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1. INTRODUCTION

The construction of observers to estimate the state or
a linear function thereof is an important issue in the
classical theory of linear 1D state space systems and its
applications (see, for instance, Basile and Marro [1969],
Trentelman et al. [2001], and corresponding references).
This question has also deserved the attention of researchers
in the field of multidimensional systems, having given rise
to a considerable body of results both for Roesser and
Fornasini-Marchesini models, Conte and Perdon [1988],
Ntogramatzidis and Cantoni [2012], Ntogramatzidis et al.
[2008].

In this paper, we consider the more general case of mul-
tidimensional behavioral systems, and study the problem
of estimation inspired by the behavioral theory of 1D ob-
servers, Valcher and Willems [1999], Trumpf et al. [2011],
by the classical theory of observers and detectability sub-
spaces (see Trentelman et al. [2001] and the references
therein), and by our own results on observers and de-
tectability subspaces for behavioral nD systems, Pereira
and Rocha [2019], as well as for 2D behavioral systems,
Bisiacco and Valcher [2008].

More concretely, we focus on discrete multidimensional
behaviors with split variable (w,w1), where w1 is measured
and w is not available for measurement, and consider the
problem of estimating a linear function w2 of the com-
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ponents of w and their shifts using a suitable asymptotic
observer. This observer produces an estimate ŵ2 of w2 such
that the corresponding error e := ŵ2−w2 is stable with re-
spect to a prespecified nD cone S, i.e., lim

λ → +∞
λ ∈ N

e(λ−→v ) = 0

for every direction −→v contained in S, Rocha [2008], Pillai
and Shankar [1998]. Besides this problem, we also consider
the case where an unknown disturbance is present.

The paper is organized as follows. Section 2 contains the
necessary background material. Section 3 is devoted to the
definition and solution (when possible) of two (determin-
istic) variable estimation problems: the first one without
disturbances, and the second one with the presence of
an unknown disturbance. Concluding remarks are left to
Section 4.

2. PRELIMINARIES

As mentioned in the Introduction, we consider discrete
multidimensional behaviors. More concretely, we assume
that the corresponding admissible signals w are defined
over Zn, take values on Rw, for some suitable positive
integer w, and are the solutions of a system of linear partial
difference equations with constant coefficients that can be
written in matrix form as:

H(σ, σ−1)w ≡ 0, (1)

where σ = (σ1, . . . , σn), σ
−1 = (σ−1

1 , . . . , σ−1
n ), the σi’s are

the elementary nD shifts and H(s, s−1) is an nD Laurent-
polynomial matrix in the indeterminates s = (s1, . . . , sn).
The nD behavior Bw described by (1) coincides with
kerH(σ, σ−1), when the operator H(σ, σ−1) acts on the
universe Uw := (Rw)Z

n

of the variable w.
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that the corresponding error e := ŵ2−w2 is stable with re-
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For the sake of simplicity, we sometimes omit the
shift operators (indeterminates) and write H instead of
H(σ, σ−1) (H(s, s−1)).

We next recall some definitions and results that will be
used throughout the paper.

2.1 Behavior inclusion and quotient

Given two nD behaviors B1
w = kerH1 and B2

w = kerH2,
B1
w ⊂ B2

w if and only if there exists an nD Laurent-
polynomial matrix E(s, s−1) such that H2(s, s

−1) =
E(s, s−1)H1(s, s

−1), Oberst [1990], Zerz [2000].

The quotient B2
w/B1

w has the structure of a behavior and

can be identified with kerM where M :=
[
E� L�]�

and L(s, s−1) is a minimal left annihilator (MLA) of H1,
i.e., LH1 = 0 and if Q(s, s−1) is such that QH1 = 0
then Q = ML for some nD Laurent-polynomial matrix
M(s, s−1), Rocha and Wood [2001].

2.2 Autonomy

Here we define an autonomous behavior Bw as a behavior
where none of the components wi, i = 1, . . . , w, of the
variable w is free, i.e., no wi can be arbitrarily assigned
as a function from Zn to R. It turns out that Bw = kerH
is autonomous if and only if the nD Laurent-polynomial
matrix H(s, s−1) has full column rank (over the ring of nD
Laurent-polynomials R[s, s−1]), Zerz [2000].

