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Resumo O interesse em sintetização de áudio em circuitos digitais e sistemas com-
putacionais remonta à época em que as linguagens de programação Lisp,
COBOL e Fortran ainda estavam a ser conceptualizadas. Esta era (por
volta de 1950) marca o surgimento da linguagem de programação MUSIC I.
Desde então, dado o aumento do poder de computação, houve um influxo
de novas linguagens capazes de sintetizar áudio. Atualmente, linguagens
como SuperCollider, Pd (pure data), Max/MSP, ChucK e Faust estão no
espetro das mais populares. Estas linguagens, apesar de terem diferentes
abordagens e designs, têm um aspeto comum: são todas linguagens de
computador. Embora este tipo de solução conceda bastante flexibilidade,
ela apresenta um problema: restrições temporais, particularmente latência
de áudio.

Neste documento, uma nova Linguagem de Processamento de Áudio, de-
nominada rtfss, é introduzida. Esta linguagem foi concebida para ser com-
pilada principalmente para dispositivos de hardware, de forma a tirar partido
das suas capacidades de paralelismo. Para complementar a descrição formal
da linguagem, será também apresentado um compilador capaz de lidar com
um subconjunto das capacidades da linguagem. Este compilador é apto para
analisar uma descrição feita em rtfss e de compilar para uma linguagem de
ńıvel inferior chamada VHDL. Um dos principais destaques de rtfss (e do
seu compilador) é que a arquitetura de hardware sintetizada é segmentada
(pipelined). Este formato de arquitetura digital é usado em circuitos lógicos
para maximizar a frequência de funcionamento e a eficiência do design.

Ao longo deste documento, a descrição formal da linguagem e a imple-
mentação do compilador serão meticulosamente analisados e explicados.
Serão também ilustrados alguns exemplos de casos de uso nesta linguagem,
acompanhados pelo seu processo de compilação.

Neste documento é também descrita uma arquitetura mais simples de outra
linguagem de processamento de áudio para hardware. Esta linguagem serviu
como fundação ao desenvolvimento de rtfss. Do desenvolvimento desta
arquitetura derivou uma coletânea de blocos de hardware em VHDL para
tratamento de áudio e de MIDI.





Abstract The pursuit of audio synthesis in digital circuitry and computing systems
dates back to the time where programming languages such as Lisp, COBOL
and Fortran were still being conceptualized. This era (the 1950s) marks the
appearance of the MUSIC I programming language. Since then, and as the
processing capabilities of computers kept rising, there was an influx of new
languages capable of synthesizing audio. Languages such as SuperCollider,
Pd (pure data), Max/MSP, ChucK and Faust are among the most popular
ones, nowadays. These languages, although having different approaches
and designs, have one aspect in common: they are all computer languages.
Albeit these solutions grant great flexibility, they present an issue: timing
constraints, particularly audio latency.

In this document, a new Audio Processing Language, called rtfss, is in-
troduced. This language was designed to be compiled mainly to hardware
targets, exploiting their inherent parallelism. To complement the formal
description of the language, a compiler that implements a subset of the
language’s capabilities will also be presented. This compiler is capable of
analysing a design description written in rtfss and compile it to the lower
level hardware description language VHDL. One of the main highlights of
rtfss (and its compiler) is that the hardware architecture it synthesizes is
pipelined. This type of digital architecture is used in logic designs to maxi-
mize the working frequency and the efficiency of the design.

Throughout this document, both the language’s formal specification and
the compiler’s implementation will be thoroughly analysed and explained.
Some use-case examples of this language, accompanied by their compilation
procedure, will also be illustrated and examined.

In this document, it is also described a simpler architecture of another Hard-
ware Audio Processing Language, which served as a stepping stone towards
the development of rtfss. As a product of its development, some useful
VHDL Audio (and MIDI 1.0) related hardware blocks were implemented.
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Chapter 1

Introduction

After the inception and widespread of reasonably powerful personal computers, digital
sound processing has become the industry standard for audio creation, manipulation and
production. The most common platforms for digital audio are the Digital Audio Workstations
(DAW) [4]. In DAWs, artists and audio engineers can record, process and produce audio.
DAWs are the center piece of music production in most music studios, and are, arguably, the
most popular kind of digital audio tool.

Another set of tools for sound processing that had an increase in popularity are the au-
dio programming languages. These tools first appeared way before the inception of DAWs
(the first commercial DAW was released in 1978 [4]). The earliest audio computer language
was created in 1957 and was called MUSIC I [5]. From then on, more audio programming
languages with diverse approaches were created. Some of these languages, such as Pd or
Max/MSP, are visual languages where the programmer draws the block diagram of the au-
dio processor architecture. Others like SuperCollider, ChucK or Faust, are text-based and
are built upon the functional programming paradigm [5]. Some of these languages will be
described more thoroughly in Chapter 2.

Audio processing systems have one particularity that separates them from most general-
purpose systems: they must work in real-time. These systems have to be particularly precise
with their timing. They work with fixed timing deadlines to perform the calculations needed
to generate the new audio values (audio samples) [5]. This is a problem when working with
software-based audio processing systems. Most of the environments in which these softwares
run are multitasking scheduled operating systems. In these systems, the CPU time has to be
split with all the processes it is running [6]. Having this environment means that the audio
processing software has no guarantee of when it will be executed, and for what amount of
time. To try to smooth the effect of this behaviour, audio software processes audio in chunks
(buffers) [2] and attempts to increase its scheduling priority. When the software is scheduled
in, it processes all the samples present on a pre-determined buffer and places the values in
another buffer. The existence of buffers means that the audio processed by the software will
have a fixed amount of latency (given by the size, in samples, of the buffer), which inherently
can hurt the usability of this solution. However, if the software is fast enough or the scheduler
gave enough time to the process, then the audio processor does not runs into problems and the
output is generated within the set deadlines. However, if the software is not able to process
the full buffer, issues arise. The deadlines still need to be fulfilled, so the system outputs
phony samples. One way to solve this is to increase the buffer sizes, further smoothing out
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the effects of the scheduler. However, increasing the buffer size will yet again deteriorate the
responsiveness of the system. The latency will increase and the system might not be suitable
for real-time applications anymore. Studies found that audio latencies over 10 milliseconds
with jitter on digital instruments, in some applications, is enough to start being noticeable [7].

1.1 Motivation

Aware of these issues, in this document we propose a different approach to digital audio
processing. Instead of trying to find different ways to optimize audio processing algorithms, in
order to reduce buffer sizes on real-time audio software processing, our solution theoretically
does not even need to consider this kind of problems. We propose a digital hardware-based
approach for audio processing. Hardware audio solutions do not suffer from the problems that
multitasking brings to software audio solutions, since they are designed to be application-
specific. Hardware generated for this purpose is only focused on generating audio, so it is a
much more optimized system. Furthermore, hardware solutions grant complete control over
the timing of the system, making it desirable for time-critical environments [1].

While audio processing in digital hardware is no innovation, the creation of these systems
is not trivial. Designing algorithms in digital hardware is much more demanding (and poses
very different challenges) than implementing the same algorithm in software. Moreover, the
skill set for developing hardware is relatively distant from the one for developing software.
All these characteristics make hardware solutions less favourable to implement [8].

So, to simplify the creation of hardware solutions for audio processing, in this thesis a
new audio processing language for digital hardware is proposed. This language is called
rtfss (Real-Time FPGA Sound Synthesis). The language was created to generate optimized
hardware based on a high-level description of audio algorithms. This language is text-based
and has functional programming characteristics. The objective of rtfss is to behave as much
as possible as any other audio programming language, while being able to be synthesized for
hardware.

The rtfss language allows manipulation of the sample values of sound streams. These
sound streams are controlled by a pulse signal that sets the sampling frequency of that audio
path. Streams have direct access over their previous values by using a special type of indexing.
This characteristic makes the implementation of time-based sound processors (like digital
filters) very easy and straight-forward. Another very useful feature of rtfss is the built-in
support for fixed-point arithmetic (all the conversions are ensured by the language). The
language also allows the interaction of multiple audio sources that work at different pulse
rates (sample frequencies). Finally, it is also worth noting that rtfss is able to handle the
MIDI protocol (explained in Section 2.4) and interact with it.

Along with the rtfss language, a compiler that implements a subset of rtfss was also
created. It was implemented in C++, using ANTLR4 for language recognition. It is capable
of generating hardware designs using VHDL. Both the rtfss language and compiler will be
explained further in this document. To serve as an example of the potential of this language,
the following segment illustrates the implementation of an Infinite Impulse Response (IIR)
filter (explained in Appendix A):

2



cblock@smpp main(: I16 smp_in : I16 lp_out){

//Low-pass aprox 0.2 Normalized Frequency IIR Filter

I16.2@smpp lowpass = I16.2((lowpass’-1)>>1+(smp_in+(smp_in’-1))>>2);

lp_out=I16(lowpass);

}

This example creates an audio hardware device that has one input integer (audio) stream
(smp in) and one integer (output) audio stream (lp out). Both audio streams are 16 bit
integer values (I16) and are controlled by the pulse smpp. Internally, the hardware block
(cblock called main) calculates the audio stream values with the fixed-point precision of 16
integer bits and 2 fractional bits (I16.2) on a audio stream called lowpass. This stream
is also controlled by the pulse smpp. The result of this internal operation is exposed to the
output by casting the sizes of the operation down to the size of the output. The mathematical
formula that this system implements is

y(n) = 0.5 y(n− 1) + 0.25 (x(n) + x(n− 1)).

The multiplications made in that formula were replaced (for convenience) by bit shifts
(>>1 and >>2). The recursive (time) relation present on the expression is easily solved in rtfss
with the use of the “value at instance” operator (’). This operator allows the direct access
of previous sample values (lowpass’-1 and smp in’-1). In this example, every stream is
controlled by the same synchronization pulse (smpp). This pulse, in reality, can be seen as
the sampling frequency of the system.

1.2 Project Evolution

During the planning and development of this thesis, the project’s objectives shifted quite
significantly. The original thesis’ vision was to develop a musician oriented visual language
with similar characteristics to Pd or Max/MSP (explained in Section 2.5.2). The innovation of
the proposed version would be the possibility to compile that visual language into a hardware
target. To do so, we envisioned the following architecture (presented from the bottom to the
top):

• The existence of a palette of hardware blocks (in VHDL) where each would serve a
simple and defined purpose. These blocks would be parameterizable, to allow their
input and output sizes to be adaptable to specific situations;

• The creation of a high-level language, whose objective would be to specify audio signal
processing algorithms. Every operation of this language would have a one-to-one relation
to an already existent hardware block. The aim of the compiler of this language would
be only to create a top-level VHDL entity, that would glue the existent VHDL blocks
together to implement the algorithms specified in the language;

• The creation of a graphical language and interface similar to Pd, that would allow the
visual representation of audio signal processing algorithms. This graphical program
would be able to generate code in the language specified in the previous item.

This architecture was used through a significant part of the development of the thesis,
but we then reached the conclusion that it had several drawbacks. Firstly, the compiler
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and the language offered no valuable flexibility. They would be oblivious to what intrinsic
logic they would be generating. Another issue was hardware timing constraints. The way
that the compiler would synthesize hardware would imply that the timing characteristics
of the hardware would be hidden away inside each of the pre-built blocks. This leads to
another problem: optimization. The hardware generated would be highly unoptimized, both
in terms of the amount of logic produced and the maximum frequency, it would allow being
run at. Furthermore, having a fixed set of blocks (like it happens in some other computer
languages [5]) would seriously limit the algorithmic possibilities of the language. Having all
of this in mind, it was decided to change the target of the project.

The updated (and final) architecture of the project shifts the focus into only the second
part of the previous architecture: the language and compiler. This means that the step of
the creation of a high-level language/interface and the creation of the VHDL hardware blocks
are not needed anymore. But, before the architecture was pivoted, several hardware blocks
were already created. Although these blocks are not (directly) used by the new architecture,
they are still useful VHDL blocks for audio processing and MIDI handling. For this reason,
they will be presented in Chapter 5.

1.3 Contributions

With this project, we intended to enrich the collection of languages for audio synthesis
and processing. The new language proposed has the advantage of offering an unusual, al-
though important, compilation target: digital hardware. As will be explained throughout
this document, both the language and compiler proposed, due to their complexity, are still
evolving. We intend to proceed with the development of this project, in order to achieve a
mature enough status that would grant its use outside the academic context. This project can
also be used as groundwork to other more advanced languages that pursuit similar objectives.

1.4 Document Outline

The rest of the thesis is organized into the following parts:

• Chapter 2 gives an overview of some topics and work related to this thesis. In it, the
technologies of FPGA, ANTLR and MIDI are explained. Then, some computer music
languages (SuperCollider, Pd, Max/MSP, ChucK and Faust) are described;

• Next, in Chapter 3, the rtfss language is explained and its formal definition is described.
To assist the definition of the language, some snippets of code will be exemplified;

• Then, in Chapter 4, the rtfss language’s compiler is presented. In this chapter, the
whole compilation process is thoroughly delineated. Also, to assist the explanation,
some diagrams representing each of the steps are presented;

• In Chapter 5, some VHDL hardware blocks that resulted from the exploration of the
alternative project architecture are enumerated and explained. These blocks can be
used to process and create audio in hardware, and to handle the MIDI protocol;

• Finally, Chapter 6 gives some concluding remarks over the project and its possibilities
for future work.
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Chapter 2

Background and Related Work

In this Chapter, we introduce some concepts and technologies that had an impact on the
implementation of the project. We also present some related work that has similarities with
the project described in this document. Some of the related work served as inspiration for
the idealization of this project.

2.1 FPGA Device

An FPGA (Field-Programmable Gate Array) is a digital hardware device that contains
reprogrammable logic [1]. It is made of an array of programmable logic blocks that can be
configured to implement any digital logic. FPGAs come in the form of integrated circuits.
They are very useful to prototype hardware designs since they can be reprogrammed with
orders of magnitude less effort than a normal fixed logic chip can be produced. A big advantage
of FPGAs is that they can be tailored to fit specific applications, where they replace software.
Since in hardware the designer has full control on the circuit, (in a significant amount of cases)
hardware solutions become much more efficient, comparing to the software solutions [9]. The
simplified typical architecture of an FPGA is illustrated in Figure 2.1. In this Figure, the LB

blocks are programmable logic blocks (PLB). These blocks usually contain a configurable look-
up table (used to implement combinational logic) and an optional flip-flop (allows the creation
of sequential logic). The SW blocks are the programmable interconnections (switches). These
allow the routing of the inputs and outputs of the PLB to each other or to the input/output
pins. The black squares represent the input/output pins of the FPGA.

FPGAs require specific languages and compiler tool-chains to be programmed. To be
precise, the best way to describe the process is to design, not to program. The most common
hardware description languages are VHDL and Verilog [1]. These languages have one common
paradigm: concurrency. Most of the instructions on these languages are “executed” at the
same time. In reality, they are parallelized in the hardware. This is a very different mindset
compared to normal software programming languages. Hardware description languages offer
little complexity abstraction from the circuitry they generate. Some of these languages allow
some hardware abstraction, to the point that they behave similarly to sequential programming
languages (VHDL, for example). But, the use of these features is mostly frowned upon, since
they handicap the usefulness of hardware design.

FPGAs were used in this project in both architectures. They are used as the target
hardware of both the hardware blocks designed for the initial architecture and as the design

5



SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

LB

LB

LB

LB

LB

LB

LB

LB

LB

Figure 2.1: Simplified diagram of the architecture of a FPGA [1].

target device of the rtfss compiler. The FPGA development board used in this project is the
DE2-115 board by Terasic. This FPGA development board contains the FPGA chip Cyclone
IV EP4CE115F29, made by Altera (now owned by and called Intel). Along with the FPGAs,
Altera also provides an Integrated Development Environment (IDE), called Altera Quartus
Prime. This IDE contains a compiler tool-chain that accepts languages such as VHDL and
Verilog.

2.2 VHDL Language

VHDL (VHSIC [Very High Speed Integrated Circuit] Hardware Description Language) is
a hardware description language. Among other uses (such as simulation of logic designs), it
can be used to develop hardware designs for FPGAs. As mentioned before, it is based in the
concurrent computing paradigm [10]. This means that the instructions on this language are
meant to be fulfilled at the same time.

In VHDL, hardware blocks are represented with entities (entity). An entity has a name,
a set of input and output ports and constant parameters (that can have default values). The
constant parameters enable the possibility of creating parameterizable entities. An entity also
has a set of at least one architecture (architecture). While the entity acts as the interface
of the hardware block, an architecture corresponds to the implementation of the logic that
controls the data flows through the ports. Normally, an entity only has one architecture, but,
in some cases, different realizations over the same interface can be useful. To instantiate an
entity, its name, the input ports, output ports (optionally), generic parameters (optional to
the parameters which have a default value) and the name of the desired architecture have to
be specified.

The two main datatypes of VHDL are std logic and std logic vector. The std logic

type represents a logic value (can be 1,0 or other values such as the high impedance state),
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while the std logic vector is a vector of std logic. This vector has to have a defined size
at compile-time. There are also two numeric types in VHDL: signed and unsigned. These
allow the direct use of arithmetic operations over them [10].

The VHDL language was used in this project in both architectures. Firstly, it was used
to create the hardware blocks that would serve as the building blocks for the compiler to
construct with. This language is also used by the rtfss compiler, in order to describe the logic
of the compiled design. The language used in this project obeys the VHDL-2008 standard.

2.3 ANTLR Parser Generator

ANTLRv4 (or ANTLR4) is the fourth iteration over a lexer (lexical analyser) and parser
(syntactic analyser) generator tool. For the sake of simplicity, ANTLRv4 will be called just
ANTLR. ANTLR is a tool that eases the segmentation and organization of structured data.
ANTLR consumes a formal language specification and, with it, generates code capable of
analysing data that follows the described formal language specification. The formal language
specification shall be referred to as grammar from now on. ANTLR can accept all possible
grammars, with the exception of the ones that contain indirect left recursion [11]. The parsing
mechanism used by ANTLR was custom created and is an improved version of the LL(*) (Left
to right with Leftmost derivation) mechanism: Adaptive LL(*) [12].

The code generated by ANTLR analyses its input, generates a token stream and then
generates a tree representation. This representation is called a parse tree. Although ANTLR’s
main target is Java, it allows the generation of, for example, Python and C++.

ANTLR is used in this project on the new architecture. It is used by the rtfss compiler
to interpret the rtfss language. To do so, the rtfss was fully described as a grammar. This
grammar was fed into the ANTLR tool, and since the compiler is implemented in C++, the
target language of ANTLR was also set to C++. ANTLR was also expected to be used in
the initial architecture to aid the implementation of its compiler. However, that architecture
was rethought before the development of the compiler started.

The use of Bison and Flex was considered, and tested. Bison is a parser generator that
converts grammars into parser tables [13]. Flex is a lexical analyser that is usually coupled
with Bison to perform complete language recognition. However, the advantages of their use
didn’t make up for the increased implementation cost.

2.4 MIDI Protocol

MIDI (Musical Instrument Digital Interface) is a data communication protocol targeted
at audio and sound devices. It is capable of transmitting, among other kinds of data, musical
performance data in a very compact and efficient manner [3]. Musical performance data is, for
example, the note and velocity (how hard the note was pressed) of the keystrokes on a piano
keyboard or the change of position of a slider (controller). MIDI is an industry-wide standard
protocol made by several companies and can be found in the majority of musical gear and
software. Aside from the data communication protocol, MIDI also standardizes the physical
connectors and cables that allow multiple MIDI-enabled devices to communicate physically [2].
This allows the communication, for example, of a MIDI keyboard to a synthesizer rack unit
that does not contain a keyboard.
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To exchange information, MIDI has a set of messages that express state updates of a MIDI
device. These messages are specified in a binary fashion (organized in bytes) and can have
variable size. There are two kinds of messages: Channel Messages and System Messages.
Channel messages are used to transmit the musical performance data. In a certain MIDI
communication, these data are transferred over channels. A channel is usually seen as a
source device for those events. There are sixteen possible channel identifiers on a channel
message. A System Message is a message that affects the complete MIDI ecosystem (like
song selection). It does not contain channel information or number.

Every byte is also marked on the most significant bit if it is a status byte or a data byte.
When the byte is a status byte, then the most significant bit is set to one. When the bit is
set to zero, then the byte is a data byte. This marking allows the detection of errors and the
resynchronization of the MIDI receiver.

System messages are not relevant on the context of this document, so every message
discussed here will be a Channel Message (and thus have a channel number). The MIDI
messages that are relevant to this document are the MIDI Voice Channel Messages. These
are composed by a status byte followed by one or two data bytes [3]. Table 2.1 contains the
binary representation of MIDI Voice Channel Messages. The byte sending order, according
to the order used in Table 2.1, is from left to right. The meaning of each of the messages
indicated in Table 2.1 is:

• Note On Message: This message is sent when a key is pressed on a MIDI device. This
message contains note number and velocity value. The nnnn represents the channel num-
ber, the kkkkkkk represents the note number and the vvvvvvv represents the velocity
value;

• Note Off Message: This message is sent when a key is released on a MIDI device.
This message contains note number and velocity value. The nnnn represents the chan-
nel number, the kkkkkkk represents the note number and the vvvvvvv represents the
velocity value;

• Polyphonic Key Pressure Message: This message is sent when the pressure (after-touch)
of a certain pressed key changes. This message contains note number and the new after-
touch value. The nnnn represents the channel number, the kkkkkkk represents the note
number and the vvvvvvv represents the pressure value;

• Control Change Message: This message is sent when a controller (for example a slider,
pedal or switch) changes value on a MIDI device. This message contains the controller
number and the new value. The nnnn represents the channel number, the ccccccc

represents the controller number and the vvvvvvv represents the controller value;

• Program Change Message: This message is sent to a MIDI device to request the change
of its current program (patch, for example) to a new one. This message contains only
the number of the new program. The nnnn represents the channel number and the
ppppppp represents the program number;

• Channel Pressure Message: This message is sent when the pressure (after-touch) of a
channel changes. This message contains only the new value of the channel pressure. The
nnnn represents the channel number and the vvvvvvv represents the channel pressure
value;
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• Pitch Bend Change Message: This message is sent when the pitch bend value of a
certain channel changes. This message contains only the new pitch bend value. The
nnnn represents the channel number, the lllllll represents the least significant bits of
the pitch bend value and the mmmmmmm represents the most significant bits of the pitch
bend value. Together, mmmmmmmlllllll represent the pitch bend value.

Type Status Byte Data Byte 0 Data Byte 1

Note On 1000nnnn 0kkkkkkk 0vvvvvvv

Note Off 1001nnnn 0kkkkkkk 0vvvvvvv

Polyphonic Pressure 1010nnnn 0kkkkkkk 0vvvvvvv

Control Change 1011nnnn 0ccccccc 0vvvvvvv

Program Change 1100nnnn 0ppppppp

Channel Pressure 1101nnnn 0vvvvvvv

Pitch Bend Change 1110nnnn 0lllllll 0mmmmmmm

Table 2.1: Binary representation of MIDI Voice Channel Messages [3].

Both the note number and velocity properties take up seven bits (ranges from 0 to 127).
The note number property is a direct correspondence to a musical note. The difference
between two consecutive note numbers is of one semitone. The central C note (C4) has the
note number 60. So, since the A4 is 9 semitones away from the C4, the note number of A4
is 69. This representation covers all the notes present on a piano, with notes to spare [3].
The velocity property represents the intensity of the note it is associated with. The lower
the number is, the softer the note was played. So, zero velocity represents silence, velocity
1 represents pianississimo and velocity 127 represents the the loudest value (fortississimo).
Pitch bend values take up fourteen bits (ranges from 0 to 16383). Since the pitch bend can
go up and down, the center value (no pitch bend) is (as close as possible to) the half value of
the representation: 8192.

Recently, in February of 2020, the MIDI Manufacturers Association (along with the As-
sociation of Musical Electronics Industry) announced the new standard MIDI 2.0. This new
standard brings great improvements to the first edition of the standard. Two of the biggest
differences are the increase of the resolution of the control values and the possibility of having
two-way MIDI communication (MIDI 1.0 only allows uni-directional communication per ca-
ble/conversation) [14]. Unfortunately, this version of MIDI is not used in this project, for two
main reasons. First, this project was already being developed at the time of publication of the
new standard. So, porting the project to the new standard would require deep modifications
of already built modules, and a restudy of the protocol to understand all the ways the new
version would benefit the project. The second reason is the lack of software and hardware
devices that already implement the new standard. This use of MIDI 2.0 would complicate
the testing and verification process of the project, since we could not rely on current audio
gear. So, the MIDI standard version used in this document is MIDI 1.0. From this point on,
every reference in this document to MIDI is referring to version MIDI 1.0.

The MIDI Protocol is used in both architectures, for similar purposes. The initial ar-
chitecture has a set of hardware blocks that interact and interface with the MIDI protocol.
These blocks were made to then control the rest of the audio hardware blocks they were
connected to. On the new architecture, MIDI is integrated with the rtfss language, and also
allows direct manipulation and the freedom to control any parameter with it.
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2.5 Computer Music Languages

Computer Music Languages are a niche subset of programming languages that are oriented
at audio synthesis. These languages are specifically designed to allow the direct description of
sound signal processing algorithms. The first appearance of an audio programming language
dates back to 1957, with the creation of Music I [5]. Since then, there were created a significant
number of languages that offer different features and have different foreseeable uses. Audio
synthesis has some interesting properties that lead to different language paradigms, compared
to general-purpose programming languages. Arguably, the most important aspect of audio
synthesis is the requirement of real-time processing. Live audio signal processors need to
have the capability of having round-trip processing times with latencies in the order of a
few tenths of the millisecond. One study found that, as the latency is increased on digital
instruments, musicians struggled to keep a regular pace and even attempted to play ahead of
time to compensate for the latency of the system [15]. Even worse than that, another study
predicts that the ideal round-trip delay (between action on the instrument and response of
the instrument) should be 10 milliseconds with no jitter [7]. Even when the systems are not
real-time, they need to control when the data shall be delivered, in order to oblige with the
right timing. This kind of restrictions requires special care in the design choices of computer
music languages.

In this Section, some of the most popular computer music languages will be summarized.
These languages will be presented in chronological order.

2.5.1 SuperCollider

The SuperCollider is a bundle that combines an audio synthesis language and an execution
environment [5]. It first appeared in 1996 and is still in active development. SuperCollider was
designed to allow real-time synthesis. In terms of architecture, SuperCollider separates the
synthesis engine (scsynth) from the control procedure (compositional language sclang). These
two reside in separate processes that use a messaging system to communicate [16]. Having
this separation allows SuperCollider to give much higher execution priority to the synthesis
engine than to the control procedure. This kind of architecture gives the overall system better
latencies compared to single process monolithic architectures. With this architecture, it is
also possible to change what the synthesis engine is doing live. Every time the programmer
wants to add a new piece of code to the synthesis engine, the sclang process has to compile
it first and then send it to the scsynth.

The sclang is a functional object-oriented programming language. This means that the
sound algorithms are mapped into classes and objects. Every instruction in SuperCollider is
terminated by a semicolon (;). The following code is an example of a program written in
SuperCollider (adapted from [17]):

{SinOsc.ar(SinOsc.kr(8,mul:50)+LFNoise0.kr(1).range(500, 1500)+1000)}.play;

This code contains one code block (surrounded by curly brackets) that is played on instan-
tiation (.play). It spawns two sine wave oscillators (SinOsc) and a (pseudo-random) noise
source (LFNoise0). Each of these blocks is accessed using .ar or .kr. These two messages
(modifiers) set the blocks to audio rate (ar) or control rate (kr). Audio rate units are evalu-
ated at the sampling frequency of the system. Control rate units are evaluated less frequently
to, again, give priority to more important blocks. The first sine oscillator generates a tone that
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is frequency controlled by the two other blocks. The frequency of the second sine oscillator
is 8Hz and its output (that normally is between -1 and 1) is multiplied by 50 (mul:50), so it
goes from -50 and 50. This oscillator creates a vibrato effect on the first oscillator. Then, the
noise source generates values at 1Hz (set on the argument of kr). The output of this block is
then scaled to have the range of 500 to 1500 (range(500, 1500))). This block changes the
perceived pitch every second. Finally, the final frequency value is shifted up 1000Hz (done by
adding 1000). The result of this patch is an ominous sound. Another way to write the same
program is:

{SinOsc.ar(SinOsc.kr(8,mul:50,add:1000)+LFNoise0.kr(1,500,1000))}.play;

The argument order of the LFNoise0.kr generator is frequency (freq), multiplication
value (mul) and addition value (add).

SuperCollider is open-source and still maintained to the date of redaction of this document.
Thanks to its properties, SuperCollider can be used by musicians to live code synthesizers
and sound processors.

2.5.2 Pd and Max/MSP

The Pd (pure data) and Max/MSP are visual computer music languages [5]. These lan-
guages were developed in the late 1990s. The creator of Pd worked on Max (the predecessor of
MAX/MSP), so both languages have a similar mindset. While Pd is an open-source project,
MAX/MSP is a commercial solution. Both languages offer a graphical user interface (GUI)
where the programs should be designed in. Due to the commercial nature of Max/MSP, our
focus will be on Pd.

In these languages, the creation of audio processing programs is made by connecting vari-
ous pre-built modules together to generate more complex logic [18]. In these visual languages,
the designs elaborated are called patches. These patches are composed by a mixture of ob-
jects, message boxes and number boxes [19]. Patches can be changed while they are being
executed. Objects behave like functions or blocks that have certain inputs or outputs. Similar
to SuperCollider (Section 2.5.1), Pd also has the separation between audio rate processing
and control rate processing. Objects working at audio rate generate values at the sample
rate frequency. Objects working at the control rate only generate values when there is a
trigger. Objects that run at audio rate must have a tilde (~) after the name of the object.
These objects can also have an argument list that proceeds the name of the object. Messages
(and message boxes) are used to pass information between objects and also serve as triggers
(bangs). Number boxes serve as the simplest way to store values. These can then be used to
do calculations or to serve as inputs to objects.

To provide an example in Pd, the example made from the SuperCollider (Section 2.5.1)
was replicated in this language. Since Pd is a visual language, the patch is on Figure 2.2.
The object blocks are the completely rectangular blocks. Number boxes are the rectangular
boxes with the cut on the top right corner. The other boxes (rectangle with a dent on the
right) are message boxes. The audio-rate paths have bold lines, while control rate paths are
marked with regular lines. The inputs of the blocks are marked on the top of the blocks and
the outputs are marked at the bottom.

The objects present in the example (Figure 2.2) are [19]:
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Figure 2.2: Example of an Audio Signal Patch in Pd for a frequency modulated sine wave.

• dac: Represents the DAC (Digital to Analog Converter) of the computing system.
Sample values that are routed to the inputs of this object will be redirected to the
audio card of the computer. The left input corresponds to the left channel on the audio
card and the right input to the right channel;

• osc: Represents a cosine oscillator. This block can have an argument that sets the
default frequency of oscillation. Another way to set the oscillation frequency is by
connecting the left input to a number source. This number source, when the block is
given no default frequency, must be in audio rate. Finally, the only output of this object
is the sample value of the cosine;

• + and *: Represent, respectively, a sum and a multiplication. These objects allow
the use of arithmetic operations to manipulate numbers. The left input of the object
corresponds to the left operand of the binary operation, and the right input corresponds
to the right operand of the binary operation. Naturally, the only output of these objects
is the result of their operation;

• random: Represents a pseudo-random integer generator. This object generates values
between zero and the value of the first argument minus one. Even if this argument is not
supplied, the object also relies on the numeric value present on the right input to set the
range. In order to generate a new random value, the object waits for a bang (trigger)
on the left input. Also through this input, it is possible to set a seed value for the
random number generator. This is done by sending the message seed <seed value>.
As expected, the only output of this block is the generated random value;

• metro: Represents a metronome. This object is capable of generating bangs at regular
intervals. These bangs can then be used to control other objects. The object accepts
as an argument the delay between bangs (period of the trigger). This value can also
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be set by sending a numeric value to the right input of the object. On the left input,
the object expects a bang or a message with a nonzero message (or bang message) in
order to start the metronome. If the object receives a zero message (or a stop message)
on this input, then the metronome stops. The only output of this block is the bangs it
generates.

Like in the SuperCollider example (Section 2.5.1), the main architecture consists of two
(co)sine oscillators and a random source of values. The first oscillator is frequency controlled
by the sum of values from three sources. First, the second (co)sine oscillator oscillates at
a fixed frequency of 8Hz, that is amplified fifty times. This oscillator gives a vibrato (8Hz
oscillation that increases and decreases the center frequency by 50Hz). The second source is
a random value source. This source is created by getting values from a random object that is
controlled by a metro object. This value is scaled to fit the desired range. The metro object
is controlled by the message blocks 0 and 1. Finally, the last source is a constant value of
1000, that shifts all base frequency to 1000Hz. The value of the first oscillator is piped to
both inputs of the dac object. This way, the output sound is stereo.

These languages can be used by musicians to produce sounds and generative music. Both
languages are still popular among artists and are even used in video games to generate proce-
dural audio [20]. The Max/MSP language is still in active development and has also received
integration (called Max for Live) with a Digital Audio Workstation (DAW) called Ableton
Live. Pd is open-source and still is maintained to the date of redaction of this document.

2.5.3 ChucK

The ChucK language is a strongly timed audio computer language [5]. It first appeared
in 2002 and is a text-based language that natively supports concurrency. ChucK was initially
designed to be a live coding language. One of the most important operators in this language
is the ChucK operator (=>). This operator is mainly used to patch unit generator (modules)
together [21]. The main statements (constructs) of this language are called shred. A shred
is a thread module that runs within the ChucK environment. Each shred should be used to
generate sound or sample data. In order to control time, ChucK has two built-in variable
types: dur and time. The dur variables store durations (relative time). The time variables
store absolute time (in relation to the start of the ChucK environment). Assigning a dur

into a time variable (using the ChucK operator), advances the time variable by the quantity
present on the dur variable. The master synchronization element of ChucK is now. The
keyword now is a variable of type time. To control time, one can assign (ChucK operator)
the now variable with a duration.

