency step value.

The aforementioned analytical methods involve complex calculation and consequently
their computational costs are high. Therefore, it was developed an analysis method with
only real components that allows a significant reduction of computational costs. The
modal strain energy (MSE) model, firstly introduced by Johnson and Kienholz [64], is
based on the energy ratio proposed by Ungar and Kerwin [81]. The MSE method takes
advantage from the natural frequencies and modal forms of the undamped structure to
obtain the modal loss factor of the treated structure. The method assumes that the
real natural modes of the undamped structure can represent the complex modes of the
damped structure under analysis. The loss factor is simply obtained by the ratio between
the strain energy of the VEM layer and the total strain energy.

Shin and Maurer [85] made a comparison between the results obtained by the MSE
method with the ones obtained by the DFA method for CLD configuration treatment
applied on plate-kind structures. The experimental results obtained by this work verify
that the MSE represents a satisfactory approximation with a significantly lower compu-
tational cost.
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Several authors relied on other approximated analytical methods. Balmès [86, 87]
and Plouin et al. [88,89] based their strategies on the Modal projection onto a modified
modal subspace method. Kelly and Stevens [22], and Lin and Lim [90] relied on the
perturbation method to find the treatment effects and efficiency.
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Chapter 3

Viscoelastic Damping Treatments

3.1 Viscoelastic Materials

Viscoelastic materials have the particularity of behaving as both elastic and viscous
materials. VEMs are known for being highly dependent on room temperature and on
the applied cyclic load frequency [1, 3]. VEM applied, as it was told before, in passive
damping treatments are mostly polymer-based with a considerable loss factor for the
concerned frequency and temperature range. The morphology of these materials, formed
by long and tangled molecular chains, makes the dynamic response dependent on the
motion of this molecular structure, that is dependent of the frequency of the excitation
and temperature of the material. For these reasons, VEM for damping treatments have
a limited range of admissible frequency and temperature, that should include the peak
of the loss factor. The peak of the loss factor is coincident with the glass transition,
which corresponds to the temperature range over which the amorphous regions change
from a fragile glassy state to a flexible rubbery state as the temperature is increased.
Under the temperature that the glass transition occurs, the structure of the polymer is
glassy and rigid with narrow molecular mobility. At higher temperatures, the structure
of the polymer as a considerable molecular mobility [3, 91].

These materials are characterized by a phase delay between a cyclic harmonic load
and the resulting strain response. The complex modulus approach, shown in Equation
3.1 [1], relates the extensional modulus with the stress and strain fields on a uniaxial
harmonic deformation of a VEM specimen [1].

E∗(ω, T ) = E′(ω, T ) + jE′′(ω, T ) (3.1)

In Equation 3.1, E′(ω, T ) and E′′(ω, T ) represent, respectively, the storage modulus
(corresponding to the real component) and loss modulus (corresponding to the imaginary
part). The loss factor (η), that represents the damping capacity of the VEM, is given
by the ratio between the imaginary and the real parts [1]. As mentioned before and as
it is possible to see by the Equation 3.1, both real and imaginary parts of the complex
modulus are frequency and temperature dependent.

In Figure 3.1, it is possible to see a three-dimensional graph of storage modulus
(top graph) and of loss factor (bottom graph), both for an acrylic-based viscoelastic
material at room temperature. By the temperature-time superposition principle [13,44],
increasing the temperature results in an effect onto the material that can be equally
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produced by a reduction of the excitation frequency. This is one of the conclusions
that is possible to take from the isolines in the storage modulus and loss factor graphs.
The other conclusion stands for the superior effect of temperature when compared with
frequency [3].

Figure 3.1: 3D representation of the complex modulus of VEM [3].

VEM damping treatments are available commercially with various material formu-
lations and treatment configurations within different temperature ranges. The temper-
ature range associated to each product includes the glass transition temperature, Tg.
Like this it is possible to obtain the highest values for the loss factor, that represents
the highest values for efficiency of the treatment in that temperature range [3].

3.1.1 Experimental characterization of VEMs

The characterization of these materials depends on a perfect control and measure of
temperature and frequency, due to the strong effect that these variables produce onto
the dynamic properties of VEMs. One of the characterization techniques relies on the
dynamic modulus characterization using a dynamic system that can be represented by a
single degree of freedom (SDOF) system, where the specimen of the selected viscoelastic
material represent the unknown stiffness. It is constrained in a way that reduces the
system to a SDOF system within the frequency range of interest and makes possible the
representation by a single equation of motion. The material specimen can be deformed
in shear or extension, depending on the configuration of the setup, providing the cor-
responding complex modulus data. This technique is simple but relies on the necessity
of designing correctly the system to obtain an unique degree of freedom. It is usual to
introduce corrections according to the temperature and frequency range, material, and
the testing configuration [3]. Another possible configuration takes advantage of the per-
turbation effect caused by the introduction of the VEM layer to the dynamic response
of a continuous system. After measuring the excitation force and the response, this in-
formation is correlated to obtain the complex modulus data. This characterization can
be evaluated on FLD or CLD beams [1].

ASTM E756-98 standard [92] describes a configuration of the resonating fixed beam
tested in 4 ways: a beam with an unconstrained VEM layer also called Oberst beam, a
symmetric unconstrained layer also denominated as Van Oort beam, a single symmetric
constrained configuration and finally a double configuration of the previous one [14,69],
respectively a), b), c) and d) from Figure 3.2 [3].

The Ross-Kerwin-Unger (RKU) model [70, 71] is used to determinate the storage
modulus and the loss factor of the VEM. This model is an analytic representation of a
conventional sandwich beam with three layers where the middle layer is a viscoelastic
material. RKU model requires care and correction procedures to achieve valid results,
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Figure 3.2: Beam configurations [3].

due to some limitations like the sinusoidal form of mode shapes. Another critical aspect
is the use of an elastic material for the host beam with insignificant material damping
considering that RKU equations rely on that assumption [3].

For the Oberst beam, showed in Figure 3.2 a), the flexural stiffness ratio based on
RKU model [70,71] is given by [3],

R̄ =
ĒI

E1I1
=

(
1 +

ρ2
ρ1
h2

)(
ωr
ω0r

)2

(1 + jηr) (3.2)

where Ē represents the complex modulus of the structure, E1 the Young’s modulus of
host beam material, I and I1 are the second order inertia moment of the cross-section
of the structure and the host beam, respectively. Parameters ρ1 and ρ2 are the density
for host beam and VEM material, respectively. The non-dimensional parameter h2 is
obtained from the ratio between thicknesses of VEM layer and host beam. Frequency
parameters ωr and ω0r are the natural frequencies, for the damped and the undamped
beams, respectively, corresponding to the mode shape under analysis. Finally, ηr repre-
sents the modal loss factor [3].

With the flexural stiffness ratio it is possible to obtain a relation that gives the
complex modulus of the VEM layer, as follows [3],

Ē2 = E1

−ĥ+
√
ĥ2 + 4h22

(
R̄− 1

)
2h22

(3.3)

where the thickness parameter ĥ is given by [3],

ĥ =
(
4− R̄+ 4h22 + 6h2

)
(3.4)

For each temperature stage, it is usual to analyse three mode shapes and measure
the complex modulus for the natural frequencies associated to them. Gathering com-
plex modulus data for different temperatures and different natural frequencies provides
enough data to obtain a master curve, benefiting from the frequency-temperature super-
position effect. To surpass the limitations associated with the assumptions that RKU
model is based on, numerical models are introduced [93]. Numerical models, normally
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implemented using the Finite Element Method, are used in this case where the material
properties are obtained from an updating procedure [3].

3.1.2 Experimental data analysis and constitutive model

VEMs for passive damping treatments are considered thermorheologically simple, that is
why it is possible to apply the time-temperature or frequency-temperature superposition
principle. Also, during the host structure vibration, these materials are treated as linear
viscoelastic in a reduced range of the imposed strain [3].

The complex modulus approach is a relatively easy procedure to characterise the
VEM properties in the frequency domain. The function that describes the viscoelastic
material properties by the complex modulus has a real part that represents the storage
modulus function in frequency domain with a previous defined temperature, and has an
imaginary part describes the loss modulus function. From the ratio between imaginary
and real part one can obtain the loss factor of the material [3].

When applying these type of methods that have the objective of characterize the
VEM properties, it is necessary to remove errors, systematic and random, that are
caused, for example, by test conditions, fixture, or by limitations of the testing configu-
ration. The Wicket plot is a tool that can eliminate these errors to obtain a single curve
for loss factor or loss modulus against the storage modulus [3].

Then, with the frequency-temperature superposition principle, it is possible to ob-
tain, by an horizontal translation of both data, storage modulus and loss factor data,
making a master curve. This translation procedure is a function of temperature and
provides the translation factor function that can be represented by the Williams-Landel-
Ferry relation or the Arrhenius relation [3, 14].

3.2 Numerical Simulation of Viscoelastic damping treat-
ments

For treatments that are added during the host structure design, it is necessary to define
properly the material properties and geometric characteristics. In the case of simple
geometries of the host structure, the designer assigned for the project can use analytical
solutions. For geometries that have a higher level of complexity, boundary conditions, or
loading cases, the designer opts to use numerical methods. For structures that present
a dynamic problem and for that reason it’s necessary to add a VEM treatment, the
designer already has knowledge about the dynamic response of the host structure, so it’s
possible to use it for the creation of the viscoelastic damping treatment [3].

The design and simulation of viscoelastic damping treatments presents some difficul-
ties, such as, the correct representation of the strain field imposed to the VEM layer,
the proper modelling of the VEM properties and a logic solution method that manages
the viscoelastic constitutive model in the desired domain [1].

The Finite Element Method has been implemented over the years to solve a big
variety of problems, particularly of structural analysis. This method allows a spatial
domain to be discretized into several parts with regular domain, called finite elements.
According to FEM, the characteristics of the continuum can be predicted by assembling
the field distribution inside each finite element, the constitutive relations, and a set
of equations that describe the physics of the problem, of the discretized elements per
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node [3, 94]. The resulting set of equations is solved obtaining the unknown field or
vector of variables for the all set of nodes.

In the part of the project where it is performed numerical analysis, it is essential to
be aware of the spatial discretization methodology selected, on the constitutive model
representing the properties of the VEM, and on the chosen analysis method [3].

3.2.1 Spatial model of VEM damping treatments

The spatial model of the damping treatments with the use of viscoelastic material has
to be chosen with extra care to represent the strain field correctly, which is developed
inside the VEM layer. The FLD treatment configuration can be easily represented by the
Equivalent Single Layer (ESL) approach or by a model based on the Classic Laminate
Plate Theory (CLPT) [1]. For the CLD and ILD treatment configurations, it is necessary
to be aware that the main deformation component inside the VEM layer is the shear
strain, and for that reason the shear strain pattern induced inside has to be correctly
reproduced, even though the thickness of the VEM layer is considerably small. For this
reason, it is possible to conclude that, to estimate a correct damping efficiency for the
treatment, a correct representation of the model is essential [3]. Combined models and
layerwise models are the two different strategies to model adequately the structure of a
VEM damping treatment [1, 3].

Combined Models

The spatial model strategy, called combined model or also known as layered model,
consists in a group of layers formed by piled up conventional finite element solids. This
approach uses standard finite elements, such as beams, plates and hexahedral elements
[1]. Some examples of this strategy are shown in Figure 3.3, which are used by many
authors [1, 3, 15].

The beam-plate model (Figure 3.3a) was initially proposed by Killian and Lu [65]
and uses four beams to represent the shear and compression in the VEM layer, and
two plates (QUAD4) with the nodal positions of the beams representing the host and
constraining layer. The brick-plate with rigid link (Figure 3.3b) and the brick-plate with
offset (Figure 3.3c) also use two plates (QUAD4) to represent the host and constraining
layer, but use hexahedral (commonly called brick) finite element (HEXA8) to represent
the core of VEM. The difference between these two models is the connection mechanism
between the VEM core and the outer plates. The brick-plate with rigid link uses rigid
link connections (RBE) while the other introduces an offset constrain into the plate
formulation. The layered brick model (Figure 3.3d) uses three bricks, that share nodal
locations, to represent the physical layers. This approach can be used in any finite
element package. However, it is important to be aware of numerical locking due to the
aspect ratio of the stiff outer bricks [1, 15].

This representation allows the proper representation of the transverse shear strain
pattern in the VEM core using available commercial finite element codes. The disadvan-
tage of combined models strategy is the time that consumes on its creation and the dif-
ficult modelling assignment. This limitation widely restricts optimization studies where
a continuous update of layering scheme and thicknesses of each layer is necessary [3].
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26 3.Viscoelastic Damping Treatments

Figure 3.3: Combined models: a)plate+beam, b) plate with rigid link + brick, c) plate
with offset + brick, d) brick + brick [3].

Layerwise Models

The layerwise model can consist in beams, plates, or facet-shell geometries, defined by
its midplane. This scheme can be seen in Figure 3.4 [3].

Figure 3.4: Layerwise model [3].

These discrete layer models rely on a partial [68] or full layerwise theory [66].
The layerwise model does not define, inside the software, the properties associated

with the model. These properties are in an external database, that contains the number
of layers, the layering scheme, the thicknesses, and the material properties of individual
layers. Then, the external data based is added when it is time to calculate the stiffness,
damping and mass matrices for the finite element. This strategy suppresses the limit
told previously about combined models, since it avoids updating the finite element mesh
when a redefinition is proposed [3].

The displacement field is characterized by making sure that a continuity between
the layers exists. Additionally, mixed formulation can be applied to impose continuity
of stresses at the layers interfaces [66,67] .
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3.2.2 Viscoelastic constitutive models

The properties of the viscoelastic materials present a significant dependency upon time/fre-
quency and temperature [1]. For dynamic or transient analyses, the time/frequency
dependency has to be taken in consideration, even when isothermal conditions are ap-
plied [3]. This assumption is not recommended, for example, for aerospace and marine
applications where simulations require high temperature gradients [3]. This tempera-
ture dependency is commonly introduced in frequency dependent models that rely on
frequency-temperature superposition principle [57,95,96].

According to Moreira [1], the search for effective constitutive models that represent
the real behaviour of VEMs is going to continue, being an open topic of researchers
interest. The focus of these models is the correct representation of VEMs properties
while providing a numerical implementation that should also be cost-effective.

Complex modulus model

The Complex modulus approach (CMA) in direct frequency analysis (DFA) is one of the
efficient linear viscoelastic models available commercially in finite element packages [3].
The CMA, despite of its simplicity and accuracy, is a model that uses a long tabular data
file which includes the storage modulus and loss modulus values for various frequency-
temperature pairs [1].

The equation of motion in time domain for a damped system, can be written as [1],

[M ] {ẍ(t)}+ [C] {ẋ(t)}+
[
K̄
]
{x(t)} = {f(t)} (3.5)

where matrices [M], [C] and
[
K̄
]

represent, respectively the mass, viscous damping and
complex stiffness matrices of the dynamic system [1]. The complex stiffness matrix

[
K̄
]

is divided in a real matrix and a complex matrix. The real matrix represents the stiffness
of the elastic layers, therefore represents the host structure and the constraining layer.
The complex matrix

[
K̄v(ω)

]
represents the stiffness of the viscoelastic layer and, as it is

possible to see in Equation 3.6 [1], it combines extensional stiffness terms with transverse
shear component terms.

[
K̄v(ω)

]
= Ēv(ω)

Ke(E0)

E0
+ Ḡv(ω)

Ks(G0)

G0
(3.6)

In Equation 3.6, Ke(E0) represents the extensional stiffness matrix calculated for
a predefined real extensional modulus E0 and Ks(G0) represents the transverse shear
stiffness matrix calculated for a predefined real shear modulus G0 [1]. The equation of
motion for a stationary harmonic motion assumption, where the excitation and response
function are both harmonic, can be represented as [1],(

−ω2 [M ] + jω[C] + K̄(ω)
) {
X̄(ω)

}
= {F (ω)} (3.7)

Other examples available commercially are, Prony series in time domain analysis
(TDA), and classic linear viscoelastic models, such as Maxwell, Kelvin–Voigt, and stan-
dard linear solid (SLS) models. It is important to note that these models present some
limitations, therefore alternative constitutive models that have been proposed in litera-
ture [3].

F.M.M. Matos Master Degree



28 3.Viscoelastic Damping Treatments

Anelastic displacement fields model - ADF

Developed by Lesieutre and co-workers [56,57], the ADF model represents the complex
modulus in the frequency domain as

G(ω) = G0

[
1 +

n∑
i=1

∆i
ω2 + jωΩi

ω2 + Ω2
i

]
(3.8)

where G0 represents the relaxed or low frequency modulus, Ωi and ∆i are model pa-
rameters that characterize the relaxation process of the material and introduce the fre-
quency dependency. This model is based on augmenting thermodynamic fields (ATF)
Model [97,98] and represents the displacement field, that is imposed on the VEM layer,
with an elastic part and an anelastic component that can be subdivided in individual
anelastic fields that describe different relaxation processes [1, 3].