2.3 Stability

The definition of stability used in this paper is the one
introduced in Rocha [2008]. However, most of our results
also apply to other stability notions, such as for instance
the one introduced in Valcher [2000].

In order to formalize our stability property, we start by
defining a direction in Zn as an element −→v = (v1, . . . , vn)
with integer coprime components. A stability cone S in Zn

is the set of all positive integer linear combinations of n
linearly independent directions.

Given a stability cone S ⊂ Zn, a signal w ∈ (Rw)Z
n

is said
to be S-stable if lim

λ → +∞
λ ∈ N

w(λ−→v ) = 0 for every direction

−→v ∈ S. A behavior Bw is said to be S-stable if all the
signals w ∈ Bw are S-stable. According to what was shown
in Rocha [2008] an nD behavior Bw = kerH(σ, σ−1) is S-
stable if and only if H(s, s−1) has full column rank w (over
R[s, s−1]) and, moreover, the following conditions hold:

V(Bw) :=
{
λ ∈ (C \ {0})n : rank H(λ, λ−1) < w

}

is finite; for all λ ∈ V(Bw) and every direction
−→v = (k1, . . . , kn) ∈ S,

∣∣∣λk1
1 . . . λkn

n

∣∣∣ < 1. In this case, we

also say that the Laurent-polynomial matrix H(s, s−1) is
S-stable.

Note that, in particular, S-stability implies autonomy
and finite-dimensionality, i.e., strong autonomy Pillai and
Shankar [1998].

2.4 Behaviors with split variables and variable elimination

Although in the behavioral approach the system variable
is not a priori partitioned into inputs and outputs, there
are situations where it is convenient to consider it to be
split into a certain number of “sub-variables” (that do not
necessarily correspond to inputs and outputs).

An nD behavior B(w1,w2) with split variable (w1, w2),

w1 ∈ (Rw1)Z
n

and w2 ∈ (Rw2)Z
n

can be described by a
set of linear nD difference equations of the form:

H2(σ, σ
−1)w2 = H1(σ, σ

−1)w1, (2)

where, H1(s, s
−1) and H2(s, s

−1) are nD Laurent-poly-
nomial matrices with the same number of rows and, re-
spectively, w1 and w2 columns.

The w2-behavior induced by (2) is defined as the projec-
tion of B(w1,w2) into the universe of w2, (Rw2)Z

n

, i.e.,

Πw2
(B(w1,w2)) =

={w2 ∈ (Rw2)
Zn

| ∃ w1∈(Rw1)
Zn

: (w1, w2) ∈ B(w1,w2)}

The variable elimination property, Oberst [1990], states
that Πw2(B(w1,w2)) can be described as

Πw2
(B(w1,w2)) = kerL(σ, σ−1)H2(σ, σ

−1),

where the nD Laurent-polynomial matrix L(s, s−1) is an
MLA of H1(s, s

−1).

Similar results also obviously hold when the roles of w1

and w2 are interchanged.

2.5 Asymptotic observers

Given an nD behavior B(w1,w2) with measured variables
w1 and to-be-estimated variables w2, an observer for w2

from w1 is a behavior B̂
(w1,ŵ2)

where w1 is the measured

variable (shared with B(w1,w2)) and ŵ2 is an estimate of
w2. The error of this estimate is defined as e := ŵ2 − w2,
and the corresponding behavior, known as error behavior,
is denoted by Be.

The observer B̂
(w1,ŵ2)

is said to be an S-asymptotic ob-

server if Be is S-stable (where S is a given stability cone).
If an S-asymptotic observer for w2 from w1 exists, w2 is
said to be S-detectable from w1.

Let Nw2

(
B(w1,w2)

)
be the set of all the signals w2 that are

compatible with w1 ≡ 0, i.e.,

Nw2

(
B(w1,w2)

)
= {w2 | (0, w2) ∈ B(w1,w2)}.

This set is known as the hidden behavior, Trumpf et al.
[2011], Pereira and Rocha [2019].