To clarify the syntax of the ChucK language, the previously used example of the frequency
modulated sine wave was translated to ChucK:

SinOsc u => Gain ug => SinOsc s => dac;

2=>s.sync;

8=>u.freq;

50=>ug.gain;

while(true){

Math.random2(500,1500) + 1000 => s.freq;

1::second => now;

}
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The first line of the example creates the main data-flow of the program. A sine oscillator
(SinOsc unit generator) is patched to a gain stage, which is then patched to another sine
oscillator. This last sine oscillator is patched to the output audio device (dac). The second
sine oscillator (that is going to be modulated) has the property sync set to 2. This property
makes this oscillator interpret its input as a frequency modulation. The other valid values for
the sync property are 0 which sets the oscillator to sync the frequency to the input or 1 which
sets the oscillator to sync the phase to the input. Then, the frequency of the first oscillator
is set to 8Hz (8=>u.freq) and the gain of the gain stage is set to 50 (50=>ug.gain). Finally,
the program enters an infinite loop where a random value between 500 and 1500 is fetched
(Math.random2(500,1500)) and added to 1000. The resulting value is then used to set the
base frequency of the second oscillator. At the end of every iteration, the program waits one
second by attributing the duration (dur) 1::second to the time variable now. This infinite
loop, in reality, refreshes the random value of the frequency of the modulated sine oscillator
every second.

ChucK is an open-source project and still is maintained to the date of redaction of this
document. The current version of ChucK (1.4.0.1) was released in April 2020 [22].

2.5.4 Faust

The Faust (Functional AUdio STream) programming language is a text-based language
for audio processing [5]. It first appeared in 2002 and, like SuperCollider (Section 2.5.1), uses
functional programming (not object-oriented) to design digital audio processors. The Faust
project also contains a vast collection of compilation targets, and is an open-source effort.

While the previous four languages (especially the first three) gave some focus to music
creation, this one is more focused in sound processing. As such, this language is statically
compiled and the programs created cannot be changed while they are being executed. Also,
opposed to what happens in the other languages, Faust does not distinguish between au-
dio rate and control rates. Moreover, while previous languages rely on pre-built blocks or
functions, Faust gives all the elementary operations that can be used to create and sculpt
sound. Faust presents an unusual syntax, comparing to normal functional programming lan-
guages [23]. This syntax is used to represent a block diagram of the system. It uses an algebra
called block-diagram algebra, that has the following operators:

• Sequential Composition (A : B): This operator denotes the connection of the outputs
of block A to the inputs of block B. This new block, generated by the operation, has as
inputs the inputs of A and as outputs the outputs of B;

• Parallel Composition (A , B): This operator denotes that the blocks A and B should be
placed one in top of the other (not connected to each other). The inputs of the block
that is generated by the operation are the inputs of both A and B, and the outputs of
the block are all the outputs of A and B;

• Split Composition (A <: B): This operator denotes that the outputs of the block A

should be distributed (and duplicated) to the inputs of block B. This operator shall only
be used when the number of inputs of block B is a multiple of the number of outputs of
block A. This new block, generated by the operation, has as inputs the inputs of A and
as outputs the outputs of B;
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• Merge Composition (A :> B): This operator denotes that the outputs of block A should
be merged down to the inputs of block B. This operator shall only be used when the
number of outputs of block A is a multiple of the number of inputs of block B. This
new block, generated by the operation, has as inputs the inputs of A and as outputs the
outputs of B;

• Recursive Composition (A ∼ B): This operator denotes that block A should have a
feedback loop that passes through block B. The inputs of block B should be connected to
corresponding outputs of block A. Similarly, the outputs of block B should be connected
to the respective inputs of block A. The inputs of the resulting block are the inputs of
block A that were not connected by block B. The outputs of the resulting block are all
the outputs of block A;

This algebra can be seen as the text representation of the block structure used, for example,
in Pd (Section 2.5.2). This algebra contains two more elements: the identity block ( ) and
the cut block (!). The identity is a block that contains only one input and one output. In
this block, the input is directly wired to the output. The cut block is a block that has only
one input and no outputs. It is used to end connections. To exemplify a swap of connections
between block A and B, the following syntax can be used [23]:

A : ((_,_) <: (!,_,_,!)) : B

This expression grabs two input channels from block A, splits them into four channels,
and ignores the top and bottom one. This makes a two output block that has the outputs
swapped. This block is then directly connected to block B.

Every instruction in Faust is terminated by a semicolon (;). Like most functional pro-
gramming languages, Faust has a top-level main-like entity. In Faust, this entity is called
process [24]. So, to create a program that simply reads the sound card’s input channels,
swaps them, and pipes them to the output channel, we have

process = (_,_) <: (!,_,_,!);

Faust provides a standard library with a vast collection of blocks (stdfaust.lib). The
use of these blocks raises the abstraction level of the language to a level similar to that of
SuperColider (Section 2.5.1) or ChucK (Section 2.5.3). Faust is capable of drawing diagrams
of programs. The diagram from that program is in Figure 2.3. The same example provided in
the three previous cases was converted to Faust. The Faust code to that example, implemented
in the most block-diagram algebra pure way, is

import("stdfaust.lib");

process = 1000

, ((8 : os.osc) , 50 : *)

, ((1 , no.noise : ba.downSample , 500 : *) , 1000 : +)

:> os.osc

<: (_,_);
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The diagram generated by Faust for this code is shown in Figure 2.4. Analysing from top
to bottom, we have three blocks that are merged down to a os.osc and then merged up to two
signals (( , )). The first three blocks are used to set the modulated frequency. The first block
(1000) is always equal to 1000 (base frequency). The second block (((8:os.osc),50:*)) is
responsible for creating the vibrato. To achieve that, the value 8 is piped to the input of a sine
oscillator (os.osc). The block os.osc is declared inside the standard library and receives a
frequency value as input and creates a sample value as output. The result of the composition
of the last two blocks (8:os.osc) is then stacked over the value 50 to generate a composed
block that is fed to the input of a multiplication block (*). The last block of these three
blocks is responsible for randomly changing the frequency offset of the modulation. To do
so, it down-samples the values that come from a noise generator to 1Hz. The down-sampling
is done by the block ba.downSample (from the standard library) that receives as inputs the
new frequency and the audio source, and that outputs the new sampled values. The output
of the down-sampler is then amplified by 500 (by stacking it with the number 500 and piping
the result block to the input of a multiplying block) and shifted by 1000 (to make the value
range between 500 and 1000). Now, these three resulting blocks are merged down to form one
only source. This source is piped into the input of another sine oscillator. This sine oscillator
is responsible for generating the resulting modulated sine wave. Finally, to output the sound
in stereo, the output of the sine is split into two.

This is, certainly, the most cryptic way of writing this example. For clarity, some modifi-
cations can (and should) be made:

import("stdfaust.lib");

base_freq = 1000;

vibrato = (8 : os.osc) , 50 : *;

random_freq = (1 , no.noise : ba.downSample , 500 : *) , 1000 : +;

process = base_freq , vibrato , random_freq :> os.osc <: (_,_);

Even beyond that, for the programmers that wish to avoid this kind of algebra as much
as possible, Faust also allows the classical functional language syntax:

import("stdfaust.lib");

base_freq = 1000;

vibrato = os.osc(8)*50;

random_freq = ba.downSample(1,no.noise)*500+1000;

process = os.osc(base_freq+vibrato+random_freq) <: (_,_);

All three of these examples generate exactly the same audio processors. However, to
generate Figure 2.4 (where all the created blocks are visible), only the first example is useful.
The foundation behind Faust, the Grame Research Lab, provides an Online IDE where Faust
programs can be tested out without any setup. The Online IDE can be accessed at https:

//faustide.grame.fr/ (available at the time of writing of this document).

Faust is open-source and still is maintained to the date of redaction of this document.
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Figure 2.3: Faust Channel Swapper Program Diagram.
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Figure 2.4: Faust Frequency Modulated Sine Wave Program Diagram.

2.6 Summary

The solutions presented here for digital audio synthesis are valid solutions, but neither
of them use or create custom hardware to aid the creation of audio. Furthermore, these
languages all fall into the already mentioned problem of multi-processing limitations (Section
1.1). In the next two Chapters (Chapter 3 and 4), the rtfss language and partial compiler
will be introduced and explained. This language instead of relying on software solutions for
audio synthesis, takes the approach of hardware design. This solution uses all the concepts
presented in this present chapter before the introduction of computer music languages.
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Chapter 3

The rtfss Language

The rtfss (RealTime FPGA Sound Synthesis) language is an audio processing high-level
hardware description language. It was designed to ease the creation of digital sound processors
and sound synthesizers. The main advantage of rtfss is that the hardware description gener-
ated by its compiler is purely sequential and pipelined. This ensures, for example, optimized
use of the resources of an FPGA. Furthermore, rtfss’s syntax resembles the mathematical
notation of signal processing algorithms. The main characteristic of this last feature is that
previous sample values calculated from data streams can be accessed easily using negative
integer indexes. Another feature worth mentioning here is that the language natively handles
MIDI 1.0.

The rtfss language shares some technical similarities to other HDLs (hardware description
languages). The main similarity to those HDLs is that rtfss follows the concurrency paradigm.
In a concurrent language, the instructions are meant to be executed at the same time. This
comes naturally in hardware, since the objective of HDLs is to generate parallel hardware
architectures. Despite rtfss being a concurrent language, it allows the programmer to specify
sequential statements. These sequential statements can be useful, for example, to keep the
code clean. The compiler then morphs these statements to generate concurrent statements.
Another feature similar to other HDLs is that all data streams can have an associated amount
of bits (sample resolution). All the arithmetic operations are scaled accordingly to the dimen-
sions of the operands. This parameter can even be controlled (but solved at compile-time)
by constants.

In this Chapter, we discuss the design decisions of the language, its formal specification
and grammar.

3.0 Formal Specification

The code of rtfss is arranged in blocks (similar to functions or black boxes) and each block
(called CBlock) has a collection of statements. These statements can be split into multiple
lines without invalidating their meaning. A source file can contain many of these blocks.
Before the declaration of the first CBlock, there is a section where another source files can
be imported, so that the CBlocks defined in the imported source file can also be used within
the scope of the current file.
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3.1 Comments Syntax

The language allows the creation of line and block comments. The line comments can
start anywhere in a line and take up the rest of that line. Line comments start with a double
forward-slash (//). Block comments can also start and end anywhere in the same or different
lines. Every character that is inside a block comment is ignored by the language. Block
comments start with a forward slash and an asterisk (/*) and end with an asterisk and a
forward slash (*/). These have the following syntax:

//This is a line comment, everything is ignored

//after the double forward slash

/*

This is a block comment.

Everything between the delimiters will be ignored.*/

3.2 Pulse Statement

The synchronization pulse is the rtfss’s way of specifying the timing/throughput to which
a certain data stream should oblige. Pulses are control types and are declared inside CBlocks.
There are some reserved pulses that serve different purposes:

• max: Specifies to the compiler that any stream associated with this pulse should have
the fastest clock possible (allowed by the physical constraints of the hardware);

• const: Specifies to the compiler that any stream associated with this pulse is, in fact,
a constant stream, or const (for short). Consts are solved at compile-time and can be
used in CBlocks to pre-calculate values will be used on the hardware. Const streams
can be assigned to non-const streams, but the opposite is not valid.

To declare a pulse, two properties are required: the name of the pulse (that should be
unique within the scope of this declaration and the inner scopes derived from this one), and
the frequency or period of the pulse. The accepted time scales are Hertz (denoted with Hz),
kiloHertz (denoted with kHz), seconds (denoted with s) and milliseconds (denoted with ms).
The syntax follows the rule:

pulse <pulse_name> <time_val> <scale>;

While it is possible that different pulses having the same frequency/period might be
merged on compilation, the rtfss language does not guarantee such an outcome. When two
streams with the same pulse are used in an operation, no issues arise. But, when two streams
with different pulses interact, the value from the slowest stream might be read several times.
This means, on the present specification of this language, that the compiler will not perform
any interpolation between stream values. This should be studied upon in future work. Thus,
assignment between streams with different pulses infer a delay of one cycle of the master
clock. The following example shows the creation of four pulses that use different time scales:
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pulse very_slow 1s;

pulse fast 1ms;

pulse slow 100Hz;

pulse audio_rate 48kHz;

Since this language is sound-oriented, most pulses related with audio streams should
range from 44.1kHz to 48kHz. Slower pulses are useful when creating control streams or
other miscellaneous purposes. Each CBlock has an associated pulse that should be (but not
forcefully) used by its streams. A CBlock that is instantiated with a const pulse will be also
resolved at compile-time.

3.3 Stream Statement

The main statements present in CBlocks involve data streams and are called streams. A
stream specifies how data is to be manipulated. When declaring a stream, four parameters
need to be specified: the stream’s name, the synchronization pulse, word type and the word
size.

The stream’s name (identifier) allows this stream to be referenced within the same scope
(or lower scopes that derive from that one). This feature eases the creation of larger algo-
rithms. The identifier must start with a letter (upper or lower case) or an underscore. The
remaining symbols of the identifier can be letters (also upper or lower case), numbers or
underscores. The minimum length of an identifier is one character.

The pulse synchronizes the throughput of this specific stream. When two streams are
used together to form another stream, the pulse of the stream that is being attributed to is
the pulse that will prevail.

The word type specifies if the stream revolves around fixed point arithmetic, floating
point, or if it is a MIDI stream. The following types are valid:

• I: Signed fixed point stream (for example: I8@spulse (...));

• U: Unsigned fixed point stream (for example: U16.2@spulse (...));

• F: Floating point stream (for example: F32@const (...));

• midi: MIDI stream (for example: midi@spulse (...)).

The floating-point type can only be used for compile-time operations and it is not syn-
thesizable to hardware. The midi type represents a stream of MIDI commands (control
sequences) specified by the MIDI standard [3]. The use of the midi datatype is aided by
specific operators present on the stream arithmetic (explained on Section 3.3.6). Finally, the
word size states the dimension of the integer and fractional parts of the word (when it is a
fixed point stream), or the full size (if it is a floating-point). The word size is denoted using
a fractional number in which the integer part represents the integer size and the fractional
part represents the fractional size. This size can also be specified by reference (using a const
stream). Streams can only be declared and assigned inside CBlocks. Each stream has to have
one (and only) declaration, but can have multiple assignments. Stream declarations have the
following syntax:

<word_type><word_size>@<pulse_name> <stream_name> [ = <assignment> ] ;
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The word type and word size fields compose a single word and cannot be separated.
Between that word and the pulse name, there is a “@” serving as a separator. Whitespaces
are allowed between the “@” and the other two words. The stream name comes after the pulse
name. The stream name should be unique within the current scope, derived inner scopes and
the parent scope (stopping at the CBlock level). The declaration of streams does not require
an assignment. If there is an assignment, recursion is only allowed if it refers to previous
stream values (explained on Section 3.3.2). Some examples of declarations:

I16@pulse1 my_stream;

Iabb@const s = -3;

U4.2@max ctrl0 = 2.25;

While explicit streams have to be defined with a declaration, there are two types of
streams that are unnamed: implicit streams (intermediate streams generated by arithmetic
operations) and numeric literals (const streams). When handling a numeric literal, the com-
piler should attribute to that literal the smallest stream size possible to accurately represent
the integer and fractional part of the literal. The maximum stream size that the conversion
is allowed to use is set by the dominant datatype currently present in the stream it is being
attributed to. By default, the dominant datatype is the datatype of the stream where the
statement is being attributed to. But, if there is a cast that contains (even indirectly) the
literal, then the datatype of the cast becomes dominant over that cast’s boundaries. Casts
will be explained further on Section 3.3.6. The next example illustrates the use of a cast to
set the dominant datatype:

U16@const a = 412; //Dominant datastream U16 (unsigned 16-bit integer)

U4.1@const b = 4.25; //Dominant datastream U4.1 (fixed-point unsigned

//with 4-bit integer part and 1-bit fractional part)

I4.2@const c = (I4) 2.25; //Dominant datastream I4 (signed 16-bit integer)

The second statement of the example should generate a warning on compilation, since
the fractional part of the numeral cannot be accurately represented in the stream. The
last statement, to be precise, will generate an error, because there is a resolution mismatch
between the datatype of the stream and its attribution.

Each stream can have multiple assignments. An assignment can be paired with a dec-
laration, or be a standalone statement. When a stream has multiple assignments, and they
do not have any relation with each other, the statement that is the further down is used.
When multiple assignments refer to each other, the reference is recursively satisfied from the
bottom statement to the top statement. This allows, for example, the fragmentation of a
stream declaration. Stream assignments have the following syntax:

<stream_name> <assignment_operand> <assignment> ;

When the assignment is paired with the stream declaration, the assignment operand has
to be an equal sign (=). In this case, the equal sign indicates the meaning of attribution.
However, if the stream attribution is stand-alone, in addition to the attribution operand, the
following are also valid:

• +=: Add and assign;
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• -=: Subtract and assign;

• *=: Multiply and assign;

• /=: Divide and assign;

• %=: Modulus and assign;

These operands are a contraction of their traditional counterparts. For example, A+=B
is the same as A=A+B. When using these contracted forms, the programmer must be aware
of one peculiarity on the sizing rules. This characteristic will be explained further ahead in
Section 3.3.8. The arithmetic operations will also be described in detail further ahead in
Section 3.3.6. Some examples of assignments (without stream declarations):

my_stream=(x+3)*y;

my_stream=y;

s += 10;

ctrl0-=ctrl0/2;

Although inside the same stream the order of assignment is relevant, when dealing with
different streams this is not the case. Since this language is concurrent, the order of dec-
laration or assignment between different streams is irrelevant. This means that even if the
statements are intertwined, their relative position of statement is ignored. Therefore, the
following example is valid:

b=a;

a=3;

a+=2;

b+=3+c;

c=10;

U8.0@const a;

U8.0@const b;

U8.0@const c;

When fully resolved, the previous example will be equivalent to:

U8.0@const a=3+2;

U8.0@const b=a+3+c;

U8.0@const c=10;

3.3.1 Numeric Literal Representation

The representation of numeric values in the streams of the rtfss language has several forms.
By default, the representation is done in decimal (base 10). Nevertheless, the language also
allows the representation of numeric values in two more bases: octal (base 8) and hexadecimal
(base 16). To represent a numeric value in octal, the number must be preceded by 0o.
However, if the intent is to represent in hexadecimal, the prefix must be 0x or 0h. The
decimal base also has the optional prefix 0d. To exemplify, the numeric value 12 (twelve), in
base 10, can be represented in octal with 0o14 and with 0xC in hexadecimal:
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U16@const my_num10=12; //Twelve in decimal

U16@const my_num8=0o14; //Twelve in octal

U16@const my_num16=0xC; //Twelve in hexadecimal

3.3.2 Previous Stream Values

One of the main features of this language is the ability to access past stream values
effortlessly. This is achieved by the use of the operator “value at instant” that is represented
with an “’”. This operator can be used in an individual expression or on an expression that
manipulates multiple streams. On the left of the operator, the stream/streams should be
placed, and the desired instant on the right. This mechanism works with relative instants.
So, if the desired value is the value present in the stream in the last pulse trigger, then the
value on the right should be -1. Positive values or zero do not affect the expression and,
technically return the current stream value. Figure 3.1 contains a diagram of this behaviour.
This mechanism allows the programmer to define pseudo recursive statements. A stream can
use itself to define the next value. The syntax used is the following:

<stream_expression> ’ <constant_expression>

or

<stream_expression> ’ <stream_expression>

time0-1-2-3

Current Pulse

Last Pulse

Second Last Pulse

Third Last Pulse

Figure 3.1: Stream Previous Instants timeline.

The simple use case of this feature is to define algorithms that inherently use previously
defined instants as values to generate the current value. An example of this kind of algorithm
is a Finite Impulse Response digital filter or a discrete convolution. They use a chain of
previous stream values (with sums and multiplications) to create the current value. This
kind of algorithms use the first form of syntax stated above. The second form is used to
generate variable past instant streams. These are less common but are useful for the creation
of variable time delay lines. Since the expression on the right of the operand is also a stream,
the instant wanted can vary for each pulse trigger. Some examples of the use of this feature
are:

I8.0@p a=a’(-1)-a’(-2);

I16.0@p b=b’a;

By default, on start-up, all previous stream values are zero. This behaviour can be
overridden by defining the start-up values. To do so, the programmer needs to make an
attribution to a stream indexed by a previous stream value. The syntax is the following:

<stream_name>’<instant>=<startup_value>;
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When the stream is indexed by another stream, it is mandatory to specify the furthermost
previous instant that the algorithm requires. This can be defined by indexing the desired
stream (with index 1) the maximum depth required. Syntax used:

<stream_name>’1=<max_depth>;

If, after the hardware is synthesized, the stream is indexed with a value over the maximum
depth value, the value used will be the one available at the instant of the maximum depth
(saturation is used).

Summarizing, these two last features can be used and combined to generate arguably
powerful time-dependent algorithms. In the next example, both properties are used and
explained with comments:

I8.0@p a=a’(-1)-a’(-2); //Creating recursive, but constant

//depth stream "a"

a’(-1)=10; //Setting the start-up value

a’(-2)=1; //of instant -1 and -2

I16.0@p b=b’a; //Creating recursive and

//variable depth stream "b"

b’(1)=5; //Setting b’s max depth to 5. This means

//that everything before b’(-5) will

//be equal to b’(-5)

3.3.3 Stream Synchronization

One of the main features of rtfss is that all the hardware generated is sequential. This
means that all the expressions described in it are analysed and split into stages that are then
organized in a pipeline-like architecture. Although this is beneficial for hardware synthesis,
it means that algorithms with different complexity levels suffer different amounts of delay
(stages in the pipeline). If those algorithms are to be combined, while no race condition will
occur, the streams can end up using previous stream values. This is due to the fact that a
compiler can be programmed to only synchronize operations inside a stream, and not between
different streams (not the case on the implementation of the compiler presented on Chapter
4). Even though this problem is rare, since one of the streams needs to have a delay longer
than the period of a pulse, the lack of mechanisms to handle this would result in undefined
behaviour in those situations.

In order to solve this issue, rtfss has a stream synchronization mechanism called “Relative
Stream Delay”. This mechanism is exposed as an arithmetic operation that given two streams,
returns the relative delay of the stream on the right operand relative to the left operand. The
syntax is the following:

<reference_stream> gap <tested_stream> = <relative_delay>;

If the stream in the left operand is slower than the one on the right operand, the value
returned is positive, otherwise, it is negative. The value returned is a signed const with 32
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bits. A handy way to use it to synchronize the streams is to combine this feature with the
one presented on Section 3.3.2:

I8.0@p a;

I16.0@p b;

I8.0@p sync_a;

I16.0@p sync_b;

// (...)

// Abridged code block that sets ’a’ and ’b’ algorithms

// Stream ’a’ has a delay of 2 pulses. Stream ’b’ has no delay.

sync_a=a’(b gap a); //(b gap a) returns -2,

//sync_a has a two units delay is introduced;

sync_b=b’(a gap b); //(a gap b) returns +2,

//sync_b has no delay introduced;

This feature only works when both streams share the same pulse. The stream sizes or
types can vary. Stream synchronization does not apply to const streams, since all values are
calculated “simultaneously”. This cannot be used in midi streams.

3.3.4 Stream Buses

Because rtfss is a hardware description language, it is not feasible to introduce the creation
and manipulation of arrays and their classical use cases in sequential languages. However,
the language introduces one alternative to classical arrays: Stream Buses. A stream bus is
a numbered and ordered collection of streams that share the same pulse, datatype and size.
The behaviour of a member of a stream bus is equal to the behaviour of a stream. The size of
the bus has to be determined at compile-time, but can be specified by a const stream. This
means that the stream bound to an index of the bus cannot change after compilation. If there
is more than one attribution to the same index of a bus, the one furthest down has priority,
and dependencies are solved the same way as normal streams. The following syntax creates
a stream bus:

<datatype>@<pulse> <bus_name>[<bus_size>];

To access a position of a bus, we simply index the bus with the wanted position. In the
following example, a bus with two slots is created and the first slot is bound to a stream:

I16@mypulse ctrl;

I16@mypulse mybus[2];

mybus[0]=ctrl;

The rtfss language allows for a more compact initialization of a stream bus. This repre-
sentation resembles a classic array initialization:

<datatype>@<pulse> <bus_name>[<bus_size>] = { <value0> , <value1> , ... };

26



The values are contained between the curly braces and are separated by commas. An
example of use of this form is the following:

I1.5@const my_arr[5] = {0.256, 0.571, -0.141, 0, 0.9};

I16@mypulse ctrl0;

I16@mypulse ctrl1;

I16@mypulse mybus[2] = {ctrl0,ctrl1};

When the pulse is a const, as expected, all values are calculated and replaced at compile-
time, so the bus ends up as a look up table. In this case, the stream bus is called const array
/ constant array. This mechanism eases programming and is the most straightforward way
of generating a read-only memory block on hardware.

3.3.5 Cyclic Dependencies

The syntax used by rtfss is very flexible since it allows the full control of time dependencies.
However, this flexibility comes with a cost: cyclic dependencies are syntactically allowed. A
cyclic dependency occurs when a stream refers to itself in its assignment, or when there is a
chain of assignments that creates a circular reference. A cyclic dependency is fundamentally
unsynthesizable and does not have a valid mathematical meaning. To avoid problems, rtfss’s
compiler should detect all the occurrences of this type and stop the compilation process.
Below, two examples of cyclic dependencies are shown:

I8.0@p a=a+1; //ERROR: Self dependence. Uncompilable!

I8.0@p b=c+1; //First declaration, no error

I8.0@p d=b; //So far, so good

I8.0@p c=d/3; //ERROR: Dependence chain b->c->d->b. Uncompilable!

Cyclic dependencies are only allowed when the chain is broken by the use of previous
stream values. Accessing a previous value of a stream can be seen as accessing a completely
different stream. This stream does not have any kind of dependency, so the chain is broken:

I8.0@p a=a’(-1)+1; //Valid: No self dependence, a’(-1) can be seen

//as an independent stream.

I8.0@p b=c+1; //First declaration, no error

I8.0@p d=b; //So far, so good

I8.0@p c=d’(-1)/3; //Valid: Dependence chain b->c->d->b was broken by

//accessing d’-1 on c. New chains:

//b->c->d’(-1) and d->b

3.3.6 Numeric Stream Arithmetic

The rtfss language offers a complete set of operators allowed on streams. These operators
range from basic operations (sum, sub, comparisons, etc...) to more complex operations
(property of, value at instant, etc...). These operations are not allowed on MIDI streams
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and most are valid on const floats. As mentioned before, streams can only be declared and
assigned inside CBlocks. So, naturally, they can also only be manipulated inside CBlocks.
Each operator has a specific set of rules, but the main rationale is that, by default, the
operation is lossless and suffers no possible overflow. This means that the datatypes are
resized (to an extent) accordingly to the current operation. This behaviour is not used when
manipulating with const float streams. Most operations yield some kind of delay or pipeline
stage. The introduction of such is handled internally and is mostly hidden to the programmer.
In this Section, each of these operations will be listed and explained.

+ (Sum)

The sum is a binary operation between two streams/constants. The result is the mathe-
matical sum of the value of the current instant of both operands. The resulting datatype of
the operation is a stream if at least one of the operands is a stream, or a constant if both
operands are constant. If the operation is done between unsigned/signed streams, the result
is signed but if it is performed only between unsigned, then the result is unsigned. If one of
the operands is a const float, the result is also a const float. When using signed / unsigned,
the resulting stream size abides by the following rule:

Xaa.bb+Xcc.dd = X(max(aa,cc)+1).max(bb,dd)

The size of the integer part of the result is the biggest size of the integer part of the
operands, plus one. The size of the fractional part is the biggest one from the operands.

- (Subtraction)

The subtraction is a binary operation between two streams/constants. The result is the
mathematical subtraction of the value of the current instant of both operands. The resulting
datatype of the operation is a stream if at least one of the operands is a stream, or a constant
if both operands are constant. If the operation is done between unsigned/signed streams, the
result is signed but if it is performed only between unsigned, then the result is unsigned. If
one of the operands is a const float, the result is also a const float. When using signed /
unsigned, the resulting stream size abides by the same rule as the sum:

Xaa.bb-Xcc.dd = X(max(aa,cc)+1).max(bb,dd)

- (Symmetric)

The symmetric is a unary on a stream/constant. The result is the mathematical symmetric
of the value of the current instant of the operand. The resulting datatype of the operation is
preserved. If the operation is done on a signed stream, the result is also signed. But, if the
operation is done on an unsigned, the result is also signed stream. In both cases, an extra bit
is added to the final size to avoid overflow. If it is done on a const float, the type is preserved.
Thus, when using signed / unsigned, the resulting stream size abides by the following rule:

-Xaa.bb = X(aa+1).bb
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* (Multiplication)

The multiplication is a binary operation between two streams/constants. The result is
the mathematical multiplication of the value of the current instant of both operands. The
resulting datatype of the operation is a stream if at least one of the operands is a stream, or
a constant if both operands are constant. If the operation is done between unsigned/signed
streams, the result is signed but if it is performed only between unsigned, then the result is
unsigned. If one of the operands is a const float, the result is also a const float. When using
signed / unsigned, the resulting stream size abides by the following rule:

Xaa.bb*Xcc.dd = X(aa+cc).(bb+dd)

/ (Division)

The division is a binary operation between two streams/constants. The result is the
mathematical division of the value of the current instant the left operand over the right
operand. The resulting datatype of the operation is a stream if at least one of the operands
is a stream, or a constant if both operands are constant. If the operation is done between
unsigned/signed streams, the result is signed but if it is performed only between unsigned,
then the result is unsigned. If one of the operands is a const float, the result is also a const
float. When using signed / unsigned, the resulting stream size abides by the following rule:

Xaa.bb/Xcc.dd = X(aa+dd).(bb+cc)

% (Modulus)

The modulus is a binary operation between two streams/constants. The result is the
mathematical modulus of the value of the current instant of the left operand by the right
operand. The resulting datatype of the operation is a stream if at least one of the operands
is a stream, or a constant if both operands are constant. If the operation is done between
unsigned/signed streams, the result is signed but if it is performed only between unsigned,
then the result is unsigned. Both operands must be fully integer. When using signed /
unsigned, the resulting stream size abides by the following rule:

Xaa%Xcc = Xmin(aa,cc)

<< (Shift Left)

The shift left operation is a binary operation between a stream/const and a const. The
result is the bitwise left shift of bits of the left operand. The amount of bits to shift is
specified on the const present on the right operand. The resulting datatype of the operation
is a stream if the left operand is a stream, or a constant if both operands are constant.
Negative or fractional shifts are not allowed, so the right operand must be unsigned and
integer. The result type is preserved from the left operand. The left operand is also not
allowed to be a const float. The resulting stream size abides by the following rule:

Xaa.bb<<Ucc = X(aa+Ucc).max(0,bb-Ucc)
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>> (Shift Right)

The shift right operation is a binary operation between a stream/const and a const. The
result is the bitwise left shift of bits of the left operand. The amount of bits to shift is
specified on the const present on the right operand. The resulting datatype of the operation
is a stream if the left operand is a stream, or a constant if both operands are constant.
Negative or fractional shifts are not allowed, so the right operand must be an unsigned and
integer. The result type is preserved from the left operand. If the left operand is signed, the
signal is propagated on the shift. The left operand is also not allowed to be a const float.
The resulting stream size abides by the following rule:

Xaa.bb>>Ucc = Xmax(0,aa-Ucc).(bb+Ucc)

<<< (Rotate Left)

The rotate left operation is a binary operation between an unsigned stream / unsigned
const and a const. The result is the bitwise left rotate of bits of the left operand. The bits
that are shifted out of the word take the space on the beginning of the word. If the rotate
amount is equal to the size of the word, nothing happens. The amount of bits to rotate is
specified on the const present on the right operand. The resulting datatype of the operation is
a stream if the left operand is a stream, or a constant if both operands are constant. Negative
or fractional rotates are not allowed, so the right operand must be unsigned and integer. The
result type is preserved from the left operand. The left operand is also not allowed to be a
const float. Finally, a rotate operation has the same datatype size as the datatype of the left
operand. The resulting stream size abides by the following rule:

Uaa.bb<<<Ucc = Uaa.bb

>>> (Rotate Right)

The rotate right operation is a binary operation between an unsigned stream / unsigned
const and a const. The result is the bitwise right rotate of bits of the left operand. The bits
that are shifted out of the word take the space on the end of the word. If the rotate amount
is equal to the size of the word, nothing happens. The amount of bits to rotate is specified on
the const present on the right operand. The resulting datatype of the operation is a stream
if the left operand is a stream, or a constant if both operands are constant. Negative or
fractional rotates are not allowed, so the right operand must be unsigned and integer. The
result type is preserved from the left operand. The left operand is also not allowed to be a
const float. Finally, a rotate operation has the same datatype size as the datatype of the left
operand. The resulting stream size abides by the following rule:

Uaa.bb>>>Ucc = Uaa.bb

== != < > <= >= (Logic Comparisons)

The logic comparisons are a set of binary operations between two streams/constants. The
result is the numeric comparison of the value of the current instant of both operands. The
comparisons must be done with operands of the same type. The result of this operation is
always an unsigned integer stream with only one bit. This one bit is set to one when the
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relation of the comparison is satisfied, and zero otherwise. The operations have the following
meanings:

• Equal to (==): This comparison is satisfied when both operands have the same number;

• Not equal to (!=): This comparison is satisfied when both operands have different
number;

• Less than (<): This comparison is satisfied when the number present on the left operand
is numerically smaller than number present on the right operand;

• More than (>): This comparison is satisfied when the number present on the left operand
is numerically bigger than number present on the right operand;

• Less or equal to (<=): This comparison is satisfied when the number present on the left
operand is numerically smaller or equal to number present on the right operand;

• More or equal to (>=): This comparison is satisfied when the number present on the
left operand is numerically bigger or equal to number present on the right operand.