Golla-Hughes-McTavish model - GHM

The model proposed by Golla, Hughes and McTavish [58] introduces the frequency de-
pendency through a set of mini-oscillators [1,3]. It represents the complex VEM modulus
in Laplace domain as,

Ḡ(s) = G0

(
1 +

n∑
i

α̂i
s2 + 2ζ̂iω̂is

s2 + 2ζ̂iω̂is+ ω̂2
i

)
(3.9)

where G0 represents, as before, the relaxed modulus and parameters α̂, ζ̂ and ω̂ are
real positive constants, obtained by curve fitting the experimental data of complex mod-
ulus [59] for each mini-oscillator i [1]. Both the previous and this model are easily
implemented. The disadvantage is that it requires the use of more than a set of re-
laxation parameters. Some authors [59, 60] defend that 3 or more GHM oscillators are
necessary to get a valid representation of commonly used VEMs. In GHM model, final
matrices lose the original rank of initial mass and stiffness matrices of the linear elastic
system [3,58,59].

The equations of motion in the Laplace domain introduced by this model are [1],(
s2[M ] + s[C] + K̄(s)

) {
X̄(s)

}
= {F (s)} (3.10)

where X̄(s) and F(s) represent the Laplace transform of response and load vectors,
respectively. Complex stiffness matrix K̄(s) can be divided into the elastic stiffness
matrix of both host structure and constraining layer. The viscoelastic stiffness matrix
[Kv(s)] can be divided as described in Equation 3.6, where Ev(s) and Gv(s) are replaced
by the GHM model given by the Equation 3.9 [1].

Fractional Derivative model - FD

The Fractional Derivative (FD) model proposed by Bagley and Torvik [48] combines the
stress and strain fields as shown in the relation that follows,

σ(t) +
∑

biD
βiσ(t) = E0ε(t) +

∑
ajD

αjε(t) (3.11)
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where aj , bj , αj and βj are the fractional derivative model parameters. Bagley and
Torvik [48] defines VEM modulus by a series of fractional derivatives,

Ḡ(s) =
G0 + a(jω)α

1 + b(jω)β
(3.12)

Based on to the FD model, other models using fractional derivatives appear in liter-
ature, such as, Rossikhim and Shitikova [49] that made a comparison between FD model
with 5 parameters [48] and the Schmidt and Gaul models [50–52] with 4 and 7 param-
eters. These models have been highly used due to the fact that they can represent the
complex VEMs modulus data with just one set of derivatives. The disadvantage of using
fractional derivative models is a constitutive law associated with VEMs inside a finite
element analysis that requires algebraic conditioning of the finite element matrices. This
increases the dimension of the problem [48]. Alternatively, the Grünwald concept [55]
can be applied to introduce this model into a numerical integration scheme in the time
domain [53,54].

3.2.3 Analysis Methods

The choice of the analysis method is normally done according to the constitutive model
chosen to represent the viscoelastic material properties, due to the fact that both model
and analysis method have to work in the same domain. The following methods are the
ones available and most commonly used [1, 3].

Direct Frequency analysis-DFA

DFA method is often used when the characterization of VEM is done by raw data of
complex modulus, nevertheless it can be used with any VEM model as long as the
complex modulus is described in the frequency domain. Representing the equation of
motion as [3],

[M ] {ẍ(t)}+
[
K̄(ω, T )

]
{x(t)} = {f(t)} (3.13)

where [M] is the mass matrix and [K̄] represents the complete stiffness matrix, containing
the stiffness terms of both elastic layers and VEM core. In the case of an application of
a harmonic force, obtaining in this way, an harmonic response, it is possible to obtain
the frequency response function solving the previous equation in the frequency domain
with isothermal conditions [3],[[

K̄(ω, T )
]
− ω2[M ]

] {
X̄(ω)

}
= {F (ω)} (3.14)

This analysis method allows the correction of the stiffness matrix using the updated
value of storage and loss modulus of the viscoelastic material [3].

Numerical integration in time domain

Constitutive models, like GHM, ADF and fractional derivatives, when described in the
time domain lead to the choice of using numerical quadrature. This method relies on
the assumption that the equation of motion can be verified for set of time steps and that
is predetermined a variation law for acceleration, velocity or displacement [3].
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Newmark and Wilson-Θ algorithms are commonly used in this solution method [99].
GHM, ADF and fractional derivatives have a simple introduction when the equation of
motion is already described in the time domain, moreover it is possible to apply an usual
numerical integration procedure [99].

It is possible to introduce the FD model in a time domain analysis applied directly by
a numerical integration procedure when the Grünwald definition [55] is used, as Schmidt
and Gaul [50–52] and Enelund [53] suggested.

Complex modes solution

In this method it is assumed that the VEM has constant properties within a predefined
range of frequencies, therefore the response of the system is described by the complex
modes calculated using this assumption. The mean values for the storage modulus and
loss factor contemplated within the range of frequency around the desired natural mode
frequency.

From the Equation 3.14, it is possible to write the complex eigenvalue problem as [3],[
K̄(ω)

] {
φ̄r
}

= λ̄2[M ]
{
φ̄
}
r

(3.15)

where
[
K̄(ω)

]
is the complex stiffness matrix calculated using the assumed constant

mean values for storage modulus and loss factor, λ̄ is the complex eigenvalue and
{
φ̄
}

is the complex eigenvector. The system modal loss factor ηr, assuming symmetry of the
stiffness matrix, can be written in the form [3],

ηr =
{ϕ̄}Hr [KI ] {ϕ̄}r
{ϕ̄}Hr [KR] {ϕ̄}r

(3.16)

where subscripts R and I represent, respectively, the real and imaginary parts of the
matrices, and superscriptH identifies the complex conjugate transpose operator. Finally,
the subscript r represents the mode. Physically, this relation represents the ratio between
the dissipated energy, proportional to the imaginary part of the stiffness matrix, and the
storage energy, proportional to the real part of the stiffness matrix.

In the literature, the complex modes solution is used by Mitsuma et al. [100], to
calculate the complex modes and its modal loss factors for structural panels. The re-
sults obtained by them are in agreement with the experimental results, even with the
assumption proposed by the complex modes solution.

When the assumption of constant value for the complex modulus within the frequency
range of interest is not considered, and the VEM properties vary significantly within
the frequency range containing the entire set of analysed complex modes, it is possible
to use narrow frequency bands around one or small sets of complex modes and the
constant modulus is determined as the mean value of the complex modulus values within
this narrow band [101]. The procedure presented can be substituted by an iteratively
procedure. In this procedure, the VEM properties are updated using the complex mode
frequency being calculated [90,102].

Modal Strain Energy method - MSE

The MSE method, proposed in 1982 by Johnson and Kienholz [64], establishes the loss
factor of a damped structure on the analysis of the strain energy contribution.
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This method relies on the assumption that the real modes of the undamped system
can represent the damped structure [1,3]. This assumption must be considered only for
structures with low damping, due to the difference that can occur between the modes of
the damped structure and the modes calculated for the undamped [1].

For this analysis, it is necessary that the spatial model of the final structure represents
accurately the high shear deformation pattern of the viscoelastic layer and defines a set
of trial configurations before its performance [6, 15].

This method evaluates the damping effect of the treatments relating the energy that
is effectively stored inside the VEM layer with the total energy of the structure. In
fact, the damping effect provided by the VEM treatment depends on two main factors:
its ability to remove energy from the structure, converting its deformation energy into
heat that is dissipated to the surrounding medium, but specially the ability to store
deformation energy during the motion of the vibrating host structure. The MSE method
measures the ratio between the energy that is stored inside the VEM material and the
total deformation energy of the structure, and multiplies this ratio by the VEM loss
factor, representing thus the lost energy.

The MSE method benefits from the relation presented before, Equation 3.15, to
obtain the structure loss factor. The main difference between this method and the one
presented before is the use of real modes of the undamped system instead of complex
modes [3].

Numerically, this analysis method is straightforwardly used in commercial finite ele-
ment packages by applying a post processing analysis using the strain energy results for
each natural mode within the frequency range of interest [1], as:

ηr =

∑
k ηkr

∏
kr∑

k

∏
kr

(3.17)

where
∑

k represents the sum that is performed over the entire set of finite elements
k, and

∏
kr is the strain energy calculated at a finite element k for a specific natural

mode r. Since the loss factor is negligible, and considered null, for all the structure
components except the VEM parts, the numerator evaluates the energy that is stored
inside the VEM layer when a unitary value is used to represent the loss factor of the
finite elements of the VEM and a null value is used to represent those finite elements
describing the elastic components (host structure and constraining layers).

The MSE method can be performed in a commercial finite element package. However,
it is limited to low damping structures. Another limitation present in the method is
referring to the approach of calculation of the representative mode shapes [1].

For damping treatments with CLD configuration, the real eigenvalue problem is
often solved taking into consideration simply the host structure. For CLD treatments
where the damping treatment does not introduce a considerable modification in the
mass and stiffness of the complete structure, the MSE method can provide satisfactory
approximations [1, 3]. However, when the CLD configuration presents the thickness of
both host and constraining layer in the same order of magnitude, where the presence of
the damping treatment causes changes in the natural frequencies and mode shapes of
the host structure, the original MSE method is not enough to obtain satisfactory results,
therefore it is necessary to apply correction strategies [1, 3].

Some modifications for MSE method were proposed in literature. Hu et al. [103]
proposed that the imaginary part of the damped structure was taken into consideration
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when the original modes were determined. Vasques et al. [102] proposed an approach
where the changes in stiffness and complex modulus update the modes iteratively, caused
by the introduction of the damping treatment and changes in natural frequencies that
happen in consequence.

Modal projection onto a modified modal subspace

As the name suggests, with this method the system of equations of motion is projected
onto a modified modal subspace [P] as follows [3],[

[P ]T [M ][P ]ω2 + [P ]T [K][P ]
]
{X(ω)} = [P ]T {F (ω)} (3.18)

The main difficulty with this method is the proper selection of the subspace described
by the selected matrix of mode shapes [P]. This modal subspace matrix has to properly
represent the variation in the properties of the material with frequency. It can be
composed of a group of mode shapes with natural frequencies around the frequency
range of interest.

Different strategies were presented in literature to overcome possible corrections.
Balmès [86,87] proposed the multi-model approach. The multi-model approach consists
in constructing the projection modal matrix by real natural modes calculating it with
distinct natural frequencies within the frequency range of interest. This approach can
have a static correction term that represents the effect of the omitted mode shapes and a
subset of modes representing the effect of the introduced damping. Plouin et al. [88,89]
proposed an approach that consists in using modal matrix based on “pseudo-normal”
modes. This “pseudo- normal” modes are obtained by the real eigenproblem using the
updated real part of the stiffness matrix.

Perturbation method

The perturbation method relies on the assumption that the natural modes of the un-
damped system and the modifications in stiffness and mass matrix produced by adding
damping treatment can describe the structural modification produced onto the modal
parameters. The approximate solution that is obtained with this method provides the
complex eigenproblem with an iterative perturbation or modification scheme applied
onto the real eigensolution obtained for the undamped system. It is recommendable the
use of this method in FLD treatments due to the relatively small modifications caused
by the addition of the damping treatment in terms of mass, stiffness, and introduced
damping [22]. A different approach for the perturbation method was proposed by Lin
and Lim [90], where the modifications were only done on the stiffness matrix.
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Chapter 4

Methodology

The present chapter provides the methodology applied to accomplish the main objective
of this work. Several studies were performed to assist a reasonable path to the pio-
neer configurations developed. The numerical study for this work and the experimental
validation were developed according to the following procedures.

4.1 Numerical study

This section presents the process adopted for the numerical study for this dissertation.
The methodology includes the pre-processing in the FEM software environment that
allowed the design of each model analysed further, the presentation of each configuration
and strategy adopted to achieve the interlaced configuration, and the post-processing
where it is explained how the results were extracted and analysed.

4.1.1 Pre-processing

The pre-processing for this work was based on the finite element method applied on
Siemens FEMAP [104,105] software.

The model for each structure was directly developed by a proper mesh using a direct
mesh generation strategy following the methodology detailed in Appendix A.

In order to demonstrate the similarity between the examples provided by the Com-
bined Models in the Section 3.2.1, a parallel study was developed. It was taken into con-
sideration the Brick+Brick (Hexa8 elements) and the Plate with offset+Brick (Quad4
+ offset elements) strategy for spatial model (mentioned in the Figure 3.3 c) and d)).
These two strategies were implemented in a sandwich beam with VEM core according
to the characteristics presented in the Table 4.1. Noting that the host structure cor-
responds to the layer 1, the VEM core to layer 2 and the constraining layer to layer
3.

The Brick+Brick (Figure 3.3 d)) strategy was implemented following the steps pre-
sented in the beginning of this section. For the Plate with offset + Brick (Figure 3.3
c)) it was used plate (Quad4) elements to design the layers 1 and 3 and brick (Hexa8)
elements to develop the VEM core. The offset was created using the Update Elements
in the Modify menu followed by Adjust Plate Thickness/offset tool that was applied into
each quad4 element. The constant value adopted for the offset was half of the thicknesses
of layer 1 and 3.
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Table 4.1: Characteristics of the sandwich beam to evaluate the combined model strat-
egy.

Dimension

Length 280 mm
Width 20 mm

Thickness of layer 1 2 mm
Thickness of layer 2 0.254 mm
Thickness of layer 3 2 mm

Aluminium
Properties:

Layers 1 and 3

Young’s Modulus E 70E9 Pa
Poisson’s ratio ν 0.3

Density ρ 2670 kg/m3

VEM Properties:
Layer 2

3M ISD112 [106]

Boundary
Conditions

free body

As is going to be further presented in detail, the results show, as expected, that
both strategies present similar natural frequencies and loss factor values for each natural
mode analysed. This short-version conclusion is being made in this section due to the fact
that this preliminary study, combined with the analysed bibliography, helped to decide
which spatial model was reasonable to use. Due to the complex geometries that were
intended to be further develop, for the analyzed models, the combined model strategy
with Brick+Brick approach was implemented.

Another developed preliminary study involved the comparison between two different
thicknesses for the VEM core. These values were chosen according to literature and
what is available commercially. Using the combined models strategy, it was developed
a sandwich beam with the characteristics presented in the Table 4.1, and another with
the same characteristics, with the exception that the VEM thickness is the double of
the one considered before (0.508 mm). The results of this study are presented later in
detail. However, to justify the thickness used for each model design, the conclusions
taken by this study are here resumed. After evaluating both sandwich beams for the
two aforementioned strategies (Brick+Brick and Plate with offset+Brick, it was realised
that increasing the VEM layer thickness to the double decreased the treatments damping
effect. Considering this information and considering also the results from the literature
on this particular subject, the constant value of 0.254 mm for the VEM thickness was
used.

Several models were developed to be used as comparison for the innovative configu-
rations presented in the following sections. To simplify the understanding of each model
configuration, it was created a proper terminology presented in the Nomenclature sec-
tion in the beginning of this document. This nomenclature was based on the acronyms
used by many authors that were presented on Section 2.2.

The models created for the purpose of comparison include the sandwich beam model
aforementioned but with a length of 140 mm (further presented as ILD2 beam). Follow-
ing the characteristics presented in Table 4.1, several developed plates are presented in
the Table 4.2. It is important to note that only the distinctive characteristics and the
nomenclature are presented, since all the other characteristics are already mentioned in
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the Table 4.1.

Table 4.2: Plates developed for comparison.

Nomenclature Description Length x Width

CLD0.25
Constrained layer damping,

2 mm of host structure,
0.25 mm of constrained layer

140 x 140 mm

FLD2
Free layer damping,

2 mm of host structure (layer 3 not applicable)
140 x 140 mm

ILD2
Integrated layer damping,

2 mm of host structure and
2 mm constrained layer

140 x 140 mm

CLD0.5
Constrained layer damping,
0.5 mm of constrained layer

210 x 140 mm

FLD2
Free layer damping,

2 mm of host structure (layer 3 not applicable)
210 x 140 mm

ILD1
Integrated layer damping,

1 mm of host structure and
1 mm constrained layer

210 x 140 mm

Untreated
Plain plate,

2 mm of plate thickness
210 x 140 mm

The first three models presented in Table 4.2 are the plates developed having just in
consideration the numerical study. For the experimental study, to avoid double natural
modes (two natural modes with the same natural frequency), rectangular specimens were
considered and therefore these were also analysed numerically.