 Ricardo Pereira  et al. / IFAC PapersOnLine 53-2 (2020) 4310–4315 4311

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

For the sake of simplicity, we sometimes omit the
shift operators (indeterminates) and write H instead of
H(σ, σ−1) (H(s, s−1)).

We next recall some definitions and results that will be
used throughout the paper.

2.1 Behavior inclusion and quotient

Given two nD behaviors B1
w = kerH1 and B2

w = kerH2,
B1
w ⊂ B2

w if and only if there exists an nD Laurent-
polynomial matrix E(s, s−1) such that H2(s, s

−1) =
E(s, s−1)H1(s, s

−1), Oberst [1990], Zerz [2000].

The quotient B2
w/B1

w has the structure of a behavior and

can be identified with kerM where M :=
[
E� L�]�

and L(s, s−1) is a minimal left annihilator (MLA) of H1,
i.e., LH1 = 0 and if Q(s, s−1) is such that QH1 = 0
then Q = ML for some nD Laurent-polynomial matrix
M(s, s−1), Rocha and Wood [2001].

2.2 Autonomy

Here we define an autonomous behavior Bw as a behavior
where none of the components wi, i = 1, . . . , w, of the
variable w is free, i.e., no wi can be arbitrarily assigned
as a function from Zn to R. It turns out that Bw = kerH
is autonomous if and only if the nD Laurent-polynomial
matrix H(s, s−1) has full column rank (over the ring of nD
Laurent-polynomials R[s, s−1]), Zerz [2000].

2.3 Stability

The definition of stability used in this paper is the one
introduced in Rocha [2008]. However, most of our results
also apply to other stability notions, such as for instance
the one introduced in Valcher [2000].

In order to formalize our stability property, we start by
defining a direction in Zn as an element −→v = (v1, . . . , vn)
with integer coprime components. A stability cone S in Zn

is the set of all positive integer linear combinations of n
linearly independent directions.

Given a stability cone S ⊂ Zn, a signal w ∈ (Rw)Z
n

is said
to be S-stable if lim

λ → +∞
λ ∈ N

w(λ−→v ) = 0 for every direction

−→v ∈ S. A behavior Bw is said to be S-stable if all the
signals w ∈ Bw are S-stable. According to what was shown
in Rocha [2008] an nD behavior Bw = kerH(σ, σ−1) is S-
stable if and only if H(s, s−1) has full column rank w (over
R[s, s−1]) and, moreover, the following conditions hold:

V(Bw) :=
{
λ ∈ (C \ {0})n : rank H(λ, λ−1) < w

}

is finite; for all λ ∈ V(Bw) and every direction
−→v = (k1, . . . , kn) ∈ S,

∣∣∣λk1
1 . . . λkn

n

∣∣∣ < 1. In this case, we

also say that the Laurent-polynomial matrix H(s, s−1) is
S-stable.

Note that, in particular, S-stability implies autonomy
and finite-dimensionality, i.e., strong autonomy Pillai and
Shankar [1998].

2.4 Behaviors with split variables and variable elimination

Although in the behavioral approach the system variable
is not a priori partitioned into inputs and outputs, there
are situations where it is convenient to consider it to be
split into a certain number of “sub-variables” (that do not
necessarily correspond to inputs and outputs).

An nD behavior B(w1,w2) with split variable (w1, w2),

w1 ∈ (Rw1)Z
n

and w2 ∈ (Rw2)Z
n

can be described by a
set of linear nD difference equations of the form:

H2(σ, σ
−1)w2 = H1(σ, σ

−1)w1, (2)

where, H1(s, s
−1) and H2(s, s

−1) are nD Laurent-poly-
nomial matrices with the same number of rows and, re-
spectively, w1 and w2 columns.

The w2-behavior induced by (2) is defined as the projec-
tion of B(w1,w2) into the universe of w2, (Rw2)Z

n

, i.e.,

Πw2
(B(w1,w2)) =

={w2 ∈ (Rw2)
Zn

| ∃ w1∈(Rw1)
Zn

: (w1, w2) ∈ B(w1,w2)}

The variable elimination property, Oberst [1990], states
that Πw2(B(w1,w2)) can be described as

Πw2
(B(w1,w2)) = kerL(σ, σ−1)H2(σ, σ

−1),

where the nD Laurent-polynomial matrix L(s, s−1) is an
MLA of H1(s, s

−1).