The resulting datatype of the operation is a stream if at least one of the operands is a
stream, or a constant if both operands are constant. One or both the operands can be a const
float, but only if the other is also a const. The resulting stream size abides by the following
rule:

Xaa.bb (== != < > <= >=) Xcc.dd = U1.0

and or xor not (Logic Operations)

Since rtfss is a hardware description language, it has a set of logic operations that al-
low for direct boolean logic bitwise manipulation of data. This set of operands are binary
operands and are used on a pair of stream / consts. Due to the nature of floats (floating
point representation), this kind of operations cannot be used with float consts. The resulting
datatype of the operation is a stream if at least one of the operands is a stream, or a constant
if both operands are constant. If the operation is done between unsigned/signed streams, the
result is signed but if it is performed only between unsigned, then the result is unsigned. By
nature, this kind of operation does not overflow, so the resulting stream/const will not be
bigger than the biggest operand:

Xaa.bb (and or xor not) Xcc.dd = X(max(aa,cc)).(max(bb,dd))

& (Property Of)

The operation “property of” is a miscellaneous unary operator that returns a certain
property of the operand. When the operand is a pulse, the operator returns the frequency
of that pulse. But, when used on a bus or in a const array, the operator returns the size
of the bus/array. The result of this operation is a const unsigned fixed-point value with 24
bits on the integer part, and 8 bits on the fractional part. This operation is also allowed on
const floats. Since this operation is solved at compile-time, it does not introduce any delay
or pipeline stage. The resulting stream size abides by the following rule:

&Xaa.bb = U24.8
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’ (Value At Instance)

The operator “value at instance” is a miscellaneous binary operator between a stream
and a stream/const. This operation allows the access of previous sample values of the left
operand’s stream by the amount defined by the right operand’s stream/const. This operation
was already described in greater detail on Section 3.3.2. Since the delay cannot be fractional,
the stream/const on the right must be an integer stream, and cannot be a const float. Since
the stream is only a delay of the left operand’s stream, then datatype and size from the left
operand’s stream are preserved. So, the resulting stream size follows this rule:

Xaa.bb’Xcc = Xaa.bb

gap (Relative Stream Delay)

The gap is a binary operation between two streams. The result is a const signed integer
that represents the relative stream delay between both streams. The operation can be done
between unsigned and signed. The value is calculated by analysing the depth of each pipeline
generated from each stream and comparing the differential of length. This operation is only
valid between streams of the same pulse. Neither operands can be a const float. The resulting
stream size abides by the following rule:

Xaa.bb gap Xcc.dd = I32.0

(Casting)

rtfss does not allow implicit typecasting, so explicit casting mechanisms must be used.
Explicit type casting is a miscellaneous binary operator between a stream type and a stream/-
const. This operation returns a new stream that has the value of the right operand but has
the type of the left operand. The operand has two forms:

• (type) stream: C like cast;

• type (stream): C++ like cast (functional notation).

Both forms can be used and yield exactly the same result. Casting does not introduce
any delay or pipeline stages. When using signed / unsigned, the resulting stream size abides
to the following rule:

(typeXaa.bb) Xcc.dd = typeXcc.dd

typeXaa.bb (Xcc.dd) = typeXcc.dd

3.3.7 midi Stream Arithmetic

All the previous stream operators do not apply to midi streams. These kinds of streams
have their own set of operators. These operators’ job is to extract data from the midi

streams that can be used for numeric operations. All the midi stream operators convert a
stream from midi to numeric streams, so in the current state of the specification, it is not
possible to create a midi stream, only consume its values. For the MIDI notes, since MIDI
allows polyphony, rtfss uses a concept called voices. A voice can be seen as a single sequence
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of notes. Multiple voices allow multiple notes to be processed at the same time. For example,
the maximum amount of parallel notes on two voices is two notes. The maximum number of
voices corresponds to the total number of possible notes, so it is 128 (7-bit value). Voices are
used in some of midi stream operators. The rtfss specification provides the following midi

operators:

noteof (Note Number of Channel)

This operator allows the extraction of the note number from a midi stream, on a given
channel (and voice). It is a quaternary operator that resembles a short CBlock instantiation.
The first operator takes the role of a const stream input on a CBlock, and it specifies the
maximum number of voices allowed (with a seven-bit integer unsigned const). The second
operand (also resembling a const input) specifies the desired voice to extract and is represented
similarly with a seven-bit integer unsigned const. The third operand (resembling stream
input) is a midi stream and the fourth operand is an unsigned four-bit integer stream that
specifies the desired channel. The result of the operand is an unsigned stream that has seven
bits of size (follows the MIDI protocol). It has the following syntax:

noteof(U7,U7:midi,U4) = U7

freqof (Frequency of Channel)

This operator allows the extraction of the frequency of the note from a midi stream,
on a given channel (and voice). The value of the frequency follows the twelve-tone equal
temperament tuning (12-TET) [3]. It is a quaternary operator that resembles a short CBlock
instantiation. The first operator takes the role of a const stream input on a CBlock, and
it specifies the number of the highest voice (with a seven-bit integer unsigned const). The
second operand (also resembling a const input) specifies the desired voice to extract and is
represented similarly with a seven-bit integer unsigned const. The third operand (resembling
stream input) is a midi stream and the fourth operand is an unsigned four-bit integer stream
that specifies the desired channel. The result of the operand is an unsigned stream that has
the size of the dominant datatype of the stream it is present on. It has the following syntax:

freqof(U7,U7:midi,U4) = Ua.b , where a.b is the size of the dominant datatype

velof (Velocity of Channel)

This operator allows the extraction of the velocity value from a midi stream, on a given
channel (and voice). It is a quaternary operator that resembles a short CBlock instantiation.
The first operator takes the role of a const stream input on a CBlock, and it specifies the
number of the highest voice (with a seven-bit integer unsigned const). The second operand
(also resembling a const input) specifies the desired voice to extract and is represented sim-
ilarly with a seven-bit integer unsigned const. The third operand (resembling stream input)
is a midi stream and the fourth operand is an unsigned four-bit integer stream that specifies
the desired channel. The result of the operand is an unsigned stream that has seven bits of
size (follows the MIDI protocol). It has the following syntax:

velof(U7,U7:midi,U4) = U7
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patof (Polyphonic Aftertouch of Channel)

This operator allows the extraction of the note after-touch value from a midi stream,
on a given channel (and voice). It is a quaternary operator that resembles a short CBlock
instantiation. The first operator takes the role of a const stream input on a CBlock, and
it specifies the number of the highest voice (with a seven-bit integer unsigned const). The
second operand (also resembling a const input) specifies the desired voice to extract and is
represented similarly with a seven-bit integer unsigned const. The third operand (resembling
stream input) is a midi stream and the fourth operand is an unsigned four-bit integer stream
that specifies the desired channel. The result of the operand is an unsigned stream that has
seven bits of size (follows the MIDI protocol). It has the following syntax:

patof(U7,U7:midi,U4) = U7

nntof (New Note trigger of Channel)

This operator allows the extraction of the trigger of a new note from a midi stream,
on a given channel (and voice). It is a quaternary operator that resembles a short CBlock
instantiation. The first operator takes the role of a const stream input on a CBlock, and
it specifies the number of the highest voice (with a seven-bit integer unsigned const). The
second operand (also resembling a const input) specifies the desired voice to extract and is
represented similarly with a seven-bit integer unsigned const. The third operand (resembling
stream input) is a midi stream and the fourth operand is an unsigned four-bit integer stream
that specifies the desired channel. The result of the operand is an unsigned stream with only
one bit. This bit goes to high for one pulse cycle when the note present on the midi stream
of the desired channel changed, otherwise it is always low. It has the following syntax:

nntof(U7,U7:midi,U4) = U1

ccof (Controller of Channel)

This operator allows the extraction of a certain controller value from a midi stream, on
a given channel. It is a ternary operator where the first operand is the midi stream, the
second operand is an unsigned four-bit integer stream that specifies the desired channel and
the last operand is an unsigned seven-bit integer stream that specifies the desired controller.
The result of the operand is an unsigned stream that has seven bits of size (follows the MIDI
protocol). It has the following syntax:

ccof(midi,U4,U7) = U7

pof (Program of Channel)

This operator allows the extraction of the program (patch) number from a midi stream,
on a given channel. It is an unary operator where the only operand is the midi stream. The
result of the operand is an unsigned stream that has seven bits of size (follows the MIDI
protocol). It has the following syntax:

pof(midi) = U7
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cpof (Channel Pressure of Channel)

This operator allows the extraction of the channel pressure (or channel after-touch) value
from a midi stream, on a given channel. It is a unary operator where the only operand is
the midi stream. The result of the operand is an unsigned stream that has seven bits of size
(follows the MIDI protocol). It has the following syntax:

cpof(midi) = U7

pbend (Pitch Bend of Channel)

This operator allows the extraction of the channel pitch bend value from a midi stream, on
a given channel. It is a unary operator where the only operand is the midi stream. The result
of the operand is an unsigned stream that has fourteen bits of size (on the MIDI protocol,
pitch bends have double the precision compared to normal controllers). It has the following
syntax:

pbend(midi) = U14

The voice allocation on the noteof, freqof, velof, nntof and patof operators is made
by allocating the first unused voice. This means that the voice numbered the highest will
only be used when all the others are already allocated with a note. A voice is allocated when
the midi stream receives a Note On MIDI message and is deallocated when the midi stream
receives a Note Off MIDI message. To serve as an example, the following code will extract
from a midi stream the note value from two voices, and the velocity value from the first voice
(on channel 5):

//Assuming a midi stream called "midi_in"

//controlled by a pulse called "ppulse"

U7@ppulse note0 = noteof(1,0:midi_in,5);

U7@ppulse note1 = noteof(1,1:midi_in,5);

U7@ppulse vel0 = velof(1,0:midi_in,5);

3.3.8 Stream Sizing on Contracted Operators

As mentioned before on Section 3.3, using a contracted operator (+=,-=,*=...) on an
attribution to a stream is mostly equivalent of doing the extended form. But, one issue
particular to rtfss arises. Since the language assures that the operations are lossless, every
operation that is contracted generates a bigger stream word size than the target stream. The
way that rtfss deals with this issue is to internally handle the contracted form as a cast to
the target stream size on the expanded operation:

U16@const a = 4;

a+=6;

This example is equal to:

U16@const a = 4;

a=U16(a+6);

35



Contracted operators were added to this language, like in many others, as syntactic sugar.
Initially, the inclusion of contracted operators in this language was scrapped because of the
stream sizing restrictions. Further ahead on the development of the language, the solution
presented was found and it was decided it was a good compromise. This way, the use of con-
tracted operators should be handled with care to avoid overflows and unexpected behaviours.

3.4 CBlock

Like most programming languages, rtfss has mechanisms to organize code. But since this
is not a sequential programming language, functions are not available. Instead, a black-box
block approach is used. This also goes in line with hardware programming languages. In rtfss,
blocks are called CBlocks. A CBlock has a set of input streams, output streams and const
(input) streams. In addition to those, a CBlock also has an associated pulse that should be
the preferred pulse inside the block. This pulse is used to synchronize the inputs and outputs
of the block. A CBlock declaration follows the syntax below:

cblock@<pulse_name> <cblock_name>(<consts_in>:<streams_in>:<streams_out>){

//Code

}

A CBlock has to have at least one output stream, but it can have zero input stream or
zero const inputs. Const inputs can be used to, for example, parametrize stream dimensions
and other const operations inside the block. While the output streams are both readable
and writable, the input streams are read-only. To specify the name of the block inputs
and outputs, the declaration is similar to regular streams, but instead of the semicolon, the
separator are commas and the pulse is not specified. The syntax is as follows:

(<datatype><stream_size> <stream_name> , ...)

Furthermore, the pulse specified on the CBlock declaration is then bound to a real pulse
when the block is instantiated. But, if the pulse name is const, then the CBlock becomes a
const CBlock. A const CBlock is exclusivity used to generate const values / buses. They are
not synthesized to hardware and are solved at compile-time. Their status of const block cannot
be overridden on instantiation. When using const blocks, the declaration changes a little bit:
the <streams in> slot disappears, and the <streams out> slot becomes <const out>:

cblock@const <const_cblock_name>(<consts_in> : <consts_out>){

//Code

}

On the other cases, the use of reserved pulse names serve as an indication of the intended
use of the block, but not an obligation. The next code block serves as some examples of
CBlock declarations:

//Consts used to size streams and to manipulate streams

cblock@mp gain(U8 in_size,U8 out_size,U8 amnt : Uin_size is : Uout_size os){

os=(Uout_size) is*amnt;

}
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//No input consts, only one in stream and one out stream

cblock@mp double(: U8 is : U9 os){

os=is<<1; //more efficient than out=is*2;

}

//Consts CBlock

cblock@const inv_square(F32 inv : F32 invv,F32 invsqrv){

invv=1.0/inv;

invsqrv=invv*invv;

}

CBlocks can be instantiated inside other CBlocks. In order to instantiate a CBlock, all
the wanted inputs and outputs should be already created as local streams. The same applies
to the selected pulse. There are two types of CBlock instantiation: the normal form and the
shortened form. The syntax for the normal form is:

[<streams_out>] = <cblock_name>@<pulse_name> (<consts_in> : <streams_in>);

In the case of const cblocks:

[<consts_out>] = <const_cblock_name>@const (<consts_in>);

This type of declaration is an independent statement that cannot be combined with stream
arithmetic. CBlocks can be instantiated as many times as needed, but the hardware generated
for a block will most probably be replicated on compilation. This means that, by definition,
the compiler is not obliged to reuse the hardware from one block to multiple instances.
Moreover, CBlock recursivity is not allowed.

Another way of instantiating CBlocks is the shortened form. The shortened form allows
the programmer to combine the instantiation with its use on stream arithmetic as if it was
only one stream. To be able to use the shortened form, the CBlock to be instantiated needs
to only have one output. If this is true, the instantiation takes the shape of classical function
return, with these syntaxes:

//Normal CBlock

<cblock_name>@<pulse_name> (<consts_in> : <streams_in>)

//Const CBlock

<const_cblock_name>@const (<consts_in>)

The next code block serves as some examples to both CBlock instantiation forms of the
CBlocks declared in the last example:

U8@ps sound;

U8@ps ampsound;

[ampsound]=gain@ps(8,8:sound); //Normal form

U8@ps norm;
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U9@ps doub_norm_inc=double@ps(:norm)+1; //Shortened form

F32 inv;

F32 invv;

F32 invsqrv;

[invv,invsqrv]=inv_square(inv); //Normal form

Since all stream declaration and manipulation are done inside a CBlock, there is a necessity
to use an uppermost CBlock that is always instantiated. This block is called main and behaves
as the top-level entity for the hardware design. The interface that the main CBlock has is
reflected to interface that the target generated hardware will have. The default pulse of this
block has the frequency of the sample rate (that the I/O operates) of the system. For example,
a main CBlock declaration could be similar to this:

cblock@smppulse main(:

midi midi_in,I16 ctrl_in[8],U16 uctrl_in[8],I16 audio_in[2] :

midi midi_out,I16 ctrl_out[8],U16 uctrl_out[8],I16 audio_out[2]){

//Code

}

3.5 if Statement

The rtfss language allows the use of conditional logic flows. These can be achieved using
logic gate manipulation (low-level), or using if statements. if statements allow the selection
of stream statements / code blocks by the logic value of an expression. A basic if statement
can have just a code block for if the logic statement is true. But, it can also present an
alternative code block in the case the logic expression is false. This is achieved with an else

statement. The syntax to both cases is:

if ( <logic_expression> ) {

<stream_attributions> //Logic expression true

} //Only if statement

if ( <logic_expression> ) {

<stream_attributions> //Logic expression true

}

else {

<stream_attributions> //Logic expression false

}

It is worth noting that although a choice is being made, all branches need to be synthesized
on if statements. This is due to the fact that a compiler cannot guess what will, and will
not be executed. There is an exception to this rule, of course, when the logic expression is
solvable at compile-time. In this case, the compiler can optimize the code by removing the
if statement, and only placing the logic from the correct branch. The rtfss does not enforce
the compiler to do this optimization, so it should not be completely relied upon.
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The rtfss if statement can also allow more alternative statements. This is implemented
by the introduction of elseif statements. There can be as many elseif statements as needed.
The syntax used is the following:

if ( <logic_expression_0> ) {

<stream_attributions> //expr_0 true

}

elseif (<logic_expression_1> ) {

<stream_attributions> //expr_0 false and expr_1 true

}

(...)

else {

<stream_attributions> //expr_0 false, expr_1 false, ...

}

The if statements can only be present inside CBlocks. Stream default values can also be
present inside if, elseif or else statement code blocks. Finally, the last thing worth noting
about these statements is that they should be avoided because they instigate sequential logic
thought processes. Hardware description language should not be handled with sequential
logic thought processes since their parallelism capabilities can only be exploited when the
thought process is concurrent.

3.6 for Statement

The rtfss language also allows the instantiation of processing cycles / loops. They can
be achieved by instantiating for statements. The for statements are an alternative to code
replication (naive approach). Every for cycle has a variable associated. This variable sym-
bolizes the number of the present iteration. On creation of a for cycle, the bounds of the
loop must be specified. These are the lower bound and the upper bound of the value of the
variable. Optionally, the increment of the cycle can be altered (by default it is 1). The syntax
used for for statements is:

for ( <for_variable> in <lower_bound> to <upper_bound> ){

<for_code_block>

} //Without specified increment

for ( <for_variable> in <lower_bound> to <upper_bound> inc <inc_value> ){

<for_code_block>

} //With specified increment

Both the lower and upper bound, and the increment must be constant values / constant
streams. The for statements can only be present inside CBlocks. Internally, the rtfss com-
pilers can implement for cycles by, for example, creating a Finite State Machine where every
state represents one iteration. Another way would be to replicate the naive implementation:
unfold the cycles. It is up to the compiler to solve and find the best implementation. Similarly
to the if statements, the used of these statements should be avoided, because they instigate
sequential logic thought process. The use of for cycles can create an unwanted increase on
the implementation complexity. Here are some examples of the use of for loops:
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I16@const[10] lucas;

lucas[0]=2;

lucas[1]=1;

for(i in 2 to 10){

lucas[i]=lucas[i-1]+lucas[i-2];

}

3.7 Import Syntax

The rtfss language is designed to be flexible and to allow the breakdown of complex
algorithms into simpler blocks. The language also encourages the creation of basic building
blocks and their arrangement into libraries. To do so, rtfss allows source code imports. A
source code import can be used by writing, before the declaration of the first CBlock, the
keyword use, followed by the name of the file to import. A rtfss compiler, parsing this
line, will consume all the CBlocks present on that file (and all the CBlocks present on their
imports). These can then be used on the current source file as they were declared on that file.
The visibility of imports is unlimited. This means that if a file A imports a file B, and the file
B imports a file C, then the CBlocks present on file C are visible on file A. This needs to be
considered upon when naming CBlocks. Cyclic includes should be detected by the compiler,
and their use is not allowed. The import syntax is the following:

use <file_name> ;

3.8 Compilation Targets

As mentioned before, rtfss is a sound-focused hardware description language. As such,
the main target of the language is hardware devices. Certainly, the language can still be
compiled to regular computer programming languages, but it would most likely diminish the
advantages of using rtfss. Nowadays, the most popular hardware target devices (other than
fixed hardware) are FPGAs [1]. Most FPGA hardware synthesis tools allow the compilation
of VHDL or Verilog. Designing a language capable of being compiled directly to FPGA
placement netlists would be a substantial undertaking. So, instead, rtfss is designed to be
compiled to another (lower-level) hardware description language (for example, VHDL). The
output of the compiled source code should then be fed into a hardware synthesis tool (compiler
chaining).

3.9 Example Designs in rtfss

Now that the formal specification of the rtfss language is described, we can analyse in
more detail some designs made in rtfss.

3.9.1 IIR Filter Design Revisited

First, we are going to look again at the example presented in Section 1.1:
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cblock@smpp main(: I16 smp_in : I16 lp_out){

//Low-pass aprox 0.2 Normalized Frequency IIR Filter

I16.2@smpp lowpass = I16.2((lowpass’-1)>>1+(smp_in+(smp_in’-1))>>2);

lp_out=I16(lowpass);

}

We can see that this design only contains one CBlock (main), and that the CBlock is
controlled by the system’s sample frequency (pulse named smpp). This design contains one
integer stream input (smp in) and one integer stream output (lp out), but does not contain
any const stream inputs. While the inputs and outputs have 16 bits of resolution, the internal
stream lowpass has an extra two bits on the fractional part of the datatype. Since the
operations inside the lowpass stream expand the size of the intermediates datatype, a cast is
put before the attribution is made. This cast cuts the datatype of the intermediate calculations
back to the size of the internal stream. The value at instant operator is used in both
lowpass and smp in streams to access the previous stream values needed for the filter. The
sizes of the intermediate datatypes are outlined in Figure 3.2. The diagram present on this
Figure is a modified simpler version of a graph generated by the rtfss compiler (explained on
4.8).

lowpass (I16.2)

lowpass’-1 (I16.2)

>> (I15.3)

left

1 (U1.0)

right

+ (I16.3)

left

smp_in (I16.0)

+ (I17.0)

left

smp_in’-1 (I16.0)

right

>> (I15.2)

left

2 (U2.0)

right

right

<cast> (I16.2)

Figure 3.2: Example diagram of rtfss Stream Arithmetics.
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3.9.2 Filtered Square Wave Design

This filter CBlock can be combined with other CBlocks to generate more intricate designs.
The following example generates a filtered 2kHz square wave:

cblock@smpp lp_filter(: I16 smp_in : I16 lp_out){

//Low pass 0.2 Normalized Frequency IIR Filter

I16.2@smpp lowpass = I16.2((lowpass’-1)>>1+(smp_in+(smp_in’-1))>>2);

lp_out=I16(lowpass);

}

cblock@frqp square(:: I16 sqr_wave){

//Square wave oscillator

//Output frequency = frqp pulse freq / 2

sqr_wave = not (sqr_wave’-1);

sqr_wave’-1 = I16(0x7FFF);

}

cblock@smpp main(:: I16 smp_out){

pulse square_p 4000Hz; //Used to generate the 2kHz square wave

smp_out=lp_filter@smpp(: square@square_p(:));

}

This design contains three CBlocks. The lp filter CBlock is the same CBlock of the
previous example (0.2 normalized frequency low-pass IIR filter) but with a different name.
The square CBlock generates a fixed frequency square wave. The frequency of the square
wave is half of the frequency of the pulse. Internally this module has a stream that inverts its
value every pulse trigger. Since the default value at instant -1 is the highest positive value
possible on that resolution (hexadecimal 0x7FFF equivalent to 32767 in signed decimal), when
the stream inverts the new value is the lowest possible number on that resolution (hexadecimal
0x8000 equivalent to -32768 in signed decimal). One full wave cycle is achieved in two pulse
triggers, so to generate a 2kHz square wave, the pulse of this block must work at 4kHz. The
final CBlock is the main CBlock. This CBlock creates a new pulse to be used on the square
wave module and instantiates both lp filter and square CBlocks. Since both CBlocks only
contain one output, the short instantiation is used. The output of the square CBlock is fed
to the only input of the lp filter CBlock. The output of this last CBlock is placed on the
only output of the main CBlock. This design will be revisited and compiled on Appendix C.

3.10 Summary

The main motivation behind this thesis is to facilitate the creation of hardware solutions
for audio processing chains. In this Chapter, a new language for hardware description of
sound synthesis was introduced and explained. This language, called rtfss, offers some of the
features present in normal computer programming languages while still also providing the
traditional elements of a hardware description language. This language is designed to create
an optimized logic circuitry by the used of a pipelined architecture.

In the next Chapter, a compiler that implements a representative part of the rtfss language
specification is proposed and analysed.
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Chapter 4

The rtfss Compiler

4.1 Preamble

As part of the thesis work, it was decided to implement a rtfss compiler that would handle
a subset of the specification. The technologies used for this task are the following:

• C++: General-purpose programming language;

• Boost: A popular set of C++ libraries;

• ANTLR: Used to implement a rtfss compliant lexer and parser;

• VHDL: The hardware description language that is the target language of this compiler;

• CMake (and Make): CMake is a tool used for managing the build process of this com-
piler. Make is a building automation tool and is used by CMake as the underlying
base;

• DOT (Optional): Graph description language. It is used to represent (and later visual-
ize) all the graphs (and trees) the compiler generates.

The language chosen for this compiler was C++. It is a low-level language that allows
complete control of how the memory is managed. It is also a compiled language, so it benefits
from the perks of being compiled (for example, static optimizations and lower execution
overhead). However, even though it is low level, there is a standard library (called C++
Standard Library) with a vast collection of already made tools and algorithms that speed
up the implementation of more complex programs. There is also an external library, called
Boost, that complements the Standard Library.

In addition to the C++ Standard Library, the Boost libraries were selected to allow the
ease of two operations: string templating and arbitrary size number representation. For string
templating, Boost offers the Boost Format library. For arbitrary size number representation,
Boost has a library for dynamic bitsets located on <boost/dynamic bitset.hpp>.

ANTLR is a lexer and parser generator. It uses a LL(*) approach to analyse the input
and generate a tree representation of the input. This representation is called the parse tree. In
order for ANTLR to work, a grammar that fully represents the target language specification
must be created. Given this grammar, ANTLR generates code that serves as a lexer and
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parser. Although ANTLR’s main target is Java, it allows the generation of, for example,
Python and C++. For a more detailed explanation, refer to Section 2.3.

VHDL is a hardware description language that allows the description of digital systems.
VHDL serves as the target compilation language of the rtfss compiler. VHDL code can be
compiled to work on Field Programmable Gate Arrays (FPGAs, explained in Section 2.1),
generate Application-Specific Integrated Circuits (ASICs) or others. For a more detailed
explanation, refer to Section 2.2.

A compiler is usually a program that is composed of several different source files and
objects. Each of these objects should be compiled individually and then linked together
to generate the final program. To do so, normally a programmer would choose to have a
Makefile and store in it all the instructions to compile the project. Then, to compile, the
programmer invokes the command make on the same directory the Makefile is present, and
the compilation process is triggered. The Make toolchain offers desirable tools that allow this
compilation process, but it lacks one big thing: library management. This is where CMake
comes in. CMake allows the specification of the libraries needed to compile the project, and
they will be included “automatically”. Furthermore, in CMake, the programmer can specify
the internal objects and generate their own libraries. The dependencies of the libraries should
also be mentioned. With all this information, the CMake generates a Makefile that handles
all the libraries, linkage and compilation without needing to specify the individual compilation
commands. Since the rtfss compiler relies on the ANTLR and Boost libraries, the use of
CMake was obvious. The CMake created is responsible for getting both these libraries and
for compiling the whole project.

The rtfss compiler is heavily based on trees and graph data-structures. Dealing with
these data structures implies the manipulation of memory (mostly dynamic memory), and
most importantly it implies the heavy manipulation of pointers. In order to aid the devel-
opment of the compiler, it was decided to create auxiliary classes/objects that would allow
the visualization of the trees and the graphs that the compiler generates. Our choice was
to use the DOT representation and the GraphViz program. GraphViz (Graph Visualization
Software) is a visualization software that allows the creation of a visual representation of
graphs described in the DOT language [25]. While compiling, the compiler gives the option
of showing the internal trees/graphs with all the relevant connections and information. These
graphs are now used on this document to give concrete examples and to better explain the
internal structure of the compiler. All the Figures that use the output of a synthesized graph
from the compiler are labelled with the word “GraphViz”.

The rtfss compiler’s architecture is broken into multiple logic blocks. These blocks act as
stages on the compilation process and act upon the data generated by the preceding blocks.
Thus, this compiler can be seen as a pipeline of tasks that at the beginning consumes rtfss
code, and at the end generates VHDL. These block stages will be explained in detail in this
Chapter. A simplified view of the architecture of the compiler is shown in Figure 4.1, but to
summarize, the compiler:

1. Generates a parse tree (using ANTLR);

2. Translates the parse tree into an abstract syntax tree;

3. Does multiple operations and manipulations over the tree;

4. Converts the tree into an architectural graph;
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5. Does operations over that graph; converts the graph into the “final representation”
graph;

6. Translates this final graph into the target language VHDL.

4.1.1 rtfss’s Compiler Limitations

The rtfss language is an arguably complete language that suits the needs of sound synthesis
(and maybe beyond). But, the compiler implemented (at least at this stage) only implements
a subset of the formal specification of the language. This is due mainly to the time window
used to develop the project and its innate complexity. Some key features of the language
are not functional, since they might be only partially implemented by some of the compiler’s
functional blocks. Even so, the compiler in its current state is completely functional and can
be used to create hardware. Throughout this Chapter, the limitations of the compiler will be
explained, but for clarity, the following list contains a summary:

• Only one CBlock (the main) is allowed, so all the algorithms must be specified in there;

• The import mechanism is not implemented. This is due to the fact that only the main

CBlock is allowed, so even if imports were implemented, they would serve no use because
the main CBlock cannot instantiate others;

• Constant stream inputs in CBlocks are allowed but are ignored. This, again, is due to
the fact that only the main CBlock is allowed, so this feature would not provide useful
functionality;

• The midi streams and correspondent operators are not operational on this stage of the
compiler. They are accepted as valid syntax, but they do not generate any hardware;

• The if statements are not allowed, and subsequently elseif and else statements are
not allowed either;

• The for statements are not allowed;

• Stream Buses are not implemented;

• The “property of” (&) and “relative stream delay” (gap) operators are not implemented,
so their use will raise an error;

• Despite the last item stream instants are implemented but their use is restricted to
compile-time constants on the time index. This means that a stream cannot time index
another stream. Otherwise, it is synthesizable.

4.1.2 Support Example

To help understand better the compiler, a rtfss example design will be processed by the
compiler. As the various stages of compilation are explained in this Chapter, the example
will be used to reveal the state of the internal structures of the compiler.

The example we will be using is the IIR filter example that was already presented in
Section 1.1 and Appendix A. This example does not cross the current restrictions of the rtfss
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Figure 4.1: Simplified diagram of rtfss compiler processing stages.
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compiler. However, the example was rewritten to better demonstrate various processing steps
of the compiler:

cblock@smpp main(: I16 smp_in : I16 lp_out){

lp_out=I16(lowpass);

I16.2@smpp lowpass;

lowpass = lowpass’-(1+1);

lowpass = I16.2(smp_in+(smp_in’-1)>>2);

lowpass += (lowpass’-1)>>1;

}

This expanded version is slightly different, but functionally equivalent to the original
version. The internal audio stream is split into three attributions (and one separated decla-
ration). The first of those three attributions is redundant since the next one overwrites this
one. The last attribution uses a contracted operator, so it uses the expression from the last
attribution. This expanded version contains one more cast than the normal one. The first
cast (second attribution) is needed to align the sizes of the intermediate calculations with
the size of the stream. Yet, since the size of the intermediate calculations is smaller than the
internal audio stream (I15.2 compared to I16.2), it does not affect the values. The second
cast is implicit on the contracted operator. When this operator gets expanded, it will create
a cast to the size of the target stream.

4.2 Input Tokenization and Syntactic Analysis

Input tokenization and syntactic analysis is usually the first step performed by a compiler.
In this step, the input code is received and parsed. The character stream is then fed into a
tokenizer. The tokenizer’s job is to figure out, according to predetermined rules, the tokens
present on the character stream. The tokens generated from this analysis are the output of
the lexer. After the tokenization, the syntactic analysis consumes the tokens generated by
the tokenizer and builds a syntactic parse tree following a set of rules.

The full ANTLR rtfss compliant grammar used on the rtfss compiler is in Appendix D.

4.2.1 Lexical Analysis

To better understand the tokenization process, consider for example, a tokenizer present
on a pseudo-calculator. When given the input a=1+2;, the tokenizer could break that charac-
ter stream into the following token sequence: <identifier val=’a’> <equals> <numeral

val=1> <plus> <numeral val=2> <semicolon>. If, while processing the character stream,
no token rule fits the sequence of characters (and the input is at the end of stream), then the
tokenizer raises an error and the compilation process stops.

Tokenization, in the rtfss compiler, is performed by ANTLR and is the first compilation
step. The full rtfss specification is allowed by the lexer. The rules that the rtfss compiler’s
tokenizer follows can be split into two groups: fixed matching rules and dynamic matching
rules.

The fixed matching rules are rules that match a specific (fixed) sequence of characters.
These rules are composed of reserved words and syntactic symbols (such as operators). The
fixed matching rules that the rtfss compiler has are:
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• USE: Matches the character sequence use. Used on import statements;

• CBLOCK: Matches the character sequence cblock. Used on CBlock declaration;

• IF, ELSEIF and ELSE: Matches the character sequence if, elseif, else. Used on ’if’,
’elseif’ and ’else’ statements;

• FOR : Matches the character sequence for. Used on ’for’ statements;

• IN, TO, INC: Matches the character sequence in, to, inc. Used on ’for’ statements;

• CURLY OPEN and CURLY CLOSE: Matches the character { and }. Used as the beginning
and ending delimiter of code blocks;

• BRAC OPEN and BRAC CLOSE: Matches the character [ and ]. Used as the beginning and
ending delimiter of a stream bus declaration or indexing;

• PAR OPEN and PAR CLOSE: Matches the character ( and ). Used as a beginning and
ending delimiter in various situations;

• ARG GROUP SEP: Matches the character :. Used as a separator between the inputs and
outputs of a CBlock;

• COMMA: Matches the character ,. Used as a separator in multiple occasions;

• PULSE SEP: Matches the character @. Used as a separator on Streams to separate its
name from its pulse;

• TERMINATOR: Matches the character ;. Used as the terminator of most of the statements
of rtfss;

• MAX and CONST: Matches the character sequence max, const. Used as the identifier of a
max and a const pulse;

• MIDI: Matches the character sequence midi. Used as the identifier of a midi stream;

• EQUAL: Matches the character =. Used on stream attributions / declarations;

• ADD, SUB, MULT, DIV, MOD: Matches the characters +, -, *, /, %. Used on arithmetic
expressions. Their meaning is bounded to their symbol (already explained in Section
3.3.6);

• SL, SR, RL, RR: Matches the character streams <<, >>, <<<, >>>. Used on arithmetic
expressions. Their meaning is bounded to their symbol (Section 3.3.6);

• AND, OR, XOR, NOT: Matches the character streams and, or, xor, not. Used on arithmetic
expressions. Their meaning is bounded to their symbol (Section 3.3.6);

• GAP, PROP, INS: Matches the character streams gap, &, ´. Used on arithmetic expressions.
Their meaning is bounded to their symbol (Section 3.3.6);

• NOTEOF, FREQOF, VELOF, PATOF, NNTOF: Matches the character streams noteof, freqof,
velof, patof, nntof. Used on midi stream arithmetic expressions. Their meaning is
bounded to their symbol (Section 3.3.7);
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• CCOF: Matches the character stream ccof. Used on midi stream arithmetic expressions.
Their meaning is bounded to their symbol (Section 3.3.7);

• POF, CPOF, PBEND: Matches the character streams pof, cpof, pbend. Used on midi

stream arithmetic expressions. Their meaning is bounded to their symbol (Section
3.3.7).