4.1.2 1D waves configuration

The first configuration explored was the 1D waves configuration applied on beam-kind
structures. The model was designed by a module of 20 x 20 mm that was reproduced
along the direction of the wave until the 140 mm of length is achieved, obtaining the final
beam with dimensions of 140 x 20 mm. A representation of this module can be observed
in Figure 4.1, where it is possible to observe that both host structure and constraining
layer have the internal faces waved like the VEM core.

In Figure 4.1, m and n represent the length and width of the module structure,
respectively. The parameter h1 symbolizes the highest thickness of the host structure,
h2 the thickness of the VEM core and h3 the highest thickness of the constraining layer.
Table 4.3 shows the main characteristics of the 1D wave beams developed during this
work.

The aforementioned table shows the characteristics of the eight beam-kind structures
developed with the 1D wave configuration. The first 1D wave beam developed was the
one represented on Figure 4.1, 1 wave per module. As it is possible to deduce, it means
that there are 7 waves in the total beam. Then, the frequency of the wave was increased
by one wave per module until the last model of 8 waves per module (56 waves in the total
beam) was obtained. For the eight analyzed models the wave amplitude was maintained
constant, with the value of h2.
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Figure 4.1: 1D waves configuration module representation.

Table 4.3: Characteristics of the developed 1D wave beams.

Dimension

Length 140 mm
Width 20 mm
h1 2 mm
h2 0.254 mm
h3 2 mm

Aluminium
Properties:

Layers 1 and 3

Young’s Modulus E 70E9 Pa
Poisson’s ratio ν 0.3

Density ρ 2670 kg/m3

VEM Properties:
Layer 2

3M ISD112 [106]

Boundary
Conditions

free body

The effect of increasing the waves per module and their comparison with the uniform
sandwich beam are shown and discussed later.

4.1.3 2D waves configuration

The 2D waves configuration was applied on plate-kind structures. Similar to the previ-
ous configuration, this model was designed primarily by a module of 20 x 20 mm. This
module was reproduced along the two directions of the wave until the final plate dimen-
sions of 140 x 140 mm were achieved. A representation of this module can be observed
in Figure 4.2. The pink lines represent the waves in both directions, being easier to
understand when the model is observed from its sides. Also in this configuration, the
host structure and the constraining layer follow the VEM layer, having their internal
faces waved.

In the Figure 4.2, m and n represent the length and width of the module structure,
respectively. The parameter h1 symbolizes the mean thickness of the host structure, h2
the thickness of the VEM core and h3 the mean thickness of the constraining layer. In
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Figure 4.2: 2D waves configuration module representation.

the Table 4.4, it is possible to observe the characteristics of the 2D wave plates developed
during this work.

Table 4.4: Characteristics of the developed 2D wave plates.

Dimension

Length 140 mm
Width 140 mm
h1 2 mm
h2 0.254 mm
h3 2 mm

Aluminium
Properties:

Layers 1 and 3

Young’s Modulus E 70E9 Pa
Poisson’s ratio ν 0.3

Density ρ 2670 kg/m3

VEM Properties:
Layer 2

3M ISD112 [106]

Boundary
Conditions

free body

Based on the characteristics provided by the Table 4.4, a study to comprehend the
effect of the number of waves on the treatment efficiency and another study to evaluate
the effect of the wave amplitude were developed. The number of waves effect on the
treatment was tested by two plates with the same amplitude, A1=2xh2, but with different
frequencies. One plate was designed with 0.5 waves per module and the other with 1
wave per module. Regarding the other study, one of these plates (0.5 waves per module
and amplitude A1) was used, along with another with the same frequency but with a
wave amplitude of A2=h2. The results obtained by these studies and its conclusions are
shown further in the document.

4.1.4 Interlaced configuration

In this work a new configuration, the Interlaced Layer Damping (ILLD), is proposed and
assessed. This configuration is materialized by a three-dimensional layup of stripes of
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VEM, possibly combined with stripes of other materials, including stiff materials provid-
ing a form of internal constraining effect. This treatment configuration aims to join the
benefits of the FLD configuration, namely the simplicity of application, and the damping
efficiency usually achieved with the CLD configuration. In the ILLD configuration the
VEM layer is highly deformed, increasing the stored energy in it due to the interaction
between the VEM stripes (and with the constraining stripes if these are also included in
the treatment).

For the purpose of this study, the ILLD configuration was applied on plate-kind
structures. Contrarily to the configurations presented above, the interlaced was directly
designed with the total 140 x 140 mm plate.

Figure 4.3: Interlaced configuration concept.

A representation of this plate-kind structure is shown in Figure 4.3, which shows two
stripes in direction 1 (in blue in the figure) and other two stripes in the other direction
(pink in the figure). In contrast with the configurations in the sections 4.1.2 and 4.1.3,
the host structure and constraining layer (if applied) are uniform plates with the flat
faces. Variables m and n represent the length and width of the plate, respectively.
Following the same nomenclature, h1 symbolizes the thickness of the host structure, h2
the thickness of the stripes and h3 the thickness of the constraining layer, if applied.

Several models were designed and analysed by exploring this configuration. The
first approach consisted on designing the stripes using the same VEM material in both
directions. This strategy was applied on plate structures with and without constraining
layer. This approach was studied while using 2 (example shown on Figure 4.3), 4 and 8
stripes per plate in both directions.

In order to take advantage of the simple development and production provided by
FLD configuration treatments, the interlaced configuration approaches explored further
were based on it. Models using stripes of two different materials, interleaved in both
directions, were developed. It is important to note that one of these is always a vis-
coelastic material (defined as Material 1). The representation of this configuration can
be observed in Figure 4.4, where in dark pink are represented the stripes of Material 1
(VEM) and in light pink the stripes of Material 2 (constraining material).

Initially, the combination of VEM stripes (Material 1) with aluminium (Material 2)
ones was explored, using the same aluminium as the host structure (E=70GPa). This
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Figure 4.4: Representation of the interlaced configuration using 2 different materials.

approach was developed with 2, 4 and 8 stripes per plate in both directions, which means
that there are 1, 2 and 4 stripes of each material in each direction, respectively.

A study was developed to evaluate the effect of the material stiffness of the constrain-
ing stripes (Material 2) on the treatment efficiency. Besides the aforementioned model
using an aluminium with E=70GPa, models using constraining stripes of materials with
Young’s modulus of 50, 10 and 1GPa were developed. These approaches were developed
with 2 and 4 stripes in both directions.

The last strategy considered was the application of a second layer of interlaced stripes
using two materials, VEM and aluminium with a Young’s modulus of 70GPa. This
strategy was developed following two approaches: one where the second layer as the
same disposition as the first layer and another where the second layer presents the stripes,
interleaved comparing with the first layer. The representation of this and all the other
developed interlaced models, their dimensions and material properties are presented in
the Appendix B, in order to clarify the configuration of the developed models.

Table 4.5 presents a summary of all the developed interlaced configurations of plates
with 140 x 140 mm, based on the explained strategies. Appendix B contains a visual
representation of these configurations.

Table 4.5: Nomenclature of square interlaced models.

Nomenclature Description
Length

x
Width

ILD2 IL2

Integrated layer damping,
2 mm of host and constrained layer

and 2 interlaced VEM stripes
in each direction

140 x 140 mm
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Continuation of Table 4.5

ILD2 IL4

Integrated layer damping,
2 mm of host and constrained layer

and 4 interlaced VEM stripes
in each direction

140 x 140 mm

ILD2 IL8

Integrated layer damping,
2 mm of host and constrained layer

and 8 interlaced VEM stripes
in each direction

140 x 140 mm

CLD0.25 IL2

Constrained layer damping,
0.25 mm of constraining layer
and 2 interlaced VEM stripes

in each direction

140 x 140 mm

FLD2 IL2

Free layer damping,
2 mm of host structure

and 2 interlaced VEM stripes
in each direction

140 x 140 mm

FLD2 IL4

Free layer damping,
2 mm of host structure

and 4 interlaced VEM stripes
in each direction

140 x 140 mm

FLD2 IL2 C70

Free layer damping,
2 mm of host structure

and 2 interlaced stripes of VEM
and an E=70GPa material

140 x 140 mm

FLD2 IL4 C70

Free layer damping,
2 mm of host structure

and 4 interlaced stripes of VEM
and an E=70GPa material

140 x 140 mm

FLD2 IL8 C70

Free layer damping,
2 mm of host structure

and 8 interlaced stripes of VEM
and an E=70GPa material

140 x 140 mm

FLD2 IL2 C50

Free layer damping,
2 mm of host structure

and 2 interlaced stripes of VEM
and an E=50GPa material

140 x 140 mm

FLD2 IL4 C50

Free layer damping,
2 mm of host structure

and 4 interlaced stripes of VEM
and an E=50GPa material

140 x 140 mm

FLD2 IL2 C10

Free layer damping,
2 mm of host structure

and 2 interlaced stripes of VEM
and an E=10GPa material

140 x 140 mm
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Continuation of Table 4.5

FLD2 IL4 C10

Free layer damping,
2 mm of host structure

and 4 interlaced stripes of VEM
and an E=10GPa material

140 x 140 mm

FLD2 IL2 C1

Free layer damping,
2 mm of host structure

and 2 interlaced stripes of VEM
and an E=1GPa material

140 x 140 mm

FLD2 IL4 C1

Free layer damping,
2 mm of host structure

and 4 interlaced stripes of VEM
and an E=1GPa material

140 x 140 mm

FLD2 IL2 C70 2a

Free layer damping,
2 mm of host structure
and double layer of 2

interlaced stripes of VEM
and an E=70GPa material

140 x 140 mm

FLD2 IL4 C70 2a

Free layer damping,
2 mm of host structure
and double layer of 4

interlaced stripes of VEM
and an E=70GPa material

140 x 140 mm

FLD2 IL8 C70 2a

Free layer damping,
2 mm of host structure
and double layer of 8

interlaced stripes of VEM
and an E=70GPa material

140 x 140 mm

FLD2 IL2 C70 2b

Free layer damping,
2 mm of host structure

and double layer interleaved
of 2 interlaced stripes of VEM

and an E=70GPa material

140 x 140 mm

FLD2 IL4 C70 2b

Free layer damping,
2 mm of host structure

and double layer interleaved
of 4 interlaced stripes of VEM

and an E=70GPa material

140 x 140 mm

FLD2 IL8 C70 2b

Free layer damping,
2 mm of host structure

and double layer interleaved
of 8 interlaced stripes of VEM

and an E=70GPa material

140 x 140 mm

As previously explained, to prepare the experimental study, rectangular plate models
were developed. These models are presented in the Table 4.6. As it is possible to observe,
the nomenclature IL2 represents 2 interlaced stripes in each direction in a 140 x 140
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mm plate, which means that in the 210 x 140 mm plate there are 3 stripes lengthwise
and 2 stripes widthwise. To clarify the perception of these four models, a diagram is
presented in Figure 4.5. As before, the dark pink stripes represent the Material 1, VEM,
and the light pink stripes represent the Material 2, Aluminium with a Young’s modulus
of 70GPa, for these plates. The properties of both materials are the same as for the
models mentioned in previous sections (Table 4.4).

Table 4.6: Nomenclature of rectangular interlaced models.

Nomenclature Description
Length

x
Width

CLD0.5 IL2

Constrained layer damping,
0.5 mm of constraining layer
and 2 interlaced VEM stripes

in each direction

210 x 140 mm

FLD2 IL2 C70

Free layer damping,
2 mm of host structure

and 2 interlaced stripes of VEM
and an E=70GPa material

210 x 140 mm

FLD2 IL2 C70 2b

Free layer damping,
2 mm of host structure

and double layer interleaved
of 2 interlaced stripes of VEM

and an E=70GPa material

210 x 140 mm

4.1.5 Postprocessing

For all the models presented during the previous sections, a methodology to obtain the
modal loss factor for each treatment was proposed, based on the MSE method, in order
to provide a logical comparison between different passive damping treatment strategies.
An analysis in the frequency domain was applied, where it is possible to include a modal
analysis. For the set of treatments proposed, the MSE method was applied as a ratio
between energies: the energy that is lost and the total strain energy. The loss factor of the
structure depends directly on the lost energy and because of this an adopted strategy is
to quantify the energy stored having in consideration that the lost energy is part of it. It
is possible to consider that the lost energy is the one lost by the VEM layer/stripes. This
assumption is reasonable because the lost energy of the other materials is considerably
low, due to the fact that these materials loss factor is approximately zero.

To summarize, the treatment loss factor based on the MSE method can be obtained
by the ratio between the strain energy of VEM times the loss factor of VEM, and the
total strain energy of the structure. For this work, the loss factor of VEM is considered
to be 1, which means that all the energy that is stored by the VEM layer/stripes is lost.

For the purpose of this study, where the idea is to compare spatial models solutions,
the main focus is to maximize the strain energy of the viscoelastic layer since the lost
energy is part of it.
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Figure 4.5: Representation of the interlaced rectangular plates: a) CLD0.5 IL2; b)
FLD2 IL2 C70 and c) FLD2 IL2 C70 2b.

After running the analyses on NX Nastran [104, 107], a file containing the modal
strain energy for each element was exported. The first five natural modes were evaluated
for each developed treatment. The five files for each treatment were imported into
Matlab, where a simple code was developed to allow the calculation of the modal loss
factor of the structure. The codes created for treatments with only one core material
(VEM) and treatments where a second material was applied (interlaced configuration
treatments using 2 different materials) can be found in Appendix C.

The results provided by the developed Matlab codes and the natural frequencies for
each treatment provided by the software NX Nastran were listed and compared using
Microsoft Excel. These results are presented in Chapter 5, Numerical Results, along
with the contour modal strain energy for each treatment.

4.2 Experimental study

This experimental study section describes the methodology that allowed obtaining the
experimental results for a set of specimens. Initially, the configurations experimentally
analysed are presented. Then, the experimental setup used for the analyses for each
specimen can be observed, and finally the methods used to evaluate the results in the
experimental modal analysis are described.
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4.2.1 Experimental Specimens

Based on the numerical results and the resources provided a set of configurations to
validate experimentally by an experimental modal analysis was defined. The set of spec-
imens are divided by groups to allow an easier perception of the analysed configurations
and a logical comparison between them. The FLD group of specimens is presented on
Figure 4.6, where the VEM material plate/stripes is represented in dark pink and the
aluminium stripes in light pink. The host structure is shown in grey.

Figure 4.6: Representation of the FLD rectangular plates: a) FLD2; b) FLD2 IL2 C70
and c) FLD2 IL2 C70 2b.

The characteristics for this set of specimens can be observed in Table 4.7. Similarly
to before, h1 represents the host structure thickness and h2 the thickness of both layer
2 (VEM layer in FLD2), VEM and aluminium stripes. M1 means Material 1 (dark pink
stripes), that for this study is VEM, and M2 Material 2 (light pink stripes) and is the
aluminium presented in the table.

The stripes were cut with the dimensions above listed and assembled with the con-
figuration of the Figure 4.6. The Figure 4.7 shows the specimens without constraining
layer performed in the laboratory for the experimental study.

The Figure 4.8 presents the CLD group of experimental specimens, where in pink is
represented the VEM layer/stripes, in grey the host strucuture and on top, in grey with
reduced opacity, is represented the constraining layer.

The two CLD specimens follow the characteristics showed on Table 4.8. As before,
h2 represents the thickness of the layer 2/stripes. However, this set of specimens has
different values, that are presented in the Table 4.8. Layer 1 and 3 are the host structure
and constraining layer, respectively. Layer 2 represents the core in the CLD0.5 specimen.
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Table 4.7: Characteristics of the FLD experimental specimens.

Dimension

Total Length 210 mm
Total Width 140 mm

Stripes Width 67.5 mm
h1 2 mm
h2 0.5 mm

Aluminium
Properties:

Layer 1 and Stripes M2
AW5754-H111

VEM Properties:
Layer 2/ Stripes M1

3M ISD112 [106]

Boundary
Conditions

free body

Figure 4.7: Experimental FLD specimens: a) FLD2; b) FLD2 IL2 C70 and c) FLD2
IL2 C70 2b.

Figure 4.8: Representation of the CLD rectangular plates: a) CLD0.5 and b) CLD0.5
IL2.

Figure 4.9 shows the specimens with constraining layer prepared in the laboratory
for the experimental study. These specimens were developed by a similar process to the
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Table 4.8: Characteristics of the CLD experimental specimens.

Dimension

Total Length 210 mm
Total Width 140 mm

Stripes Width 67.5 mm
h1 2 mm
h2 a)0.254 mm ; b) 0.5 mm
h3 0.5 mm

Aluminium
Properties:

Layer 1 and Layer 3
AW5754-H111

VEM Properties:
Layer 2/ Stripes

3M ISD112 [106]

Boundary
Conditions

free body

aforementioned one.

Figure 4.9: Experimental CLD specimens: a) CLD0.5 and b) CLD0.5 IL2.