Similar results also obviously hold when the roles of w1

and w2 are interchanged.

2.5 Asymptotic observers

Given an nD behavior B(w1,w2) with measured variables
w1 and to-be-estimated variables w2, an observer for w2

from w1 is a behavior B̂
(w1,ŵ2)

where w1 is the measured

variable (shared with B(w1,w2)) and ŵ2 is an estimate of
w2. The error of this estimate is defined as e := ŵ2 − w2,
and the corresponding behavior, known as error behavior,
is denoted by Be.

The observer B̂
(w1,ŵ2)

is said to be an S-asymptotic ob-

server if Be is S-stable (where S is a given stability cone).
If an S-asymptotic observer for w2 from w1 exists, w2 is
said to be S-detectable from w1.

Let Nw2

(
B(w1,w2)

)
be the set of all the signals w2 that are

compatible with w1 ≡ 0, i.e.,

Nw2

(
B(w1,w2)

)
= {w2 | (0, w2) ∈ B(w1,w2)}.

This set is known as the hidden behavior, Trumpf et al.
[2011], Pereira and Rocha [2019].
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If the behavior B(w1,w2) is described by

R2(σ, σ
−1)w2 = R1(σ, σ

−1)w1, (3)

then Nw2

(
B(w1,w2)

)
= kerR2.

As shown in Pereira and Rocha [2019], w2 is S-detectable
from w1 (in B(w1,w2)) if and only if Nw2

(
B(w1,w2)

)
=

kerR2 is S-stable.

3. BEHAVIORAL ESTIMATION

In this section we study the problem of estimating a linear
combination of the components of a non-measured variable
and corresponding nD shifts. First we assume that no
disturbances are present, and later we consider the case
where the system is perturbed by an unknown disturbance.

3.1 The behavior estimation (BE) problem

We define the BE problem as follows.

Let B(w1,w2) be an nD behavior described by (3), i.e.,

R2(σ, σ
−1)w2 = R1(σ, σ

−1)w1,

where the variable w1 is measured and w2 is not available
for measurement. Let further

z = K(σ, σ−1)w2, (4)

where K(s, s−1) is a full row rank Laurent-polynomial
matrix, be a linear function of the components of w2 and
their shifts.

Given an nD stability cone S, the behavioral estimation
problem (BE problem) consists in designing (if possible) a
(deterministic) estimator

N(σ, σ−1)ẑ = P (σ, σ−1)w1 (5)

for z from w1, such that the corresponding estimation error
e := ẑ − z is S-stable.

The solvability conditions and the construction of a suit-
able estimator, in case it exists, are given in the next
theorem and its proof.

Theorem 1. Let B(w1,w2) be an nD behavior described
by (3), where the only variable available for measurement
is w1. Let further z be defined by (4), and consider an
nD stability cone S. Then, the BE problem is solvable if
and only if Nw2

(
B(w1,w2)

)
⊂ kerQK for some S-stable nD

Laurent-polynomial matrix Q(s, s−1).

Proof.

“If part:” Recall that Nw2

(
B(w1,w2)

)
= kerR2. Moreover,

the condition kerR2 ⊂ kerQK is equivalent to the exis-
tence of an nD Laurent polynomial matrix T (s, s−1) such
that QK = TR2.

Define the following estimator for w2 from w1:

TR2ŵ2 = TR1w1. (6)

Equation (3) implies that

TR2w2 = TR1w1, (7)

which, together with (6) leads to

TR2(ŵ2 − w2) = 0. (8)

Now, define
ẑ := Kŵ2 (9)

as an estimate for z. Since, by (4), z = Kw2, this implies
that the estimation error e = ẑ − z is such that

e = K(ŵ2 − w2). (10)

Because, by assumption QK = TR2, we have by (8)
and (10) that

Qe = QK(ŵ2 − w2) = TR2(ŵ2 − w2) = 0. (11)

Thus, the estimation error e belongs to kerQ, and, since
Q is S-stable, the same applies to e.