To match tokens that do not have a fixed value, but have a fixed structure (for example,
identifiers and numerics), the tokenizer has dynamic matching rules. To help organize the
lexical rules of the compiler, a ANTLR feature called fragment is used. A fragment is a
lexical rule that cannot be matched alone, but can be combined to generate a bigger rule.
Some of the tokenizer rules that are of the fragment are dynamic matching rules. The main
fragment rules the tokenizer has are the following:

• SIGNED TYPE PREFIX, UNSIGNED TYPE PREFIX and FLOATING TYPE PREFIX: Matches the
character I (for signed), U (for unsigned) and F (for float);

• PULSE LITERAL SUFFIX: Matches the suffix of a pulse literal. The valid values for this
rule are: s (seconds), ms (milliseconds), Hz (Hertz), kHz (kilo Hertz);

• FRAC SEPARATOR: Matches the character ., which acts as a fractional numeric separator;

• OCT PREFIX and HEX PREFIX: Matches the prefix of numerics. In other words, character
0 (for octal) and the character stream 0x (for hexadecimal);

• OCT DIGIT, DEC DIGIT and HEX DIGIT: Matches a numeral digit. It matches a character
that is a number from zero to seven (octal), number from zero to nine (decimal) and
number from zero to nine or letter from ’a’ to ’f’ (undercase or uppercase);

• OCT INT, DEC INT and HEX INT: Matches a integer numeral. It is composed by a sequence
of one or more OCT DIGIT that is preceded by the OCT PREFIX (for octal), one or more
DEC DIGIT (for decimal), or one or more HEX DIGIT that is preceded by the HEX PREFIX;

• DEC FRAC: Matches a decimal fraction. It matches a FRAC SEPARATOR that is preceded
by one or more DEC DIGIT and succeeded by zero or more DEC DIGIT, or that is preceded
by zero or more DEC DIGIT and succeeded by one or more DEC DIGIT;

• OCT FRAC: Matches a decimal fraction. It matches a FRAC SEPARATOR that is preceded
by one or more OCT DIGIT and succeeded by zero or more OCT DIGIT, or that is preceded
by zero or more OCT DIGIT and succeeded by one or more OCT DIGIT. All of this must
be preceded by a OCT PREFIX;

• HEX FRAC: Matches a decimal fraction. It matches a FRAC SEPARATOR that is preceded
by one or more HEX DIGIT and succeeded by zero or more HEX DIGIT, or that is preceded
by zero or more HEX DIGIT and succeeded by one or more HEX DIGIT All of this must
be preceded by a HEX PREFIX.

Most of the compiler tokenizer’s dynamic matching rules rely on the fragment lexical
rules. The rtfss compiler has the following dynamic matching rules:

• COMBOP: Matches the contracted operators +=, -=, *=, /= and %=;
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• LOGIC OP: Matches all the possible logic comparison operators >, <, >=, <=, == and !=;

• OCT LITERAL, DEC LITERAL and HEX LITERAL: Represents a numeric literal in each of
the three possible representations. For each, the rule accepts the integer alternative
or the fixed alternative. For example, for the hexadecimal base, the rule HEX LITERAL

matches HEX INT or HEX FRAC;

• NUM LITERAL: Represents a numeric literal represented in any base. It matches with a
OCT LITERAL, DEC LITERAL or HEX LITERAL;

• PULSE LITERAL: Matches a value that can be set on a pulse. It matches a NUM LITERAL

followed by the PULSE LITERAL SUFFIX;

• SIGNED TYPE: Matches a specification of a signed type. It accepts a SIGNED TYPE PREFIX

followed by a DEC DECIMAL or IDENTIFIER;

• UNSIGNED TYPE: Matches a specification of a unsigned type. To match this rule, it
expects a UNSIGNED TYPE PREFIX followed by a DEC DECIMAL or IDENTIFIER;

• FLOATING TYPE: Matches a specification of a floating type. To match this rule, it expects
a FLOATING TYPE PREFIX followed by a DEC DECIMAL or IDENTIFIER;

• IDENTIFIER: Matches a character stream that starts with a letter (undercase or upper-
case) or an underscore, and that can have afterwards a sequence of numbers and / or
letters and / or underscores;

• STRING LITERAL: Matches a sequence of any character, that is preceded and proceeded
by quotes;

• BLOCK COMMENT: Matches a sequence of any character, that is preceded by a front slash
and an asterisk and is proceeded by an asterisk and one front slash. All the tokens of this
kind, are then discarded by the tokenizer since they do not hold valuable information
to the compilation process;

• LINE COMMENT: Matches a sequence of any character (except a new line), that is preceded
by two front slashes. All the tokens of this kind, are then discarded by the tokenizer
since they do not hold valuable information to the compilation process;

• WS: Matches a sequence of one or more white space characters. All the tokens of this
kind, are then discarded by the tokenizer since they do not hold valuable information
to the compilation process.

Support Example Analysis

The Token Stream generated by ANTLR4 while processing the example present in Section
4.1.2 is the following:

[’cblock’,<CBLOCK>], [’@’,<PULSE_SEP>], [’smpp’,<IDENTIFIER>], [’main’,<

IDENTIFIER>], [’(’,<PAR_OPEN>], [’:’,<ARG_GROUP_SEP>], [’I16’,<

SIGNED_TYPE>], [’smp_in’,<IDENTIFIER>], [’:’,<ARG_GROUP_SEP>], [’I16’,<

SIGNED_TYPE>], [’lp_out’,<IDENTIFIER>], [’)’,<PAR_CLOSE>], [’{’,<
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CURLY_OPEN>], [’lp_out’,<IDENTIFIER>], [’=’,<EQUAL>], [’I16’,<SIGNED_TYPE

>], [’(’,<PAR_OPEN>], [’lowpass’,<IDENTIFIER>], [’)’,<PAR_CLOSE>], [’;’,<

TERMINATOR>], [’I16.2’,<SIGNED_TYPE>], [’@’,<PULSE_SEP>], [’smpp’,<

IDENTIFIER>], [’lowpass’,<IDENTIFIER>], [’;’,<TERMINATOR>], [’lowpass’,<

IDENTIFIER>], [’=’,<EQUAL>], [’lowpass’,<IDENTIFIER>], [’’’,<INS>],

[’-’,<SUB>], [’(’,<PAR_OPEN>], [’1’,<NUM_LITERAL>], [’+’,<ADD>], [’1’,<

NUM_LITERAL>], [’)’,<PAR_CLOSE>], [’;’,<TERMINATOR>], [’lowpass’,<

IDENTIFIER>], [’=’,<EQUAL>], [’I16.2’,<SIGNED_TYPE>], [’(’,<PAR_OPEN>],

[’smp_in’,<IDENTIFIER>], [’+’,<ADD>], [’(’,<PAR_OPEN>], [’smp_in’,<

IDENTIFIER>], [’’’,<INS>], [’-’,<SUB>], [’1’,<NUM_LITERAL>], [’)’,<

PAR_CLOSE>], [’>>’,<SR>], [’2’,<NUM_LITERAL>], [’)’,<PAR_CLOSE>], [’;’,<

TERMINATOR>], [’lowpass’,<IDENTIFIER>], [’+=’,<COMBOP>], [’(’,<PAR_OPEN

>], [’lowpass’,<IDENTIFIER>], [’’’,<INS>], [’-’,<SUB>], [’1’,<NUM_LITERAL

>], [’)’,<PAR_CLOSE>], [’>>’,<SR>], [’1’,<NUM_LITERAL>], [’;’,<TERMINATOR

>], [’}’,<CURLY_CLOSE>], [’<EOF>’,<EOF>]

This list is a simplified version of the ANTLR4 lexical analysis output where each pair
surrounded by brackets is a token. The first element of the pair is the actual string that
represents the token, and the second element is the token type.

4.2.2 Syntactic Analysis

After the tokenization, comes the syntactic analysis. This analysis uses the token stream
created by the tokenizer and tries to match the sequence to the grammar rules. As the parser
matches rules to the consumed tokens, it starts incrementally building a tree where each node
represents a rule and the terminal nodes represent the tokens. This tree (the parse tree)
is the output of the parser. Like the tokenizer, if the parser is unable to resolve rules in
order to fit all the consumed tokens, the parser raises an error and the compilation process
stops. The syntactic analysis, in the rtfss compiler, is performed by ANTLR and is the
second compilation step. This step also represents the final step performed by the source
code that ANTLR generated. Similarly to the tokenizer, the parser is fully compliant of the
rtfss specification. The rtfss compiler’s lexer has the following rules (the most straightforward
rules will also be explained):

• pulse freq: This rule represents pulse name, and matches the token MAX, MAX or
IDENTIFIER;

• varSizeType: This rule represents a type of stream that has a variable dimension
(signed, unsigned or float). It matches the tokens SIGNED TYPE, UNSIGNED TYPE or
FLOATING TYPE;

• fixedSizeType: This rule represents a type of stream that has a fixed dimension. So
far rtfss only has midi as a fixed size type, so, it matches the token MIDI TYPE;

• data type: This rule represents any type of stream type. So it matches the matches
the rule fixedSizeType or varSizeType;

• stream id: This rule represents the use of a stream identifier, complete with the possi-
bility of being indexed or having a time instant. So, it matches a IDENTIFIER, followed
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by an optional expr (surrounded by a BRAC OPEN and a BRAC CLOSE), followed by an
optional expr (that is preceded by a INS);

• var name: This rule represents the use of a stream identifier, with the possibility of
being indexed. So, it matches a IDENTIFIER, followed by an optional expr (surrounded
by a BRAC OPEN and a BRAC CLOSE);

• expr: This is the main rule that matches stream expressions. It is the only rule that
is recursive and, in the case of binary operators, it even is left recursive. ANTLR only
allows left recursive rules when they are direct. This means that the recursion is made
inside the rule and does not refer to another rule to do the circular reference. This
rule handles the following operations: symmetric, both cast operations, CBlock short
instantiation, stream bus initialization, property of, relative stream delay, shift left and
right, rotate left and right, all bitwise logic operators, multiplication, division, sum,
subtraction and all logical comparisons. Additionally, it also handles the midi stream
operators note of, frequency of, velocity of, polyphonic aftertouch of, new note trigger
of, controller of, program of, channel pressure of and pitch bend of. It also can match
a stream id or a NUM LITERAL. Finally, it also matches an expr that is surrounded by
PAR OPEN and PAR CLOSE. This last one is useful to set the precedence of operations. To
better understand this rule, its declaration (in ANTLR) is similar to the following:

expr: SUB expr

| PAR_OPEN data_type PAR_CLOSE expr

| data_type PAR_OPEN expr PAR_CLOSE

| cblock_inst_short

| PAR_OPEN expr PAR_CLOSE

| CURLY_OPEN (expr COMMA)* expr CURLY_CLOSE

| PROP expr | expr GAP expr

| expr (SL|SR) expr | expr (RL|RR) expr

| expr AND expr | expr OR expr

| expr XOR expr | NOT expr

| expr MULT expr | expr DIV expr

| expr MOD expr | expr ADD expr

| expr SUB expr | expr LOGIC_OP expr

| NOTEOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE

| FREQOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE

| VELOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE

| PATOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE

| NNTOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE

| CCOF PAR_OPEN expr COMMA expr COMMA expr PAR_CLOSE

| POF PAR_OPEN expr PAR_CLOSE | CPOF PAR_OPEN expr PAR_CLOSE

| PBEND PAR_OPEN expr PAR_CLOSE

| stream_id | NUM_LITERAL;
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• assign op: This rule symbolizes all possible assignment operators. So, it matches a
EQUAL or COMBOP;

• var assign: This rule specifies a stream assignment. It matches a stream id followed
by a assign op and ends with an expr;

• data decl: This rule specifies a stream declaration (and possible built-in assignment).
It maches a data type followed by the token PULSE SEP and the rule pulse freq. It
then expects the rule stream id to match and, optionally if there is an attribution, a
EQUAL and a expr;

• pulse decl: This rule represents a pulse declaration. So, it matches a PULSE, an
IDENTIFIER and a PULSE LITERAL;

• cblock inst short: This rule represents the short instantiation of a CBlock;

• cblock inst short: This rule represents the normal instantiation of a CBlock;

• for statm: This rule specifies the structure of a ’for’ statement. It matches the following
tokens: FOR, PAR OPEN, IDENTIFIER, IN, expr, TO, expr, optionally INC and expr,
PAR CLOSE and code block;

• if statm: This rule specifies the structure of an ’if’ (with optional ’elseif’ and ’else’)
statement. To match the part of the ’if’, it expects a IF, PAR OPEN, expr, PAR CLOSE

and a code block. Then, if there is one or more ’elseif’, it expects a ELSEIF, PAR OPEN,
expr, PAR CLOSE, and a code block for each of the ’elseif’s. Finally, if there is a ’else’
statement, then it expects a ELSE and a code block;

• nonterminated statm: This rule gathers all the statements that are not terminated
(by a ;). These are if statm and for statm;

• terminated statm: This rule gathers all the statements that are terminated (by a ;).
These are var assign, data decl, pulse decl and cblock inst;

• statm: This rule gathers all kinds of statements (regardless of how they are terminated).
So, it accepts a nonterminated statm or a terminated statm;

• code block: This rule models the specification of a code block. A code block has a
CURLY OPEN followed by an arbitrary amount of statm and ends with a CURLY CLOSE;

• cblock arg list: This rule serves as an auxiliary rule to match a arguments enumer-
ation of a CBlock. It matches a (possibly empty) sequence of pairs of data type and
var name. Between each pair, the rule expects a COMMA;

• cblock args: This rule serves as an auxiliary rule to match two or three lists of argu-
ments (cblock arg list). It matches three lists if the const list is present, or two if it
is not. Between each cblock arg list there should be a ARG GROUP SEP;

• cblock decl: This rule specifies the declaration of a CBlock. It expects a CBLOCK

followed by PULSE SEP and a pulse freq. After that, the rule matches a IDENTIFIER,
the rule cblock args and ends with a code block;
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• use stat: This rule models the import syntax. It expects the token USE followed by a
IDENTIFIER or a STRING LITERAL;

• entry point: This is the main rule of the syntactic analyser. It serves as the entry point
where it starts to match the input tokens. This rule expects an arbitrary amount of
use stat, followed by another arbitrary amount of cblock decl. In the end, it expects
a EOF token. This token is generated by the lexer, when no more characters are to be
consumed.

In order to work with the ANTLR parse tree, ANTLR provides parse tree walkers and lis-
tener/visitor interfaces. In smaller projects, these facilities can be used as the foundation of a
complete project, but since rtfss’s compiler requires complex manipulation of data structures,
these tools alone will not suffice. So, only one visitor is implemented. This visitor is respon-
sible for converting the output parse tree into the rtfss Abstract Syntax Tree (explained in
the next Section). Furthermore, having only one visitor whose job is only to translate trees,
reduces the dependency of the compiler on ANTLR. This means, that changing lexer and/or
parser only requires changes to the tree translation code.

The ANTLR visitor used on the rtfss compiler responsible for translating the ANTLR
parse tree into the rtfss’s Abstract Syntax Tree is a module called parse tree translator.
The visitor requires that, for every syntactic rule of the grammar, there is a function to handle
it. When the tree traverse starts, the top rule’s function is called (in this case, the function
is called visitEntry point). Each function is then responsible for fetching the data present
in the rule and for processing it. It then should decide which of the inner rules it should visit
and in what order. As it visits the rules, it progressively builds the Abstract Syntax Tree and
stores all the relevant info inside their nodes.

In this translation, some of the rtfss features start to be lost. Particularly, in this phase,
all the midi stream operators have no correspondence to the rtfss’s Abstract Syntax Tree,
so they are simply ignored by the translator. Also, while the import syntax has correspon-
dence on the rtfss’s Abstract Syntax Tree, it serves no intrinsic purpose. The best place for
imports to be handled would be even before the current tokenization and syntactic analysis,
by a preprocessor. This preprocessor would have a grammar of its own to get only the use

statements and handle them. Another place for them to be handled would be here, during
translation. But, since the feature is not currently implemented, it is simply translated to an
Abstract Syntax Tree node.

Support Example Analysis

The Syntactic Parse Tree generated by ANTLR4 while processing the example present
in Section 4.1.2 is shown in Figure 4.2. In this tree, every non-terminal node represents
an ANTLR grammar rule, and every single token lexical token is present. In this stage of
compilation, every symbol in this tree is represented with strings.

4.3 rtfss’s Abstract Syntax Tree

After the creation of the parse tree, it is translated into an Abstract Syntax Tree. An
Abstract Syntax Tree (AST) is a tree structure used to represent code. The main objective
of an AST is to represent only meaningful connections and code structure. While a parse
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Figure 4.2: Full Syntactic Parse Tree (split without overlap) generated by ANTLR4 (using
the rtfss grammar) of the example of Section 4.1.2.
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tree has every token that is found in the original tokenized text sorted by its grammar rules,
in the AST, the tree is stripped only to the logical meaning of operations. This means that
structures used in the parse tree’s founding grammar are not present in this tree.

rtfss’s Abstract Syntax Tree is one of the two main foundations of the rtfss’s compiler.
It serves as the main data structure to the majority of the algorithms that precede the
transformation of the tree to a graph representation. A node of the AST is represented by an
object of a specific class. Each node type has a specific class that inherits from a base class.
This base class, called ast, has the following main attributes:

• std::weak ptr<ast> parent: A weak pointer to a ast that represents the parent tree
node of the current node. If this node is the top node, parent points to nullptr;

• ast op op: op is an object of the enum ast op. This enum contains all possible types
of ast child classes. This is useful for down-casts.

So, the way the tree is represented in memory is that each node has the list of pointers to
the child nodes and a pointer to the parent. Since the programming language used for this
compiler is C++, traditional pointers and memory allocations could be used. However, the
use of these mechanisms is prone to memory leaks and other related issues. C++ offers an
alternative: smart pointers. Smart pointers are data structures that act like classic pointers,
but they have a tight control of the memory they point to. Specifically, for this compiler,
shared pointers and weak pointers were used. A shared pointer (std::shared ptr) keeps
track of how many pointers point to a certain memory address (reference counter). When the
counter reaches zero, it means no pointer is pointing to that memory location, so it deallocates
it. Typically, this mechanism works out of the box for most uses. But, in tree structures that
require a parent connection, an issue arises: cyclic dependencies. If a node has a pointer that
points to another node, and this node has a pointer that points to the first node, neither
nodes will be deallocated. This happens because the reference counters of each node are (at
least) always one. The correct way to solve this is to have one of those pointers be a weak
pointer. A weak pointer (std::weak ptr) is a pointer which can be derived from a shared
pointer. However, a weak pointer does not alter the state of the reference counter. So, from
the point of view of a shared pointer, weak pointers do not exist. That is the reason why
the parent pointer of the ast is a weak pointer, and not a shared pointer. All of the other
pointers used in the nodes are shared pointers.

In this class, there are also auxiliary variables used to generate GraphViz drawings. This
class has a protected constructor that restricts instantiation only to classes that extend this
one. This is enforced because this class alone does not have any meaning, it is abstract.
Moreover, this class also has pure virtual methods. These methods do not have a base
implementation, so they force the succeeding extending classes to implement them. There
are three pure virtual methods in the class that: get all the children from the current node,
remove a certain child from the node, and duplicate the current node.

Beyond the node classes, some auxiliary classes were created to complement the main
structure:

• pulse id: This class parses and stores a pulse identifier from a string. It also distin-
guishes the type of the pulse;

• datatype: This class parses and stores the datatype of a stream;
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• time scale: This class parses and stores the timescale of a pulse;

• assign op: This class parses and stores the assignment operator from an assignment
statement;

• logic op: This class parses and stores the logic operators used on stream expressions.

Not every class extends ast directly. There are three subtypes of AST that give specific
functionality to the subsequent nodes. These three subtypes are ast arith, ast unary arith,
and ast bin arith. Similarly to ast, these classes are also interface classes, and not instan-
tiable alone. The class ast arith extends ast, and is extended by ast unary arith and
ast bin arith. The special property these nodes have over the normal ones is that these can
be used in arithmetic expressions. The class ast unary arith serves to be extended by the
class who represents an unary operator. The class ast bin arith serves to be extended by
the class who represents an binary operator.

The following classes extend the base class AST:

• ast start: This is the top node of the tree, containing an attribute that represents
the name of the input file and a std::vector of std::shared ptr<ast>. This last
attribute contains, essentially, all the CBlock declarations and include statements;

• ast include: This node represents the inclusion of another source file. It contains the
path to that file;

• ast cblk decl: This node contains a declaration of a CBlock. This object stores the
name of the block, a pulse id that represents the pulse associated with this CBlock
and a std::vector of std::shared ptr<ast> that represent the code associated with
the CBlock. The interface signal and constants are also stored in this block and are
composed of three std::vector of std::shared ptr<ast id> (const in, signal in and
signal out);

• ast cblk inst: This node represents the instantiation a CBlock inside another CBlock.
The structure of this node is similar to the one of ast cblk decl. It stores the
name of the CBlock to be instantiated, the intended pulse (on a pulse id object),
two std::vector of std::shared ptr<ast arith> to represent the const and sig-
nal in (they do not need to be identifiers, expressions here are allowed), and finally
a std::vector of std::shared ptr<ast id> to represent the signal outs (here only
pure signal assigns are allowed);

• ast pulse: This node represents the creation of a new pulse. This node can only be
found inside a ast cblk decl. It holds a pulse id, a time scale (to represent the
scale used in the pulse) and a double that represents the pulse value;

• ast if: The ast if node represents an if statement. This node can represent also elseifs
statements and an else statement. So, this node stores the logical expression of the if
in a std::shared ptr<ast arith>, a code block for the if statement in a std::vector

of std::shared ptr<ast>, and an optional “else” code block stored in the same way
as the “if” code block. Finally, to represent elseif statements, a vector of pairs of logic
statements and code blocks (vectors) are used;
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• ast for: The ast for node represents a for statement. This node contains the “for”
var name, a std::shared ptr<ast arith> to represent the lower bound, another to
represent the upper bound, and another to represent the variable increment. Finally, it
also has a std::vector of std::shared ptr<ast> to represent the “for” code blocks;

• ast decl: This node represents the declaration of a stream / const. A declaration can
also have an assignment associated. This node stores a std::shared ptr<ast id> for
the name of the stream and an optional std::shared ptr<ast id> for the attribution;

• ast assign: Finally, this node represents an assignment to a stream / const. The
representation is similar to ast decl, but it also has a assign op to represent the
assignment operator.

As mentioned before, not every node inherits directly ast. The following classes extend
directly ast arith:

• ast id: This node represents a stream identifier. It contains the stream name, a
datatype to indicate the datatype associated with this node and a pulse id to rep-
resent the pulse associated to this pulse. Furthermore, in order to represent an index,
this node has a std::shared ptr<ast arith>. Since the index is a ast arith, an ex-
pression is allowed. Similarly to the index, the node also stores if there is an instant
associated with it (value at instant operator) with an ast arith. All of the members
except the name are optional;

• ast s cblk inst: This node represents the short instantiation of a CBlock inside an-
other CBlock. The structure of this node is very similar to the one of ast cblk inst.
The only difference is that the final std::vector of std::shared ptr<ast id> does
not exist;

• ast unary arith: Already explained above. Serves as a base class to unary operators;

• ast bin arith: Already explained above. Serves as a base class to binary operators;

• ast cast: This class contains a cast. A cast object has two members: the target
expression (std::shared ptr<ast arith>) and the target datatype;

• ast arrinit: This class translates the initialization of a const array with a list of
expressions. To achieve that, it has a std::vector of std::shared ptr<ast arith>;

• ast num: This class allows the representation of a numeral. It is composed of a union

of an int and a double, and a boolean value to indicate which of the representations
is being used. The way the compiler represents numbers (and then manipulates them
on constant calculation) is one of its main shortcomings. This will be detailed further
ahead.

The nodes already listed are mostly functional. The arithmetic operators mainly fall into
the ast unary arith and ast bin arith classes.

The class ast unary arith extends ast arith and implements the base behaviour of an
unary operator. It has one extra member: the target. This target is represented with a
std::shared ptr<ast arith>. rtfss has three unary operators:
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• ast sim: Symmetric operator;

• ast prop: Property operator;

• ast not: Bitwise not operator.

The class ast bin arith extends ast arith and implements the base behaviour of a
binary operator. Instead of having only one member as ast unary arith has, this one has
too: right and left. These pointers are of the type std::shared ptr<ast arith>. rtfss has
multiple binary operators:

• ast add: Sum operator;

• ast sub: Subtraction operator;

• ast mult: Multiplication operator;

• ast div: Division operator;

• ast mod: Modulus operator;

• ast shl: Shift left operator;

• ast shr: Shift right operator;

• ast rtl: Rotate left operator;

• ast rtr: Rotate right operator;

• ast and: Bitwise and operator;

• ast or: Bitwise or operator;

• ast xor: Bitwise exclusive or operator;

• ast gap: Instant gap operator;

• ast comp: Logic comparisons operators;

Alongside the AST and all their classes, there were created some tools in order to ease
the manipulation of the data structure: ast visitor and ast property.

The ast visitor class implements the visitor design pattern on the AST. This class is
of the abstract kind and has pure virtual methods. These methods should be implemented
by an extender class. Each of these methods represent a node on the AST. As such, each of
these methods also has as argument a pointer to a node. This class allows to easily traverse
the AST freely and to process each node type with custom code. This class serves as the base
of the algorithms that manipulate the AST (described in the following Sections).

The ast property class is a templated class that implements the property design pattern
in the AST. The main purpose of this class is to aggregate a certain data structure (the
template argument) to the nodes of the tree. This allows a dynamic way of binding more
data to the nodes, without needing to change the static structure of nodes. Its use arises
when algorithms need to associate processed data to a certain node. This can be used as
temporary storage or to serve as the output of an algorithm. As per the ast visitor, this
class also is used in most of the algorithms that manipulate the AST.
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4.3.1 Support Example Analysis

The AST generated by the compiler while analysing the example present in Section 4.1.2
is visible on Figure 4.3. The black arrows represent the connections from an AST node to its
children. The red dashed arrows represent the parent weak pointer. The uppermost node is
the representation of the ast start node, and contains the name of the file being compiled
(iir filter.cb). To save space, the names of the AST nodes were contracted. Each AST
node (non-literal) is marked in bold. It is relevant to observe that the tree does not contain
any structural tokens, every token has a semantic meaning. The children of the AST nodes
are identified with the property type on their connection edges.

4.4 Constant Stream Solver

After the AST creation is done, processing can begin. The first processing step that the
compiler does is to solve most of the constant operations. This process not only helps the
compiler optimize the hardware logic generated further ahead, as it is also a crucial step for
solving stream instants (explained further ahead). The module responsible for this task is
called const solver.

The const solver class implements the AST visitor class. This module performs tree
branch substitution and it uses four AST properties to keep track of the state of a certain
branch/node:

• is const: This (boolean) property specifies if a node is solved to a constant value;

• is int: This (boolean) property is only valid if the value of the is const to the target
node is true. It specifies if the node is an integer or a double number;

• int res: This (integer) property is only valid if the value of the is int to the target
node is true. It contains the integer result of the target node;

• double res: This (double) property is only valid if the value of the is int to the target
node is false. It contains the double result of the target node.

As it traverses the AST, the module behaves differently for each type of node.

If the node is not an arithmetic node or if the node is unsolvable by the module, then
it checks if each of the children nodes are solved. For each node that is solved (obtained
by checking the is const of that children node), the compiler cuts that children node (and
everything under it), and replaces it with an ast num with the correct solved value. This
solved value is obtained from checking is int of the target node, and then based on the
boolean returned by it, retrieve the correct value from int res or double res.

If the node is an arithmetic node, it checks if the operands are solved (check is const).
If at least one of the operands is not solved, then the compiler treats the current node as an
unsolvable node (explained above). If they are solved, then the solver calculates the result
of the operation. In this stage, the stream arithmetic rules stated in Section 3.3.6 are mostly
followed. In the current implementation of the compiler, there is one type of rule that is
not followed: sizing rules. Ideally, this module would work with a fixed point representation,
when the stream type used is fixed-point, and double/float representation, when floating-point
representation is needed. Instead, the compiler currently does calculations on 64-bit integers
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and doubles. This means that, sometimes, the theoretical result of an operation might not be
the same one as the one expected. In these cases, the compiler warns the programmer with
a compilation warning. After calculating the value of the current node, the node is set to
const on is const, the flag is int of the node is set and the value is placed under int res

or double res. The only kind of arithmetic node that is always const is the ast num. When
the compiler finds one, it fills the corresponding AST Properties with the node values.

As mentioned before, not all arithmetic nodes are solved. The node that are not solved
on this stage are the following:

• ast shl, ast shr, ast rtl, ast rtr: there is no need to solve them, since they do not
imply a hardware delay;

• ast gap and ast prop: at this stage of compilation, the compiler does not have enough
information to solve them;

• ast cast: due to the way this module is implemented, this node has no effect in this
stage, so it is simply dealt as a non arithmetic;

• ast id: This node cannot be resolved, because it represents another stream, and the
module only does calculations within the same statement;

• ast and, ast or, ast xor, ast not: these nodes are solved by the compiler, when they
are fully integer. Otherwise, they are seen as non arithmetic.

The const solver module does not return any data structure, since all the operations
done in it are done in place on the AST feed on construction. When this module finishes, the
AST will be ready to be used by the subsequent modules.

4.4.1 Support Example Analysis

Looking again at the support example (explained in Section 4.1.2), after it is processed by
this block, we can see some changes (Figure 4.4). Some AST nodes have vanished and some
new have appeared. The first change is on the first assignment to the lowpass audio stream.
Here, considering both of its operands are constant, the arithmetic operation is solved. Then,
once again, since the value of the operation is const, the symmetric operator was also solved
(Figure 4.5). This last step is also done on the other two value at instant indexes (Figure 4.6
and 4.7). No more operations are purely constant, so the compiler ends this stage.

4.5 Stream and Pulse Solver

After having the const expressions of the AST sorted, the next processing step the compiler
does is discovering all streams and pulses declared and start to map them. This operation is
done by a module called var solver.

The var solver class implements the AST visitor class. In order for the module to solve
pulses and stream identifiers, it has to handle identifier visibility. For example, streams/pulses
declared in one CBlock are not visible in another CBlock. This concept is called scoping.
Different AST nodes have different scoping rules for streams and for pulses. A node can have
three types of scoping:
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Figure 4.5: Detail 1 on the before and after modifications done on the Abstract Syntax Tree
by the Constant Stream Solver on the example of Section 4.1.2 (GraphViz).
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Figure 4.6: Detail 2 on the before and after modifications done on the Abstract Syntax Tree
by the Constant Stream Solver on the example of Section 4.1.2 (GraphViz).
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Figure 4.7: Detail 3 on the before and after modifications done on the Abstract Syntax Tree
by the Constant Stream Solver on the example of Section 4.1.2 (GraphViz).

• Pass-through scoping: The current node is not a scope frontier, so the outer scope is
passed to the inside;

• New scoping: The current node is a frontier to a new scope, so the outer scope is
duplicated and is fed to the child nodes. This means that variables declared on the
outside will be visible in the inner scope, but not the other way around;

• Hybrid scoping: The current node is a combination of pass-through scoping or different
new scoping to the child nodes.

In order to represent the scopes, complementary data structures were created. Firstly,
there is a class to hold the properties of a pulse. This class, called pulse property, stores
the type, identifier, time scale and value of a pulse. Secondly, there is a class to hold the
properties of a stream. This class, called var property, holds the name, unique id, datatype
and pulse identifier of a stream. Both of these classes fully store all information related to
pulses and streams needed for the compilation process. The main objective of the var solver

is to extract information and create objects of those two types. To represent a scope, a simple
vector of those classes can be used.

Besides filling those structures, this module is also responsible for stamping all the ex-
pression AST nodes with extra information, using objects from the class ast property. The
module marks stream expressions with the pulse identifier that is being used. This is stored
in an object that will be referred to as pulse id. It also marks stream expressions with the
stream name that is being assigned to, and in the cases of ast id nodes, it points to their
identifiers. This is stored in an object that will be referred to as var id.

Since this class implements the AST visitor, each of the pure virtual function offered by
the visitor has single scoping type to the streams and another for pulses. Most of the nodes
follow the pass-through scoping type. The following nodes do not abide by that rule:

• ast cblk decl: CBlock declaration is a case where both pulse scopes and stream scopes
use new scoping. This prevents the mixture of streams and pulses from other CBlocks;
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• ast if: This node uses hybrid scoping. In this node, each inner code block has its own
pulse scope and stream scope;

• ast for: This node also uses hybrid scoping. The stream scope is duplicated and the
“for” variable is added to the inner scope. The pulse scope is also duplicated from the
outer scope.

In this module, at the beginning of the traverse (ast start), two pulses are added to the
global pulse scope (the first scope has complete visibility). These two pulses are const with
pulse id 0 and max with pulse id 1. While the tree is traversed and scopes are being filled, the
operation of inserting into a scope also registers that pulse/stream into another list. This list
is the complete collection of the streams (list called vscopes) and pulses (list called pscopes).
If the input code attempts to redeclare a stream/pulse already declared in that scope, the
compiler raises an error and halts.

After traversing the tree, the compiler checks if all the identifiers used for pulses and
streams are declared. If a stream or pulse is not declared, the compilation process prints an
error and halts.

Finally, if all operations finish successfully, the module returns the two complete collection
of streams and pulses (vscopes and pscopes), and the data aggregated to the AST (pulse id

and var id).

4.5.1 Support Example Analysis

We will now analyse the behaviour of this module when it processes the support example
(explained in Section 4.1.2). When the module starts, as already explained, it places the
const and max pulse types on the pscopes list with identifiers 0 and 1 respectively. Then, it
detects the existence of the smpp pulse on the CBlock declaration, so it also places it on the
vscopes list with the pulse identifier 2.