Figure 4.10 presents the ILD1 specimen that serves as reference treatment for future
comparison. As for the CLD specimens, pink represents the VEM layer, grey the host
structure and on top, in grey with reduced opacity, is represented the constraining layer.

The ILD1 specimen follows the characteristics showed on Table 4.9, where layer 1
represents the host structure, layer 2 the core and layer 3 the constraining layer.

Figure 4.11 shows the specimen with integrated layer prepared in the laboratory for
the experimental study.

The last group of experimental specimens can be observed in Figure 4.12, where a
module of 20 x 20 mm is representative of the beam that is obtained by reproducing
this module along the length direction (or in the wave direction for the ILD2 1D). The
used 1D configuration beam was in fact the one with 4 waves per module, ILD2 1D 4.
However, with the Figure 4.12 b), that represents 1 wave per module, it is possible to
understand how is the model analysed, picturing it with 4 waves instead of 1 per module.
In the figure, the host structure is shown in opaque grey, the VEM core in pink and the
constraining layer on top in transparency with grey outlines.

The beam set of specimens follows the characteristics shown on Table 4.10, where
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Figure 4.10: Representation of the ILD1 rectangular plate.

Table 4.9: Characteristics of the ILD1 experimental specimen.

Dimension

Total Length 210 mm
Total Width 140 mm

h1 1 mm
h2 0.254 mm
h3 1 mm

Aluminium
Properties:

Layer 1 and Layer 3
AW5754-H111

VEM Properties:
Layer 2

3M ISD112 [106]

Boundary
Conditions

free body

Figure 4.11: Experimental ILD1 specimen.

layer 1 represents the host structure, layer 2 the core and layer 3 the constraining layer.

Figure 4.13 shows the specimens with constraining layer prepared in the laboratory
for the experimental study.

The experimental ILD2 1D 4 beam specimen was prepared using copper wires with
0.5 mm of diameter, spaced 5 mm between each other. This set of wires were placed
on top of the host structure with the help of tape, to straight the wires as much as
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Figure 4.12: Representation of the 20 x 20 mm modules for 140 x 20 mm beams: a)
ILD2 and b) ILD2 1D.

Table 4.10: Characteristics of the beam experimental specimens.

Dimension

Total Length 140 mm
Total Width 20 mm

h1 2 mm
h2 0.254 mm
h3 2 mm

Aluminium
Properties:

Layer 1 and Layer 3
AW5754-H111

VEM Properties:
Layer 2

3M ISD112 [106]

Boundary
Conditions

free body

possible. After this step, a layer of VEM was placed on top, due to the configuration
of this material it was possible to fix the next layer of copper wires interleaved with the
ones under to create the wave effect into the VEM layer. Figure 4.14 shows the setup
of this specimen during the second wire layer phase. Then, the constraining layer was
placed on top to finalize the sandwich beam. Finally, the excess of wires in the sides was
cut to obtain the final result previously shown on Figure 4.13.

4.2.2 Experimental Setup

An experimental modal analysis was performed to experimentally validate the optimiza-
tion procedure based on the modal strain energy for the FLD2 IL C70, FLD2 IL C70 2b,
CLD0.5 IL2, ILD2 1D 4 and for the reference models, the Plain plate, FLD2, CLD0.5,
ILD1 and ILD2 beam. With these analysis the natural frequencies, mode shapes and
the modal loss factor for each specimen was obtained.

The size and geometry of the specimens are decisive factors for choosing how to
excite it. The two most common technologies are the impact hammer testing and the
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Figure 4.13: Experimental beam specimens: a) ILD2 and b) ILD2 1D 4.

Figure 4.14: Experimental ILD2 1D 4 beam specimen during the phase of assembly.

shaker testing. For the experimental modal analysis of this work the impact hammer
testing was used.

Figure 4.15: Experimental Setup.

In Figure 4.15 is shown the scheme of the setup used for these set of analysis. The
plate specimens were supported by three prismatic blocks of soft foam (Figure 4.16) and
the beam specimens were suspended using the extremity point (Figure 4.17), in order to
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make the experimental boundary conditions close to the theoretical free body conditions
considered in the Finite Element simulation.

Figure 4.16: Experimental Setup for the plate specimens.

Figure 4.17: Experimental Setup for the beam specimens.

A measuring mesh of 12 points was devised for each plate specimen, as shown in
Figure 4.18a. The point number 4 represents the reference measurement point. For the
beam specimens a linear mesh with 7 points was defined, as shown in Figure 4.18b. The
point number 5 represents the reference measurement point for the beam specimens.

In the Figure 4.15, it is possible to observe that the excitation equipment adopted
for these analysis was the impact hammer, which is normally applied manually. It is a
reasonable solution to excite small and light structures, easy to use and transport, and
its cost is low compared to other equipment [108].

A DJB IH/01-50 miniature impact hammer was utilized to provide the excitation to
each of the 12 measuring mesh points for the plate specimens, and 7 points for the beam
specimens, applying a hammer roving technique. The specimen acceleration response to
this excitation was measured at point number 4 for the plate specimens, and number 5 for
the beam specimens, using a DYTRAN 3225F miniature IEPE (Integrated Electronics
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(a) Plate specimens (b) Beam specimens

Figure 4.18: Measuring mesh.

Piezo-Electric) accelerometer attached using bee wax. Being IEPE transducers, the
accelerometer and the impact hammer were connected directly to the analyzer without
extra signal conditioning. The excitation and the response signals provided by the impact
hammer and accelerometer, respectively, were conditioned and analysed using a spectral
analyser (DSPT Siglab 2042), that has an internal DSP processor capable to perform
all the required signal analysis towards the calculation of the set of Frequency Response
Functions for both specimen configurations. Therefore, the Frequency Response Function
(FRF) is obtained, one for each excited point, meaning there are 12 for each plate
specimen and 7 for each beam specimen. The parameters estimation by FRF curve
fitting is performed in the Computer step shown on Figure 4.15. This last phase of
the process is shown in the next section, where the methods used to obtain the modal
parameters are presented and explained.

4.2.3 Experimental modal analysis

The performance of an experimental modal analysis allows obtaining the modal param-
eters for each specimen. The modal parameters, as shown on Figure 4.15, correspond
to the natural frequencies, modal damping ratios and respective mode shapes within
the frequency range [0–1000Hz] considered in the measuring process. Therefore, modal
identification procedures were used to accomplish this goal. The identification pro-
cess was assisted by two different methods, the X-Modal 3 package, from SDRL, using
the Polyreference Least-Squares Complex Frequency-Domain identification algorithm
(hereby identified as PolyMAX), and the Circle Fit method, developed on Matlab.

The X-Modal 3 method, uses a multiple degree of freedom (MDOF) model to identify
the modal parameters.

The first step consisted on selecting the measured FRFs to be analyzed and setting
the frequency range of analysis. Then, the software created a visual guide, called a
stabilization diagram. The stabilization diagram allowed the identification of potential
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modes. After selecting the best set of potential modes, the mode shapes that are listed
by the software were calculated. After obtaining the results, the validation step was
performed. Two commonly used validation methods are: Modal Synthesis and Modal
Assurance Criterion (MAC) [109].

The Modal Synthesis method allows the identification of the modes that might have
been missed. In this method the FRFs can be synthesized and compared against the
originally measured FRFs. A correlation and error percentage are calculated, allowing
the identification of the missing modes.

The Modal Assurance Criterion (MAC) method is based on the analysis of mode
shapes similarity, i.e. the criterion shall provide a value of 100% when a mode shape is
compared to itself and zero when compared to the remaining ones. Experimentally this
tool can provide valid information on if the used measurement mesh is detailed enough
to represent the mode shape being identified [110].

The other method, Circle Fit, is one of the existing single degree of freedom (SDOF)
methods [4]. The basis behind the performance of this method is presented along the
Appendix D. The procedure to obtain the modal parameters using the Circle Fit method
developed on Matlab is presented in this section.

The Circle Fit analysis procedure developed on Matlab, starts by running the file that
contains the FRF (previously converted to a Receptance) related to one of the excited
points. A window related to this file opens allowing the user to select a frequency range
around each resonance. Since this set of points contain the resonance peak, it shall
describe a circular distribution, providing the data required to fit the parameters defining
a circle equation. In the end of this part the circle radius and center is determined, as
well as the quality factor, which is the mean square deviation of the chosen points from
the circle [4]. If the choice was satisfactory, the natural frequency is located and the
loss factor for that natural mode is obtained. The process is repeated for the remaining
peaks found in the FRF due to the fact that this method is performed for each mode
individually. Analysing this file the natural frequencies and loss factors for the natural
modes found in the FRF for one of the measured points are obtainable. This process
has now to be performed for all the other measured frequency response functions, which
means 12 times in total for each plate specimen and 7 times in total for each beam
specimen. Finally, it is necessary to calculate a mean value from the identified values to
get an approximate value for the natural frequency and corresponding modal loss factor
for each natural mode.

For this work it was decided to use two different experimental modal analysis meth-
ods, in order to have a better reference for comparison with the numerical study. The
experimental results are going to be presented and discussed in chapters 6 and 7, respec-
tively.
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Chapter 5

Numerical Results

In this chapter, the numerical results for the developed models are presented. For the
beam-kind models, the numerical results are presented for the first four natural modes.
For the plate-kind models, they are presented for the first five natural modes. It is
important to note that the modal strain energy distributions shown in this document
are limited to the VEM layer or stripes, i.e. the modal strain energy of the host structure
and constraining layer and stripes is omitted in these representations.

5.1 Preliminary Numerical Results

5.1.1 Combined model approach

In Table 5.1 it is possible to observe the natural frequencies and modal loss factors for
the two analysed combined model approaches, respectively.

Table 5.1: Natural frequencies and modal loss factor for the developed combined model
approaches.

Natural frequencies [Hz]

combined model
approach

mode 1 mode 2 mode 3 mode 4

Brick+Brick 161.154 387.783 738.843 1059.496

Plate with offset
+Brick

161.134 387.679 738.179 1079.894

Loss Factor [%]

combined model
approach

mode 1 mode 2 mode 3 mode 4

Brick+Brick 28.33 11.44 6.32 00.76

Plate with offset
+Brick

28.31 11.43 6.33 00.41
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5.1.2 VEM thickness

In this section, it is presented the natural frequencies and the mass normalized loss
factors for the Brick+Brick (Table 5.2) and for the Plate with offset +Brick approach
(Table 5.3), analysing two different VEM (layer 2) thicknesses.

The VEM layer mass varies when its thickness changes. Therefore, for these models,
the loss factor obtained by the MSE method was divided by the VEM mass in order to
obtain a mass normalized loss factor indicator for each specimen, providing information
on the treatment efficiency based on the amount of VEM used. This indicator also allows
a proper analysis of the models having into consideration the added mass.

Table 5.2: Natural frequencies and normalized loss factor for the Brick+Brick approach
with two different VEM thicknesses.

Brick+Brick Natural frequencies [Hz]

h2 mode 1 mode 2 mode 3 mode 4

0.254mm 161.154 387.783 738.843 1059.496

0.508mm 150.296 374.858 721.493 1039.703

Normalized Loss Factor [1/kg]

h2 mode 1 mode 2 mode 3 mode 4

0.254mm 19.92 8.04 4.44 0.53

0.508mm 7.99 2.70 1.43 0.42

Table 5.3: Natural frequency values for the Plate with offset+Brick approach with two
different VEM thicknesses.

Plate with offset
+Brick

Natural Frequencies [Hz]

h2 mode 1 mode 2 mode 3 mode 4

0.254mm 161.134 387.679 738.179 1079.894

0.508mm 150.338 374.851 720.965 1060.243

Normalized Loss Factor [1/kg]

h2 mode 1 mode 2 mode 3 mode 4

0.254mm 19.90 8.04 4.45 0.29

0.508mm 8.00 2.70 1.44 0.07

5.2 Beam-kind models

In this section, the results obtained for the analysed beam-kind models are presented.
The finite element method was used to determine the mode shapes (Figure 5.1) and
the VEM modal strain energy distribution (Table 5.4) for the developed beam-kind
models. The four mode shapes correspond to the first order bending mode, the second
order bending mode, the first order torsion mode and the third order bending mode,
respectively.
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Figure 5.1: Mode shapes of the first four natural modes of the sandwich beam.

Table 5.4: Distribution of the modal strain energy (1st mode) for the beam models
developed with free boundary conditions.

1st natural mode

Nomenc.

ILD2

ILD2 1D 1

ILD2 1D 2

ILD2 1D 3

ILD2 1D 4

ILD2 1D 5

ILD2 1D 6
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Continuation of Table 5.4

ILD2 1D 7

ILD2 1D 8

Table 5.4 only presents the modal strain energy distribution for the first natural
mode, whereas the one for the remaining natural modes can be observed on the sec-
tion Beam-kind models of Appendix E. Table 5.5 presents the natural frequencies and
normalized loss factor for all the developed beam-kind models.

Table 5.5: Natural frequencies and normalized loss factor for the developed beam-kind
models.

Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4

ILD2 562.829 1480.620 2110.582 2884.231

ILD2 1D 1 496.122 1232.028 1864.142 2370.549

ILD2 1D 2 513.364 1230.060 1835.901 2344.45

ILD2 1D 3 520.066 1215.066 1782.224 2299.064

ILD2 1D 4 553.980 1239.743 1758.618 2309.859

ILD2 1D 5 584.324 1269.955 1741.149 2334.641

ILD2 1D 6 623.866 1319.684 1739.053 2385.803

ILD2 1D 7 630.421 1365.118 1817.758 2499.275

ILD2 1D 8 686.628 1445.367 1838.996 2587.732

Normalized loss Factor [%]

Nomenclature mode 1 mode 2 mode 3 mode 4

ILD2 163.10 47.24 47.95 24.89

ILD2 1D 1 302.23 104.71 31.11 57.22

ILD2 1D 2 349.39 136.04 34.54 75.54

ILD2 1D 3 355.04 150.02 36.56 84.70

ILD2 1D 4 405.42 203.28 48.38 118.87

ILD2 1D 5 420.50 241.53 59.93 145.98

ILD2 1D 6 433.11 292.07 78.29 184.42

ILD2 1D 7 428.05 262.11 69.86 160.51

ILD2 1D 8 450.59 343.56 101.23 224.36

5.3 Plate-kind models

In this section, the results obtained for the developed plate-kind models are presented.
In order to organize the section, it was divided in two subsections, one that presents the
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results for the square plates (140 x 140 mm) and another for the rectangular plates (210
x 140 mm).

5.3.1 Square plate models

The mode shapes for the square plate models (Figure 5.2) were determined by the Finite
Element Method implemented in the SIEMENS NX.Nastran software

The first modal strain energy distribution for each treatment is presented throughout
this section, while the other modes are presented in the Appendix E.

Figure 5.2: Mode shapes of the first five natural modes of the aluminium square plate.

2D wave models

The numerical results for the 2D wave models are herein presented and listed with the
ILD2 model as reference. In the Table 5.6 can be observed the strain energy distribution
for the first natural mode of the 2D wave treatments and the reference treatment for
this set, ILD2.

Table 5.6: Distribution of the modal strain energy (1st mode) for the 2D wave models
developed with free boundary conditions.

1st natural mode

Nomenc.

ILD2
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Continuation of Table 5.6

ILD2 2D 0.5

ILD2 2D 1

Following the same organization applied in the presentation of the results for the
beam results, the modal strain energy distribution for the other natural modes can be
found in Appendix E.

Table 5.7 shows the natural frequencies and the modal loss factor for the 2D waves
treatments developed with an amplitude of 2× h2, denominated as A1, and for the
reference ILD treatment. The parameter h2 represents the VEM layer thickness.

Table 5.7: Natural frequencies and loss factor for the 2D wave models with amplitude
A1.

A1 = 2× h2 Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

ILD2 356.161 523.016 629.668 882.621 882.621

ILD2 2D 0.5 281.406 414.398 485.736 686.042 686.073

ILD2 2D 1 279.828 413.663 478.704 678.075 678.099

Loss Factor [%]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

ILD2 12.50 13.68 9.10 5.75 5.75

ILD2 2D 0.5 17.14 17.82 14.99 9.60 9.60

ILD2 2D 1 17.06 18.50 14.51 8.78 8.78

The treatment natural frequency and loss factor effect of decreasing the 2D waves
amplitude to half is presented in Table 5.8. The number of waves was maintained
constant for both treatments with the value of 0.5 waves per module.
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Table 5.8: Natural frequencies and loss factor for the ILD2 2D 0.5 model with two
different amplitudes.