In order to finish this part of the proof it is enough to note
that the estimator{

TR2ŵ2 = TR1w1

ẑ = Kŵ2

(12)

gives rise to an estimator expressed only in terms of ẑ
and w1 by eliminating the variable ŵ2 from (12). This is
achieved by writing (12) as:[

TR2

K

]
ŵ2 =

[
TR1 0

0 I

] [
w1

ẑ

]
(13)

and applying to both sides of (13) the operator[
−A(σ, σ−1) B(σ, σ−1)

]
corresponding to an MLA

[
−A(s, s−1) B(s, s−1)

]
of

[
TR2

K

]
. Taking into account

that TR2 = QK and that K has full row rank, [−A B] =
[−I Q]. This yields

[−I Q]

[
TR1 0

0 I

] [
w1

ẑ

]
= 0

⇔ −TR1w1 +Qẑ = 0

⇔ Qẑ = TR1w1,

which is the form (5) with N = Q and P = TR1.

“Only if part” Assume that the BE problem is solvable,
i.e., that there exists an estimator for z from w1 given by
the (matrix) equations

N(σ, σ−1)ẑ = P (σ, σ−1)w1

such that the corresponding estimator error is stable. The
behavior Be of the estimation error e := ẑ − z can be
obtained from the equations


0
0
0
I


 e =



R2 −R1 0 0
K 0 −I 0
0 P 0 −N
0 0 −I I




︸ ︷︷ ︸



w2

w1

z
ẑ


 .

=: R

(14)

Applying to both sides of (14) the operator[
W (σ, σ−1) X(σ, σ−1) Y (σ, σ−1) Z(σ, σ−1)

]
,

where [
W (s, s−1) X(s, s−1) Y (s, s−1) Z(s, s−1)

]

is an MLA of R(s, s−1), the variables w2, w1, z and ẑ are
eliminated from (14), yielding the equation:

Z(σ, σ−1)e = 0, (15)

that describes the behavior Be. Because [W X Y Z] is an

MLA of R, the following equalities hold:



WR2 +XK = 0 (16)

−WR1 + Y P = 0 (17)

−X − Z = 0 (18)

−Y N + Z = 0. (19)

In particular, it follows from (19) that (15) is equivalent
to:

Y (σ, σ−1)N(σ, σ−1)e = 0

and hence Be = kerY N . Since Be is, by assumption, S-
stable, the matrix Y N must be S-stable.

Now, from equations (16) and (18)-(19) we respectively
get: {

WR2 = −XK

−X = Y N

which implies that

WR2 = Y NK.

This allows to conclude that

Nw2

(
B(w1,w2)

)
= kerR2 ⊂ kerQK

with Q = Y N S-stable.

Remark 2. As already mentioned, the condition
Nw2

(
B(w1,w2)

)
= kerR2 ⊂ kerQK, for some S-stable

Laurent-polynomial matrix, is equivalent to the existence
of a Laurent-polynomial matrix T (s, s−1) such that QK =
TR2. Writing this equality as

[−T Q]

[
R2

K

]
= 0

we conclude that [−T Q] is an annihilator of

[
R2

K

]
. There-

fore there exists a Laurent-polynomial matrix G(s, s−1)
such that

[−T Q] = G [−F E] , (20)

where [−F E] is an MLA of

[
R2

K

]
. Clearly, (20) implies

that
Q = GE.

Consequently, kerE(σ, σ−1) ⊂ kerQ(σ, σ−1) and, since
kerQ is S-stable, the same must hold for kerE, meaning
that E(s, s−1) is an S-stable matrix. �

The previous remark leads to the following corollary of
Theorem 1.

Corollary 3. Let B(w1,w2) be an nD behavior described
by (3), where the only variable available for measurement
is w1. Let further z be defined as in (4), and consider an
nD stability cone S. Then, the BE problem is solvable

if and only if every MLA [−F E] of

[
R2

K

]
is such that

E(s, s−1) is an S-stable nD Laurent-polynomial matrix.
In this case, an S-asymptotic estimator for z from w1 is
given by Eẑ = FR1w1.