As the module traverses the CBlock it also finds, right at the beginning, both smp in

and lp out audio streams. These streams are registered on the vscopes list with the stream
identifiers 0 and 1 respectively. The datatype and pulse identifier of these streams is also
registered on the vscope list. Finally, on the CBlock body, the module finds the lowpass

stream and stores it inside the vscope. The identifier of this stream is 2.

During the building of these structures, the module did not find any abnormalities (such as
redeclaration of streams / pulses, among others), so the compilation process keeps executing.
The resulting internal structure of vscopes and pscopes is the following:

vscopes:

{unique_id:0,name:smp_in,var_kind:IN,datatype:I16.0,pid:2,decl:1}

{unique_id:1,name:lp_out,var_kind:OUT,datatype:I16.0,pid:2,decl:1}

{unique_id:2,name:lowpass,var_kind:REGULAR,datatype:I16.2,pid:2,decl:1}

pscopes:

{unique_id:0,pid:const,pulse_kind:UNKNOWN,decl:1}

{unique_id:1,pid:max,pulse_kind:UNKNOWN,decl:1}

{unique_id:2,pid:smpp,pulse_kind:CBLOCK,decl:1}
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4.6 Assignment Dependency Checker and Trimmer

The next stage of the compilation process is to identify dependency stream assignment
loops and to remove redundant/unused assignments. The module responsible for those tasks is
called assign trimmer. Similarly to the last module, this one is also based on a ast visitor.
At the current stage of the implementation of the compiler, this module, while processing,
ignores if and for statements. Also, stream buses and CBlock instancing (short or normal)
are disregarded.

In order to find dependency cycles and redundant/unused assignments, the first step is to
traverse all assignments. However, due to rtfss’s assignment rules, special precautions need
to be put in place.

rtfss allows multiple assignments to be made to the same stream, where the last one is the
dominant assignment. If that last stream is not dependent from previous assignments to that
stream, in other words, does not reference itself, all the previous assignments are ignored. But
if that is not true, the previous assignment is then used and the method is repeated. This
rule is used as much as needed, until reaching the first assignment. If the first assignment is
reached and there is still a self-dependency, the input code is malformed. The other rtfss rule
for assignments is that the order between assignments of different streams is irrelevant.

To represent the dependencies, assign trimmer has a vector of sets, in which the index
of the vector represents the stream identifier of a certain stream, and the set is the collection
of stream identifiers this stream depends on. Also, to keep track of the current streams’
dependency while traversing expressions, a ast property is used.

So, having these rtfss restrictions in mind, the easiest way to solve this task is to traverse
all the nodes inside the CBlocks in reverse order. This way, the dominant statement of each
stream is visited first and the least dominant come in natural order. Every time an assignment
is reached, the compiler first checks if the assignment is for a default stream past value. If it
is, it checks if there was already a declaration on the same past value. If there is, the compiler
raises a warning to inform the programmer that this assignment will be ignored, and cuts
it. Either way, this assignment will not be traversed, because it will not be relevant to this
module. It cannot generate cyclic dependencies, so it skips it. Otherwise, if the assignment
is not to a default past value, the compiler checks the dependencies of that stream:

• If the stream dependency set is empty, meaning that this is the first time checking this
stream, the compiler visits the children of the stream in order to fill the dependency
set;

• If the set is not empty but the identifier of this stream is also in the set of dependencies
(meaning that the last time visiting an assignment of this stream, there was a self-
dependency), the compiler removes the identifier from the set and traverses the children
(to fill more dependencies);

• If the stream has dependencies, but neither of them are to itself, it means that the
stream’s dependencies are already satisfied and that this assignment is redundant. If this
is the case, the compiler simply trims (cuts) this assignment from its holder (normally,
a CBlock), and moves on without travelling through the child nodes.

If, while visiting the children of an assignment, a reference to a stream (ast id) is found,
it is added to the dependency list of the current assignment. However, if the reference to the
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stream is for a past value, then it is ignored. This is due, again, to the fact that it is read-only
and cannot generate dependency loops.

To better understand the concept, the following code block is the revisited and modified
example shown in Section 3.3. After each expression, a visual representation of the depen-
dency set of each stream is stated:

//Note: the code is read from the bottom to the top

I8.0@p a=a+1; //a:{a} b:{c} c:{d} d:{b,c}

I8.0@p b=c+1; //b:{c} c:{d} d:{b,c}

I8.0@p d=a; //c:{d} d:{b,c}

d=b; //c:{d} d:{b,c}

I8.0@p c=d/3; //c:{d} d:{c,d}

d+=5+c; //d:{c,d}

The final dependency sets of this segment of code are a:{a} b:{c} c:{d} d:{b,c}. It
is worth to note that, since d=b does not contain self dependencies and that it comes after
d=a, then d=a will not have any effect on the dependencies and the compiler will cut that
expression from the code. It is also relevant to see that the statement d+=5+c creates a self
dependency on d that is solved in d=b. This code will not compile for various reasons. Firstly,
the stream a is not completely solved, because it has a self dependency. Secondly, stream b

depends on stream c, which depends on d. Stream d then depends both on b and c, so there
are more than two cyclic dependencies there.

Since this module does in-place modification of the AST, once this module finishes oper-
ations, nothing is returned.

After finishing traversing all the tree, all dependency sets are now complete and the
redundant assignments have been erased. However, not everything is done yet. The compiler
also needs to check for dependency cycles. It is worth noting that the way the dependencies
were stored resembles an adjacency list. So, if we interpret them as an adjacency list, we
get a directed graph where the nodes are streams and the connection from a stream A to a
stream B means that stream A depends on stream B. Knowing this, the compiler can run a
depth-first traversal. However, since the graph is not connected, meaning that there can be
sub-graphs that are not connected to each other, the compiler needs to assume a worst-case
scenario and run the algorithm where every node is a possible start node. If, while traversing
the dependency graph, the compiler finds a node that it has already visited, then the compiler
knows that there is a dependency cycle there. In this case, the compiler halts compilation
and throws an error.

4.6.1 Support Example Analysis

Now, we shall analyse the effects of this module on the support example (explained in
Section 4.1.2). The AST of the example when it exits this module is represented at (Figure
4.8. As we have already concluded, this example has a redundant attribution. The first
assignment to the lowpass audio stream is ignored because the next statement to the lowpass
audio stream does not depend on this one. So, this module detects that redundancy and erases
the attribution (Figure 4.9).
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Figure 4.9: Detail 1 on the before and after modifications done on the Abstract Syntax Tree
by the Assignment Trimmer module on the example of Section 4.1.2 (GraphViz).
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4.7 Assignment Mover

The assign trimmer is the first module that modifies the AST, in order to remove un-
wanted data. Now that all the unused assignments have been removed, the compiler can
still slim down the AST. Moreover, since now the compiler checked that there are no stream
cyclic dependencies, the multiple assignments of each stream can be combined into one full
assignment that contains the complete expression intended for each stream. The module,
assign mover, is responsible for that action. Similarly to the last module, this module,
while processing, currently ignores if and for statements. Also, stream buses and CBlock
instancing (short or normal) are currently disregarded.

The main objective of this module is to move the fragments of the streams from the least
dominant assignments to the more dominant assignments. To do so, the module traverses
the tree and keeps track of the most recent assignments to each stream. Similarly to the
assign trimmer, this module is also based on the ast visitor to traverse the AST. But,
this time, the tree should be traversed without reversing the visit order of the nodes inside
CBlocks. This is due to the fact that every assignment present in the tree is valid and if,
while traversing, the compiler finds an assignment to a stream that has already been visited,
it needs to know where the previous one is, to move expressions. This information is stored
in a vector of shared pointers to ast arith, called assign. The indexes of this vector are
the stream ids. Similarly, this module also has another vector, but this time of booleans, to
represent if the given expression of each stream id is attached to an assignment, or instead is
detached. This vector is called detached. Finally, this module uses the var id generated by
the var solver module to know the identifiers of each stream.

When the compiler traverses the tree, the first thing it does when it enters an assignment
is to check if the assignment is made to a stream instant. If it is, and the stream instant is
valid (less than zero), then the assignment is ignored. Otherwise, the assignment is processed.
Inside the assignment, the compiler checks if the assignment operator is the equal (=). If it
is not, the compiler has to unfold the operator (+= -= *= /= %=) into their intended binary
operation, adjust the operation size, and make the assignment operator an equal. To do this,
the compiler creates a new corresponding operation node and pushes the current assignment
node to the right operand of the new node. For the left operand, it fetches the previous
assignment from assign, detaches it (sets this node to false on detached), duplicates it and
sets it to the left operand. It then creates a cast node, in order to fulfil the stream’s sizing
requirement and sets its target to the new operation node. Finally, it sets this cast node as
the assignment target node. In the process, the compiler created a dependency (that will be
handled later). Now, the compiler will traverse through the assignment’s children.

For each arithmetic operation the compiler travels through, it checks if any of the operands
is an ast id. If it is, it then has to check if that node represents a stream or a stream instant.
If it is a (valid) stream instant, then this node is ignored. Otherwise, it then checks (through
var id) if that node corresponds to the same stream that the compiler is processing. In case
of any of the previous conditions is not met, the compiler simply continues the traverse. In the
case of both stream identifiers being the same, it means that the operand has to be replaced
by the previous assignment of that stream. To achieve this, the compiler gets the replacement
expression from assign, and checks if it was already detached (variable detached). If it was
not detached, it sets it as detached and duplicates it. If already detached, it just needs to
duplicate it. Now, the compiler swaps the ast id node with the expression it just fetched.
Duplication is always needed, in order to keep the AST a tree, and not a graph.
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Due to the way ast property is built, every time a node or expression is duplicated, all the
classes that implement a ast property become outdated and contain wrong information. So,
every time the compiler duplicates an expression, it also duplicates in all the ast property

the properties that refer to the duplicated nodes. It also removes the old (unreachable)
properties of the original detached expressions, when they are not needed anymore.

After finishing traversing a declaration/assignment, the compiler checks if the previous
declaration was detached while traversing the children. If it was, then the compiler erases
that expression. It then sets itself as the most recent expression for that stream on assign

and sets the current stream’s detached value to true.
After the traverse is finished, the AST has only complete assignments and no more self

dependencies chains. Since this module also does in place manipulations on the AST, it does
not return any data.

4.7.1 Support Example Analysis

Let us look back again at the support example (explained in Section 4.1.2). After it is
passed through the Stream Mover module, a relevant modification is made (Figure 4.10).
After this module, both remaining assignments of the lowpass audio stream are combined
into a single assignment (Figure 4.11). To do so, the compiler expands the += operator and
creates a cast node. Then, it moves the first assignment attribution branch to the left operand
of the new sum operation, and the original attribution of the second assignment to the right
operand. Finally, it connects that sum node to the cast and places it on the last attribution.
The now empty attribution is discarded.

4.8 rtfss’s Architecture Graph

In the current stage of the compilation process, the AST is as slim and as concise as it
can be. It is now time to take the first step down towards the hardware level representation.
This first step is done by generating an architecture graph.

The architecture graph is a middleware representation of a rtfss design. As the name
suggests, it is a graph representation where all its nodes have relatively close relation with
a hardware counterpart, but the logic is still maintained in a somewhat high-level. In other
words, this representation is purely arithmetic. This graph serves as the compiler’s second
backbone data structure. All the operations from this stage of compilation forward will be
made in the architecture graph. A key aspect of this representation is that, although the
name implies that it is only one graph, the compiler implicitly segregates the graph for each
pulse. This makes the operations be separated by pulse domains.

Since this data structure is a graph, it cannot be (classically) represented simply using
nodes and have them point to the parents and children, like in the AST. Graphs can have
multiple nodes without parents, so it requires a different representation. Classically, one way
of representing graphs is using an adjacency list. An adjacency list is a list of lists, where the
index of the first list represents a node and the indexed list is the connections of that node.
The architecture graph uses this data structure. However, it is not the main data structure
of the architecture graph. The main structure is a slightly different version of this kind of
adjacency list. It is an inverted adjacency list. This means that the list that a node “holds”
is the list of nodes that connect to it, not the nodes it connects to. This representation was
selected to satisfy the fact that the architecture graph is a collection of subgraphs of pulse
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Figure 4.11: Detail 1 on the before and after modifications done on the Abstract Syntax Tree
by the Assignment Mover module on the example of Section 4.1.2 (GraphViz).
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domains. A node belongs to a pulse domain, so it makes more sense to know the nodes that
connect to a certain node, than the other way around. Having these two redundant data
structures (normal and inverted adjacency list), allows for more time optimized processing.

The architecture graph module is called arch graph. It stores the inverse adjacency list
(inv adj list) and the normal adjacency list (adj list) as a mapping of pointers to a vector
of pointers. It also stores a complete list of all the nodes present in the graph. The architecture
graph nodes are in a module called arch node, which has the following node types:

• arch add: Sum operator, translated from ast add;

• arch sub: Subtraction operator, translated from ast sub;

• arch sim: Symmetric operator, translated from ast sim;

• arch mult: Multiplication operator, translated from ast mult;

• arch div: Division operator, translated from ast div;

• arch mod: Modulus operator, translated from ast mod;

• arch shl: Shift left operator, translated from ast shl;

• arch shr: Shift right operator, translated from ast shr;

• arch rtl: Rotate left operator, translated from ast rtl;

• arch rtr: Rotate right operator, translated from ast rtr;

• arch and: Bitwise operator and, translated from ast and;

• arch or: Bitwise operator or, translated from ast or;

• arch xor: Bitwise operator exclusive or, translated from ast xor;

• arch not: Bitwise operator not, translated from ast not;

• arch comp: Logic comparisons operators, translated from ast comp;

• arch cast: Cast operator, translated from ast cast;

• arch num: Numeral, translated from ast num;

• arch id: Stream identifier, translated from ast id (when the instant is not applicable);

• arch ins: Stream instant, translated from ast id (when the instant is applicable). It
is capable of storing a default value.

In the architecture graph, every node is identified with a node identifier (node id). The
stream identifiers are preserved from the vscopes when generating this new data structure.
Every other kind of node gets a new identifier per instantiation. Every node also stores the
identifier of the pulse which controls it (pulse id). Finally, each node stores the datatype
of that operation. Every node on this graph is of an arithmetic nature, so there are only
two subtypes of node: arch unary arith (subset of unary operators) and arch bin arith
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(subset of binary operators). These have the same form as in the AST, and the nodes of this
data structure are of the same type as in the AST.

Using an inverse adjacency list (or a normal adjacency list) has an inherent disadvantage:
all connections between nodes lose meaning. This is due to the fact that edges between graphs
that use adjacency lists are unnamed. This is a big problem to this compiler, because the
meaning of right and left on an arithmetic operator would be lost. In order to solve this,
the arch bin arith stores pointers to the right and left operators. These pointers shall be
named shortcut pointers. In terms of memory storage, shortcut pointers are redundant, but
they offer the advantage of having a defined meaning. They also provide a direct connection
to adjacent nodes. Due to the cyclic nature of these pointers, similarly to what happened on
the AST with the parent pointers (Section 4.3), they have to be weak pointers (weak ptr).

The arch num node has a different way of representing the numerals comparing to ast num.
While the ast num stores the numeral using an integer or a floating-point, this node uses a
dynamic bitset (boost::dynamic bitset). The advantage of this representation is that it is
a binary representation that can be directly used when generating hardware.

Similarly to the AST, the architecture graph also has two auxiliary structures: a node
property associator (arch property) and a graph traverser (arch topl traverse). The
graph traverser implements a topological traverser over the architecture graph. In reality,
when the stream instant node is instantiated, there is a possibility that a cyclic exists in the
architecture graph. So, when the topological sort visits a stream instant node, it ignores if
the parent has been visited or not.

If the architecture graph was only an inverse adjacency list, doing a topological sort would
not be trivial (time complexity wise). This is because the algorithm needed to go through
the list of unvisited nodes every time a node was visited to check if there are more nodes that
can be visited. But since the architecture graph also has a normal adjacency list, for every
node traversed, the algorithm can access the list of children of that node. With it, it can then
check if each child has their parents already visited, using the inverted adjacency list. For
each graph node, the traverser has a pure virtual function that has to be implemented by the
extender class.

4.8.1 rtfss’s Architecture Graph Generator

The introduction of this new data structure requires more than a simple translation. Since
every graph node has an embedded datatype, this module (named arch gen) has to handle
stream arithmetic operator sizing. Furthermore, this module has to convert every numeral to
their binary representation. This module follows the stream sizing rules explained in Section
3.3.6. This is the last module to implement a ast visitor.

In this module, all of the remaining unimplemented features presented in this Chapter
are left behind. Here, only the main CBlock is used (if there is more, the current compiler
implementation raises an error), both short and normal CBlock instantiations are ignored,
if and for statements are also jumped over. Stream buses are ignored and both the relative
stream delay (gap) and property of (&) operators are not handled. From this module forward,
all the remaining features are kept and are successfully compiled.

Since this module handles the conversion of numbers to their binary representation, it
has to handle dominant datatypes. A dominant datatype, as mentioned in Section 3.3, is
the datatype that mandates on the size of the fractional part of a numeral in a stream.
The dominant datatype is, by default, the datatype of the target of the attribution. The
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dominant datatype can be overridden using casts. To model this behaviour, arch gen uses
a ast property that keeps track of the dominant datatype for each node. This module also
keeps track of the arch node that it generates for the AST nodes using a ast property called
result.

When a CBlock is entered, the module checks if the name of the CBlock is main. If it is
not, the compiler raises an error and exits. This is only due to the limitations of the current
implementation of the rtfss compiler.

When a numeral is visited, the compiler attempts to convert it to the binary representa-
tion. First, the compiler converts the integer part of the number. It tries to fit it to the least
amount of bits. If this amount of bits is greater than the one set in the dominant datatype,
the compiler throws a warning and truncates the integer part. A similar method is used to
convert the fractional part. The conversion of the fractional part is done through the use of
successive divisions. The module tries to convert the fractional part using fewer bits than
that limit. If the limit is reached, the conversion stops, the compiler raises a warning (for
imprecise representation) and keeps compiling. When exiting the visit function of this node,
the compiler adds the generated node to result.

When visiting an identifier, the compiler checks if that identifier has a arch node already.
If the compiler finds it was already generated, it grabs a pointer to it from result and stores
it temporarily. After that operation, the module checks if this node refers to a stream or to
a stream instant. If it refers to a stream (or the instant is not valid), it places that pointer
that it just stored in the result of this node and exits. In the case that the instant is valid,
then some steps are necessary to solve this node. In order for the rtfss compiler to deliver
past stream values (instants), it needs to create a chain of the values that the stream delivers.
Every time the compiler has the need to get a stream instant, it checks if that stream instant
node (arch ins) has already been created. This check is done in an internal data structure
called inst history. This structure keeps track, for each stream identifier, the instant nodes
already created. The inst history is a vector of vectors of shared pointers to arch ins.
The outermost vector of this variable indexes the stream identifiers. The innermost vector’s
indexes represent the depth of the instant (being index 0 equivalent to the instant -1 and so
on). If the arch ins node that the module needs has already been generated, it is placed in
the result of the current ast id and exits. However, if that is not true, then the compiler
has to generate the full chain until the instant value needed. For each node of that chain
(arch ins) that is generated, the compiler has to add an adjacency from that node to the
previously generated node and needs to place this node in the inst history. When the
target instant is reached, the compiler places the node in the result of this node.

When a cast is visited, the compiler, instead of propagating the dominant datatype from
the parent node, sets the current cast datatype as the new dominant datatype. In all the
other type of nodes, the dominant datatype is propagated from the parent node. To aid
this behaviour, this module has a ast property called dominant dt that keeps track of the
dominant datatype of each node.

When the compiler visits an operator, the compiler creates a node for that operator,
calculates the target datatype of that operation and sets it. Then, the compiler adds the
left and right operand nodes and the newly created node to the graph and connects them
accordingly. Internally, the compiler also sets the left and right shortcut pointers of the
node, when it is a binary node. There are a couple of operators that require error checking
before generating the node. These operators are the shift left, shift right, rotate left and
rotate right. They require the right operand to be a constant unsigned integer stream, so the
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compiler checks here for those three conditions. If any of these conditions fail, the compiler
raises an error and halts compilation.

When visiting an assignment or a declaration with an assignment, the compiler has to
check if the attribution is for a normal stream or for a stream instant. If it is for a normal
stream, it then checks whether the sizing of the attribution matches the size of the target
stream or not. If they do not match, the compiler raises an error and halts compilation.
Otherwise, the compiler adds both nodes to the graph and connects them. However, if the
attribution is for an instant stream, a different logic is used. The current iteration of the
compiler only supports compile-time solvable instants. This means that the instant requested
on a stream must be a numeral or a const expression. The const expression is solved by
the const handler module, so when it reaches this module, it is a numeral too. Hence, the
only two nodes allowed in the expression side of the attribution is a numerical or a cast. If
this is not the case, the compiler raises an error and stops compiling. When dealing with a
numerical, the compiler simply grabs the already converted number from arch num and places
it as the default value of the arch ins. But, if the expression side of the attribution is a cast,
then the compiler has to check if the target of the cast is a numerical or not. If it is not, it
raises an error and exits. Else, the compiler fetches the value of the ast num that generated
the target arch num and reconverts it to a binary value, using the new dominant datatype
from the arch cast. When the conversion is done, it sets that new value as the default value
of the arch ins and erases the nodes arch cast and arch num (and their connection) from
the architecture graph.

4.8.2 Support Example Analysis

Now, we shall analyse how the support example (explained in Section 4.1.2) is converted
to the Architecture Graph. In Figure 4.12 lies a graphical representation of the Architecture
Graph of the support example. The graphical representation splits the architecture graph
by its pulse domains. Each pulse domain has its own box. Since this example only has one
pulse domain, there is only one box. This box is named pid 2, which is the identifier of the
pulse of the domain (as shown in Section 4.5.1). The black arrows represent the adjacencies
between the arch nodes. The red dashed arrows represent the shortcut pointers and their
labels indicate which shortcut pointer is. The blue arrows represent adjacencies between a
arch ins and its source (can be a arch ins or a arch id). Each node has a name and two
parameters in parenthesis. The first parameter is the identifier (number) of the node and the
second is the datatype of that node. On this graph, it is easy to see the datatypes grow as the
operations are made. The arch id nodes are represented by the name of their stream. The
arch num nodes are represented by their numeric value (in hexadecimal). The other types
of nodes are represented with their correspondent symbols. This diagram also demonstrates
that every node of the Architecture Graph has an arithmetic meaning.

4.9 rtfss’s Final Representation Graph

Currently, the compiler does not have independent modules that manipulate the archi-
tecture graph, so the next compilation stage is to take another step down on the hardware
abstraction by generating the rtfss’ final representation graph.

The final representation graph is the third and last backbone data structure that the
compiler generates. In this data structure, every node has a one-to-one relation with a
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<cast> (13,I16.2)

Figure 4.12: Full Architecture Graph of the example of Section 4.1.2 (GraphViz).
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hardware block with almost no abstraction. All the information needed to generate target
code/hardware is contained in this graph.

As the name implies, this data structure is a graph. However, the representation strat-
egy used for this graph is different from the one used in the architecture graph. While the
architecture graph uses an inverse adjacency list, with shortcut pointers and a normal ad-
jacency list, the final representation graph bases its structure on shortcut pointers (with no
inverse adjacency list). This structure is similar to the one used on AST in the way that
each node stores the pointers to the adjacent nodes. Undoubtedly, this method has a critical
shortcoming: if the graph is not fully connected, it has no obvious entry point. Since the
final representation graph can be not fully connected, this shortcoming applies to this graph.
One solution to this problem is to insert a node that connects to all the loose ends of the
subgraphs. This is the solution used in the final representation graph. The compiler keeps
track of all the final streams (main CBlock out streams), and at the end creates a node (that
shall be named anchor node) that all those loose ends connect to. This solution is acceptable
for this case, because the final representation graph is read-only and does not require nodes
to be added and removed after its inception. Also, the use of this structure is preferable over
the inverse / normal adjacency list, because the traversal needed in the final representation
graph is rudimentary (breath kind). It also aids the generation of the target compiled code
(this will be explained in Section 4.10). Not having an inverse adjacency list also means that
there is no need to have an auxiliary object to store it (architecture graph has arch graph).

The final representation graph’s nodes are stored in a module called frepr node. The
nodes, similarly to the previous two backbone datatypes, have three subtypes: frepr arith,
frepr unary arith, frepr bin arith. Likewise, the last two extend the first one. The
frepr arith stores a datatype that is used to size the operators and thus size the hardware
to be generated. The frepr unary arith stores the target as a pointer to a frepr node. The
frepr bin arith stores the right and left as pointers to frepr node.

The final representation graph has the following node types:

• frepr anchor: Serves as the graph anchor that connects to all subgraphs making this
graph fully connected. Stores a vector of frepr node;

• frepr clock: Corresponds to the system master clock of the hardware target device.
Stores the clock frequency (in an integer);

• frepr pulser: Corresponds to a hardware block capable of generating cyclic pulses
with fixed frequency. Stores a time scale and a double corresponding to the pulser
values;

• frepr ffd: Extends the frepr arith class. Corresponds to an array Flip-Flop type
D. Stores name, pointer to the data input frepr node, pointer to the master clock and
pointer to the enable signal frepr node. It can also store a default value and the name
of the originating CBlock. The size of the array is defined by the inner datatype;

• frepr resize: Extends the frepr unary arith class. Corresponds to the operation of
adding or removing bits on the left of a hardware signal path. These bits are set to
zeros if the originating stream is unsigned, and are the value of the most significant bit
of the original word if the originating stream is signed (two’s complement);
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• frepr const: Extends the frepr arith class. Corresponds to the storage of a numeric
constant in hardware, translated from arch num. The node stores the numeral in a
boost::dynamic bitset;

• frepr add: Extends the frepr bin arith class. Corresponds to an adder hardware
block, translated from arch add;

• frepr sub: Extends the frepr bin arith class. Corresponds to a subtracter hardware
block, translated from arch sub;

• frepr sim: Extends the frepr unary arith class. Corresponds to the two’s comple-
ment symmetric number of a hardware signal path, translated from arch sim;

• frepr mult: Extends the frepr bin arith class. Corresponds to a multiplication hard-
ware block, translated from arch mult;

• frepr div: Extends the frepr bin arith class. Corresponds to a division hardware
block, translated from arch div;

• frepr mod: Extends the frepr bin arith class. Corresponds to a modulus hardware
block, translated from arch mod;

• frepr shl: Extends the frepr bin arith class. Corresponds to making a left shift on
a hardware signal path, translated from arch shl. In other words, add N zeros on the
right of the least significant bit and remove N bits from the most significant part of the
word;

• frepr shr: Extends the frepr bin arith class. Corresponds to making a right shift
on a hardware signal path, translated from arch shr. In other words, if the originating
stream is an unsigned, add N zeros on the left of the most significant bit and remove
N bits from the least significant part of the word. If the originating stream is signed,
replicate the most significant bit N times on the left of the most significant bit and
remove N bits from the least significant part of the word;

• frepr rtl: Extends the frepr bin arith class. Corresponds to making a left rotate
on a hardware signal path. In other words, moving the N most significant bits to the
least significant part of the word, in a circular fashion;

• frepr rtr: Extends the frepr bin arith class. Corresponds to making a right rotate
on a hardware signal path. In other words, moving the N least significant bits to the
most significant part of the word, in a circular fashion;

• frepr and: Extends the frepr bin arith class. Corresponds to the (array of) logic
gate and, translated from arch and;

• frepr or: Extends the frepr bin arith class. Corresponds to the (array of) logic gate
or, translated from arch or;

• frepr xor: Extends the frepr bin arith class. Corresponds to the (array of) logic
gate xor, translated from arch xor;
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• frepr not: Extends the frepr unary arith class. Corresponds to the (array of) logic
gate not, translated from arch not;

• frepr comp: Extends the frepr bin arith class. Corresponds to a boolean logic com-
parisons hardware block, translated from arch comp.

The final representation graph has only one support module: an inverse breadth-first
traversal. This module was designed to serve as the compiler’s interface to the target code
generator modules. It starts the traverse through the anchor node and starts visiting their
children. Using a normal breadth-first traversal would not be beneficial, since the output code
is always for a parallelized language, and thus one can argue that the inverse traverse can
be more natural for these kinds of language. For every node type, the module has a custom
function that has the graph node as an argument. The interface of this module is similar to
the one presented on ast visitor or arch topl traverse.

4.9.1 rtfss’s Final Representation Graph Generator

The Final Representation Graph Generator (frepr gen) is the module that converts the
architecture graph to the final representation graph. This module implements the class
arch topl traverse. Although the architecture graph is already somewhat middle / low
level, this translation represents a big step down towards the hardware level. This means
that this module introduces many new nodes and has some unique manipulations and strate-
gies.

When the module starts the translation, it runs a preamble before starting the traversal.
On instantiation, the module creates the graph anchor (frepr anchor) and stores it on a
variable called fanchor. After that, the module creates the master clock node (frepr clock)
and stores a shared pointer to it on a variable called mclock. Then, right before the traversal
begins, the module solves all the pulses present on the architecture. In order to do this,
the module iterates over all the pulses present on the global pulse scope pcscope. For each
non-reserved pulse (const and max), the module calculates the correct frequency of that pulse
and generates a frepr pulser. This node is then stored on a structure called pulse nodes

(vector indexed by the pulse identifier). For every reserved pulse, since the compiler at the
current stage of implementation does not have the context of the target hardware capabilities,
the module simply has to create a frepr pulser node with a frequency of zero Hertz. These
nodes are also stored in the pulse nodes structure. Finally, after completing this operation,
the traverse can start.

One of the main focuses of rtfss is to generate sequential hardware in a timing focused
manner. In particular, rtfss is designed to generate a pipelined architecture that successfully
implements the algorithms required. The module responsible for the hardware generation is
frepr gen. This is an arguably complex task and, although every architecture graph node
has specific rules and has to be handled specifically, there is a bulk arrangement of tasks that
are common among nodes. So, in order to ease the implementation complexity, some support
functions were created.

The main rationale behind this module is that most arithmetic operations should be
contained in its own time bubble. This ensures that the hardware solution created is purely
sequential. So, the way the compiler solves an expression with multiple operations is to solve
step by step each operation. The throughput of these operations is set by the master clock.
However, the frequency at which these operations are started is set by the pulse domain of their
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expression. Hardware-wise, essentially this means that after the combinational arithmetic
operation, an array of flip-flops type D is placed. Each flip-flop connects to a specific bit
of the stream to serve as a buffer. The clock signal of these flip-flops is connected to the
hardware master clock (stored in the variable mclock). Each flip-flop type D also has a
enable signal, and it is with it that the compiler controls the pulse. But, the compiler cannot
connect the pulser blocks directly with these enables. If they did, the operations would have
the throughput of the pulser and the hardware would lose efficiency. So, what the compiler
does, in fact, is to create a chain of flip-flops that connect to each pulser. These flip-flops
propagate the pulse signal, introducing a clock cycle of delay on each stage. The depth of
each pulse chain is defined by the depth of the stream with most operations. This chain is
generated on-demand, while the module runs. One of the main function that manages the
pulse chain is get pulse.

The function get pulse’s main goal is to provide/calculate the pulse chain step of a
certain node. In order to operate, this function needs the pulse identifier of the new node, the
pulse identifier of the previous node and the depth of the last node. These last two properties
are contained inside a tuple (std::pair). This tuple is used to represent the pulse status of a
certain pulse. The tuple of each final representation graph node is stored on a arch property

called curr pulse. This function only works if the current node only has one input connection
(for example, unary operators). The function firstly checks if the current pulse id is equal
to the previous pulse id. If it is, then the pulse chain can be continued. So, if this is the
case, the function searches if the wanted pulse chain node has already been generated. This
search is done on yet another data-structure called pulse chain. The pulse chain is a
vector of vectors of shared pointers to frepr ffd, where the outermost vector indexes the
pulse identifier and the innermost vector indexes the depth of the pulse chain. If the pulse
chain flip-flop needed has already been generated, the function increments the depth field
of the tuple and returns a shared pointer to the flip-flop. Otherwise, it generates the new
pulse flip-flop node, places it on the pulse chain, increments the depth filed of the tuple and
returns a shared pointer to the flip-flop. In the case that the current pulse is different from
the previous pulse, the compiler has to restart the pulse chain. So, the compiler changes the
pulse id of the tuple to the new pulse id and the depth to zero. It then checks if the wanted
pulse chain flip-flop D has already been generated. If it has, then it returns a shared pointer
to it. Else, it creates a new one, inserts it in the pulse chain and returns a shared pointer
to it.

The last function’s objective is to handle the pulse chain flip-flop of a node based on the
tuple of the previous node. However, this function does not operate when there is no previous
node. This happens on terminal nodes such as stream identifiers or numeric constants. For
these cases, a function called start chain is used. This function has a similar behaviour to
get pulse when the current node’s pulse is different from the past pulse. It then checks if the
initial pulse chain flip-flop D has already been generated. If it has, then it returns a shared
pointer to it. Else, it creates it, inserts it in the pulse chain and returns a shared pointer to
it.

The get pulse function is really useful in nodes that only have one input edge. But,
most of the arithmetic operations on the rtfss’s grammar are binary. To ease this part of
the module, an auxiliary function was also created. This function, called resolve bin, is
the main foundation of this module. The input of the function is the shared pointer to
both arch node operands (called right and left), the pulse identifier of the current node,
a shared pointer to a flip-flop (used to return the pulse chain node to use, called p to use)
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and a pointer to a tuple of a shared pointer to a flip-flop D (pulse chain property of the
node, called np property). In reality, the variables used in this block are slightly different,
but for the sake of simplicity and clarity, they shall be named this way on this document.
While handling only one input node is easy, since we only need to check if the pulse domain
is the same or not, having two input nodes doubles the possibilities. Furthermore, in some
cases, having two input nodes might require delaying one of them to keep the synchronization
between nodes. Having that in mind, the function returns a pair of the frepr ffd that should
be interpreted as the new right and left.