ILD2 2D 0.5 Natural Frequencies [Hz]

Amplitude mode 1 mode 2 mode 3 mode 4 mode 5

A1 281.406 414.398 485.736 686.042 686.073

A2 316.225 465.359 555.384 778.603 778.609

Loss factor [%]

Amplitude mode 1 mode 2 mode 3 mode 4 mode 5

A1 17.14 17.82 14.99 9.60 9.60

A2 14.39 15.57 11.03 7.01 7.01

Interlaced models

The results obtained for the interlaced models are divided by configurations to help the
organization of the document and further results analysis.

In the Table 5.9 the strain energy distribution for first natural mode of each ILD
square model is presented. This table contains the ILD uniform treatment (reference
treatment) and the 2, 4 and 8 interlaced stripes ILD treatments.

Table 5.9: Distribution of the modal strain energy (1st mode) for the ILD square models
developed with free boundary conditions.

1st natural mode

Nomenc.

ILD2

ILD2 IL2
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Continuation of Table 5.9

ILD2 IL4

ILD2 IL8

The modal strain energy distribution for the other four natural modes are presented
in the Interlaced models section in the Appendix E. In Table 5.10 the natural frequencies
and the normalized loss factor for each ILD square plate treatment are presented. The
modal loss factor, obtained by the application of the MSE method, was divided by the
mass of viscoelastic material on each treatment. This approach was performed on this
set of treatments due to the different VEM mass added to each one, in order to obtain
an adequate comparison between models.

Table 5.10: Natural frequencies and normalized loss factor for the developed ILD square
models.

Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

ILD2 356.161 523.016 629.668 882.621 882.621

ILD2 IL2 342.952 502.429 611.344 863.128 863.136

ILD2 IL4 342.892 502.768 611.388 862.738 862.740

ILD2 IL8 342.871 502.982 611.518 862.557 862.558

Normalized Loss Factor [1/kg]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

ILD2 25.11 27.48 18.28 11.55 11.55

ILD2 IL2 8.42 9.25 5.95 3.62 3.62

ILD2 IL4 8.57 9.34 5.98 3.69 3.69

ILD2 IL8 8.66 9.41 6.01 3.74 3.74

The following information is related to the comparison between the uniform CLD
treatment and the interlaced configuration. Table 5.11 presents the strain energy distri-
bution for the first natural mode of these two treatments. The corresponding tables for
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the other natural modes are presented in the Interlaced models section on Appendix E.

Table 5.11: Distribution of the modal strain energy (1st mode) for the CLD square
models developed with free boundary conditions.

1st natural mode

Nomenc.

CLD0.25

CLD0.25 IL2

Table 5.12 presents the natural frequencies and normalized loss factor corresponding
to the CLD square plate models.

Table 5.12: Natural frequencies and normalized loss factor for the developed CLD square
models.

Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.25 324.606 476.355 579.767 817.496 817.496

CLD0.25 IL2 315.152 461.726 564.135 798.216 798.223

Normalized Loss Factor [1/kg]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.25 14.00 16.27 11.77 7.59 7.59

CLD0.25 IL2 6.08 6.94 4.70 2.93 2.93

Regarding the single material interlaced treatments based on a FLD configuration, to
which set the FLD2 treatment was used as reference, Table 5.13 shows the distribution
of the modal strain energy for the first natural mode. Similarly to before, the other
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natural modes for all the analysed modes are available in Appendix E

Table 5.13: Distribution of the modal strain energy (1st mode) for the FLD square
models without constraining stripes developed with free boundary conditions.

1st natural mode

Nomenc.

FLD2

FLD2 IL2

FLD2 IL4

Tables 5.14 shows the natural frequencies and the determined normalized loss factor
for each treatment and each mode. The loss factor based on the MSE method was
divided by the VEM mass of each treatment in order to obtain the available results.

The results of the study regarding the influence of the stiffness in the double material
interlaced treatments are shown as follows. Table 5.15 presents the strain energy distri-
bution for the first natural mode. For these treatments, only the top view is presented
due to the fact that the bottom view corresponds to the symmetric (in relation to the x
axis) of the former. Therefore, one column of the table is used to show the treatments
with two interlaced stripes and the other for four interlaced stripes. The distribution of
the remaining modes can be found in Appendix E.
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Table 5.14: Natural frequencies and normalized loss factor for the FLD square models
without constraining stripes.

Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

FLD2 327.94 478.46 592.62 846.49 846.49

FLD2 IL2 322.18 470.05 582.17 832.18 832.33

FLD2 IL4 321.48 469.51 581.39 830.26 830.30

Normalized Loss Factor [1/kg]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

FLD2 0.00144 0.00169 0.00225 0.00254 0.00254

FLD2 IL2 0.00237 0.00339 0.00477 0.00712 0.00711

FLD2 IL4 0.00239 0.00344 0.00483 0.00731 0.00730

Table 5.15: Distribution of the modal strain energy (1st mode) for the FLD square models
with single layered constraining stripes developed with free boundary conditions.

1st natural mode

Nomenc. 2 stripes 4 stripes

FLD2 IL C70

FLD2 IL C50

FLD2 IL C10
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Continuation of Table 5.15

FLD2 IL C1

Table 5.16 presents the natural frequencies and the loss factor for the first natural
mode. Even though the VEM mass is the same for this set of specimens, the normalized
loss factor is presented to compare with the other treatments. For the other modes, the
normalized loss factor values are presented in Appendix E.

Table 5.16: Natural frequency and normalized loss factor (1st mode) for the FLD square
models with single layered constraining stripes.

mode 1 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 358.476 363.823

FLD2 IL C50 346.336 348.575

FLD2 IL C10 321.328 320.230

FLD2 IL C1 313.212 311.988

mode 1 Normalized loss Factor [1/kg]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 2.97 0.84

FLD2 IL C50 2.31 0.74

FLD2 IL C10 0.57 0.29

FLD2 IL C1 0.05 0.05

The next set of analysed models corresponds to the double material interlaced with
single and double layer. For these treatments, the VEM and aluminium (same material
characteristics of the host structure) stripes were used. Tables 5.17 and 5.18 present the
top and bottom view, respectively, of the first modal strain energy distribution analysed
with 2, 4 and 8 stripes in both directions.
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Table 5.17: Distribution of the modal strain energy (1st mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - top view.

1st natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70

FLD2 IL C70 2a

FLD2 IL C70 2b

Table 5.18: Distribution of the modal strain energy (1st mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - bottom view.

1st natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70
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Continuation of Table 5.18

FLD2 IL C70 2a

FLD2 IL C70 2b

The distribution for the second to fifth natural modes are presented in Appendix E.
In the Table 5.19 it is possible to find the natural frequencies and the normalized loss
factor for the first natural mode. The natural frequencies and the normalized loss factor
for the other natural modes are available in the aforementioned appendix.

Table 5.19: Natural frequency and normalized loss factor (1st mode) for the FLD square
models with single and double layered constraining stripes.

mode 1 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 358.476 363.823 365.855

FLD2 IL C70 2a 363.634 386.035 394.518

FLD2 IL C70 2b 344.871 349.201 350.852

mode 1 Normalized Loss Factor [1/kg]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 2.97 0.84 0.27

FLD2 IL C70 2a 3.44 0.88 0.32

FLD2 IL C70 2b 5.01 3.52 3.13

5.3.2 Rectangular plate models

The mode shapes for the rectangular plates (Figure 5.3) were also calculated by the
Finite Element Method. The first natural mode corresponds to the first order torsion
mode, the second one to the first order bending mode (longitudinal direction), the third
to the second order torsion mode, the fourth to the first order bending mode (transversal
direction) and finally the fifth natural mode corresponds to the second order bending
mode (longitudinal direction).

The first set of treatments presented in this section is the uniform and the interlaced
CLD rectangular models. Table 5.20 presents the modal strain energy distribution for
the first natural mode for this set of treatments, for both top and bottom view. The
other modes are presented in section Rectangular plate models in Appendix E.
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Figure 5.3: Mode shapes of the first five natural modes of the aluminium rectangular
plate.

Table 5.20: Distribution of the modal strain energy (1st mode) for the CLD rectangular
models developed with free boundary conditions.

1st natural mode

Nomenc.

CLD0.5

CLD0.5 IL2

The rectangular models section contains the natural frequencies table in the docu-
ment for further comparison with the results obtained experimentally. Therefore, Table
5.21 shows the natural frequencies for the CLD rectangular models.

Table 5.21: Natural frequency values for the developed CLD rectangular models.

Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.5 212.555 233.999 471.768 515.667 587.727

CLD0.5 IL2 204.699 223.840 458.529 499.564 571.554
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Table 5.22 presents the loss factor values for comparison with the results obtained
experimentally and the normalized loss factor for further comparison between these two
models, since the treatments added mass differs between them.

Table 5.22: Loss factor values for the developed CLD rectangular models.

Loss Factor [%]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.5 11.65 15.44 6.70 8.73 6.59

CLD0.5 IL2 9.32 12.90 4.78 6.40 4.72

Normalized Loss Factor [1/kg]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.5 15.60 20.68 8.97 11.69 8.82

CLD0.5 IL2 6.47 8.96 3.32 4.44 3.28

The following set of models contains the developed FLD rectangular treatments, in-
cluding uniform and interlaced layers, single and double material, and single and double
layers. The corresponding strain energy distribution for the first natural mode is pre-
sented in Figure 5.23. The corresponding table for the remaining modes, can be found
in section Rectangular plate models in Appendix E.

Table 5.23: Distribution of the modal strain energy (1st mode) for the FLD rectangular
models developed with free boundary conditions.

1st natural mode

Nomenc.

FLD2

FLD2 IL2 C70
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Continuation of Table 5.23

FLD2 IL2 C70 2b

As before, the natural frequencies for the FLD rectangular treatments are shown in
Table 5.24.

Table 5.24: Natural frequency values for the developed FLD rectangular models.

Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

FLD2 217.624 232.565 501.632 541.636 625.613

FLD2 IL2 C70 240.454 263.255 519.231 572.205 651.078

FLD2 IL2 C70 2b 228.911 253.696 495.289 549.072 615.803

Table 5.25 presents the loss factor values for comparison with the results obtained
experimentally and the normalized loss factor for further comparison between the FLD
rectangular models, since the treatments added mass differs between them.

Table 5.25: Loss factor values for the developed FLD rectangular models.

Loss Factor [%]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

FLD2 0.000668 0.000761 0.000862 0.00101 0.000999

FLD2 IL2 C70 1.64 1.46 1.57 0.41 2.47

FLD2 IL2 C70 2b 5.55 6.14 4.55 4.98 5.52

Normalized Loss Factor [1/kg]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

FLD2 0.000894 0.00102 0.00115 0.00136 0.00134

FLD2 IL2 C70 1.98 1.77 1.90 0.50 2.99

FLD2 IL2 C70 2b 3.91 4.33 3.21 3.51 3.89

The ILD1 rectangular treatment was added to this study as a reference for the other
developed treatments. The distribution of the first modal strain energy for this treatment
can be found in Table 5.26, while for the other modes is located in Appendix E.
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Table 5.26: Distribution of the modal strain energy (1st mode) for the ILD rectangular
model developed with free boundary conditions.

1st natural mode

Nomenc.

ILD1

In Table 5.27, the natural frequencies for the five first natural modes of the ILD1
treatment are shown.

Table 5.27: Natural frequency values for the developed ILD rectangular model.

Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

ILD1 132.404 150.776 278.183 309.176 345.416

Table 5.28 presents the loss factor values for comparison with the results obtained
experimentally and the normalized loss factor for further comparison with the other
rectangular models.

Table 5.28: Loss factor values for the developed ILD rectangular model.

Loss Factor [%]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

ILD1 27.50 33.83 17.00 21.48 16.54

Normalized Loss Factor [1/kg]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

ILD1 36.83 45.30 22.77 28.76 22.15

Finally, the results for the reference plain plate are presented. Table 5.29 shows
the first modal strain distribution for the plain rectangular plate, while the second to
fifth natural modes are presented at the end of section Rectangular plate models in
Appendix E.
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Table 5.29: Distribution of the modal strain energy (1st mode) for the plain plate with
free boundary conditions.

1st natural mode

Nomenc.

Plain
Plate

And in Table 5.30, can be observed the natural frequencies of each plain plate mode.

Table 5.30: Natural frequency values for the plain plate.

Natural Frequencies [Hz]

Nomenclature mode 1 mode 2 mode 3 mode 4 mode 5

Plain
Plate

222.686 237.975 513.305 554.248 640.182
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Chapter 6

Experimental Results

In this chapter, the experimental results of the developed models are presented. The
results of the beam specimens followed by the ones of plate specimens are presented,
for the MDOF (PolyMAX on X-Modal 3) and SDOF (Circle-fit) modal identification
methods, respectively. For the beam-kind models, the experimental results are presented
for the first two natural modes. For the plate-kind models, they are presented for the
first five natural modes. The natural modes presented correspond to the ones found
within the frequency range of analysis [0-1000Hz].

6.1 MDOF system modal identification (PolyMAX)

This section provides the experimental results, for both beam and plate specimens,
obtained by the PolyMAX method implemented in the software X-Modal 3 from SDRL-
Structural Dynamics Research Lab. from the University of Cincinnati. The PolyMAX
method allowed the identification of the mode shapes, the natural frequencies and the
modal damping ratios for each specimen.

6.1.1 Beam specimens

In the frequency range of analysis, two natural modes were identified for the beam-
kind specimens. Figure 6.1 presents the mode shapes for the two first identified natural
modes, which corresponds to the first order bending mode and the second order bending
mode, respectively.

Figure 6.1: Mode shapes of the first two natural modes of the sandwich beam.

The natural frequencies for each identified natural mode are presented in Table 6.1.
Table 6.2 presents the Damping ratio values calculated by the Polymax identification
procedure. Additionally, considering the relation ηr = 2× ζ [14], the calculated modal
loss factor values are added to the table.

73



74 6.Experimental Results

Table 6.1: Natural Frequency values for the beam specimens obtained by the PolyMAX
method.

PolyMAX Natural Frequencies [Hz]

Specimen mode 1 mode 2

ILD2 678.85 1442.07

ILD2 1D 659.08 1490.60

Table 6.2: Damping ratio values for the beam specimens obtained by the PolyMAX
method.

PolyMAX Damping ratio [%] / (Loss factor [%])

Specimen mode 1 mode 2

ILD2 18.93 / (37.86) 11.89 / (23.77)

ILD2 1D 13.35 / (26.70) 9.29 / (18.58)

6.1.2 Plate specimens

In the frequency range of analysis, five natural modes were identified for the plate-kind
specimens. Figure 6.2 presents the mode shapes for the first five identified natural modes,
corresponding to the first order torsion mode, first order bending mode (longitudinal
direction), second order torsion mode, first order bending mode (transversal direction)
and the second order bending mode (longitudinal direction), respectively.

Figure 6.2: Mode shapes of the first five natural modes of the aluminium rectangular
plate.

The natural frequencies and the damping ratio are presented, for each identified nat-
ural mode, in tables 6.3 and 6.4, respectively. Considering the relation aforementioned,
the calculated modal loss factor values are added to Table 6.4.
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Table 6.3: Natural frequency values for the plate specimens obtained by the PolyMAX
method.

PolyMAX Natural Frequencies [Hz]

Specimen mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.5 216.641 237.574 497.006 552.691 629.975

CLD0.5 IL2 202.4681 228.663 478.430 530.849 604.644

FLD2 209.456 226.845 483.250 525.379 603.852

FLD2 IL2 C70 202.189 223.167 474.429 514.969 588.510

FLD2 IL2 C70 2b 200.491 226.081 471.348 513.361 586.009

ILD1 119.256 130.564 266.764 293.751 327.467

Table 6.4: Damping ratio values for the plate specimens obtained by the PolyMAX
method.

PolyMAX Damping ratio [%] / (Loss factor [%])

Specimen mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.5 1.09/(2.17) 0.76/(1.53) 0.88/(1.76) 0.99/(1.98) 0.77/(1.54)

CLD0.5 IL2 1.74/(3.48) 2.79/(5.59) 2.97(5.94) 3.34/(6.68) 3.23/(6.46)

FLD2 0.28/(0.56) 0.29/(0.59) 0.17(0.34) 0.19(0.38) 0.16/(0.33)

FLD2 IL2 C70 0.95/(1.90) 1.24/(2.48) 0.99/(1.99) 0.83/(1.65) 0.87/(1.75)

FLD2 IL2 C70 2b 2.51/(5.03) 2.66/(5.33) 3.61/(7.21) 3.12/(6.25) 2.95/(5.90)

ILD1 12.16/(24.32) 13.51/(27.02) 8.95/(17.89) 7.22/(14.44) 7.89/(15.79)

6.2 SDOF system modal identification (Circle Fit)

This section provides the experimental results, for both beam and plate specimens,
obtained by the Circle Fit method. The Circle fit method allowed the identification of
the natural frequencies and the modal loss factor for each specimen.