Proof.

“Only if part:” See Remark 2.

“If part:” Let [−F E] be an MLA of

[
R2

K

]
. Define the

following estimator for w2 from w1:

FR2ŵ2 = FR1w1,

and set ẑ := Kŵ2. Similar to what happens in the proof
of Theorem 1, the estimation error e := ẑ − z is such that
e = K(ŵ2 − w2). Thus,

Ee = EK(ŵ2 − w2) = FR2(ŵ2 − w2)

= FR1w1 − FR1w1 = 0,

and therefore e ∈ kerE. Since, by assumption, E(s, s−1)
is S-stable, the error e is also S-stable.

In this way we conclude that the BE problem is solvable
by means of the estimator obtained by eliminating the
variable w2 from the description{

FR2ŵ2 = FR1w1

ẑ = Kŵ2,

as was done in the proof of Theorem 1. Indeed, taking into
account that FR2 = EK, and that K has full row rank,
we conclude that the (ẑ, w1) behavior corresponding to the
previous equations is given by

Eẑ = FR1w1.

Remark 4. Note that, when the BE problem is solvable,
it is possible to construct an S-asymptotic observer for
w2 from w1 (FR2ŵ2 = FR1w1) with corresponding error
behavior E = kerFR2 = kerEK such that:

• N := Nw2

(
B(w1,w2)

)
= kerR2 ⊂ E and

• E/N is S-stable (as it is isomorphic to a behavior
contained in the S-stable behavior kerE).

This means that the behavior N is an S-detectability
subspace, according to [Pereira and Rocha 2019, Definition
7] �

Example 5. Consider the 2D behavior B(w1,w2) described

by R2(σ1, σ2, σ
−1
1 , σ−1

2 )w2 = R1(σ1, σ2, σ
−1
1 , σ−1

2 )w1 with

R2(s1, s2, s
−1
1 , s−1

2 ) =




s1 +
1

2

(s2 +
1

2
)(s1 + s2 + 1)




and

R1(s1, s2, s
−1
1 , s−1

2 ) =

[
s1 + s2 + 2

s21 + s22

]
.

Assume that the only variable available for measurement
is w1 and, moreover, that one wishes to construct an
estimator for z = K(σ1, σ2, σ

−1
1 , σ−1

2 )w2, where

K(s1, s2, s
−1
1 , s−1

2 ) = s2 +
1
2 ,

with respect to the 2D stability cone S corresponding
to the first quadrant of Z2 (which is generated by the
directions −→v 1 = (1, 0) and −→v 2 = (0, 1)). It is not difficult
to check that:
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that describes the behavior Be. Because [W X Y Z] is an

MLA of R, the following equalities hold:



WR2 +XK = 0 (16)

−WR1 + Y P = 0 (17)

−X − Z = 0 (18)

−Y N + Z = 0. (19)

In particular, it follows from (19) that (15) is equivalent
to:

Y (σ, σ−1)N(σ, σ−1)e = 0

and hence Be = kerY N . Since Be is, by assumption, S-
stable, the matrix Y N must be S-stable.

Now, from equations (16) and (18)-(19) we respectively
get: {

WR2 = −XK

−X = Y N

which implies that

WR2 = Y NK.

This allows to conclude that

Nw2

(
B(w1,w2)

)
= kerR2 ⊂ kerQK

with Q = Y N S-stable.

Remark 2. As already mentioned, the condition
Nw2

(
B(w1,w2)

)
= kerR2 ⊂ kerQK, for some S-stable

Laurent-polynomial matrix, is equivalent to the existence
of a Laurent-polynomial matrix T (s, s−1) such that QK =
TR2. Writing this equality as

[−T Q]

[
R2

K

]
= 0

we conclude that [−T Q] is an annihilator of

[
R2

K

]
. There-

fore there exists a Laurent-polynomial matrix G(s, s−1)
such that

[−T Q] = G [−F E] , (20)

where [−F E] is an MLA of

[
R2

K

]
. Clearly, (20) implies

that
Q = GE.