The behaviour of resolve bin can be split into four blocks:

• left and right share the same pulse domain as the current node: When all the nodes
share the same pulse domain, then the new node has to be a continuation of the pulse
chain of that domain. But, first, the chains must be aligned in both inputs. So, the
compiler finds which of the inputs has the shortest depth in the chain and then it
creates a chain of delays (pipeline stages that only contain the buffers). These buffers
are internally called synchronization bubbles. If the inputs are already synchronized,
no delay is introduced. After that, the function get pulse is called with either input
nodes and the current pulse identifier. It then places the new pulse chain property in
np property and the pulse chain flip-flop D in p to use. This function will return the
new pulse chain property of the current node. Finally, the function packs the new left

and right into a tuple (at most one of them has changed, because of the synchronization
bubble), and returns it;

• left shares the same pulse domain as the current node, but right does not: In this case,
the compiler will simply follow the pulse chain of the left. To do so, it calls get pulse

with the left node and the target pulse identifier. Then, it places the new pulse chain
property in np property and the pulse chain flip-flop D in p to use. Finally, it returns
right and left as is;

• right shares the same pulse domain as the current node, but left does not: In this
case, the compiler will simply follow the pulse chain of the right. To do so, it calls
get pulse with the right node and the target pulse identifier. Then, it places the
new pulse chain property in np property and the pulse chain flip-flop D in p to use.
Finally, it returns right and left as is;

• neither left nor right share the same pulse domain as the current node: If neither
of the input nodes are in the pulse domain of the current node, then the compiler has
to start a new chain. To do so, it calls start chain and places the new pulse chain
flip-flop in p to use. It then generates a new pulse chain property with depth zero, and
places it in np property. Finally, it returns right and left as is.

In the current iteration of the rtfss compiler, the target language is required to handle
basic arithmetic integer operations. However, since rtfss allows fixed-point arithmetic on
hardware, the compiler has to adapt its operations to work with integer arithmetic. In most
cases, this adaptation only requires some sizing tricks, but, in other cases, they might require
more manipulation. Although rtfss allows the mixture of streams with different sizes in one
expression, on the hardware level the compiler ensures that all operations have a persistent
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amount of bits in all operands and output. This means that the compiler has to do some bit-
wise manipulation before feeding streams into operations. Two support functions were created
to aid the implementation of such behaviour: inclusive datatype and align stream.

The inclusive datatype is a simple function that receives two datatypes and a stream
type (unsigned or signed). The function then calculates and returns a datatype that could
represent both datatypes without losing data. This function is useful for creating a temporary
datatype to do operations where the output size of the stream cannot represent the operands.

The final support function of this module is called align stream. As the name implies,
this function aligns the datatype of a stream to another datatype. The inputs of this function
are the node to be aligned (frepr arith) and the target datatype. The return of this function
is a new node that represents the same value of the input node, but on the target datatype.
In order to adjust the datastream, this function has to introduce a couple of nodes (shifts and
resizes). While aligning, this function has to handle three different cases. Either the target
datatype is bigger than the current datatype, or the target datatype is smaller than the
current one, or they are both equal. If both datatypes are equal, the function simply returns
the input node. In reality, the alignment operation’s objective is to adjust the offset of the
virtual comma (that separates the integer part from the fractional part). This operation can
be achieved with shifts. The other part of this operation is to cut the stream to the right
size. So, in the other two cases:

• Target datatype bigger than current datatype: In this case, the compiler has to resize
the current stream and then shift the stream into place. The first thing that the compiler
does is to resize the current stream to the target datatype. Then, the function needs to
figure out if the stream needs to be shifted right or left, and the amount of bits to shift.
If the target stream’s fractional part is bigger than the input node’s fractional part,
then the compiler needs to shift left. This is due to the fact that the virtual comma is
further to the left than the current one. Otherwise, the compiler needs to shift right.
The amount of bits to shift is the absolute value of the difference between the sizes of
the fractional parts of the datatypes;

• Target datatype smaller than current datatype: Opposed to the last case, in order to
not lose the relevant part of the stream, it needs to be shifted before resized. Firstly, the
compiler needs to figure out to which direction the shift has to be made, and in what
quantity. Similar to the last case, the compiler shifts left when the target’s datatype
fractional size is bigger than the input node’s datatype fractional size and shifts right
otherwise. The amount of bits to shift is the absolute value of the difference between
the sizes of the fractional parts of the datatypes. Finally, after shifting the stream, the
compiler resizes (shrinks) the target to the desired datatype.

For each resize and shift, the compiler generates the final representation graph nodes
frepr resize and frepr shr / frepr shl. These are wired correctly and the node returned
by the function will most probably be one of these. A simple use-case of this function are
casts. In rtfss, a cast can be resolved by just calling the align stream with the target node
and desired datatype. Since align stream only manipulates hardware signal wiring, it does
not introduce delays. So, no flip-flop buffer and pulse chain stage are introduced by the
function.

As mentioned before, the general process that each arch node goes over to generate a
frepr node is relatively constant. Now that the auxiliary functions are stated, we can go
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more into detail on how the method looks like. For a binary arithmetic node that has the
datatype expanded (in relation to the inputs), the process follows this logic:

1. Get the pointers to the left and right nodes and pulse identifier;

2. Call the resolve bin function, in order to synchronize left and right, and to solve
the pulse chain node of this node;

3. Align both of the input nodes that are returned by resolve bin to the target output
datatype using align stream;

4. Create the final representation node of the current operation, feed it with the left and
right;

5. Create the flip-flop array buffer node, feed it with the output of the node created on
the last step, set the clock to the master clock node and the enable to the pulse chain
node;

6. Place the current pulse chain property (acquired from resolve bin) on the curr pulse;

7. Place the flip-flop array buffer node in the gen frepr.

When the node is unary, then the function resolve bin will not be called. Instead,
the function get pulse will provide the pulse chain node property needed. When the node
operation has no delay (arch cast, arch shl, arch shr, arch rtl, arch rtr), the step where
the compiler creates a flip-flop array is skipped, and the node created for the arithmetic
operation is placed on gen frepr. There are several nodes (arch shl, arch shr, arch comp,
arch mod) where the output datatype cannot, or possibly cannot, fully represent the datatype
of the inputs. In these nodes, instead of aligning both left and right to the datatype of the
operation, they align the inputs to a bigger datatype that can represent all the nodes. Then,
the operation is done normally, but, at the end, the output node has to be aligned back to
the output target size. So, to do this, another call to align stream is made.

With this logic, the compiler is able to traverse all the tree and generate valid final rep-
resentation graph nodes. However, the module is not done yet. After finishing the traversal,
the module still needs to perform some operations.

The rtfss language allows the programmer to set default values for stream instants. Sim-
ilarly, at the current stage of implementation, the rtfss compiler also allows the definition of
them. But, due to the way the compiler generates the final representation graph, the default
values of a stream cannot be set to the nodes the architecture graph states. Instead, they
should be set on the parent. This happens because the first stages of the pipelines (when
the instants are used) are the stream instants, and they are connected to the back of the
streams. So, in order to make default values on stream instants work, after the traversal of
the arch graph, the compiler has to shift back the default values. To do so, it iterates a map
that was generated on traversal. This map, called ins map, has shared pointers to frepr ffd

(that represent a stream or a stream instant) and the values are original architecture graph
nodes (arch node). With it, it can access the parents and sequentially pass the default values
back.

After fixing the steam instant default values, the module has to anchor down all the loose
sub-graphs that were generated while traversing. To do so, it iterates over all the nodes from
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the node list given by arch graph. For each node, it checks if the node is a stream. If it is,
it then checks if the stream is an output stream. Being an output stream, it fetches the final
representation graph node from gen frepr and anchors it to the fanchor.

The last step done on the final representation graph generator is to do a little fix in the
pulse chains. Although, while traversing the architectural graph, the pulse chain nodes are
created, in reality they are not linked together. Instead, and in order to ease the imple-
mentation of this module, this operation is made now (after the traverse is done, at the end
of the module). As mentioned before, the module places each pulse chain node it creates
on pulse chain. Also, before the traversal, the module instantiates pulser nodes which are
placed in pulse nodes. So, to link the chain together, the module has to iterate over the
pulser nodes, and for each one of them, iterate the vector of their flip-flop D and connect the
inputs to the outputs of the previous flip-flops.

At last, after all these steps, the final representation graph is completely built. Comparing
to the architecture graph, this graph has significantly more complexity and number of nodes.
But now, each one of these nodes has a one-to-one relation to a hardware block/operation.
The current state of compilation represents the lowest abstraction the compiler reaches. The
input code is now ingrained in the connections and operations made on the pipeline, and are
no longer as easy to observe as it was on previous stages of compilation. The compiler can
now move on to the next (and final) module of compilation: the code generation module.

4.9.2 Support Example Analysis

We can now analyse how the support example (explained in Section 4.1.2) is converted to
the Final Representation Graph. In Figure 4.13 lies a graphical representation of the Final
Representation Graph of the support example. Each of the nodes represented in that Figure
has a correspondent Final Representation node. Each node starts off with the node identifier
in parenthesis, followed by the type of the node, has one optional extra value and ends with
the datatype of that node. The pulser node is a frepr pulser, the ffd node is a frepr ffd,
the const node is a frepr const and the resize node is a frepr resize. The other nodes
have the meaning of the symbols that represent them. The const node has an extra argument
that is the numeric value of the node represented in hexadecimal. The ffd also has an extra
argument that indicates its purpose:

• pulse chain: The current node is used to generate a step in a pulse chain;

• sync bubble: The current node is used to delay and synchronize a signal path (audio
stream);

• ins: The current node is a flip-flop used to propagate previous sample values (value at
instant operator);

• buffer : The current node corresponds to the buffer of an operation. In other words, it
acts as the separator between different operations (pipeline stages);

• Any other value is a name of a stream. So, this node is a flip-flop array that holds the
value of a stream.

The black arrows represent the data flow of audio between the nodes. Blue arrows repre-
sent that the source node of the arrow controls the enable signal of the destination node of
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the arrow. In this visual representation, it is easy to see the patterns created by the compiler
to align the audio streams. For example, on Figure 4.14, the node 27 gets resized from I16.3

to I15.3 by passing through a shifter and a resize node.

4.10 Output Language Generator

In this Section, we reach the end of the current implementation of the rtfss compiler.
Having the final representation graph assembled, all that remains is the creation of the target
output language code. There are a vast quantity of hardware description languages. The two
most popular ones are Verilog and VHDL [1]. For the rtfss compiler, we choose VHDL as
the target language (explained in Section 2.2). This choice was made due to the fact that
we have a greater familiarity with it. If, in the future, there is a need to change the output
language, the only module that needs to be changed is this one.

The code generation module, target gen, has two classes: vhdl templates and vhdl gen.
The vhdl templates class contains an assortment of VHDL code templates that can be
combined to generate hardware logic. The vhdl gen is the module that traverses the final
representation graph and that instantiates the templates present in vhdl templates.

The vhdl templates class uses string templates. String templating allows the embedment
of data in a string. The behaviour of string templating is similar to the one offered by
the sprintf method of C’s standard library. The downfall of using sprintf is the need
of using C-like strings and buffers, which are char*. These buffers need to have a static
size, so its use in this application (although valid) is impractical. The C++20 standard
offers a similar alternative to the Boost Format called std::format (present in the header
<format>). Unfortunately, when the rtfss compiler was implemented, this feature was not
yet present in any C++ compiler. So, naturally, Boost Format was the solution used. In
order to construct the output code, the templates are used to fill several string streams
(std::stringstream). Templates are managed by functions. Each function is responsible
for managing and instantiating the template. The vhdl templates module has the following
functions / templates:

• vhdl pulser: The code present in this template declares a pulser block. This template
is based on the VHDL hardware block made for the initial architecture (explained on
5.4.3). In terms of VHDL, this template contains the entity and architecture of the
pulser hardware block. The only input of the function is the string stream where the
template should be instantiated to;

• vhdl ffd: The code present in this template declares a flip-flop D block. In terms of
VHDL, this template contains the entity and architecture of the pulser hardware
block. The only input of the function is the string stream where the template should
be instantiated to;

• vhdl entity: This template represents an empty VHDL entity and architecture.
It requires as input the name of the entity, a list of generic declarations (as vector of
strings), a list of port declarations (as vector of strings), the architecture name, all the
signal declarations (already packed in a string) and all the signal assignments (already
packed in a string). Finally, it also receives the string stream where the template should
be instantiated to;
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(1) ffd lp_out I16.0

(71) resize I16.0

(72) ffd pulse_chain U1.0(70) >> I16.2

target 

(65) ffd pulse_chain U1.0

(2) ffd lowpass I16.2

left 
(19) ffd ins I16.2

(69) const 2 U2.0

right 

(47) ffd pulse_chain U1.0

(58) ffd buffer I17.3

(64) resize I16.2

(33) ffd pulse_chain U1.0

(53) ffd sync_bubble I15.3

(43) ffd buffer I17.2

(63) >> I17.3

target 

(17) ffd pulse_chain U1.0

(0) ffd smp_in I16.0

(20) ffd ins I16.0

left 

(62) const 1 U1.0

right 

(16) pulser 0s

(12) + I17.3

(56) << I17.3

 left

(57) resize I17.3

right 

(54) resize I17.3

left 

(55) const 1 U1.0

right target 

(45) resize I16.2
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(28) resize I15.3
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(11) >> I16.3

target 
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right 

(25) resize I16.3
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right 

(39) resize I17.2
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right 

(32) resize I14.2
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target 

(6) >> I16.2

target 

(31) << I16.2

left   

(5) const 2 U2.0

right 

(29) resize I16.2

left 

(30) const 2 U2.0

right 

target 

Figure 4.13: Full Final Representation Graph of the example of Section 4.1.2 (GraphViz).
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(1) ffd lp_out I16.0

(71) resize I16.0

(72) ffd pulse_chain U1.0(70) >> I16.2

target 

(65) ffd pulse_chain U1.0

(2) ffd lowpass I16.2

left 
(19) ffd ins I16.2

(69) const 2 U2.0

right 

(47) ffd pulse_chain U1.0

(58) ffd buffer I17.3

(64) resize I16.2

(33) ffd pulse_chain U1.0

(53) ffd sync_bubble I15.3

(43) ffd buffer I17.2

(63) >> I17.3

target 

(17) ffd pulse_chain U1.0

(0) ffd smp_in I16.0

(20) ffd ins I16.0

left 

(62) const 1 U1.0

right 

(16) pulser 0s

(12) + I17.3

(56) << I17.3

 left

(57) resize I17.3

right 

(54) resize I17.3

left 

(55) const 1 U1.0

right target 

(45) resize I16.2

target 

(28) resize I15.3

target 

(11) >> I16.3

target 

(7) + I17.2 (27) << I16.3

left 

(10) const 1 U1.0

right 

(41) << I17.2

left 

(42) resize I17.2

right 

(25) resize I16.3

left 

(26) const 1 U1.0

right 

(39) resize I17.2

left 

(40) const 2 U2.0

right 

(32) resize I14.2

target target 

target 

(6) >> I16.2

target 

(31) << I16.2

left   

(5) const 2 U2.0

right 

(29) resize I16.2

left 

(30) const 2 U2.0

right 

target 

Figure 4.14: Detail of a stream alignment done on the Final Representation Graph of the
example of Section 4.1.2 (GraphViz).

• vhdl entity inst: This template represents an instantiation of a VHDL block. It
requires as input the name of the instantiation, the name of the entity to be instantiated,
a list of generic maps (as vector of strings) and a list of port maps (as vector of strings).
It also receives the string stream where the template should be instantiated to;

• vhdl entity generic: This is an auxiliary template used to aid the creation of a
vhdl entity. It represents the syntax used to declare that an entity has a generic.
It receives the name of the generic and which type it is. The template instantiated is
returned as a string;

• vhdl entity port: This is an auxiliary template that is used to aid the creation of a
vhdl entity. It represents the syntax used to declare that an entity has a generic.
It receives the name of the port, the direction of the data flow (in or out), and the
dimension (in bits) of the port. The template instantiated is returned as a string;

• vhdl mapping: This is an auxiliary template used to create mappings. This is used to
aid the creation of the vhdl entity inst. It requires as input an entity port name and
a signal name. The template instantiated is returned as a string;

• vhdl signal: This template represents the declaration of a signal. It requires a signal

name and signal dimension. It also receives the string stream where the template
should be instantiated to;

• vhdl assign: This template represents an assignment from one signal to another
signal. It receives the name of both signal and the string stream to write the template
to;

• vhdl resize: This template represents a call to the VHDL function resize. The
template requires the name of the destination signal, name of the source signal, type
of the source signal, and the new dimension the signal should take. It also requires
a string stream to write the template to;
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• vhdl add, vhdl sub, vhdl mult, vhdl div, vhdl mod: These templates instantiate an
addition, subtraction, multiplication, division and reminder of the integer division, re-
spectively. They all require the name of the target signal, the name and type of the
right and left operators. The multiplication template also requires the dimension of
the target signal. This is needed, because, in VHDL, the multiplications are expanded.
Like most of the other templates, these also require the string stream to write to;

• vhdl sim: This template instantiates a symmetric operator. It needs the name of the
target signal, the name of the source signal and the type of the source signal.
Finally, it also requires the string stream to instantiate the template to;

• vhdl shl, vhdl shr, vhdl rtl, vhdl rtr: These templates instantiate a shift left, shift
right, rotate left, rotate right, respectively. They all require the name of the target
signal, the name and type of the left signal, the constant that specifies the shift
amount. Like most of the other templates, these also require the string stream to write
to;

• vhdl and, vhdl or, vhdl xor: These templates instantiate an “and” gate array, “or”
gate array and “xor” gate array, respectively. They all require the name of the target
signal, the name of the right and left signal. Like most of the other templates, these
also require the string stream to write to;

• vhdl not: This template instantiates a “not” gate array. It needs the name of the
target signal, the name of the source signal and the string stream to write to;

• vhdl equal, vhdl diff, vhdl more, vhdl less, vhdl moreq, vhdl leseq: These tem-
plates instantiate binary comparator blocks “equal to”, “different than”, “more than”,
“less than”, “more or equal to” and “less or equal to”, respectively. They require the
target signal, and the name and type of the left and right signal. Like the others of
this kind, it also receives the string stream to write to;

• vhdl const: This template represents a declaration of a VHDL constant. In order to
be instantiated, it requires the name of the constant, the dimension of the constant

and its value. The value is represented with a boost::dynamic bitset. Finally, it also
requires the string stream to write to.

All signal are stored in std logic vector, even the ones that only have one bit. This is
done to ease the synthesis of the output language. This way, there is no need to keep track
of the type of the signal. Every time an arithmetic operation is made, the template casts
all the signal operators to the wanted type (unsigned or signed), then does the operation
and casts the result back to a std logic vector.

There are several templates that are big (for example vhdl pulser and vhdl entity). For
these, raw strings were used. Raw strings are strings that allow a raw stream of characters,
and do not process control sequences (such as newline ’\n’). As such, they can be multi line.
They were introduced in C++11 and the delimiters are R"( (to start) and ") (to end).

The vhdl gen module is the top-level class of the “super” module target gen. It imple-
ments the frepr rev breath traverse interface, and its job is to convert the final represen-
tation graph into VHDL code. It does such task using the templates previously explained of
vhdl templates. These templates are instantiated while the module traverses the graph.
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Although the logic of this module is quite straight-forward, there is still one relevant
auxiliary function: spawn ffd. The spawn ffd function is responsible for instantiating a flip-
flop type D array. It receives the name of the stream that is going to have the flip-flop array,
its dimension, the name of the signal that has the enable, the name of the signal that is
the input and the reset / default value. The function then uses the vhdl entity inst to
instantiate the flip-flop D block.

The vhdl gen module contains two vectors that store the ports of the top-level VHDL
block (vs ports) and store the generics of the top-level VHDL block (vs generic). Both
vectors store strings. Also, the module manages three different string streams:

• ss out: This is the main string stream where the output code will (eventually) reside;

• ss var dcl: This string stream represents the section of the VHDL architecture block
where signal are declared;

• ss statm: This string stream represents the section of the VHDL architecture block
where the statements are present;

Before starting the final representation graph traversal, the module needs to setup. Firstly,
it starts by instantiating the vhdl pulser template to the ss out stream. The same is done
with the vhdl ffd template. Now that both blocks are instantiated on the output code,
the compiler adds a generic called CLK FREQ (of type real) to the generics of the top-level
block. This is done using the help of the vhdl entity generic template, and is stored
on the vs generics. It also adds then two ports to the VHDL top-level block called clk

(Master Clock) and rst (Master Reset). These two ports are created with the help of the
vhdl entity port template and are stored on the vs ports vector. Finally, the module can
traverse the final representation graph.

The translation logic used to convert the final representation graph arithmetic nodes to
VHDL code is quite constant. Essentially, when the vhdl gen module traverses an arithmetic
node, it first solves the name of the current node. In this module, the name of the signal

generated by final representation graph nodes is the concatenation of n with the numeric
identifier of the node. So, for example, a node with the identifier four will be called n4. After
getting the name of the current node, a signal is created for it. For that, the compiler
instantiates the vhdl signal template from vhdl templates and places it in ss var dcl.
Then, the module fetches the node names of the operands (with the same tactic). The
datatypes from the operands, when needed, are also fetched and converted to VHDL signal

types signed or unsigned. Finally, the vhdl templates of the correct operator is instantiated
and placed under ss statm.

When traversing a frepr resize, the module gets the name and the type of the node,
and simply instantiates a vhdl resize from vhdl templates and places it into ss var dcl.
When traversing a frepr const, the module gets the name and the value of the constant,
and simply instantiates a vhdl const from vhdl templates and places it into ss var dcl.
When the module traverses a pulser node, a VHDL pulser entity needs to be instantiated. So,
it first needs to convert the timescale contained in the node to frequency (in Hertz). With
it, it creates a generic mapping for the pulser frequency. It then adds the clock node to the
port mappings. The output of this pulser entity gets connected to this node’s name. This
is also done using a port mapping. Finally, it creates a signal to the output pulse (using
vhdl signal) and instantiates the vhdl entity inst for the pulser entity block using all the
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mappings generated. When traversing a frepr ffd, some extra precautions have to be taken.
The compiler has to check first what the kind of flip-flop D it is. This is done by observing
the var property field:

• IN: This means that the current node represents an input of the main block. Then,
the compiler has to add a port to vs ports, through the use of vhdl entry port. The
name of the port will be p plus the numeric identifier of the node. All inputs must
be synchronized, so now the compiler creates a signal (with the naming convention
already explained), and binds a flip-flop D to that signal;

• OUT: This means that the current node also acts as an output to the main block. So,
the compiler creates a port mapping on the top-level entity. The name of the signal

used on the mapping is p plus the numeric identifier of the node. The name of the
flip-flop input and enable is fetched, and a flip-flop (with the name n plus the numeric
identifier of the node is created), and it is placed under ss statm. Finally, the name of
the flip-flop is bound to the output port using a vhdl assign (also placed on ss statm);

• REGULAR: In this case, the current node is just a regular flip-flop D. These can be used
for streams or for pulse chains. The distinction is made using the enable signal. If the
node does not have an enable signal (pointer equal to nullptr), then the node is used
on a pulse chain. Otherwise, it is used on a stream. In this case, the only thing the
module does is to create the signal to store the flip-flop D and to instantiate it.

With all this, the module can traverse the whole graph and generate these fragments of
VHDL output code. When the traversal is done, the only thing left to do by the module is
to stitch the string streams together to form the complete output code. To do this, the only
thing it has to do is to instantiate the vhdl entity template present in vhdl templates. The
top-level entity it generates is called rtfss and the implementation is called impl. The entity
generics vs generics and the entity ports vs ports are also fed to the template. Finally,
it also feeds the string streams ss var dcl (signal instantiations) and ss statm (statement
declarations) onto the template. The output of the template is written to the ss out string
stream. With this, the module vhdl gen ends processing and the whole compilation procedure
is over. The only thing left to do, is for the compiler to output the generated code. In the
current implementation of the compiler, in the rtfss main top-level module, the compiler
simply writes the ss out string stream to the std::cout string stream. This makes the
compiler write all the string stream to the standard output of the program.

4.10.1 Support Example Analysis

The output VHDL code generated by the compiler for the support example (explained in
Section 4.1.2) is quite big, so it was placed inside the Appendix B. For sake of clarity, the
code was indented manually. This was the only modification made to the code. The top-level
entity of the code is the entity rtfss. This entity contains the input and output ports of
the original rtfss design. The p lp out VHDL output port corresponds to the lp out rtfss
output port, and the p smp in VHDL input port corresponds to the smp in rtfss input port.

To successfully synthesize the generated VHDL code, one change has to be made. Since
the rtfss compiler is not aware of the sampling frequency of the system, when it generates the
output code, the pulser frequency parameter is left with an inadequate value. In this case,
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the value written is inf. This value can be found on the entity instantiation inst8 and it
has to be set to the desired sample frequency. Furthermore, the frequency of the system’s
master clock also has to be set in the instantiation of the rtfss entity (generic parameter
called CLOCK FREQ).

The Altera Quartus Prime RTL (Register-Transfer Level) Diagram generated by compiling
the output VHDL code of the support example is in Figure 4.15.

4.11 Project Code Metrics

In this Section, some metrics of the source code of the rtfss compiler are listed. As it
stands, the compiler:

• Contains 14450 lines of code in 55 source files, broken up into:

– 11227 lines in 28 files of C++ code (.cpp);

– 2959 lines in 24 files of C++ headers (.h);

– 72 lines in 2 files of C++ templates (.tcc);

– 192 lines in 1 file of ANTLR4 grammar (.g4);

• Contains 115 C++ classes and 2 structs;

• Takes approximately 6 minutes and 30 seconds to compile from scratch using one job
on an Intel i7-2620M CPU (at 2.70GHz). This time includes the compilation of the
ANTLR4 runtime.

4.12 Summary

Given the proposed formal specification for the rtfss language present in Chapter 3, in
this Chapter a partial rtfss compiler was implemented. This compiler was implemented in
C++ with the use of ANTLR for language parsing and Boost for auxiliary data-structures.
Internally the compiler is segmented into various logic blocks. These blocks operate over the
internal data-structures. There are three internal data-structures: an abstract syntax tree,
and two graphs. The compiler shifts from one data-structure to another to progress into a
more hardware-oriented representation. At the end of this process, the compiler generates
VHDL code that can be used to synthesize the specified design.
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Chapter 5

Some Audio-Oriented Hardware
Blocks

In this Chapter, the collection of VHDL blocks that were made for the initial project
architecture is presented. They are split into five categories according to their purpose.

While implementing these blocks, the need to do fixed point arithmetic arised. The
VHDL-2008 standard provides two fixed-point packages, called fixed generic pkg (generic
module for fixed-point arithmetic) and fixed pkg (an instantiation of the fixed generic pkg

module with default values), that allows the instantiation and manipulation of fixed-point
numerals [10]. The use of this package is the ideal solution, since the standard used to
implement these VHDL blocks is also the VHDL-2008 standard. However, one issue arises:
the version of the HDL Compiler Toolchain used in this project (Intel Quartus Prime) does
not currently support several VHDL-2008 packages, including that one. So, the alternative
was to use a collection of packages called fphdl, developed by David Bishop [26]. This library
was made to support several VHDL-2008 packages on the VHDL-93 standard. In there lies
the following files, relevant for fixed-point arithmetic: fixed float types c.vhdl (contains
the type declarations for the fixed-point package) and fixed pkg c.vhdl (contains package
declaration). According to the user guide of the fixed-point package [27], these files should
be placed under a library called ieee proposed.

5.1 VHDL Audio Oscillator

The first VHDL modules done under the initial architecture were audio oscillators. Two
kinds of oscillators and two support blocks were made for this category. Oscillators are
modules responsible for creating cyclic signals according to a set frequency.

5.1.1 Sine Module (sine)

The first support block done for this category is called sine. The sine block is essentially
a hardware block that provides an approximation of the sine value for a certain position within
a cycle. The inputs of this block are a clock signal, a calculate trigger flag and the wanted
phase of the sine to fetch the value from. The outputs are simply the calculated sine value
and a flag that marks if the output is valid. This module also has three generic parameters
that allow the change of the sine output size, the number of points the module stores inside
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(lookup table) and the fractional resolution of the input position. Internally, this module has
a pipeline architecture that fetches points from a pre-calculated lookup table and does a linear
interpolation to get a close estimate of the true sine value [28]. It is controlled by a Finite
State Machine (FSM) that contains three states (IDLE, WAIT ROM0, GET ROM). On compilation
of the module, it is generated a read-only memory block that contains a determined amount
of points that build a quarter of a sine wave (without the last point). The module needs only
to store that amount of points because those points represent a quadrant. The other three
quadrants can be obtained by doing symmetry transformations on the x and y axis (Figure
5.1).

x

y

Q1 Q2

Q3 Q4

Figure 5.1: Sine wave shape and respective quadrants.

The sine values are stretched to fit the desired resolution given to the read-only memory.
The number of points used in the table and the dimension of each sample is specified in the
generics. Since the access to the ROM is single-port, the block needs at least two cycles to
fetch all the values it needs. While the FSM is at the state IDLE, the address that is given to
the ROM is the integer part (ignoring the fractional resolution) of the position input of the
module, adjusted for the quadrant:

• In the first quadrant, no adjustment is needed;

• In the second quadrant, the double of the number of points of the table (minus two, so
TABLE SIZE*2-2, to be precise) is subtracted to the input position;

• In the third quadrant, the input position is subtracted with the double of the number
of points of the table (TABLE SIZE*2-2, again);

• In the fourth and last quadrant, the quadruple of the number of points of the table
(minus four, so TABLE SIZE*2-2, to be precise) is subtracted to the input position.

In order to fit a quarter of the wave into the full read-only memory, the sine wave is
expanded on the x axis. To populate the values of the table it was used

table(n) = (2R−1 − 1) sin

(
π

2(S − 1)
n

)
.
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The R variable is the resolution of the sample and S sets the desired table size. To avoid
boundary problems, the table is generated with the sample resolution set to the maximum
minus one (hence, the minus one in 2R−1 − 1). This is due to the inherent property of
the two’s complement representation: there is one extra negative number comparing to the
positive numbers [29].

When the state is not IDLE, the value inserted to the address port of the ROM is the
input position plus one (to be able to do the interpolation). Again, the same hardware logic
to adjust according to the quadrant is used on this value to make it addressable on the
ROM. The output of the ROM is stored in two different flip-flop banks whether the state is
the WAIT ROM0 or GET ROM. The output of the ROM, before entering those flip-flops, passes
through quadrant adjustment logic. This logic is needed to fix the offset and signal of the
value, depending on which quadrant the value comes from:

• In the first and second quadrants the sine value is always positive, so no adjustment is
needed;

• In the third and fourth quadrants the sine value is always negative, so a negation is
applied on the output of the ROM;

After having both values from the ROM, the linear interpolation logic is the last part
of this module. Now, the fractional part of the position (that was ignored for the other
parts) is fetched to be used as the fractional position between both samples. The value of the
interpolation is then piped to the output port of the module.

Finally, the Finite State Machine uses the following logic:

• When the state is INIT, and the calculation trigger flag is true, the next state is going to
be WAIT ROM0, the valid output flag is set to false and the requested position is fetched
from the input and stored internally (and placed on the input of the ROM as already
described);

• When the state is WAIT ROM0, the first value from the ROM is fetched, and the next
state of the FSM is GET ROM;

• When the state is GET ROM, the second value from the ROM is fetched, the valid flag is
set to true and the next state is set to IDLE.

5.1.2 Generic Oscillator Module (generic osc)

The generic osc block is the second and last support block of this category. This block
was designed to act as a bolt-on module that calculates the addresses to index a wavetable
according to a variable frequency. As inputs, this block receives a clock signal, a sample enable
flag (to specify when to calculate a new address), and the required frequency (in Hertz). The
only output of this module is the address (phase) that should be read from the wavetable.
The block also provides four generic parameters to set the sample rate of the wavetable, the
size of the wavetable, the desired frequency resolution and phase resolution.

Internally, it stores the current position on a flip-flop array, and with combinational logic,
calculates what will the next increment be according to the frequency present on the input
of the block. The increment is calculated with the following rule:
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inc = freq
table size

sample rate
.

The fraction contains constant values, so the result from that division is calculated at
compile-time by the VHDL compiler. Since the frequency is a block input, it can be changed
on demand, and the hardware will adjust the increment value, thus changing the speed reading
of the wavetable.

5.1.3 Sine Oscillator (sine osc)

The sine osc is a block that acts as a sine wave oscillator. The input signals of this block
are a clock signal, a sample enable flag and the desired oscillation frequency of the sine wave.
The only output of this block is a sample value of the sine wave. The block expects as generic
parameters the frequency value of the clock, the desired sample rate, sample resolution, size
of the wavetable, fractional resolution of the input frequency and desired internal calculation
fractional resolution of the phase.

This block, architecturally, uses the block sine to generate the sine values. It can treat
the sine block as an abstraction of a read-only memory. Then, to generate the addresses to
index the sine, this block uses the generic osc block. So, technically, the sine osc block
serves as a top-level to instantiate a sine and a generic osc. The generic parameters of this
block are used to calculate the generic parameters of the two sub-blocks.

5.1.4 Parameterizable Oscillator (param osc)

The last block of this category is the param osc. This block serves as a digital oscilla-
tor that is able to reshape its wave on the fly. The inputs of this block are the hardware
clock, sample enable flag and three waveshape controls. As outputs, it has the calculated
sample value. The generic parameters of this block are the sample rate, the resolution of the
wave shape controls, desired sample resolution, fractional frequency resolution and fractional
internal phase resolution.

To control the shape of the wave, the block provides three parameters that control three
different parts of a wave:

• ctrl a: This input controls the rise time of the wave;

• ctrl b: This input controls the up time of the wave;

• ctrl c: This input controls the fall time of the wave;

These controls can be changed and the block will adapt the waveshape in real-time. These
controls do not have an absolute measure of time. This is due to the fact that what really
controls the full time of a cycle is the frequency the oscillator is running at. When a control
is at zero, it means that the section of the wave it controls is gone. However, when a control
is at the maximum value of its range, it signifies that that section of the wave should take the
full cycle. To better understand the concept, Figure 5.2 provides the wave-shape generated
by this block and the respective control inputs.