6.2.1 Beam specimens

In the frequency range of analysis, two natural modes were identified for the beam-kind
specimens. The natural frequencies and the modal loss factor are presented, for each
identified natural mode, in tables 6.5 and 6.6, respectively.

Table 6.5: Natural frequency values for the beam specimens obtained by the Circle Fit
method.

Circle Fit Natural Frequencies [Hz]

Specimen mode 1 mode 2

ILD2 671.08 1550.86

ILD2 1D 653.27 1519.98
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Table 6.6: Loss factor values for the beam specimens obtained by the Circle Fit method.

Circle Fit Loss Factor [%]

Specimen mode 1 mode 2

ILD2 35.06 19.45

ILD2 1D 31.49 18.95

6.2.2 Plate specimens

In the frequency range of analysis, five natural modes were identified for the plate-kind
specimens. The natural frequencies and the modal loss factor are presented, for each
identified natural mode, in tables 6.7 and 6.8, respectively.

Table 6.7: Natural frequency values for the plate specimens obtained by the Circle Fit
method.

Circle Fit Natural Frequencies [Hz]

Specimen mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.5 216.654 237.451 499.589 553.554 629.471

CLD0.5 IL2 209.069 232.365 478.297 532.125 604.121

FLD2 209.404 226.870 483.220 525.470 604.013

FLD2 IL2 C70 202.719 223.317 474.512 515.481 588.723

FLD2 IL2 C70 2b 202.108 226.023 470.676 515.059 588.089

ILD1 120.708 132.723 264.917 298.975 327.877

Table 6.8: Loss factor values for the plate specimens obtained by the Circle Fit method.

Circle Fit Loss Factor [%]

Specimen mode 1 mode 2 mode 3 mode 4 mode 5

CLD0.5 1.92 1.66 2.19 1.87 1.84

CLD0.5 IL2 5.84 6.56 6.01 6.49 6.54

FLD2 0.41 0.59 0.28 0.37 0.27

FLD2 IL2 C70 1.75 2.51 2.02 1.59 1.77

FLD2 IL2 C70 2b 5.33 6.79 7.59 6.56 6.20

ILD1 26.06 30.95 18.42 22.71 18.12
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Chapter 7

Results Analysis

The results analysis chapter aims to provide a comparison between the developed mod-
els. The results comparing the numerical models between them and the rectangular
numerical models with the corresponding experimental specimen are here analysed. The
chapter is divided in several sections to support the organization of the document.

7.1 Preliminary Numerical Results Analysis

7.1.1 Combined model approach

In this section, the results for the two combined model approaches are analysed. The
results in Table 5.1 provided in Chapter 5 are hereby graphically represented through
bar charts allowing a straightforward and clear comparison and analysis.

Figure 7.1a presents the natural frequencies identified for each combined model. As
expected, for each mode the natural frequencies of both combined models are similar.
The main differences occur for the fourth natural mode that corresponds, for this beam
dimensions, to the first order torsion mode (for the Plate with offset + Brick model, the
relative differences to the Brick+Brick model results are presented).

(a) Natural frequency [Hz] (b) Normalized loss factor [1/kg]

Figure 7.1: Comparison between the analysed combined model approaches.

Similarly to the natural frequencies, the modal loss factor based on the MSE method

77



78 7.Results Analysis

presents similar values for both combined models for the first three bending modes (mode
1 to 3) and a slight difference for the first order torsion mode (mode 4). This comparison
can be observed in Figure 7.1a.

As expected, the two analysed combined models present similar values. Therefore,
and having in consideration the geometry complexity of the further developed models,
the Brick + Brick (linear hexahedral finite elements) was chosen for the design of further
models developed during this work. This spatial model selection was also supported by
the reduced dimension of the problem.

7.1.2 VEM thickness

This section aims to provide the comparison between one thickness and its double for
the two different combined model approaches developed for a sandwich beam.

Tables 5.2 and 5.3 presented in Chapter 5 show a decrease, from one thickness to
its double, in natural frequencies for each mode, for both combined model approaches.
These results are as expected, due to the fact that an increase of the mass in movement,
leads to a decrease of natural frequencies (whereas the effect on the stiffness matrix is
not significant due to this thickness increase).

(a) Brick + Brick approach (b) Plate with offset + Brick approach

Figure 7.2: Normalized loss factor comparison between the two VEM thicknesses.

Figure 7.2 presents the normalized loss factor results for both combined model ap-
proaches. In this comparison, it is important to show the modal loss factor normalized
to the model mass, due to the fact that one model presents double the mass of the other,
in order to obtain results independent of the mass. Both approaches show a decrease of
the normalized loss factor when the VEM thickness is increased.

7.2 Beam-kind models

7.2.1 Numerical results analysis

The results obtained and presented in the section Beam-kind models, from Chapter 5
are discussed in this section. The modal strain energy distribution for the beam models
shows a clear increase of the strain energy on the border of the VEM core when the
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number of waves is increased. The border effect is more notorious due to the beam
dimensions. The red/orange vertical lines in the 1D waves model images demonstrate
the effect caused by the model waves that creates high deformation lines compared to
the deformation levels of its vicinity. As expected, the intensity of these vertical lines
increases when the number of waves is increased.

Table 5.5 presented in Appendix E demonstrates, for the 1D waves developed models,
an increase of the natural frequencies for each natural mode when the number of waves
of each model is increased.

In Figure 7.3 the modal loss factor for each beam-kind model is presented in a form
of bar chart. As it is possible to see in the figure, the increase of the number of waves
(until 6 waves per module) results in an increase on the damping treatment efficiency
for all the analysed natural modes. For the first order bending mode (mode 1), the
damping treatment seems to loose its effect for the configuration with 7 and 8 waves
per module. It is important to note that for all the analysed bending modes (mode 1,
2 and 4), the 1D waves models present a superior modal loss factor when compared to
the uniform sandwich beam. For the first order torsion mode (mode 3), this conclusion
is only verified for the configuration with 4 waves per module.

Figure 7.3: Normalized loss factor comparison between the beam-kind models.

This promising concept was experimentally analysed using the ILD2 and ILD2 1D 4
beam treatments. The ILD2 1D 4 beam treatment was chosen having in consideration
the obtained numerical results, since this is the treatment that presents a higher nor-
malized loss factor, when compared to the ILD2 beam treatment, with a lower number
of waves for every analysed natural mode.

7.2.2 Experimental results analysis

The experimental results obtained for the beam specimens are presented in a form of a
bar chart in Figure 7.4 for the two analysed methods.

Contrary to what was observed in the numerical analysis, the experimental results
indicates the inferiority of the 1D waves beam loss factor when compared to the uniform
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(a) PolyMax (b) Circle Fit

Figure 7.4: Modal loss factor comparison between the beam specimens.

sandwich beam. It is important to note that the experimental 1D wave specimen was
not an accurate representation of the numeric model. While in the numeric one both
host and constraining layer have the surfaces waved following the VEM core, in the
experimental specimen copper wires were added to create the VEM layer waves. This
difference in the configuration is a reasonable explanation for the 1D wave inferiority in
the experimental results, due to the fact that the copper wires have a relative freedom
to the adjacent aluminum beams that can severely reduce the shear effect on the VEM
layer.

7.2.3 Numerical/Experimental comparison

This subsection provides a comparison between the numeric results and the experimental
ones. The experimental study is important to validate the numerical work, for that, the
mode shapes and the natural frequencies should be similar for each treatment.

As can be observed in figures 5.1 and 6.1, the identified mode shapes are a represen-
tation of the same natural mode for both studies.

(a) ILD2 beam (b) ILD2 1D 4 beam

Figure 7.5: Natural frequencies comparison between numeric and experimental study.

Figure 7.5 shows the comparison between the natural frequencies for both numeric
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and experimental study for the developed beam specimens. These figures evidence sim-
ilar results when comparing the ones obtained numerically and experimentally (by both
methods).

(a) ILD2 beam (b) ILD2 1D 4 beam

Figure 7.6: Loss factor comparison between numeric and experimental study.

Figure 7.6 shows the comparison between the loss factor for both numeric and ex-
perimental study for the developed beam specimens.

7.3 Plate-kind models

7.3.1 Numerical results analysis

The results obtained and presented in the section Plate-kind models, from Chapter 5 are
discussed in this section.

Square plate models

The discussion of the results related to the developed square models (140 x 140 mm) is
presented along this subsection. Initially, the 2D wave models are compared with the
uniform ILD plate, followed by the discussion of the results obtained for the developed
ILLD models

The 2D wave configuration treatments are compared with the uniform ILD square
plate. Starting by the analysis of the strain energy distribution for the first natural
mode presented in Table 5.6 of Chapter 5, even if the maximum strain energy obtained
for each of the mentioned treatments is higher for the ILD2, the strain energy areas
caused by the 2D waves, where the modal strain energy increase, can be easily noted in
Figure 5.6. The same occurs for the remaining modes presented in figures E.4 to E.7 in
Appendix E. This increase in various zones allows for a larger contribution of the total
modal strain energy when compared to the uniform ILD treatment.

In Figure 7.7 the modal loss factors for the aforementioned models with an amplitude
of A1 = 2× h2 (parameter h2 represents the VEM layer thickness) are presented in the
form of a bar chart. The graph shows that both 2D wave models constitute a better
solution than the uniform integrated layer square plate, already known as the most
effective treatment configuration. Another conclusion taken from the graph is that, with
the exception of the second natural mode, when the number of waves is doubled, the
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loss factor value decreases. It is important to note that the number of waves for the 0.5
waves per module is already high, due to the fact that it represents seven waves for both
directions in the 140 x 140 mm square plate.

Figure 7.7: Modal loss factor comparison between the 2D wave models with A1 ampli-
tude.

Figure 7.8 represents the bar graph that compares the modal loss factor results for
two different wave amplitudes of the ILD2 2D 0.5 model. It is possible to conclude that
decreasing the wave amplitude to its half decreases the efficiency of the treatment.

Figure 7.8: Modal loss factor comparison between the ILD2 2D 0.5 with two different
amplitudes.

The ILLD configuration treatments with integrated layer are compared with the
uniform ILD square model. It is important to note that the numerical models for these
configurations neglects any relative motion between layers since all the nodes in the
interface between layers are coincident. This condition can affect the numerical results,
therefore, the experimental study was used to validate the ILLD treatments.

The modal strain energy distribution for the first natural mode of the VEM layer
of the ILD square models was presented in Table 5.9 in Chapter 5. The table clearly
demonstrates the stripes configuration of the ILLD models and the strain energy supe-
riority of the uniform ILD treatment when compared to the other ones. For the other
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analysed modes, presented in Appendix E, it is possible to draw the same observations.
In Figure 7.9 the normalized loss factors for the aforementioned models are presented

in the form of a bar chart. The graph shows the superior efficiency of the ILD2 treatment
when compared to the ILLD ones. A possible explanation could be related to how the
models were developed, which was explained in the beginning of this section. The ILLD
models present a slight loss factor increase when the number of stripes for both directions
is increased.

Figure 7.9: Normalized loss factor comparison between the ILD square models.

The developed CLD square models present, in Table 5.11 from Chapter 5 for the first
natural mode and in Appendix E for the other natural modes, the VEM layer modal
strain energy distribution. The analysis of these tables allows for the same conclusions
as the ones obtained for the ILD square models to be taken.

Figure 7.10 presents, in the form of a bar graph, the normalized loss factor for the
CLD square models. In this figure, the difference between both models is clear. The
uniform CLD square plate presents better results when compared to the ILLD models
with the same constraining layer. As aforementioned, the treatments were developed
with connected nodes between layers, which implicates disregarding the motion between
them. This implication can be a possible explanation for the inferior efficiency of the
ILLD concept with constraining layer. Therefore, an experimental study evaluating both
configurations was performed and the results are analysed later in this chapter.

Figure 7.10: Normalized loss factor comparison between the CLD square models.

The ILLD free single material models were compared to the FLD uniform treatment.
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The modal strain energy distribution for the first natural mode (Table 5.13 of Chapter
5) and for the other modes (Appendix E) presents the bottom view (VEM surface in
contact with the host structure) and top view (VEM free surface). These tables clearly
demonstrate the stripes configuration of the ILLD models and the influence of the host
structure (bottom view) when compared to the free top view.

In Figure 7.11 the normalized loss factor for the aforementioned models are presented
in the form of a bar chart. The results demonstrate the effect obtained when an uniform
VEM layer is changed for the interlaced concept using VEM stripes. The increase of the
VEM stripes in both directions represents a slight increase in the normalized loss factor.

Figure 7.11: Normalized loss factor comparison between the FLD square models.

The FLD single layered constraining stripes models present, in Table 5.15 of Chap-
ter 5 for the first natural mode and in Appendix E for the other natural modes, the
VEM stripes modal strain energy distribution. These models allow the study of the
material stiffness effect on the treatments efficiency. The aforementioned tables demon-
strate a clear increase of the modal strain energy when the constraining material stiffness
increases.

The natural frequencies for each mode (in Appendix E) demonstrate that, as ex-
pected, the natural frequencies increase when the constraining material stiffness in-
creases. Figure 7.12a shows the effect of increasing the constraining material stiffness
in the treatments efficiency for the first natural mode, however, the same conclusion
can be taken for the other modes. This study allowed to conclude that, when mixing
constraining stripes among the VEM stripes, a material with a higher Young’s modulus
is a more efficient solution to combine with the VEM stripes in the ILLD concept.

For the FLD configuration, with a single or double layer and with interlaced con-
straining layers, the numerical results are presented in tables 5.17 and 5.18 (Chapter 5)
for the first natural mode (remaining results are gathered in Appendix E). The distri-
bution evidences the effect caused by adding one layer and an interleaved one. The
interleaved double layer causes an evident increase in the modal strain energy. In Ap-
pendix B (Figure B.3), it is possible to find a representation of the hereby analysed
models.

In Figure 7.12b the normalized loss factor for the first natural mode can be observed.
The figure shows the effect of adding another layer on the treatment efficiency. This effect
is greater when the double layer is interleaved. These promising results are also verified
for the other analysed natural modes.
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(a) Single layered constraining stripes (b) Single and double layered constraining stripes

Figure 7.12: Normalized loss factor comparison between the FLD square models.

Rectangular plate models

According to the results obtained for the square models, a similar group of rectangular
plates were also studied to be compared to the experimental ones were developed. The
CLD uniform treatment and the CLD interlaced configuration were developed using
a constraining layer with a thickness of 0.5 mm, since it was the one available at the
laboratory. In Figure 7.13, the normalized loss factor values for this group are presented.
From the results obtained for the numerical study of the CLD rectangular models is
concluded the same as the mentioned for the CLD square ones.

The most promising ILLD models were developed in rectangular models to compare
with the corresponding experimental specimens. These models, shown in Table 5.23 for
the first natural mode and in Appendix E for the other natural modes, present equivalent
results to those of the square models.

Figure 7.13: Normalized loss factor comparison between the rectangular plate models.

7.3.2 Experimental results analysis

The experimental results obtained for the plate specimens are presented in a form of a
bar chart in Figure 7.14 (PolyMax method) and Figure 7.15 (Circle Fit method).
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Figure 7.14: Modal loss factor comparison between the plate specimens - PolyMax.

Figure 7.15: Modal loss factor comparison between the plate specimens - Circle Fit.

Several interesting conclusions can be taken from these graphs. Contrary to what
was observed in the numerical analysis, the experimental results evidence a superiority
of the CLD0.5 IL2 treatment loss factor when compared to the CLD0.5 configuration.
This great conclusion can be explained by the aforementioned possible explanation,
since for the numeric models the layers are attached (coincident nodes) and do not allow
the representation of potential relative motion between adjacent layers, while in the
experimental study such restraint is not imposed. Another information provided by the
experimental results is that, not just the free ILLD concept provides a better solution
than the uniform FLD treatment, but also provides a valid replacement for constrained
uniform damping treatments, with the advantages of a free layer configuration.

7.3.3 Numerical/Experimental comparison

Figures 7.16 to 7.21 show the comparison between the natural frequencies and modal loss
factor for both numeric and experimental study for the developed plate specimens. These
figures demonstrate similar natural frequency results when comparing the ones obtained
numerically and experimentally (by both methods) and similar modal loss factor values
for both experimental analysis methods.

Based on the comparison analysis of the loss factor results, one cannot take valid and
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sustained conclusions when analysing each treatment configuration. Nevertheless, gen-
eral observations can be drawn by comparing the overall level of loss factor observed for
all the configurations. Therefore, it is possible to observe that the proposed configura-
tion, the interlaced layer damping treatment provided interesting results when compared
to the FLD and CLD configurations.

(a) Natural Frequency [Hz] (b) Modal loss factor [1/kg]

Figure 7.16: Comparison between numeric and experimental study - CLD0.5.

(a) Natural Frequency [Hz] (b) Modal loss factor [1/kg]

Figure 7.17: Comparison between numeric and experimental study - CLD0.5 IL2.