Consequently, kerE(σ, σ−1) ⊂ kerQ(σ, σ−1) and, since
kerQ is S-stable, the same must hold for kerE, meaning
that E(s, s−1) is an S-stable matrix. �

The previous remark leads to the following corollary of
Theorem 1.

Corollary 3. Let B(w1,w2) be an nD behavior described
by (3), where the only variable available for measurement
is w1. Let further z be defined as in (4), and consider an
nD stability cone S. Then, the BE problem is solvable

if and only if every MLA [−F E] of

[
R2

K

]
is such that

E(s, s−1) is an S-stable nD Laurent-polynomial matrix.
In this case, an S-asymptotic estimator for z from w1 is
given by Eẑ = FR1w1.

Proof.

“Only if part:” See Remark 2.

“If part:” Let [−F E] be an MLA of

[
R2

K

]
. Define the

following estimator for w2 from w1:

FR2ŵ2 = FR1w1,

and set ẑ := Kŵ2. Similar to what happens in the proof
of Theorem 1, the estimation error e := ẑ − z is such that
e = K(ŵ2 − w2). Thus,

Ee = EK(ŵ2 − w2) = FR2(ŵ2 − w2)

= FR1w1 − FR1w1 = 0,

and therefore e ∈ kerE. Since, by assumption, E(s, s−1)
is S-stable, the error e is also S-stable.

In this way we conclude that the BE problem is solvable
by means of the estimator obtained by eliminating the
variable w2 from the description{

FR2ŵ2 = FR1w1

ẑ = Kŵ2,

as was done in the proof of Theorem 1. Indeed, taking into
account that FR2 = EK, and that K has full row rank,
we conclude that the (ẑ, w1) behavior corresponding to the
previous equations is given by

Eẑ = FR1w1.

Remark 4. Note that, when the BE problem is solvable,
it is possible to construct an S-asymptotic observer for
w2 from w1 (FR2ŵ2 = FR1w1) with corresponding error
behavior E = kerFR2 = kerEK such that:

• N := Nw2

(
B(w1,w2)

)
= kerR2 ⊂ E and

• E/N is S-stable (as it is isomorphic to a behavior
contained in the S-stable behavior kerE).

This means that the behavior N is an S-detectability
subspace, according to [Pereira and Rocha 2019, Definition
7] �

Example 5. Consider the 2D behavior B(w1,w2) described

by R2(σ1, σ2, σ
−1
1 , σ−1

2 )w2 = R1(σ1, σ2, σ
−1
1 , σ−1

2 )w1 with

R2(s1, s2, s
−1
1 , s−1

2 ) =




s1 +
1

2

(s2 +
1

2
)(s1 + s2 + 1)




and

R1(s1, s2, s
−1
1 , s−1

2 ) =

[
s1 + s2 + 2

s21 + s22

]
.

Assume that the only variable available for measurement
is w1 and, moreover, that one wishes to construct an
estimator for z = K(σ1, σ2, σ

−1
1 , σ−1

2 )w2, where

K(s1, s2, s
−1
1 , s−1

2 ) = s2 +
1
2 ,

with respect to the 2D stability cone S corresponding
to the first quadrant of Z2 (which is generated by the
directions −→v 1 = (1, 0) and −→v 2 = (0, 1)). It is not difficult
to check that:
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[
−F (s1, s2, s

−1
1 , s−1

2 )|E(s1, s2, s
−1
1 , s−1

2 )
]

=

[
−(s2 +

1

2
) 0 s1 +

1

2
0 −1 s1 + s2 + 1

]

is an MLA of

[
R2

K

]
=




s1 +
1

2

(s2 +
1

2
)(s1 + s2 + 1)

s2 +
1

2



.

Moreover, the matrix E(s1, s2, s
−1
1 , s−1

2 ) =

[
s1 +

1

2
s1 + s2 + 1

]

has full column rank over R[s1, s2, s−1
1 , s−1

2 ] and
E(λ1, λ2, λ

−1
1 , λ−1

2 ) only loses rank for (λ1, λ2) = (− 1
2 ,−

1
2 ).