The biggest advantage of this block is that it can generate all the basic wave types while
being capable of combining them. The last part of the wave that does not have control is
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time

ctrl a ctrl b ctrl c

Figure 5.2: Wave-shape and control inputs of VHDL block param osc.

always off by default. Its size is controlled indirectly by the value of the three input controls,
if the sum of all three controls is equal to one control on the maximum value, then this last
part of the wave does not exist. Similarly, if the value of the controls is high enough, the last
part of the wave can end up non-existent. This happens to the extent that if the value of the
controls are too high, they can push other sections of the wave out of the time-frame allowed
by the current frequency. In this case, the wave is simply clipped.

The following list enumerates several basic waveforms and how they can be obtained using
the param osc block:

• Square Wave: Set ctrl a and ctrl c to zero. The ctrl b control sets the duty cycle of
the square wave. To achieve 50% duty cycle, ctrl b should be set to the middle value
of its representation. The bigger ctrl b is, the larger the duty cycle will be;

ctrl b

• Triangle Wave: Set ctrl b to zero. The ctrl a and ctrl c should be set to the middle
of their representation. This will provide a symmetric triangle wave. Increasing one of
these two last parameters will make the wave asymmetric;

ctrl actrl c

• Ascending Sawtooth Wave: Set ctrl b and ctrl c to zero. Set ctrl a to the maximum
value of the representation. To add down time before each rise of the wave, decrease
ctrl a;
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ctrl a

• Descending Sawtooth Wave: Set ctrl a and ctrl b to zero. Set ctrl c to the maximum
value of the representation. To add down time after each fall of the wave, decrease
ctrl c.

ctrl c

Internally, this block is based mainly on a flip-flop array and combinational logic to cal-
culate the increment. This block does not use a generic osc since, in this particular case,
having the increment calculation made inside the block reduces the hardware complexity. The
flip-flop array keeps track of the current position of the wave. This block can be in four states:
rise time, on time, fall time, off time. These states are coded into the two most significant
bits of the flip-flop position array. For each of these states, the block uses their specific inputs
(ctrl a for rise time, ctrl b for on time and ctrl c for fall time). The output sample value
of the block varies depending on which state it is:

• Rise Time: Output is equal to the current value of the position flip-flop array (excluding
the state bits);

• Up Time: Output is equal to the highest value possible by the representation;

• Fall Time: Output is equal to the maximum value of the representation, minus the
current value of the position flip-flop array (excluding the state bits);

• Down Time: Output is equal to the zero.

The output provided on the last list is then adjusted to be represented in two’s comple-
ment, centred on zero. In addition to the position flip-flop array, there is another auxiliary
flip-flop array that acts as a reset timer, to make sure that the pace of the oscillator is kept.
This array is used as a counter that is incremented in a similar fashion as the generic osc

increments,

inc = freq
max smp val + 1

sample rate
.

The value max smp val is the maximum value of the sample output representation. When
it overflows, it resets the position flip-flop array, starting another cycle. The increment on
the position flip-flop array is calculated the same way as the reset increment, but then it is
normalized to fit the control value.

102



5.2 VHDL Audio Filter

After the VHDL oscillators were done, it was decided to design audio filters too. In this
category lies one kind of filter: state variable filter. No support blocks were made in this
category, but the static variable filter uses a support block from the audio oscillators.

5.2.1 State Variable Filter (state var filter)

While Finite Impulse Response (FIR) filters are desirable for their simplicity, they do not
allow neither the cut-off frequency nor the Q factor to be changed. Since these two controls
are arguably important in musical expression, it was decided to implement a filter that would
allow to change these parameters. The filter kind that was selected was the State Variable
Filter.

A digital state variable filter is a digital counterpart of the analog state variable filter [2].
In the analog domain, it is constructed using mainly amplifier and integrator blocks. Since
these have a direct translation to the digital domain, the creation of a digital state variable
filter based on the analog counterpart is trivial. The biggest advantage of this filter, apart from
the variable cut-off and resonance controls, is that it provides naturally the low-pass, high-
pass, band-pass, and band-reject of the input all in the same block without added complexity.
Figure 5.3 has the block diagram for the digital implementation of the filter.

in lp out

br out

hp out bp out

∑
Fc

∑
Z−1 Fc

∑

∑

Z−1

Qc

−
−

Figure 5.3: Digital State Variable Second Order Filter block diagram [2].

The filter has the following controls: Fc and Qc. The Fc gain value controls the cut-off
frequency/center frequency of the filter. Ideally, it is calculated using [2]

Fc = 2 sin

(
πF

Fs

)
.

The F variable is the desired center frequency and Fs is the sampling frequency of the
system. This formula can be approximated by

Fc ≈ 2
πF

Fs
.

But it becomes increasingly inaccurate as the desired frequency gets closer to the maximum
allowed frequency (half of the sampling frequency, F ≤ Fs/2 [30]). For this reason, the use
of the first one is preferred [2].
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The Qc gain value controls the Q-Factor of the system. The calculation to get that value
is straight-forward,

Qc =
1

q
.

The q variable in the equation is the desired Q-Factor. The useful range of the q parameter
is from 2 (Qc = 0.5) to zero (Qc =∞) [2]. When the Q-Factor is 0, the filter will self-oscillate
and generates a pure (digital) sine wave.

The state var filter VHDL hardware block implements a Digital State Variable Filter.
The inputs of the block are a clock, sample enable flag, sample input value, central/cut-off
frequency and Q-factor value. The outputs are the four filtered results: low pass sample
value, high pass sample value, band pass sample value, band reject sample value.

Internally, it instantiates the sine VHDL hardware block that was explained in Section
5.1.1. It is used to calculate an accurate Fc value to feed into the amplifiers. To do so, the Fc

has to be converted to fit the sine argument to the table size (0 to table size, opposed from
0 to 2π). So,

F

Fs
≤ 1

2
∧ F ≥ 0⇔ 0 ≤ F

Fs
≤ 1

2
⇔ 0 ≤ πF

Fs
≤ π

2
.

So far, the conclusion to take is that the sine function will never be used above π/2. This
means that only the first quadrant of the wave is really necessary and used. If we assume N
as the number of points of a full cycle (so N − 1 is the last point of the cycle), then

(full cycle) sin(x)→ 0 ≤ x < 2π ⇔ 0 ≤ n ≤ N − 1

(quarter cycle)→ 0 ≤ x

4
≤ π

2
⇔ 0 ≤ n

4
≤ N − 1

4

The scale normalization factor is
N − 1

2π
, so

0 ≤ πF

Fs
≤ π

2
⇔ 0 ≤ πF

Fs

N − 1

2π
≤ π

2

N − 1

2π
⇔ 0 ≤ F (N − 1)

2Fs
≤ N − 1

4
.

Therefore, the proper sine argument should be
F (N − 1)

2Fs
. In conclusion, the full expres-

sion is

Fc = 2 sin

(
F (N − 1)

2Fs

)
.

However, we can take this process a step further. Since the required value is the double
of the sine, instead of multiplying the value by two, this block instantiates the sine block
with one more bit on the sample resolution. The result of multiplying this value with sample
values is then shifted back to restore the correct resolution.

The rest of the block is easy to implement, since there is only the need to specify the
signal path of the samples between the elementary blocks. The Z−1 block is generated with a
flip-flop D that works at the input clock frequency and is enabled by the sample enable flag.
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5.3 VHDL Audio Delay Line

To broaden the variety of types of VHDL blocks available (on the initial architecture), it
was decided to also create some audio delay blocks. There were created three delay hardware
blocks: delay0, delay1 and delay2. They all have the same concept but have an increasing
amount of different features.

The main rationale behind the following three hardware blocks is to emulate the behaviour
of a tape delay effect. A tape delay is an analog sound effect based on a loop of tape that
passes through (at least) two magnetic heads, one for writing on the tape and another for
reading the tape. To decrease or increase the delay on a tape delay, the tape is sped up or
slowed down. The act of changing the speed of the tape will affect the sound already recorded
on it, altering the pitch.

5.3.1 Basic Variable Delay Line (delay0)

The delay0 VHDL hardware block implements the behaviour of a variable delay line.
As inputs, it has a clock, sample enable flag, sample value input, and speed control. The
only output of this block is the sample value output. The block has the following generic
parameters: clock frequency, sample rate, sample resolution, speed resolution, delay position
resolution, resolution factor and maximum desired delay time.

This block emulates the behaviour of the tape delay by generating a memory block and
then by circulating it while reading and writing sample values. To control the delay time,
the block controls an increment that varies in proportion to the speed input parameter.
Essentially, this block combines the writing and reading head into one. So, when the head
reaches a position of the tape, it first reads the stored value and overwrites it with a new
one. Implementation-wise, opposed to the analog counterpart, instead of moving the tape,
this module moves the head. In other words, a memory pointer is stored in a flip-flop array,
which is incremented in order to access another parts of the memory.

The amount of memory positions is calculated by multiplying the sample rate with the
maximum delay size. This number is then divided by the resolution factor. The resolution
factor allows tuning the size of the memory (by reducing the quality of the delay line).

Every time the sample enable flag turns true, the block grabs the sample value present at
the current indexed position of the memory and places it in the sample output of the block.
Then, it calculates the new position of the memory pointer (on a different flip-flop array)
using

new pos = pos+
M

M − speed+ 1

1

resolution factor
, where M = 2speed resolution.

The last thing the module does in this state is to increment the current position of the
memory pointer. Once the module detects that the sample enable flag has gone down, it
starts fixing the memory. While the current position is different from the newly calculated
position, the module places the sample value from the last valid input and increments the
current pointer. This is repeated sequentially (for every clock cycle) until the current pointer
position is equal to the new position.
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5.3.2 Intermediate Variable Delay Line (delay1)

The delay1 VHDL hardware block implements the behaviour of a variable delay line.
This block is an updated version of the delay0 block that has improved functionality. As
inputs, it has a clock, sample enable flag, sample value input, speed control and reverse enable
flag. The only output of this block is the sample value output. The block has the following
generic parameters: clock frequency, sample rate, sample resolution, speed resolution, delay
position resolution, resolution factor and maximum desired delay time.

This block is functionally similar to delay0, but with one relevant difference: the delay1

block allows the memory to be travelled backwards. This is equivalent to reversing the
direction of the tape on an analog tape delay.

Internally, the architectural difference to delay0 is that, when the new position is cal-
culated, instead of directly adding the increment, the block checks if the reverse enable flag
is enabled or not. If it is, the increment is added. Otherwise, it is subtracted. The same
goes for the fix process of the memory. If the increment was subtracted, the current position
pointer is incremented, otherwise it is decremented.

5.3.3 Complex Variable Delay Line (delay2)

The last block on this category is the delay2. The delay2 VHDL hardware block imple-
ments the behaviour of a variable delay line. This block is an updated version of the delay1

block that has improved functionality. As inputs, it has a clock, sample enable flag, sample
value input, read speed control, write speed control, read reverse enable flag and write reverse
enable flag. The only output of this block is the sample value output. The block has the
following generic parameters: clock frequency, sample rate, sample resolution, speed resolu-
tion, delay position resolution, resolution factor, maximum desired delay time and initial head
offset.

This block was based on the delay1, but has a significant difference: the delay2 block
provides detached reading and writing heads. These heads have independent controls for
speed and direction. As expected at the start, the reading head is behind the writing head.
The initial offset of the reading head to the writing head is calculated based on the generic
value initial head offset (in milliseconds).

The writing head has a very similar behaviour to the hybrid head that the previous two
blocks had. The difference is that it does not read the value before overwriting it on the
memory. The reading is all done by the reading head. The reading head only moves (and
reads values) when the sample enable flag is set to true. For each head, a different increment
is calculated, according to the values provided in the input of the block (speed and reverse
flag of each head). The increment calculation for each head is equal to the one used on delay1

(and delay0).

5.4 VHDL Audio Utility

Some more audio hardware blocks were made. But since these did not fit the last categories
and are miscellaneous, this category was created. These blocks are an audio amplifier, an
envelope generator and a pulse generator.
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5.4.1 Audio Amplifier (amp)

The amp block is a hardware block that models the behaviour of a variable gain audio
amplifier. The block only has two inputs and one output. For inputs, it has the sample value
input and the gain control. As outputs, it only has the sample out value. It also has four
generic parameters: sample resolution, gain control resolution, gain factor and saturation flag.

This block is the only VHDL hardware block on this collection that contains two different
architectures. One architecture is made to amplify unsigned values and another to amplify
signed values. The two architectures differ in the way they handle overflow and clipping.
Both architectures are purely combinational, since they do not require a clock or a sample
enable flag signal.

The gain factor generic value is controlled by powers of two. This means that if the gain
factor is one, the real gain is unitary (this configuration can only attenuate). However, if
the gain factor is, for example three, then the maximum real gain will be four. When the
real gain is four, then, to achieve unitary gain, the control value has to be a fourth of the
maximum control value. The formula to get the real gain is gain = 2gain factor−1.

Both block architectures allow the choice between audio clipping or audio saturation,
when the amplified value exceeds the maximum value of the representation. This choice is
done (at compile-time) by the saturation flag. When this flag is true, the output audio will
saturate. Enabling saturation increases slightly the hardware complexity of the block, since
it requires an extra check and an output value override.

Internally, the block calculates an intermediate amplified result that corresponds to a
lossless amplification. This is achieved by doing the multiplication between the input sample
value and the input gain control value. This value is then shifted right by the resolution of the
gain control, minus the resolution of the gain factor, plus one (shift amount = gain res −
gain factor + 1). This shift is made to compensate the gain value of the gain factor.

By default, the output value of the block is the intermediate calculation value truncated
to the sample size. When the block is generated with the saturation flag false, nothing else
is done. Otherwise, and when the gain factor is more than one, the default value might be
changed in case of an overflow. The saturation is handled differently in both architectures.

Saturation on the Unsigned Architecture

Overflow detection on unsigned values is straight-forward. The block only has to check
the most significant bits (which are higher than the sample resolution) of the intermediate
amplification calculation. If at least one of those are set to one, then overflow occurred. In
terms of hardware, this operation requires doing an OR over all the most significant bits. This
is done with the help of the function or reduce present in the package ieee.std logic misc.
Essentially, this function creates an array of OR Gates that combine all the bits provided on
the input array and outputs a single bit [31]. When the maximum gain factor is bigger
than one, and the result from the or reduce is true, then the output gets overridden to the
maximum value the sample resolution allows (every bit is equal to one).

Saturation on the Signed Architecture

Signed values (in this project) are represented in two’s complement representation. This
means that overflow checking is not as simple as on unsigned values. In this block, the strategy
used to determine if the intermediate value does not fit the output, is to check the inverse:

107



check if it fits. To check if a value fits on a smaller amount of bits, the block checks if the bits
of that are going to be discarded carry only the signal. In order words, it has to check if the
bits to be discarded are equal to the most significant bit of the new representation. This can
be implemented by applying an AND gate to all the excess bits and the most significant bit
in the new representation, and to their inverse. The result of these two AND is then placed
on an OR. For example, if the intermediate result has six bits, and the final representation
has four bits, then (in boolean logic):

If intr = i5i4i3i2i1i0, then

fits = i5 · i4 · i3 + i5 · i4 · i3 = i5 · i4 · i3 + (i5 + i4 + i3)

The intr is the bit representation of the intermediate calculation (of size 6 bits). The fits
expression expresses if the new value fits or not. So, if we want to check for overflow, then:

ovr = fits = i5 · i4 · i3 + (i5 + i4 + i3) = i5 · i4 · i3 · (i5 + i4 + i3)

Generalizing to n-bit intermediate calculation to k-bit final result:

ovr = in−1 · in−2 · (...) · ik−1 · (in−1 + in−2 + (...) + ik−1)

Similarly to or reduce, the ieee.std logic misc also provides a and reduce that im-
plements a similar behaviour to or reduce, but with AND gates [31]. So, implementation of
this expression in pseudo-VHDL would resemble this:

signal s_overflow : std_logic;

signal s_interm : std_logic_vector(n-1 downto 0);

(...)

s_overflow <= (not and_reduce(s_interm(n-1 downto k-1))) or

or_reduce(s_interm(n-1 downto k-1));

Finally, with this overflow flag calculated, the module can now detect clipping. The last
thing it has to check before overriding the output value is if the sample clipped the top or the
bottom of the representation. To do so, the block only needs to check the most significant bit
of the intermediate calculation. If the bit is true, then the overflow happened on the negative
part of the number so the value used to override is the biggest negative number allowed by
the representation. Otherwise, the overflow happened in the positive part of the number, so
the value to use to override is the biggest positive number.

5.4.2 Envelope Generator (env gen)

All the previously discussed modules have a direct intervention in the creation and modi-
fication of sound. The block discussed in this Section, the envelope generator, does not have
a direct intervention on the sample values. This means that the block does not receive and
generate samples. Instead, this block generates a control signal.

An envelope generator is a common module in audio synthesis architectures. It is capable
of generating a control signal that can be used to control parameters of other sound blocks [2].
The most common kind of envelope generator is the Attack, Decay, Sustain and Release
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(ADSR) envelope generator. An ADSR envelope generator has four main controls: Attack
Time, Decay Time, Sustain Level and Release Time. The last control that an envelope
generator has is the gate control. The gate control is used to trigger when the envelope
starts, and when should it close. A diagram of the control signal generated by an ADSR is
in Figure 5.4.

time

amp

Amax

Attack Decay

Sustain

Release

Gate Off Gate On Gate Off

Figure 5.4: Attack Decay Sustain Release (ADSR) Envelope Generator (typical) output.

An ADSR envelope generator, typically, has five stages: one stage of each of the associated
controls and an idle stage. The default state of an envelope generator is the idle state. In it,
the module waits for the gate control to be opened (enabled). When it is opened, it enters
the Attack state. In this stage, the output control value starts rising until it is reached the
maximum value possible. The time it takes to reach that maximum is controlled by the attack
time. Once it reaches the top, it starts the Decay phase (state). In this state, the output value
starts falling until the sustain level is reached. Again, the time it takes to reach that level
is controlled by the decay time. After the output reaches the sustain level, the state of the
envelope generator changes to the Sustain state. In the Sustain state, the module holds the
sustain value as the output level until the gate closes (disabled). When the gate is disabled,
the envelope generator enters the Release stage. In the Release state, the output value falls
until it is zero. The time the generator takes to make the output reach zero is set by the
release time.

If, at any state (except the idle and release states), the gate is closed, then the module
jumps instantly to the Release state. To be precise, although the attack, decay and release
controls are time controls, in reality they alter the slope of rise and fall of their section of the
wave. This means that, if the envelope is interrupted while it is running, the release section
can be shorter in time if the current output value is smaller than the sustain value, or longer
otherwise.

The env gen VHDL hardware block implements the behaviour of an ADSR envelope
generator. For inputs, it has a clock, sample enable flag, trigger input (gate), attack control,
decay control, sustain control and release control. As output, it only has the control value
out. It also has four generic parameters: the sample rate, control inputs resolution, control
outputs resolution and desired time scale. This time scale parameter controls the maximum
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time allowed by each stage. In this implementation of an ADSR, there are only four states,
since the idle state can be merged with the sustain stage, when the output is already zero.

5.4.3 Tick / Pulse Generator (tick creator)

A pulse/tick is one of the most elementary blocks of a fair amount of digital hardware
designs. The objective of a pulse generator is to create a periodic signal that is only active
during one cycle of a certain clock. This block can be used to control and synchronize the
behaviour of other hardware blocks. Its use in the initial architecture was to impose the
sample rate of the system. It has only one input and one output. The input is the base clock
and the output is the generated pulse. It also contains two generic parameters: the base
clock frequency and the desired pulse frequency. Internally, this block has a counter that is
incremented at each clock cycle. When a certain threshold is reached, the output of the block
is set on high and the counter is reset. On every other value of the counter, the output is
low. The threshold value is the value that is the result of the division between the base clock
frequency and the desired pulse frequency.

5.5 VHDL MIDI Toolbox

The last category of VHDL blocks done for the initial architecture is the VHDL MIDI
Toolbox. This toolbox contains all the blocks necessary to interpret and decode MIDI com-
mands. Some of the blocks even build an abstraction layer that provides useful features ready
to connect to other audio blocks. This category contains seven hardware blocks of varying
complexity.

5.5.1 MIDI Interpreter (midi interpreter)

The midi interpreter VHDL hardware block is a module capable of decoding the MIDI
messages received over a serial line. Once the module receives a complete MIDI message
and is able to decode it, it presents the decoded message in its outputs during a clock cycle.
This block has four inputs: base clock, reset flag, serial byte input and serial byte valid
flag. As outputs, it has a MIDI channel number, MIDI least significant data and MIDI most
significant data. In addition to these, the module has seven more output flags that signal
the message type that the three other outputs have. These flags are MIDI note off event,
MIDI note on event, MIDI after-touch pressure, MIDI control change, MIDI program change,
MIDI channel pressure and MIDI pitch bend change flags. This module does not provide any
generic parameters.

As explained in Section 2.4, MIDI has several control sequences that have different mean-
ings. These sequences, depending on their type, have different sizes. Internally, this module
contains a Finite State Machine to keep track of its status. This machine has three states:
idle, first data (DATA0) and second data (DATA1). The default state (and the one that is
set when the reset flag is risen) is the idle state. Additionally, by default the message type
output flags are all off, unless on the clock cycles the module overrides them. Then, when
the serial byte valid flag is enabled, the module reads the serial byte input field. With it, it
first checks if it is a status message (most significant bit is set to one). If it is not, the block
simply ignores the data. Otherwise, the module extracts the channel number and message
type (status field) and sets DATA0 as the next state. The channel number is placed on the
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output of the block. Now, next time the serial byte valid flag is enabled (status bit also has
to be set to zero) and since the current state is DATA0, the module consumes another byte
from the serial input. It places the received bytes on the least significant data output port
and tries to decode the type:

• If the message is a program change, then the message is complete. The program change
flag is enabled and the next state is the idle state;

• If the message is a channel pressure, then the message is complete. The channel pressure
flag is enabled and the next state is the idle state;

• Otherwise, the message is not complete, so the next state is set to DATA1.

In the case that the module jumps to the DATA1 state, then it is expecting another byte
to come for the current message. So, next time the serial byte valid flag is enabled (status
bit also has to be set to zero), the module consumes another byte from the serial input. It
places the received bytes on the most significant data output port, sets the next state as the
idle state and tries to decode the type:

• If the message is a note off event, note on event, after-touch pressure, control change
or pitch bend change, then the message is complete. The correspondent flag of those
events is enabled and the module finishes the process;

• Otherwise the message is not implemented by this interpreter, so the data is discarded
and no output flag is enabled.

5.5.2 MIDI Voice Handler (midi note)

The MIDI protocol allows the existence of polyphony inside the same channel. For a
software MIDI interpreter, handling multiple notes should not pose any difficulty. But, in
hardware, the same is not true. Polyphony increases the implementation complexity of a note
handler module since the module has to be capable of correctly handling various notes being
active at the same time. The module midi note consumes note on events, note off events and
after-touch pressure flags, and is capable of handling multiple active notes. These notes are
placed inside voices. Each voice is capable of containing, at maximum, one note at a time.
The module receives a clock, reset flag, note off event flag, note on event flag, least significant
MIDI data and most significant MIDI data. The outputs of the block are a note array, note
on (gate) flag array, velocity array and after-touch array. The block also contains two generic
parameters: the desired amount of voices and the resolution of age counters. The size of the
output arrays is controlled by the desired amount of voices. The size of each word of the
note and velocity array is seven bits (as per the MIDI standard [3]). This is an experimental
module that was not carefully tested since the project architecture pivoted while this block
was being developed. This also meant that it is not quite optimized.

Internally, the module keeps track of the age of each voice. The age counter resolution
is controlled by its generic parameter. This module also has support flip-flop arrays to keep
track of the next voice to use and other parameters. The module is controlled by a Finite
State Machine that contains four states: an idle state and one state for each of the messages it
handles (note on, note off and aftertouch). When the reset flag is enabled, the internal states
are reset and the age counters are defaulted. When the reset flag is not true then, depending
on the state, the module:

111



• Idle State: In this state, the block is waiting for one of the input message flags to be
enabled. When one of them gets enabled, the block stores the input MIDI data, and
sets the next state according to the flag that was risen;

• Note On State: In this state, the block first has to check if there is an empty voice to
fill in with the new note. This is checked iterating through all the voices and checking
if they are on not in use. To be precise, while the block iterates the positions, it checks
for the age even if the voice is being used. The oldest unused voice and oldest used
voice indexes are stored on another two flip-flop arrays. This allows the block to, at the
end, always use the oldest voice. This process takes, as much clock cycles as there are
voices. When all the voices have been visited, the block now knows if there is free space.
If there is, it places the voice on the oldest unused voice. To do so, it places there the
note number, note velocity, sets the after-touch value as zero, sets the note as enabled
(gate on) and updates the age of the voice. But, if all the voices are being used, then
the block will overwrite the oldest voice. The process is similar to when the voice is
empty, but in this case, the voice enable flag is kept on. In either case, the block resets
the iteration counter and the next state is set to Idle;

• Note Off State: In this state, the block needs to find the block that contains the note
that is being disabled. To do so, again, the module has to traverse all the notes and
check them one by one. This is also an iterative process that should take, at maximum,
as much clock cycles as there are voices. If the voice that has the desired note is found,
then the block will simply turn the note enable flag off and set the velocity to the new
value. If it does not find the note, it simply ignores the message. In either case, the
block resets the iteration counter and the next state is set to Idle;

• After-touch State: Finally, in this state, the block needs to find the block that contains
the note that requires a change of after-touch. To do so, once again, the module has
to traverse all the notes and check them one by one. This process is similar to the one
done on Note Off State. The only difference is that, instead of disabling the note, it
updates its after-touch value. If the note is not found, it ignores the message. In both
cases the block resets the iteration counter and sets the next state to Idle;

5.5.3 MIDI Note Frequency (midi freq)

Now that the MIDI toolbox has a block to extract the midi notes and keep track of the
voices, there is a need to make the MIDI note numbers usable. The block midi freq is able
to convert the MIDI note numbers into actual frequencies (assuming equal temperament)
that can be directly used on other sound blocks (for example, oscillators). The only input
of this block is the note number to be converted. Naturally, the only output of this block is
the frequency value of the input number. This block has several generic parameters: output
integer resolution, output fractional resolution, A4 note frequency (default is 440Hz), A4
note number (default is 69), and the number of equal temperament divisions (default is 12
divisions).

This block is composed basically by a read-only look up table that converts note num-
bers indexes to their frequency values. This table is constructed at compile-time, using a
mathematical formula.
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On the contemporary (western) musical tuning system, the A4 note has the frequency
440Hz. Since the human perception of sound pitch works logarithmically [32], an A5 has the
double of that frequency (880Hz) and an A3 has half of that frequency (220Hz). Additionally,
there are 12 tones in an octave and if equal temperament is used, then that octave interval is
split in equal perception. Knowing this, it is possible to calculate the frequency of a certain
note number doing a simple calculation. The note number of the A4 is 69, so

freq = 440× 2
note−69

12 .

With the default instantiation values, the module uses this formula to calculate the table.
But, this module allows for extra customization over some generation parameters. It is
possible to alter the A4 center frequency, to transpose the scales (by altering the note number
of A4), and to increase or decrease the number of divisions on one octave (allows the creation
of microtonal scales). The previous formula with these new parameters is:

freq = a4 freq 2
note−a4 num

tet ,

where tet is the number of equal temperament divisions.

5.5.4 MIDI Channel Filter (midi channel filter)

As mentioned before on Section 2.4, the MIDI standard states that in one MIDI commu-
nication there can exist several channels. These channels are encoded on the first byte of the
MIDI messages. None of the previous blocks filter the messages according to their channel.
That behaviour is implemented by this block: midi channel filter.

The block midi channel filter receives a MIDI channel and all the message status flags
that the block midi interpreter outputs. This block outputs the same amount (and type)
of flags of its input. This module also has one generic parameter: the desired filtered channel.
Essentially, this block analyses the value of the channel input and compares it with the desired
channel generic parameter. If they are equal, then all the input flags are transferred to the
output. Otherwise, the output flags are always set to zero. This block is purely combinational.

This block is meant to serve as a middle man between the midi interpreter and other
MIDI blocks. Since this filter is not incorporated within the midi interpreter block, a single
instance of the midi interpreter block can serve multiple channels on separated logic paths.

5.5.5 MIDI Control Handler (midi control)

The midi control block keeps track of the values that come from a MIDI controller
(control change message). As inputs, it has a clock, a reset flag, the control change message
flag, the least significant MIDI data and the most significant MIDI data. The only output of
this block is the control value. This block has one generic parameter: the desired controller
number.

Internally, this module practically behaves like a flip-flop buffer, with some control logic
on the enable input. When the control message flag is true and the controller number is equal
to the desired controller number, the block samples the input MIDI data bits, concatenates
them to form the control value, and stores it on the flip-flop buffer. This value is retained
until the next time the same conditions are met.
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5.5.6 MIDI Pitch Bend Handler (midi pitch)

The midi pitch block keeps track of pitch bend values that come from a MIDI stream
(pitch bend change message). As inputs, it has a clock, a reset flag, the pitch bend change
message flag, the least significant MIDI data and the most significant MIDI data. The only
output of this block is the pitch bend value. This block has no generic parameters.

Internally, this module behaves like a flip-flop buffer where the enable is connected to the
pitch bend change message flag. When the pitch bend message flag is true, the block samples
the input MIDI data bits, concatenate them to form the control value, and stores it on the
flip-flop buffer. This value is retained until the next time the same conditions are met.

5.5.7 MIDI Channel Pressure Handler (midi pressure)

The midi pressure block keeps track of the channel pressure values that come from a
MIDI stream (channel pressure message). As inputs, it has a clock, a reset flag, the channel
pressure message flag and the least significant MIDI data (this MIDI message only takes two
bytes). The only output of this block is the channel pressure value. This block has no generic
parameters.

Internally, this module behaves like a flip-flop buffer where the enable is connected to the
channel pressure message flag. When the channel pressure message flag is true, the block
samples the input MIDI data bits, and stores it on the flip-flop buffer. This value is retained
until the next time the same conditions are met.

5.6 Summary

The initial target project of this thesis was to develop a musician oriented visual language
capable of being synthesized to hardware. This language would have similar characteristics
to the language Pd (Section 2.5.2). Due to several reasons, this architecture ended up not
being completed so that a more improved one could be developed. Some VHDL blocks were
made to serve the initial architecture. Some of these blocks served as an influence to the
work developed on the new architecture. These blocks can be used to generate digital audio
processing/synthesis chains and to handle the MIDI protocol.
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Chapter 6

Discussion and Future Work

In this thesis, we started by analysing a set of audio processing languages that are cur-
rently popular. Then, we evaluated the conception of an alternative to the typical classical
audio languages. A new functional-like audio-focused language for hardware, named rtfss,
was proposed. This language tries to provide most computer programming languages conve-
niences, without compromising the hardware design. Alongside other features, this language
is made to be synthesized to a pipelined architecture. To further explore this language, a par-
tial compiler was implemented. This compiler is able to analyse rtfss code and to synthesize
it into VHDL. This compiler, albeit incomplete, is able to successfully design and manage a
pipeline (with all its inherent synchronization issues). We also reflected over an alternative
architecture for an audio language and analysed some hardware blocks that originated from
it.

This Chapter serves as a closure to the work done in this thesis. The final remarks about
how this project started, evolved and reached the current state are discussed. Finally, we
make some observations about possible future work.

6.1 Final Remarks

Designing digital hardware is a rather complex task, and designing good digital hardware is
an even more demanding effort. Moreover, the creation of a compiler that designs good digital
hardware is an exercise usually left for large teams of experienced engineers. In this thesis, we
attempted to create a language and a compiler that would focus on the synthesis of hardware
designs for audio processing. It became quite clear, from the start of the development of
the main architecture, that due to the time-frame of this project, the compiler would not be
complete. Another factor that constrained the development of the project was the lack of
experience in hardware compilers. This hindrance was one of the main reasons for having a
change of architecture during this thesis. Originally, the architecture overlooked the compiler
implementation, because of the underestimation of the complexity of implementation. Once
this was perceived, we decided that the best step was to rethink the strategy and thus the
main architecture was surfaced.

In order to have a complete rtfss compiler, the architecture would need a deep revamp,
mainly due to the compromises taken while designing the architecture of the compiler. For
example, the language allows the application of the value at instant operator on an arithmetic
expression, while the compiler only allows the existence of them next to a stream name. This
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operand is caught by the compiler and is associated to a stream identifier as if it was its
property. Another compromise of the compiler is the constant stream solver. This module
should imitate the behaviour of hardware, by using fixed-point calculations, but instead uses
floating-point arithmetics and does not handle correctly the sizing of the final value.

In our opinion, there are three significant limitations on the compiler. First, there is
no support for MIDI streams. This was one of the key points of the rtfss language, and,
unfortunately, there was no time left to implement it. The second main limitation we see in
the compiler is the fact that it is not aware of the specific hardware target it will compile to.
This is a very important point, being that if the compiler was aware of the hardware target,
it would be able to consider the real hardware delays of the logic gates. Knowing them, the
compiler would be able to pack as many operations as possible into a pipeline stage, without
hurting the performance of the system. This would vastly improve the optimization of the
digital design outputted by the compiler. Moreover, the compiler would be able to fill in
the max pulse to the correct value (according to the sampling frequency of the system). The
last main limitation of the compiler is that it relies too much on the arithmetic operations of
VHDL. The compiler should be able to, for example, generate an adder block, using elemental
logic ports. Resolving this and the previous limitation (logic timings) would vastly improve
the compiler (without a substantial effort).

The rtfss language had a positive evolution during the development of the project. Several
aspects from the syntax arose, while others were discontinued. For example, initially, the
streams were not as general-purpose as they are now. There were four types of streams: audio
stream (signed audio stream), ctrl stream (signed control stream), uctrl stream (unsigned
control stream) and midi streams. These types had also variable sizing as the current ones
have, but they were always integer type. After some deliberation, the types audio and ctrl

were swapped for the more general ones I stream and U stream. One operation that turned
out not being as useful as initially planned is the gap operator. This operator was planned to
control the divergence of the delay from two streams. Although it has its use on the current
specification of the language, we do think that removing it would force compilers to do inter-
stream synchronization (as the one implemented does). So, the removal of the gap operator
from the formal specification is a subject that should be assessed.