(a) Natural Frequency [Hz] (b) Modal loss factor [1/kg]

Figure 7.18: Comparison between numeric and experimental study - FLD2.
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(a) Natural Frequency [Hz] (b) Modal loss factor [1/kg]

Figure 7.19: Comparison between numeric and experimental study - FLD2 IL2 C70.

(a) Natural Frequency [Hz] (b) Modal loss factor [1/kg]

Figure 7.20: Comparison between numeric and experimental study - FLD2 IL2 C70 2b.

(a) Natural Frequency [Hz] (b) Modal loss factor [1/kg]

Figure 7.21: Comparison between numeric and experimental study - ILD1.
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Chapter 8

Conclusions and future work

In this chapter, the concluding remarks are presented along with some suggestions of
related topics that may be developed in the future.

8.1 Conclusions

According to the main objectives of this thesis, the dissertation addresses the exploratory
work of promising concepts for passive damping treatments.

The problem associated with vibration affects structures and machines, that shall
be taken in consideration during the designing stage. Sometimes this specification is
neglected or simply provided by later stage problems, even if the design was appropriate.
For that, damping mechanisms are considered as a good alternative method for vibration
control. Viscoelastic treatments are considered to be one of the most efficient methods
to limit vibration levels.

The principal focus of the developed study was to explore alternative and effective
new configurations for passive damping treatments using viscoelastic materials. For this
purpose, the spatial model, based on the Finite Element Method, and the numerical and
experimental analysis of the new configurations dynamic behaviour were developed.

The first promising configuration: the 1D waves configuration represents a valid so-
lution for beam-kind treatments. The numerical study developed demonstrated that this
concept can represent a more efficient solution when compared to the uniform sandwich
beam treatment, while approximately maintaining the added VEM mass.

The 2D waves configuration represents an effective solution for ILD damping plate
treatments. The numerical study developed for this configuration provided promising
results by demonstrating an efficient solution that can be a reasonable replacement for
uniform ILD plate treatments using the same amount of VEM.

The ILLD concept increases the efficiency of the viscoelastic damping treatments,
while maintaining the advantages of an application procedure based on a simple deposi-
tion of a single layer of material on the structure surface. The numerical and experimen-
tal results demonstrated the feasibility of this proposed and promising configuration,
that provides a valid replacement for constrained damping layers, which often require a
time consuming and laborious placement procedures, and in some cases, such as those
where the target component has a complex geometry, are even impracticable or severely
damaged during the application. This concept aims to overcome the limitations of the
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constrained damping treatments, while providing similar levels of damping.
The work developed in this dissertation provides important contributions to both

science and industry. The developed study presents new concepts that enable saving
computing and production time, laborious placement procedures and severe damages,
and, therefore, leads to costs reduction.

8.2 Future Work

The work developed during this dissertation combined several concepts that can be
further explored.

For the 1D wave concept, it is recommended to run an experimental validation pro-
cedure, using specimens that really mimic the assumed kinematic model considered in
the numerical study. This would require more time, that was not available for this ex-
ploratory study carried on this work. In fact, it would be necessary to produce special
host structures, possibly using CNC machining, press or controlled chemical reactions
to obtain the required waved surface on the host beam and constraining layer.

Another suggestion relies on the experimental validation of the 2D waves concept
applied in the numerical study developed within the scope of this work. This promis-
ing concept could be adapted to an experimental specimen benefiting from the new
technologies, such as, 3D printing and CNC machining.

The ILLD concept is materialized by a three-dimensional layup of VEM stripes, possi-
bly combined with stripes of other materials. An interesting approach would be including
VEM with different transition temperatures, following the multi-material concept [16],
benefiting from its advantages. This concept provides a set of other possible features
that can be investigated to optimize or tailor the damping treatment. By changing the
stripes arrangement, including a single layer or multiple layers of entangled stripes or
the application of different materials depending on the stripe direction, and even by
changing the angle of the stripes, one can explore the modification on the damping ef-
fect according to the mode shape, frequency band or temperature range. Other design
parameters should also be analyzed, such as the gap size between stripes, the insert
of localized slide areas, using small release films, and other possible solutions to take
advantage of the internal border effects and relative motion between stripes.

Within the scope of hybrid treatments, the proposed configuration (ILLD) also opens
new possibilities, where active fibers or stripes can be introduced inside the interlaced
VEM layer to enhance its deformation during vibration. The use of shape-memory
polymers in the form of stripes, or wires made from shape memory alloys or piezoelectric
materials, can be used as active constraining stripes/fibers to increase or tailor the level
of deformation imposed to the dissipative layers.
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Appendix A

Pre-processing: Model

The model for each structure was directly developed by a proper mesh using the Generate
Between Corners tool and the Extrude tool to create the solid elements in the mesh
menu. For the majority of the models developed, a module that could be copied (Copy
tool), rotated (Rotate tool), scaled (Scale tool), or reflected (Reflect tool) was initially
performed, in order to obtain the intended configuration, as explained later for each
case.

In order to prepare the analysis for each model in the software, the Coincident Nodes
tool in the Tools menu was used. This tool removes a set of nodes that are coincident
within a predefined tolerance. A group was created that includes the VEM elements.
The elements of each material were renumbered using the Renumber tool in the Modify
menu to aid the post-processing strategy.

The boundary condition was set as free in the Model menu with the Constraint tool.
Therefore, everything was set for the creation of the analysis. By the Analysis on the
Model menu it is possible to define the proper analysis for the models designed. For this
work the NX Nastran analysis program and the Normal Modes/Eigenvalue type analysis
were used. The desired number of eigenvalues for the modal analysis was defined, the
free constraint was selected, and the elemental strain energy was chosen as output for
all the model. It is important to note that it was unchecked the Element Corner Results
option to interpolate the results and it was changed an option in the preview input in
order to allow that all the values are taken in consideration even the ones that were
approximately zero.
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Appendix B

Representation of the interlaced
configurations developed

In this appendix, it is presented every model mentioned in the Table 4.5, through a repre-
sentation of each interlaced square plate developed in the software Femap, its dimensions
and materials properties.

In the Figure B.1, it is possible to observe the ILD interlaced 140 x 140 mm models
developed for the numerical study. The host structure is represented in opaque grey, the
constraining layer on top in grey with reduced opacity and the stripes are all represented
in dark pink to indicate that every stripe is VEM based.

Figure B.1: Representation of the ILD interlaced square plates: a) ILD2 IL2; b)
ILD2 IL4; c) ILD2 IL8.

m and n represent the length and width of the structure, respectively, h1 the thickness
of the host structure, h2 the thicknesses of the stripes and h3 the thickness of the
constraining layer.

The Figure B.2 presents the CLD interlaced 140 x 140 mm model developed for the
numerical study. As before, the host structure is represented in opaque grey, on top the
constraining layer in grey with reduced opacity and the stripes are all represented in
dark pink to indicate that every stripe is VEM based. The CLD interlaced configuration
for these dimensions was only created with 2 stripes in both directions, due to the fact
that was developed having in consideration the numerical results of the other models
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94 B.Representation of the interlaced configurations developed

and it is a reference model for future comparison.

Figure B.2: Representation of the CLD interlaced square plate: CLD0.25 IL2.

m and n represent the length and width of the structure, respectively, h1 the thickness
of the host structure, h2 the thicknesses of the stripes and h3 the thickness of the
constraining layer.

Figure B.3 presents the FLD interlaced 140x140mm models developed for the nu-
merical study. The first line presents the FLD models developed with VEM stripes, the
second line presents the ones using stripes with two different materials, and the third
and fourth line present the double layer of stripes with two different materials as well
as interleaved, respectively. The host structure is represented in opaque grey, the dark
pink stripes represent the VEM ones and the light pink stripes represent the ones based
on the second material. The models using a single layer of stripes with two different ma-
terials were analysed using a second material with an Young’s modulus of 70, 50, 10 and
1GPa, represented by the 4 in Figure B.3 caption. After obtaining the results for these
models, the double layer models ( 2a and 2b) were developed using an aluminium with
70GPa Young’s modulus as second material stripes. The justification for that choice is
presented on the Chapter 5.

As before, m and n represent the length and width of the structure, respectively, h1
the thickness of the host structure and h2 the thicknesses of the stripes.

In the Table B.1, it is possible to observe the characteristics for the models presented
in this appendix. The stripes width is shown for each number of stripes. The constraining
layer thickness assumes a different value for ILD and CLD, as presented in the table.
The layer 1 corresponds to the host structure, the layer 2 to the stripes layer and the
layer 3 to the constraining layer, when applicable.

F.M.M. Matos Master Degree
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Figure B.3: Representation of the FLD interlaced square plates: a) FLD2 IL2; b)
FLD2 IL4; c) FLD2 IL2 C4; d) FLD2 IL4 C4; e) FLD2 IL8 C4; f) FLD2 IL2 C70 2a;
g) FLD2 IL4 C70 2a; h) FLD2 IL8 C70 2a; i) FLD2 IL2 C70 2b; j) FLD2 IL4 C70 2b
and k) FLD2 IL8 C70 2b.

F.M.M. Matos Master Degree



96 B.Representation of the interlaced configurations developed

Table B.1: Characteristics of the developed interlaced square plates.

Dimension

m 140 mm
n 140 mm

Stripes
Width

2 stripes 67.5 mm
4 stripes 33.75 mm
8 stripes 16.875 mm

h1 2 mm
h2 0.254 mm

h3
ILD 2 mm
CLD 0.25 mm

Aluminium
Properties:

Layer 1 and Layer 3
AW5754-H111

VEM Properties:
Layer 2 (stripes)

3M ISD112 [106]

Boundary
Conditions

free body

F.M.M. Matos Master Degree



Appendix C

MSE method based code

The following Matlab codes, listing C.1 and C.2, present the developed codes to provide
the modal loss factor, based on the MSE method, for models using stripes with the
same material and two different materials, respectively, since one of these is always a
viscoelastic material.

Listing C.1: Matlab code to obtain Modal Loss Factor by MSE method.

1 %Table excluding the non numerical lines
2 %Reference:https://www.mathworks.com/matlabcentral/answers/323274−how−to
3 %−delete−rows−that−contain−nan−in−a−table
4 %Change file name for the name of the file that contains the treatments
5 %modal strain energy for each element
6 T total=file name(¬any(ismissing(file name),2),:);
7

8

9 %Change number VEM for the 1st VEM element number defined on FEMAP
10 index first VEM= find(T total{:,1}==number VEM);
11 %Table with VEM layer elements
12 T vem=T total(index first VEM:end,:);
13

14 %Sum of total modal Strain energy
15 Sum Etotal=sum(T total{:,2});
16

17 %Loss factor of VEM
18 eta VEM=1;
19 %Sum of VEM modal Strain Energy
20 Sum Evem=sum(T vem{:,2}.*eta VEM);
21

22 %Loss factor of the stucture by MSE method
23 eta structure=(Sum Evem*eta VEM)/Sum Etotal
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98 C.MSE method based code

Listing C.2: Matlab code to obtain Modal Loss Factor for 2 different material’s stripes
by MSE method.

1 %Table excluding the non numerical lines
2 %Reference:https://www.mathworks.com/matlabcentral/answers/323274−how−to
3 %−delete−rows−that−contain−nan−in−a−table
4 %Change file name for the name of the file that contains the treatments
5 %modal strain energy for each element
6 T total=file name(¬any(ismissing(file name),2),:);
7

8 %Change 1stnumber VEM for the 1st VEM element number and Lastnumber VEM
9 %for the last defined on FEMAP

10 %Change 1stnumber 2mat for the 1st Material 2 (Constraining Material)
11 %element number defined on FEMAP
12 index first VEM= find(T total{:,1}==1stnumber VEM);
13 index first EndVEM= find(T total{:,1}==Lastnumber VEM);
14 index first 2mat= find(T total{:,1}==1stnumber 2mat);
15 %Table with VEM and Material 2(Constraining Material) layer elements
16 T vem=T total(index first VEM:index first EndVEM,:);
17 T 2mat=T total(index first 2mat:end,:);
18

19 %Sum of total modal Strain energy
20 Sum Etotal=sum(T total{:,2});
21

22 %Loss factor of VEM
23 eta VEM=1;
24 %Sum of VEM modal Strain Energy
25 Sum Evem=sum(T vem{:,2}.*eta VEM);
26

27 %Loss factor of the stucture by MSE method
28 eta structure=(Sum Evem)/Sum Etotal

F.M.M. Matos Master Degree



Appendix D

Circle Fit method

The Circle Fit method is a SDOF method based on circle fitting the FRF plots in
the surroundings of resonance. The Nyquist plot is a parametric plot of a frequency
response, whose properties produce circle-kind curves. An exact circle can be obtained
if the damping model parameter is chosen properly [4].

D.1 SDOF Assumption

In this section it is provided the assumptions and basis which this method is founded.
The method takes advantage of the fact that in the surrounding of a resonance, the
majority of the systems’ behaviour is dominated by a single mode [4]. Therefore, the
magnitude of the FRF is controlled by one of the terms in the series related to the mode
whose resonance is being observed. The assumption mentioned can be expressed by a
partial fractions series to represent the FRF receptance as follows [4],

αjk(ω) =
N∑
s=1

sAjk
ω2
s − ω2 + iηsω2

s

(D.1)

The expression above can be rewritten without simplification as [4],

αjk(ω) =
rAjk

ω2
r − ω2 + iηrω2

r

+

N∑
s=16=r

sAjk
ω2
s − ω2 + iηsω2

s

(D.2)

For a small range of frequency in the surroundings of the natural frequency of mode
r, it’s possible to assume that the second term on Equation D.2 is approximately inde-
pendent of the frequency ω. Therefore, the receptance can be written as [4],

αjk(ω) =
rAjk

ω2
r − ω2 + iηrω2

r

+r Bjk (D.3)

D.2 Properties of the Modal Circle

Knowing that an individual modal circle can be obtained from a FRF plot, it’s explored
in this section the properties of the modal circle that can provide the required modal
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100 D.Circle Fit method

parameters. Since the effect of modal constant rAjk is to scale the size and rotate the
circle, it’s considered that [4],

α =
1

ω2
r (1− (ω/ωr)2 + iηr)

(D.4)

Figure D.1 represent the plot of the quantity α. For any frequency ω, it is possible
to write the following relations [4],

tanγ =
ηr

1− (ω/ωr)2
(D.5)

tan(90◦ − γ) = tan

(
θ

2

)
=

1− (ω/ωr)
2

ηr
(D.6)

From which is obtained,

ω2 = ω2
r

(
1− ηrtan

(
θ

2

))
(D.7)

Equation D.8 is obtained by differentiation of Equation D.7 with respect to θ [4].

dω2

dθ
= −ηrω

2
r

2

(
1 +

(
1− (ω/ωr)

2

ηr

)2
)

(D.8)

The reciprocal of the above quantity reaches its maximum value (maximum sweep
rate) when ω = ωr, which corresponds to the natural frequency of the oscillator. The
following differentiation is now performed with respect to frequency as [4],

d

dω

(
dω2

dθ

)
= 0 when (ω2

r − ω2) = 0 (D.9)

An estimation of the damping is provided by the sweep rate parameter as follows [4],(
dθ

dω2

)
ω=ωr

= − 2

ω2
rηr

(D.10)

Equation D.10 is useful for MDOF systems due to the fact that for these systems it
is not known where the natural frequency is. However, for the Circle Fit method it is
possible to obtain its value.

Considering two specific points on the circle, one at frequency ωb bellow the natural
frequency and other at frequency ωa above the natural one. Having in consideration the
image D.1, it is possible to write [4],

tan

(
θb
2

)
=

1−
(
ωb
ωr

)2
ηr

(D.11)

tan

(
θa
2

)
=

(
ωa
ωr

)2
− 1

ηr
(D.12)
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Figure D.1: Properties of modal circle [4].

According to the equations mentioned, it is obtainable the modal damping as [4],

ηr =
ω2
a − ω2

b

ω2
r

(
tan

(
θa
2

)
+ tan

(
θb
2

)) (D.13)

For levels of damping lower than 2-3%, Equation D.13 can be simplified to [4],

ηr ≡
2(ωa − ωb)

ωr

(
tan

(
θa
2

)
+ tan

(
θb
2

)) (D.14)

In the case that θa = θb = 90◦, called the half-power points, the damping formula is
reduced to the familiar one [4],

ηr =
ωa − ωb
ωr

(D.15)

If the damping considered is not light [4],

ηr =
ω2
a − ω2

b

2ω2
r

(D.16)

Finally, the diameter of the circle, for the quantity specified in Equation D.4, is given
by 1/ω2

rηr. When scaled by a modal constant, the diameter is given by [4].

rDjk =
|rAjk|
ω2
rηr

(D.17)
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Appendix E

Numerical Results for the other
natural modes

E.1 Beam-kind models

Table E.1: Distribution of the modal strain energy (2nd mode) for the beam models
developed with free boundary conditions.