Let now −→v = (k1, k2), with k1 and k2 positive integers, be
an arbitrary direction in S. Clearly:∣∣∣λk1

1 λk2
2

∣∣∣ =
∣∣∣(− 1

2

)k1
(
− 1

2

)k2

∣∣∣ = 1

2k1+k2
< 1,

meaning that E is an S-stable matrix. Thus, by Corollary 3
and its proof, the given BE problem is solvable by the
estimator that results from eliminating the variable w2 in
the equations:


[
−(σ2+

1

2
) 0

0 −1

][
σ1+

1

2

(σ2+
1

2
)(σ1+σ2+1)

]
ŵ2 =

[
−(σ2+

1

2
) 0

0 −1

][
σ1+σ2+2

σ
2
1+σ

2
2

]
w1

ẑ = (σ2+
1

2
)ŵ2.

After the elimination procedure one finally obtains the
estimator

[
σ1 +

1

2
σ1 + σ2 + 1

]
ẑ =

[
(σ2 +

1

2
)(σ1 + σ2 + 2)

σ2
1 + σ2

2

]
w1

�

3.2 The behavior estimation problem with disturbances
(BED problem)

We define the BED problem as follows.

Let B(w1,w2,d) be an nD behavior described by

R2(σ, σ
−1)w2 = R1(σ, σ

−1)w1 +D(σ, σ−1)d, (21)

where the variable w1 is measured, w2 is not available for
measurement and d is an unknown disturbance.R2(s, s

−1),
R1(s, s

−1) and D(s, s−1) are nD Laurent-polynomial ma-
trices and D(s, s−1) is assumed not to have full row rank.
Let further

z = K(σ, σ−1)w2 (22)

be a linear function of the components of w2 and their
shifts.

Given an nD stability cone S, the behavioral estimation
problem with disturbances (BED problem) consists in
designing (if possible) a (deterministic) estimator

N(σ, σ−1)ẑ = P (σ, σ−1)w1 (23)

for z from w1, such that the corresponding estimation error
e := ẑ−z is S-stable independently from the disturbance d.

Remark 6. The assumption that D(s, s−1) does not have
full row rank implies that the pair (w1, w2) is not arbitrary.
If this were the case, the estimation problem would not
make sense.

Note that the BED problem can be transformed into a
BE problem (without disturbances) by eliminating the
disturbance d from (21). This is achieved by applying to
both sides of (21) an operator L(σ, σ−1), where L(s, s−1) is
an MLA ofD(s, s−1). In this way one obtains the equation:

L(σ, σ−1)R2(σ, σ
−1)w2 = L(σ, σ−1)R1(σ, σ

−1)w1 (24)

that describes the (w1, w2)-behavior corresponding to (21).

Now, the results for the BE problem can be used to derive
the solvability conditions of the BED problem, yielding the
following theorem.

Theorem 7. Let B(w1,w2,d) be an nD behavior described
by (21), where the only variable available for measurement
is w1 and d is an unknown disturbance. Let further z be
defined by (22), and L(s, s−1) be an MLA of D(s, s−1).
Given an nD stability cone S, the corresponding BED
problem is solvable if and only if every MLA [−F E] of[
LR2

K

]
is such that E(s, s−1) is an S-stable nD Laurent-

polynomial matrix. In this case, an S-asymptotic observer
for z from w1 is given by:

Eẑ = FLR1w1.

4. CONCLUSIONS

In this paper we considered the problem of estimation for
discrete nD systems following the behavioral approach.
More concretely, given a behavior with partitioned system
variable w = (w1, w2), where only w1 is available for mea-
surement, we studied the problem of finding a determinis-
tic asymptotic estimator for a variable z with components
given by linear combinations of the components of w2 and
their nD shifts. We derived necessary conditions for the
solvability of this problem and, in case those conditions
were fulfilled, provided a suitable estimator. Such estima-
tor is asymptotic in the sense that the corresponding error
trajectories are stable with respect to a pre-specified nD
stability cone.

Besides this (unperturbed) estimation problem, we also
considered the case where unknown disturbances are
present, affecting the relationship between w2 and w1. This
case can easily be transformed into the previous one, using
the elimination principle to remove the disturbances.

Future work includes the application of our approach to
classical nD state-space models.
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