Even with all these things considered, we do believe that the project had a very positive
outcome. It was a multi-disciplinary exercise, that required the employment of topics from
software programming, digital hardware design, compiler design, graph theory, digital sig-
nal processing and audio synthesis. Despite of the implementation limitations, the project
successfully served the purpose of simplifying the creation of hardware solutions for sound
synthesis. In our opinion, the solution developed adds value to the field of languages for
audio synthesis. Also, this project can be used as a starting point to other more complete
architectures and similar designs.

6.2 Future Work

As already mentioned, there are several subjects in this project that can be further im-
proved. Adding the possibility to represent numbers in binary (by the use of the prefix 0b)
should be considered. But, assuming the language will not go through a significant evolution
and the compiler will not be completely redesigned, the steps that should be taken to greatly
improve the project, in descending order of importance, are the following:
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1. Make the compiler aware of the target hardware device, in order to be able to pack the
pipeline stages with more logic;

2. Make the compiler capable of decomposing composed arithmetic operations, like addi-
tion, multiplication and division, among others;

3. Improve the constant stream solver module;

4. Implement midi streams in the compiler;

5. Allow the instantiation of more than one CBlock;

6. Implement if and for statements in the compiler;

7. Allow the constant stream inputs of CBlocks to control the size of other non-constant
streams;

8. Implement the import mechanism and create a standard CBlock library with useful
common blocks (for example, sine function).

Having these main matters resolved, in our opinion, raises the compiler to a much more
matured stage. At this stage, the project could start to be used for actual real-world appli-
cations and solutions.

Other than these modifications to the compiler, we do not see any major alterations
being needed in terms of software. However, in terms of hardware, one of the objectives on
the early stages of the project was to create a physical MIDI interface for an FPGA. The
electronic design was deliberated, but no physical implementation or testing was conducted.
Implementing a hardware MIDI interface (to complement a built-in audio interface) for an
FPGA would further enrich the project and create a complete ecosystem solution.
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Appendix A

Simple First-Order IIR Filter
Example

The filter designed and presented in this Appendix is an approximation over a first-order
Butterworth low-pass filter [33]. This filter is an infinite impulse response filter (IIR) with
normalized cut-off frequency of 0.2 (where 1 corresponds to half the sampling frequency).
This means that if the system works at a sample-rate of 48kHz, then the filter cut-off is
4.8kHz. This filter was generated using the Matlab function call butter(1,0.2). This call
returns the coefficients b0 = 0.2452, b1 = 0.2452, a0 = 1.0 and a0 = −0.5095. The diagram in
Figure A.1 is a valid architecture for this design. The coefficients of that Figure correspond
to the coefficients returned by the Butterworth function.

Opportunely, these filter coefficients have a desirable factor: they are close to powers of
two. Rounding off the coefficients to their closest power of two, we now have b0 = 0.25, b1 =
0.25 and a1 = −0.50. Both the original filter and the rounded coefficients (modified) filter
have very similar characteristics. The frequency response of both filters is represented in
Figure A.2. The original filter is shown with a dashed line. As observed, for this application,
the difference is negligible.

The mathematical representation of the filter architecture shown in Figure A.1 applied to
the new filter is

y(n) = 0.5 y(n− 1) + 0.25 x(n) + 0.25 x(n− 1),

and can be reduced to

y(n) = 0.5 y(n− 1) + 0.25 (x(n) + x(n− 1)).

This design can be further optimized (for digital hardware applications) by replacing the
multiplications with bit shifts:

y(n) = y(n− 1)� 1 + (x(n) + x(n− 1))� 2.

This last formula is used to implement the filter of the design first shown in Section 1.1.
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Figure A.1: First-order IIR filter diagram.
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Figure A.2: Frequency response of a filter (dashed) and its approximation (solid).
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Appendix B

VHDL Code Generated for the
Support Example of Section 4.1.2

--Pre fabricated module

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.math_real.all;

entity pulser is

generic(CLK_FREQ : real;

TICK_FREQ : real);

port(clk : in std_logic;

tick : out std_logic_vector(0 downto 0));

end pulser;

architecture behavioural of pulser is

constant MAX_CNT : positive := positive(CLK_FREQ/TICK_FREQ);

constant N_BITS : positive := positive(ceil(log2(real(MAX_CNT))));

signal s_cnt : unsigned(N_BITS-1 downto 0);

begin

process(clk)

begin

if rising_edge(clk) then

s_cnt<=s_cnt+1;

if s_cnt=MAX_CNT-1 then

s_cnt<=(others=>’0’);

end if;

end if;

end process;

tick<="1" when s_cnt=MAX_CNT-1 else "0";

end behavioural;
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--Pre fabricated module

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.math_real.all;

entity ffd is

generic(SIZE : positive);

port(clk : in std_logic;

en : in std_logic_vector(0 downto 0);

rst : in std_logic;

rst_val : in std_logic_vector(SIZE-1 downto 0);

din : in std_logic_vector(SIZE-1 downto 0);

dout : out std_logic_vector(SIZE-1 downto 0));

end ffd;

architecture behavioural of ffd is

signal s_data : std_logic_vector(SIZE-1 downto 0);

begin

process(clk)

begin

if(rising_edge(clk)) then

if(rst=’1’) then

s_data<=rst_val;

elsif(en="1") then

s_data<=din;

end if;

end if;

end process;

dout<=s_data;

end behavioural;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity rtfss is

generic(CLK_FREQ : real);

port(clk : in std_logic;

rst : in std_logic;

p_lp_out : out std_logic_vector(15 downto 0);

p_smp_in : in std_logic_vector(15 downto 0));

end rtfss;

architecture impl of rtfss is

signal n1 : std_logic_vector(15 downto 0);

signal n71 : std_logic_vector(15 downto 0);
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signal n72 : std_logic_vector(0 downto 0);

signal n70 : std_logic_vector(17 downto 0);

signal n65 : std_logic_vector(0 downto 0);

signal n2 : std_logic_vector(17 downto 0);

constant n69 : std_logic_vector(1 downto 0) := "10";

signal n47 : std_logic_vector(0 downto 0);

signal n64 : std_logic_vector(17 downto 0);

signal n33 : std_logic_vector(0 downto 0);

signal n63 : std_logic_vector(19 downto 0);

signal n17 : std_logic_vector(0 downto 0);

signal n58 : std_logic_vector(19 downto 0);

constant n62 : std_logic_vector(0 downto 0) := "1";

signal n16 : std_logic_vector(0 downto 0);

signal n12 : std_logic_vector(19 downto 0);

signal n56 : std_logic_vector(19 downto 0);

signal n57 : std_logic_vector(19 downto 0);

signal n54 : std_logic_vector(19 downto 0);

constant n55 : std_logic_vector(0 downto 0) := "1";

signal n53 : std_logic_vector(17 downto 0);

signal n45 : std_logic_vector(17 downto 0);

signal n28 : std_logic_vector(17 downto 0);

signal n43 : std_logic_vector(18 downto 0);

signal n11 : std_logic_vector(18 downto 0);

signal n7 : std_logic_vector(18 downto 0);

signal n27 : std_logic_vector(18 downto 0);

constant n10 : std_logic_vector(0 downto 0) := "1";

signal n41 : std_logic_vector(18 downto 0);

signal n42 : std_logic_vector(18 downto 0);

signal n25 : std_logic_vector(18 downto 0);

constant n26 : std_logic_vector(0 downto 0) := "1";

signal n39 : std_logic_vector(18 downto 0);

constant n40 : std_logic_vector(1 downto 0) := "10";

signal n32 : std_logic_vector(15 downto 0);

signal n19 : std_logic_vector(17 downto 0);

signal n0 : std_logic_vector(15 downto 0);

signal n6 : std_logic_vector(17 downto 0);

signal n31 : std_logic_vector(17 downto 0);

constant n5 : std_logic_vector(1 downto 0) := "10";

signal n29 : std_logic_vector(17 downto 0);

constant n30 : std_logic_vector(1 downto 0) := "10";

signal n20 : std_logic_vector(15 downto 0);

begin

inst0 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n72,rst=>rst,rst_val=>(others=>’0’),din=>n71,dout=>

n1);
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p_lp_out <= n1;

n71 <= std_logic_vector(resize(signed(n70),16));

inst1 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n65,dout=>

n72);

n70 <= std_logic_vector(shift_right(signed(n2),to_integer(unsigned(n69))));

inst2 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n47,dout=>

n65);

inst3 : entity work.ffd

generic map(SIZE=>18)

port map(clk=>clk,en=>n65,rst=>rst,rst_val=>(others=>’0’),din=>n64,dout=>

n2);

inst4 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n33,dout=>

n47);

n64 <= std_logic_vector(resize(signed(n63),18));

inst5 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n17,dout=>

n33);

n63 <= std_logic_vector(shift_right(signed(n58),to_integer(unsigned(n62))))

;

inst6 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n16,dout=>

n17);

inst7 : entity work.ffd

generic map(SIZE=>20)

port map(clk=>clk,en=>n47,rst=>rst,rst_val=>(others=>’0’),din=>n12,dout=>

n58);
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inst8 : entity work.pulser

generic map(CLK_FREQ=>CLK_FREQ,TICK_FREQ=>inf)

port map(clk=>clk,tick=>n16);

n12 <= std_logic_vector(signed(n56) + signed(n57));

n56 <= std_logic_vector(shift_left(signed(n54),to_integer(unsigned(n55))));

n57 <= std_logic_vector(resize(signed(n53),20));

n54 <= std_logic_vector(resize(signed(n45),20));

inst9 : entity work.ffd

generic map(SIZE=>18)

port map(clk=>clk,en=>n33,rst=>rst,rst_val=>(others=>’0’),din=>n28,dout=>

n53);

n45 <= std_logic_vector(resize(signed(n43),18));

n28 <= std_logic_vector(resize(signed(n11),18));

inst10 : entity work.ffd

generic map(SIZE=>19)

port map(clk=>clk,en=>n33,rst=>rst,rst_val=>(others=>’0’),din=>n7,dout=>

n43);

n11 <= std_logic_vector(shift_right(signed(n27),to_integer(unsigned(n10))))

;

n7 <= std_logic_vector(signed(n41) + signed(n42));

n27 <= std_logic_vector(shift_left(signed(n25),to_integer(unsigned(n26))));

n41 <= std_logic_vector(shift_left(signed(n39),to_integer(unsigned(n40))));

n42 <= std_logic_vector(resize(signed(n32),19));

n25 <= std_logic_vector(resize(signed(n19),19));

n39 <= std_logic_vector(resize(signed(n0),19));

n32 <= std_logic_vector(resize(signed(n6),16));

inst11 : entity work.ffd

generic map(SIZE=>18)

port map(clk=>clk,en=>n17,rst=>rst,rst_val=>(others=>’0’),din=>n2,dout=>

n19);

inst12 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n17,rst=>rst,rst_val=>(others=>’0’),din=>p_smp_in,

dout=>n0);

n6 <= std_logic_vector(shift_right(signed(n31),to_integer(unsigned(n5))));

n31 <= std_logic_vector(shift_left(signed(n29),to_integer(unsigned(n30))));

n29 <= std_logic_vector(resize(signed(n20),18));
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inst13 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n17,rst=>rst,rst_val=>(others=>’0’),din=>n0,dout=>

n20);

end impl;
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Appendix C

Another Example in rtfss

Revisiting the rtfss example first introduced in Section 4.1.2, we can observe that the
design is capable of processing an input audio stream and filter it. However, that example
does not synthesize new audio. In this Appendix, this example is modified to generate a
440Hz square wave that is fed to the already existent IIR filter. This design is an altered
version of the example introduced in Section 3.9.2.

There are multiple possible ways to generate a square wave. For example, a counter can
be used to keep track of the phase position of the wave. The output value would be low in the
first half of that counter’s range and high at the other half. Instead of this method, we can
use a feature of rtfss to generate the wave: the pulse domain. In order to generate a 440Hz
square wave, the sample value has to change polarity 880 times per second. To do so, we can
create a pulse with the frequency of 880Hz that controls an audio stream that only needs to
inverts polarity at every pulse. This was the method used in the following design:

cblock@smpp main(:: I16 sqr_out,I16 lp_out){

//Generate square wave

pulse sq_p 880Hz;

I16@smpp sqr_smpp = sqr_wave;

sqr_out = sqr_wave;

I16@sq_p sqr_wave = not (sqr_wave’-1); //Square Wave of 440Hz

sqr_wave’-1 = I16(0x7FFF);

//Low pass 0.2 IIR Filter

I16.2@smpp lowpass = I16.2((lowpass’-1)>>1+(sqr_smpp+(sqr_smpp’-1))>>2);

lp_out=I16(lowpass);

}

This example contains a CBlock that has two output streams: sqr out (unaltered square
wave) and lp out (filtered square wave). As explained, the square wave is generated using
a pulse with double the frequency of the desired tone (pulse sq p) that is fed to the stream
sqr wave. Every pulse cycle, this stream only needs to invert the previous value. By default,
all the previous stream values are zero. So, in order for the stream to oscillate, the most
recent past value has to be set. Since the stream is signed and has 16 integer bits, the correct
(highest) value that should be set is 216− 1 = 3276710 = 7FFF16. When there is a pulse, the
value flips to 800016, that is −3276810 in two’s complement.

Now that the square wave is generated, it is redirected to the output by attributing its
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value to the sqr out stream. It is important to note that this attribution crosses the border
between two pulse domains (sq p and smpp pulse domains). This is due to the fact that the
CBlock is controlled by the smpp pulse. The rtfss specification ensures that it is capable
of handling crosses between pulse domain transformations seamlessly. This effect can be
observed on the Architecture Graph of this design, represented in Figure C.1.

Finally, the square wave has to be connected to the IIR filter. To do so, the square wave
stream needs to be transferred again to the other pulse domain. In this case, this operation
requires some attention. One might think that the only step needed is to use the sqr wave

stream inside the lowpass stream expression. But, if carefully analysed, this would not
implement the desired behaviour. The filter requires the input to be indexed with previous
instants. If we feed the sqr wave stream directly, the previous values of this stream are
relative to its pulse. So, it would always return the negation of the current stream value. So,
by doing sqr wave+(sqr wave’-1), the result would always be −1, even if this operation is
done inside a stream with a different pulse. To avoid this, the design has another stream
named sqr smpp on the smpp pulse domain, that only serves to translate the sqr wave from
one pulse domain to the other. Accessing the previous values of this new stream yields the
wanted results.

The compilation of this design created the Architecture Graph of Figure C.1 and the Final
Representation Graph of Figure C.2. The output VHDL code generated by the compiler is
laid out below. To successfully compile this design, the steps explained in Section 4.10.1
should also be applied to this case:

--Pre fabricated module

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.math_real.all;

entity pulser is

generic(CLK_FREQ : real;

TICK_FREQ : real);

port(clk : in std_logic;

tick : out std_logic_vector(0 downto 0));

end pulser;

architecture behavioural of pulser is

constant MAX_CNT : positive := positive(CLK_FREQ/TICK_FREQ);

constant N_BITS : positive := positive(ceil(log2(real(MAX_CNT))));

signal s_cnt : unsigned(N_BITS-1 downto 0);

begin

process(clk)

begin

if rising_edge(clk) then

s_cnt<=s_cnt+1;

if s_cnt=MAX_CNT-1 then

s_cnt<=(others=>’0’);

end if;
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end if;

end process;

tick<="1" when s_cnt=MAX_CNT-1 else "0";

end behavioural;

--Pre fabricated module

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.math_real.all;

entity ffd is

generic(SIZE : positive);

port(clk : in std_logic;

en : in std_logic_vector(0 downto 0);

rst : in std_logic;

rst_val : in std_logic_vector(SIZE-1 downto 0);

din : in std_logic_vector(SIZE-1 downto 0);

dout : out std_logic_vector(SIZE-1 downto 0));

end ffd;

architecture behavioural of ffd is

signal s_data : std_logic_vector(SIZE-1 downto 0);

begin

process(clk)

begin

if(rising_edge(clk)) then

if(rst=’1’) then

s_data<=rst_val;

elsif(en="1") then

s_data<=din;

end if;

end if;

end process;

dout<=s_data;

end behavioural;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity rtfss is

generic(CLK_FREQ : real);

port(clk : in std_logic;

rst : in std_logic;

p_sqr_out : out std_logic_vector(15 downto 0);

p_lp_out : out std_logic_vector(15 downto 0));
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end rtfss;

architecture impl of rtfss is

signal n0 : std_logic_vector(15 downto 0);

signal n1 : std_logic_vector(15 downto 0);

signal n3 : std_logic_vector(15 downto 0);

signal n23 : std_logic_vector(0 downto 0);

signal n54 : std_logic_vector(15 downto 0);

signal n55 : std_logic_vector(0 downto 0);

signal n27 : std_logic_vector(15 downto 0);

signal n32 : std_logic_vector(0 downto 0);

signal n19 : std_logic_vector(0 downto 0);

signal n53 : std_logic_vector(17 downto 0);

signal n51 : std_logic_vector(0 downto 0);

signal n6 : std_logic_vector(15 downto 0);

signal n26 : std_logic_vector(0 downto 0);

signal n4 : std_logic_vector(17 downto 0);

constant n52 : std_logic_vector(1 downto 0) := "10";

signal n42 : std_logic_vector(0 downto 0);

signal n22 : std_logic_vector(15 downto 0);

signal n21 : std_logic_vector(0 downto 0);

signal n50 : std_logic_vector(17 downto 0);

signal n33 : std_logic_vector(0 downto 0);

signal n20 : std_logic_vector(0 downto 0);

signal n49 : std_logic_vector(18 downto 0);

signal n47 : std_logic_vector(18 downto 0);

constant n48 : std_logic_vector(0 downto 0) := "1";

signal n16 : std_logic_vector(18 downto 0);

signal n43 : std_logic_vector(18 downto 0);

signal n46 : std_logic_vector(18 downto 0);

signal n41 : std_logic_vector(17 downto 0);

signal n44 : std_logic_vector(18 downto 0);

constant n45 : std_logic_vector(0 downto 0) := "1";

signal n31 : std_logic_vector(17 downto 0);

signal n40 : std_logic_vector(16 downto 0);

signal n11 : std_logic_vector(18 downto 0);

signal n15 : std_logic_vector(18 downto 0);

signal n30 : std_logic_vector(18 downto 0);

constant n10 : std_logic_vector(0 downto 0) := "1";

signal n39 : std_logic_vector(18 downto 0);

constant n14 : std_logic_vector(1 downto 0) := "10";

signal n28 : std_logic_vector(18 downto 0);

constant n29 : std_logic_vector(0 downto 0) := "1";

signal n37 : std_logic_vector(18 downto 0);

constant n38 : std_logic_vector(1 downto 0) := "10";

signal n24 : std_logic_vector(17 downto 0);

signal n36 : std_logic_vector(16 downto 0);
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signal n13 : std_logic_vector(16 downto 0);

signal n34 : std_logic_vector(16 downto 0);

signal n35 : std_logic_vector(16 downto 0);

signal n2 : std_logic_vector(15 downto 0);

signal n25 : std_logic_vector(15 downto 0);

begin

inst0 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n23,rst=>rst,rst_val=>(others=>’0’),din=>n3,dout=>

n0);

p_sqr_out <= n0;

inst1 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n55,rst=>rst,rst_val=>(others=>’0’),din=>n54,dout=>

n1);

p_lp_out <= n1;

inst2 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n32,rst=>rst,rst_val=>"0111111111111111",din=>n27,

dout=>n3);

inst3 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n19,dout=>

n23);

n54 <= std_logic_vector(resize(signed(n53),16));

inst4 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n51,dout=>

n55);

inst5 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n26,rst=>rst,rst_val=>(others=>’0’),din=>n6,dout=>

n27);

inst6 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n26,dout=>
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n32);

inst7 : entity work.pulser

generic map(CLK_FREQ=>CLK_FREQ,TICK_FREQ=>inf)

port map(clk=>clk,tick=>n19);

n53 <= std_logic_vector(shift_right(signed(n4),to_integer(unsigned(n52))));

inst8 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n42,dout=>

n51);

n6 <= not n22;

inst9 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n21,dout=>

n26);

inst10 : entity work.ffd

generic map(SIZE=>18)

port map(clk=>clk,en=>n51,rst=>rst,rst_val=>(others=>’0’),din=>n50,dout=>

n4);

inst11 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n33,dout=>

n42);

inst12 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n21,rst=>rst,rst_val=>(others=>’0’),din=>n3,dout=>

n22);

inst13 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n20,dout=>

n21);

n50 <= std_logic_vector(resize(signed(n49),18));

inst14 : entity work.ffd

generic map(SIZE=>1)

port map(clk=>clk,en=>"1",rst=>rst,rst_val=>(others=>’0’),din=>n23,dout=>

n33);
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inst15 : entity work.pulser

generic map(CLK_FREQ=>CLK_FREQ,TICK_FREQ=>880.000000)

port map(clk=>clk,tick=>n20);

n49 <= std_logic_vector(shift_right(signed(n47),to_integer(unsigned(n48))))

;

inst16 : entity work.ffd

generic map(SIZE=>19)

port map(clk=>clk,en=>n42,rst=>rst,rst_val=>(others=>’0’),din=>n16,dout=>

n47);

n16 <= std_logic_vector(signed(n43) + signed(n46));

n43 <= std_logic_vector(resize(signed(n41),19));

n46 <= std_logic_vector(shift_left(signed(n44),to_integer(unsigned(n45))));

inst17 : entity work.ffd

generic map(SIZE=>18)

port map(clk=>clk,en=>n33,rst=>rst,rst_val=>(others=>’0’),din=>n31,dout=>

n41);

n44 <= std_logic_vector(resize(signed(n40),19));

n31 <= std_logic_vector(resize(signed(n11),18));

n40 <= std_logic_vector(resize(signed(n15),17));

n11 <= std_logic_vector(shift_right(signed(n30),to_integer(unsigned(n10))))

;

n15 <= std_logic_vector(shift_right(signed(n39),to_integer(unsigned(n14))))

;

n30 <= std_logic_vector(shift_left(signed(n28),to_integer(unsigned(n29))));

n39 <= std_logic_vector(shift_left(signed(n37),to_integer(unsigned(n38))));

n28 <= std_logic_vector(resize(signed(n24),19));

n37 <= std_logic_vector(resize(signed(n36),19));

inst18 : entity work.ffd

generic map(SIZE=>18)

port map(clk=>clk,en=>n23,rst=>rst,rst_val=>(others=>’0’),din=>n4,dout=>

n24);

inst19 : entity work.ffd

generic map(SIZE=>17)

port map(clk=>clk,en=>n33,rst=>rst,rst_val=>(others=>’0’),din=>n13,dout=>

n36);

n13 <= std_logic_vector(signed(n34) + signed(n35));

n34 <= std_logic_vector(resize(signed(n2),17));

n35 <= std_logic_vector(resize(signed(n25),17));

133



inst20 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n23,rst=>rst,rst_val=>(others=>’0’),din=>n3,dout=>

n2);

inst21 : entity work.ffd

generic map(SIZE=>16)

port map(clk=>clk,en=>n23,rst=>rst,rst_val=>(others=>’0’),din=>n2,dout=>

n25);

end impl;

134



pid 2

pid 3

2 (14,U2.0)

>> (15,I15.2)

+ (13,I17.0)

sqr_smpp’-1 (12,I16.0)

right sqr_smpp (2,I16.0)

left

>> (11,I15.3)

1 (10,U1.0)

right

+ (16,I16.3)

lowpass’-1 (9,I16.2)

left

lp_out (1,I16.0)

<cast> (18,I16.0)

right

left

left

right

<cast> (17,I16.2)

lowpass (4,I16.2)

sqr_out (0,I16.0)

sqr_wave’-1 def: 7FFF (5,I16.0)

not (6,I16.0)

sqr_wave (3,I16.0)

Figure C.1: Full Architecture Graph of the example in Appendix C (GraphViz).

135



(0) ffd sqr_out I16.0

(3) ffd sqr_wave I16.0 def:7FFF

(22) ffd ins I16.0 (2) ffd sqr_smpp I16.0

(23) ffd pulse_chain U1.0

(33) ffd pulse_chain U1.0

(24) ffd ins I16.2

(25) ffd ins I16.0

(1) ffd lp_out I16.0

(54) resize I16.0

(55) ffd pulse_chain U1.0

(27) ffd buffer I16.0

(32) ffd pulse_chain U1.0 (19) pulser 0s

(53) >> I16.2

target 

(51) ffd pulse_chain U1.0

(4) ffd lowpass I16.2

(6) not I16.0

(26) ffd pulse_chain U1.0

left 

(52) const 2 U2.0

right 

(42) ffd pulse_chain U1.0

(47) ffd buffer I16.3

target 

(21) ffd pulse_chain U1.0

(50) resize I16.2

(41) ffd sync_bubble I15.3

(36) ffd buffer I17.0

(20) pulser 880Hz

(49) >> I16.3

target 

left 

(48) const 1 U1.0

right 

(16) + I16.3

(43) resize I16.3

left 

(46) << I16.3

right 

target 

(44) resize I16.3

left 

(45) const 1 U1.0

right    

(31) resize I15.3

(40) resize I15.2

target 

(11) >> I16.3

target 

(15) >> I17.2

target 

(30) << I16.3

left 

(10) const 1 U1.0

right 

(39) << I17.2

left 

(14) const 2 U2.0

right 

(28) resize I16.3

left 

(29) const 1 U1.0

right 

(37) resize I17.2

left 

(38) const 2 U2.0

right 

target 

target 

(13) + I17.0

(34) resize I17.0

left    

(35) resize I17.0

right 

target 

target 

Figure C.2: Full Final Representation Graph of the example in Appendix C (GraphViz).

136



Appendix D

The rtfss ANTLR4 Grammar

grammar rtfss;

//statm=statement

//decl=declaration

//assign=assignment

entry_point: use_stat* cblock_decl* EOF;

use_stat: USE std_id=(IDENTIFIER | STRING_LITERAL);

cblock_decl: CBLOCK PULSE_SEP pulse_freq IDENTIFIER cblock_args code_block;

cblock_args: PAR_OPEN (const_args=cblock_arg_list ARG_GROUP_SEP)? in_args=

cblock_arg_list ARG_GROUP_SEP out_args=cblock_arg_list PAR_CLOSE;

cblock_arg_list: ((data_type var_name COMMA)* data_type var_name)?;

code_block: CURLY_OPEN statm* CURLY_CLOSE;

statm: nonterminated_statm | terminated_statm TERMINATOR;

terminated_statm: var_assign | data_decl | pulse_decl | cblock_inst;

nonterminated_statm: if_statm | for_statm;

if_statm: IF PAR_OPEN expr PAR_CLOSE code_block

(ELSEIF PAR_OPEN expr PAR_CLOSE code_block)*

(ELSE code_block)?;

for_statm: FOR PAR_OPEN IDENTIFIER IN expr TO expr (INC expr)? PAR_CLOSE

code_block;

cblock_inst: BRAC_OPEN (oargs+=var_name COMMA)* oargs+=var_name BRAC_CLOSE

EQUAL cblock_inst_short;

cblock_inst_short: IDENTIFIER PULSE_SEP pulse_freq PAR_OPEN ((cargs+=expr
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COMMA)* cargs+=expr)? (ARG_GROUP_SEP ((iargs+=expr COMMA)* iargs+=expr)?)

? PAR_CLOSE;

pulse_decl: PULSE IDENTIFIER PULSE_LITERAL;

data_decl: data_type PULSE_SEP pulse_freq stream_id (EQUAL expr)?;

var_assign: stream_id assign_op expr;

assign_op: EQUAL | COMBOP;

expr:

SUB expr #negExpr

| PAR_OPEN data_type PAR_CLOSE expr #castAExpr

| data_type PAR_OPEN expr PAR_CLOSE #castBExpr

| cblock_inst_short #cblkExpr

| PAR_OPEN expr PAR_CLOSE #parExpr

| CURLY_OPEN (expr COMMA)* expr CURLY_CLOSE #arrExpr

| PROP expr #propExpr

| expr GAP expr #gapExpr

| expr (SL|SR) expr #shiftExpr

| expr (RL|RR) expr #rotExpr

| expr AND expr #andExpr

| expr OR expr #orExpr

| expr XOR expr #xorExpr

| NOT expr #notExpr

| expr MULT expr #multExpr

| expr DIV expr #divExpr

| expr MOD expr #modExpr

| expr ADD expr #addExpr

| expr SUB expr #subExpr

| expr LOGIC_OP expr #evalExpr

//Midi operators

| NOTEOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE #noteofExpr

| FREQOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE #freqofExpr

| VELOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE #velofExpr

| PATOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE #patofExpr

| NNTOF PAR_OPEN expr COMMA expr ARG_GROUP_SEP expr COMMA expr

PAR_CLOSE #nntofExpr

| CCOF PAR_OPEN expr COMMA expr COMMA expr PAR_CLOSE #ccofExpr

| POF PAR_OPEN expr PAR_CLOSE #pofExpr

| CPOF PAR_OPEN expr PAR_CLOSE #cpofExpr

| PBEND PAR_OPEN expr PAR_CLOSE #pbendExpr

//End nodes
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| stream_id #sidExpr

| NUM_LITERAL #numExpr

;

var_name: IDENTIFIER (BRAC_OPEN expr BRAC_CLOSE)?;

stream_id: IDENTIFIER (BRAC_OPEN idx=expr BRAC_CLOSE)? (INS ins=expr)?;

data_type: fixedSizeType | varSizeType;

fixedSizeType: MIDI_TYPE; //TODO FIX

varSizeType: SIGNED_TYPE | UNSIGNED_TYPE | FLOATING_TYPE;

pulse_freq: MAX | CONST | IDENTIFIER;

USE: ’use’;

CBLOCK: ’cblock’;

PULSE: ’pulse’;

IF: ’if’;

ELSEIF: ’elseif’;

ELSE: ’else’;

FOR: ’for’;

IN: ’in’;

TO: ’to’;

INC: ’inc’;

CURLY_OPEN: ’{’;

CURLY_CLOSE: ’}’;

BRAC_OPEN: ’[’;

BRAC_CLOSE: ’]’;

PAR_OPEN: ’(’;

PAR_CLOSE: ’)’;

ARG_GROUP_SEP: ’:’;

COMMA: ’,’;

PULSE_SEP: ’@’;

EQUAL: ’=’;

ADD: ’+’;

SUB: ’-’;

MULT: ’*’;

DIV: ’/’;

MOD: ’%’;

SL: ’<<’;

SR: ’>>’;
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RL: ’<<<’;

RR: ’>>>’;

AND:’and’;

OR:’or’;

XOR:’xor’;

NOT:’not’;

GAP: ’gap’;

PROP: ’&’;

INS: ’\’’;

//MIDI OPs

NOTEOF: ’noteof’;

FREQOF: ’freqof’;

VELOF: ’velof’;

PATOF: ’patof’;

NNTOF: ’nntof’;

CCOF: ’ccof’;

POF: ’pof’;

CPOF: ’cpof’;

PBEND: ’pbend’;

COMBOP: [+\-*/%] EQUAL; //Combined and equal

TERMINATOR: ’;’;

LOGIC_OP: ([<>]’=’?) | ([!=] ’=’);

fragment SIGNED_TYPE_PREFIX: ’I’;

fragment UNSIGNED_TYPE_PREFIX: ’U’;

fragment FLOATING_TYPE_PREFIX: ’F’;

MAX: ’max’;

CONST:’const’;

MIDI_TYPE: ’midi’;

SIGNED_TYPE: SIGNED_TYPE_PREFIX (DEC_LITERAL|IDENTIFIER);

UNSIGNED_TYPE: UNSIGNED_TYPE_PREFIX (DEC_LITERAL|IDENTIFIER);

FLOATING_TYPE: FLOATING_TYPE_PREFIX (DEC_INT|IDENTIFIER);

NUM_LITERAL: OCT_LITERAL|DEC_LITERAL|HEX_LITERAL;

OCT_LITERAL: OCT_INT|OCT_FRAC;

DEC_LITERAL: DEC_INT|DEC_FRAC;

HEX_LITERAL: HEX_INT|HEX_FRAC;

PULSE_LITERAL: NUM_LITERAL PULSE_LITERAL_SUFFIX;

fragment PULSE_LITERAL_SUFFIX: SECOND | MILLISECOND | HERTZ | KILOHERTZ;

fragment SECOND: ’s’;
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fragment MILLISECOND: ’ms’;

fragment HERTZ: ’Hz’;

fragment KILOHERTZ: ’kHz’;

fragment OCT_PREFIX: ’0o’;

fragment DEC_PREFIX: ’0d’;

fragment HEX_PREFIX: ’0x’ | ’0h’;

fragment FRAC_SEPARATOR: ’.’;

fragment OCT_DIGIT: [0-7];

fragment DEC_DIGIT: [8-9]|OCT_DIGIT;

fragment HEX_DIGIT: [A-Fa-f]|DEC_DIGIT;

fragment OCT_INT: OCT_PREFIX OCT_DIGIT+;

fragment DEC_INT: DEC_PREFIX? DEC_DIGIT+;

fragment HEX_INT: HEX_PREFIX HEX_DIGIT+;

fragment OCT_FRAC: OCT_PREFIX (OCT_DIGIT+ FRAC_SEPARATOR OCT_DIGIT* |

OCT_DIGIT* FRAC_SEPARATOR OCT_DIGIT+);

fragment DEC_FRAC: DEC_PREFIX? (DEC_DIGIT+ FRAC_SEPARATOR DEC_DIGIT* |

DEC_DIGIT* FRAC_SEPARATOR DEC_DIGIT+);

fragment HEX_FRAC: HEX_PREFIX (HEX_DIGIT+ FRAC_SEPARATOR HEX_DIGIT* |

HEX_DIGIT* FRAC_SEPARATOR HEX_DIGIT+);

IDENTIFIER: [a-zA-Z_][a-zA-Z0-9_]*;

STRING_LITERAL: ’"’ .*? ’"’;

BLOCK_COMMENT: ’/*’ .*? ’*/’ -> skip;

LINE_COMMENT: ’//’ ~[\r\n]* -> skip;

WS: [ \t\n\r] -> skip;
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