2nd natural mode

Nomenc.

ILD2

ILD2 1D 1

ILD2 1D 2

ILD2 1D 3

ILD2 1D 4
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104 E.Numerical Results for the other natural modes

Continuation of Table E.1

ILD2 1D 5

ILD2 1D 6

ILD2 1D 7

ILD2 1D 8

Table E.2: Distribution of the modal strain energy (3rd mode) for the beam models
developed with free boundary conditions.

3rd natural mode

Nomenc.

ILD2

ILD2 1D 1

ILD2 1D 2

ILD2 1D 3

F.M.M. Matos Master Degree
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Continuation of Table E.2

ILD2 1D 4

ILD2 1D 5

ILD2 1D 6

ILD2 1D 7

ILD2 1D 8

Table E.3: Distribution of the modal strain energy (4th mode) for the beam models
developed with free boundary conditions.

4th natural mode

Nomenc.

ILD2

ILD2 1D 1

ILD2 1D 2

F.M.M. Matos Master Degree
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Continuation of Table E.3

ILD2 1D 3

ILD2 1D 4

ILD2 1D 5

ILD2 1D 6

ILD2 1D 7

ILD2 1D 8

E.2 Plate-kind models

E.2.1 Square plate models

2D wave models

Table E.4: Distribution of the modal strain energy (2nd mode) for the 2D wave models
developed with free boundary conditions.

2nd natural mode

Nomenc.

F.M.M. Matos Master Degree
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Continuation of Table E.4

ILD2

ILD2 2D 0.5

ILD2 2D 1

Table E.5: Distribution of the modal strain energy (3rd mode) for the 2D wave models
developed with free boundary conditions.

3rd natural mode

Nomenc.

ILD2

F.M.M. Matos Master Degree
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Continuation of Table E.5

ILD2 2D 0.5

ILD2 2D 1

Table E.6: Distribution of the modal strain energy (4th mode) for the 2D wave models
developed with free boundary conditions.

4th natural mode

Nomenc.

ILD2

ILD2 2D 0.5

F.M.M. Matos Master Degree
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Continuation of Table E.6

ILD2 2D 1

Table E.7: Distribution of the modal strain energy (5th mode) for the 2D wave models
developed with free boundary conditions.

5th natural mode

Nomenc.

ILD2

ILD2 2D 0.5

ILD2 2D 1

F.M.M. Matos Master Degree
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Interlaced models

Table E.8: Distribution of the modal strain energy (2nd mode) for the ILD square models
developed with free boundary conditions.

2nd natural mode

Nomenc.

ILD2

ILD2 IL2

ILD2 IL4

ILD2 IL8

F.M.M. Matos Master Degree
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Table E.9: Distribution of the modal strain energy (3rd mode) for the ILD square models
developed with free boundary conditions.

3rd natural mode

Nomenc.

ILD2

ILD2 IL2

ILD2 IL4

ILD2 IL8

F.M.M. Matos Master Degree
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Table E.10: Distribution of the modal strain energy (4th mode) for the ILD square
models developed with free boundary conditions.

4th natural mode

Nomenc.

ILD2

ILD2 IL2

ILD2 IL4

ILD2 IL8

F.M.M. Matos Master Degree
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Table E.11: Distribution of the modal strain energy (5th mode) for the ILD square
models developed with free boundary conditions.

5th natural mode

Nomenc.

ILD2

ILD2 IL2

ILD2 IL4

ILD2 IL8

F.M.M. Matos Master Degree
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Table E.12: Distribution of the modal strain energy (2nd mode) for the CLD square
models developed with free boundary conditions.

2nd natural mode

Nomenc.

CLD0.25

CLD0.25 IL2

Table E.13: Distribution of the modal strain energy (3rd mode) for the CLD square
models developed with free boundary conditions.

3rd natural mode

Nomenc.

CLD0.25

F.M.M. Matos Master Degree
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Continuation of Table E.13

CLD0.25 IL2

Table E.14: Distribution of the modal strain energy (4th mode) for the CLD square
models developed with free boundary conditions.

4th natural mode

Nomenc.

CLD0.25

CLD0.25 IL2

F.M.M. Matos Master Degree



116 E.Numerical Results for the other natural modes

Table E.15: Distribution of the modal strain energy (5th mode) for the CLD square
models developed with free boundary conditions.

5th natural mode

Nomenc.

CLD0.25

CLD0.25 IL2

Table E.16: Distribution of the modal strain energy (2nd mode) for the FLD square
models without constraining stripes developed with free boundary conditions.

2nd natural mode

Nomenc.

FLD2

F.M.M. Matos Master Degree
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Continuation of Table E.16

FLD2 IL2

FLD2 IL4

Table E.17: Distribution of the modal strain energy (3rd mode) for the FLD square
models without constraining stripes developed with free boundary conditions.

3rd natural mode

Nomenc.

FLD2

FLD2 IL2

F.M.M. Matos Master Degree
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Continuation of Table E.17

FLD2 IL4

Table E.18: Distribution of the modal strain energy (4th mode) for the FLD square
models without constraining stripes developed with free boundary conditions.

4th natural mode

Nomenc.

FLD2

FLD2 IL2

FLD2 IL4

F.M.M. Matos Master Degree
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Table E.19: Distribution of the modal strain energy (5th mode) for the FLD square
models without constraining stripes developed with free boundary conditions.

5th natural mode

Nomenc.

FLD2

FLD2 IL2

FLD2 IL4

F.M.M. Matos Master Degree
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Table E.20: Distribution of the modal strain energy (2nd mode) for the FLD square
models with single layered constraining stripes developed with free boundary conditions.

2nd natural mode

Nomenc. 2 stripes 4 stripes

FLD2 IL C70

FLD2 IL C50

FLD2 IL C10

FLD2 IL C1

F.M.M. Matos Master Degree
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Table E.21: Natural frequency values (2nd mode) for the FLD square models with single
layered constraining stripes.

mode 2 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 520.211 537.374

FLD2 IL C50 504.437 515.037

FLD2 IL C10 469.009 469.008

FLD2 IL C1 456.873 455.877

Table E.22: Normalized loss factor values (2nd mode) for the FLD square models with
single layered constraining stripes.

mode 2 Normalized loss Factor [%]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 2.99 0.36

FLD2 IL C50 2.46 0.29

FLD2 IL C10 0.83 0.16

FLD2 IL C1 0.05 0.04

Table E.23: Distribution of the modal strain energy (3rd mode) for the FLD square
models with single layered constraining stripes developed with free boundary conditions.

3rd natural mode

Nomenc. 2 stripes 4 stripes

FLD2 IL C70

FLD2 IL C50

F.M.M. Matos Master Degree
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Continuation of Table E.23

FLD2 IL C10

FLD2 IL C1

Table E.24: Natural frequency values (3rd mode) for the FLD square models with single
layered constraining stripes.

mode 3 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 636.144 658.015

FLD2 IL C50 632.133 648.355

FLD2 IL C10 584.902 584.868

FLD2 IL C1 566.327 564.997

Table E.25: Normalized loss factor values (3rd mode) for the FLD square models with
single layered constraining stripes.

mode 3 Normalized loss Factor [%]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 2.38 0.34

FLD2 IL C50 2.27 0.32

FLD2 IL C10 0.93 0.18

FLD2 IL C1 0.11 0.08

F.M.M. Matos Master Degree
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Table E.26: Distribution of the modal strain energy (4th mode) for the FLD square
models with single layered constraining stripes developed with free boundary conditions.

4th natural mode

Nomenc. 2 stripes 4 stripes

FLD2 IL C70

FLD2 IL C50

FLD2 IL C10

FLD2 IL C1

F.M.M. Matos Master Degree
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Table E.27: Natural frequency values (4th mode) for the FLD square models with single
layered constraining stripes.

mode 4 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 907.239 931.651

FLD2 IL C50 884.910 899.954

FLD2 IL C10 828.668 827.265

FLD2 IL C1 809.439 805.756

Table E.28: Normalized loss factor values (4th mode) for the FLD square models with
single layered constraining stripes.

mode 4 Normalized loss Factor [%]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 2.69 0.63

FLD2 IL C50 2.31 0.57

FLD2 IL C10 0.83 0.25

FLD2 IL C1 0.10 0.08

Table E.29: Distribution of the modal strain energy (5th mode) for the FLD square
models with single layered constraining stripes developed with free boundary conditions.

5th natural mode

Nomenc. 2 stripes 4 stripes

FLD2 IL C70

FLD2 IL C50

F.M.M. Matos Master Degree
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Continuation of Table E.29

FLD2 IL C10

FLD2 IL C1

Table E.30: Natural frequency values (5th mode) for the FLD square models with single
layered constraining stripes.

mode 5 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 927.741 938.985

FLD2 IL C50 900.487 906.400

FLD2 IL C10 831.908 829.934

FLD2 IL C1 809.965 806.933

Table E.31: Normalized loss factor values (5th mode) for the FLD square models with
single layered constraining stripes.

mode 5 Normalized loss Factor [%]

Nomenclature 2 stripes 4 stripes

FLD2 IL C70 2.08 0.82

FLD2 IL C50 1.72 0.74

FLD2 IL C10 0.53 0.29

FLD2 IL C1 0.06 0.05

F.M.M. Matos Master Degree
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Table E.32: Distribution of the modal strain energy (2nd mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - top view.

2nd natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70

FLD2 IL C70 2a

FLD2 IL C70 2b

Table E.33: Distribution of the modal strain energy (2nd mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - bottom view.

2nd natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70

F.M.M. Matos Master Degree
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Continuation of Table E.33

FLD2 IL C70 2a

FLD2 IL C70 2b

Table E.34: Natural frequency values (2nd mode) for the FLD square models with single
and double layered constraining stripes.

mode 2 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 520.211 537.374 540.574

FLD2 IL C70 2a 523.995 589.833 604.769

FLD2 IL C70 2b 502.355 520.159 523.248

Table E.35: Normalized loss factor values (2nd mode) for the FLD square models with
single and double layered constraining stripes.

mode 2 Normalized Loss Factor [1/kg]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 2.99 0.36 0.19

FLD2 IL C70 2a 3.64 0.54 0.36

FLD2 IL C70 2b 6.06 5.36 5.56

Table E.36: Distribution of the modal strain energy (3rd mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - top view.

3rd natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

F.M.M. Matos Master Degree
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Continuation of Table E.36

FLD2 IL C70

FLD2 IL C70 2a

FLD2 IL C70 2b

Table E.37: Distribution of the modal strain energy (3rd mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - bottom view.

3rd natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70

FLD2 IL C70 2a

F.M.M. Matos Master Degree
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Continuation of Table E.37

FLD2 IL C70 2b

Table E.38: Natural frequency values (3rd mode) for the FLD square models with single
and double layered constraining stripes.

mode 3 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 636.144 658.015 660.605

FLD2 IL C70 2a 628.705 705.941 720.70

FLD2 IL C70 2b 609.277 629.842 631.944

Table E.39: Normalized loss factor values (3rd mode) for the FLD square models with
single and double layered constraining stripes.

mode 3 Normalized Loss Factor [1/kg]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 2.38 0.34 0.23

FLD2 IL C70 2a 2.90 0.51 0.38

FLD2 IL C70 2b 4.22 3.68 3.81

Table E.40: Distribution of the modal strain energy (4th mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - top view.

4th natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70

F.M.M. Matos Master Degree
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Continuation of Table E.40

FLD2 IL C70 2a

FLD2 IL C70 2b

Table E.41: Distribution of the modal strain energy (4th mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - bottom view.

4th natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70

FLD2 IL C70 2a

FLD2 IL C70 2b

F.M.M. Matos Master Degree
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Table E.42: Natural frequency values (4th mode) for the FLD square models with single
and double layered constraining stripes.

mode 4 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 907.239 931.651 939.173

FLD2 IL C70 2a 892.816 979.178 1012.674

FLD2 IL C70 2b 865.0234 886.664 892.447

Table E.43: Normalized loss factor values (4th mode) for the FLD square models with
single and double layered constraining stripes.

mode 4 Normalized Loss Factor [1/kg]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 2.69 0.63 0.20

FLD2 IL C70 2a 3.32 0.82 0.40

FLD2 IL C70 2b 3.61 2.72 2.61

Table E.44: Distribution of the modal strain energy (5th mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - top view.

5th natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70

FLD2 IL C70 2a

FLD2 IL C70 2b

F.M.M. Matos Master Degree
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Table E.45: Distribution of the modal strain energy (5th mode) for the FLD square
models with single and double layered constraining stripes developed with free boundary
conditions - bottom view.

5th natural mode

Nomenc. 2 stripes 4 stripes 8 stripes

FLD2 IL C70

FLD2 IL C70 2a

FLD2 IL C70 2b

Table E.46: Natural frequency values (5th mode) for the FLD square models with single
and double layered constraining stripes.

mode 5 Natural Frequencies [Hz]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 927.741 938.985 947.569

FLD2 IL C70 2a 947.427 987.466 1025.559

FLD2 IL C70 2b 883.579 891.146 898.888

Table E.47: Normalized loss factor values (5th mode) for the FLD square models with
single and double layered constraining stripes.

mode 5 Normalized Loss Factor [1/kg]

Nomenclature 2 stripes 4 stripes 8 stripes

FLD2 IL C70 2.08 0.82 0.33

FLD2 IL C70 2a 2.80 0.87 0.36

FLD2 IL C70 2b 3.40 2.40 2.35
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E.2.2 Rectangular plate models

Table E.48: Distribution of the modal strain energy (2nd mode) for the CLD rectangular
models developed with free boundary conditions.

2nd natural mode

Nomenc.

CLD0.5

CLD0.5 IL2

Table E.49: Distribution of the modal strain energy (3rd mode) for the CLD rectangular
models developed with free boundary conditions.

3rd natural mode

Nomenc.

CLD0.5
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Continuation of Table E.49

CLD0.5 IL2

Table E.50: Distribution of the modal strain energy (4th mode) for the CLD rectangular
models developed with free boundary conditions.

4th natural mode

Nomenc.

CLD0.5

CLD0.5 IL2

Table E.51: Distribution of the modal strain energy (5th mode) for the CLD rectangular
models developed with free boundary conditions.

5th natural mode

Nomenc.
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Continuation of Table E.51

CLD0.5

CLD0.5 IL2

Table E.52: Distribution of the modal strain energy (2nd mode) for the FLD rectangular
models developed with free boundary conditions.

2nd natural mode

Nomenc.

FLD2

FLD2 IL2 C70

FLD2 IL2 C70 2b
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Table E.53: Distribution of the modal strain energy (3rd mode) for the FLD rectangular
models developed with free boundary conditions.

3rd natural mode

Nomenc.

FLD2

FLD2 IL2 C70

FLD2 IL2 C70 2b

Table E.54: Distribution of the modal strain energy (4th mode) for the FLD rectangular
models developed with free boundary conditions.

4th natural mode

Nomenc.

FLD2
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Continuation of Table E.54

FLD2 IL2 C70

FLD2 IL2 C70 2b

Table E.55: Distribution of the modal strain energy (5th mode) for the FLD rectangular
models developed with free boundary conditions.

5th natural mode

Nomenc.

FLD2

FLD2 IL2 C70

FLD2 IL2 C70 2b
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Table E.56: Distribution of the modal strain energy (2nd mode) for the ILD rectangular
model developed with free boundary conditions.

2nd natural mode

Nomenc.

ILD1

Table E.57: Distribution of the modal strain energy (3rd mode) for the ILD rectangular
model developed with free boundary conditions.

3rd natural mode

Nomenc.

ILD1

Table E.58: Distribution of the modal strain energy (4th mode) for the ILD rectangular
model developed with free boundary conditions.

4th natural mode

Nomenc.
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Continuation of Table E.58

ILD1

Table E.59: Distribution of the modal strain energy (5th mode) for the ILD rectangular
model developed with free boundary conditions.

5th natural mode

Nomenc.

ILD1

Table E.60: Distribution of the modal strain energy (2nd mode) for the plate without
treatment with free boundary conditions.

2nd natural mode

Nomenc.

Plain
Plate
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Table E.61: Distribution of the modal strain energy (3rd mode) for the plate without
treatment with free boundary conditions.

3rd natural mode

Nomenc.

Plain
Plate

Table E.62: Distribution of the modal strain energy (4th mode) for the plate without
treatment with free boundary conditions.

4th natural mode

Nomenc.

Plain
Plate

Table E.63: Distribution of the modal strain energy (5th mode) for the plate without
treatment with free boundary conditions.

5th natural mode

Nomenc.
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Continuation of Table E.63

Plain
Plate
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