

 Universidade de Aveiro

2021

Daniel Xavier Silva
Vieira

Sistema automático de controlo de transferência de

líquidos

Universidade de Aveiro

2021

Daniel Xavier Silva
Vieira

Sistema de Controlo de transferência de líquidos
automático

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia Eletrónica
e Telecomunicações, realizada sob a orientação científica de António José
Ribeiro Neves, Professor auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro, e da Doutora Lúcia
Bilro, administradora e diretora de produção e desenvolvimento na Watgrid.

Dedico este projeto à minha família e amigos por todo o apoio que me deram ao
longo do meu percurso académico.

o júri / the jury

president / president Prof. Doutor Telmo Reis Cunha
Professor Associado da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Paulo José Cerqueira Gomes da Costa
Professor Auxiliar da Faculdade de Engenharia da Universidade do Porto

 Prof. Doutor António José Ribeiro Neves
Professor Auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

Em primeiro lugar, gostaria de agradecer aos meus orientadores, Professor
Doutor António Neves e Doutora Lúcia Bilro, administradora e diretora de
produção e desenvolvimento na Watgrid, pela orientação e dedicação que
proporcionaram. Obrigado por toda a disponibilidade que mostraram ao longo
de todo o projeto, pela tolerância que tiveram aos meus erros e pela forma que
sempre me trataram. Foi um percurso com altos e baixos no qual gostei de vos
ter ao meu lado. Desejo a ambos a maior das felicidades.

Um enorme obrigado aos engenheiros Fábio Gonçalves, Licínio Malheiro e
Pedro Costa da Watgrid pelo apoio, esclarecimento e tempo que me
disponibilizaram em todos os desafios deste projeto.
Também quero muito agradecer ao designer Ricardo Pereira pela dedicação
que demonstrou e pela paciência de me ensinar as bases da modelação 3D.
Agradeço ainda a toda a equipa da Watgrid, que me acolheu muito
agradavelmente, pela simpatia e dedicação demonstrada em qualquer uma das
minhas questões.
Obrigado a todos por tudo o que me proporcionaram.

Obrigado a todos os meus amigos por terem estado ao meu lado nos bons e
maus momentos, e que me ajudaram muito a superar esta etapa. Um especial
“obrigado” ao Diogo Gouveia que me deixou com o braço ao dependuro.

Por último, mas nunca com menor importância, quero agradecer à minha família
por todo o apoio, carinho e esforço que me proporcionaram ao longo de todos
estes anos, sem eles nada disto seria possível.

palavras-chave

Automação, sistema de trasfega, Programmable Logic Controller (PLC)

resumo

O projeto descrito neste documento surge da necessidade da automatização de
sistemas de transfega que a empresa Watgrid encontrou na indústria vinícola, e
ainda no seu processo de produção. O documento descreve a implementação
do controlo de um sistema composto por electroválvulas, bombas de transfega
e sensores de nível de líquido, através de um PLC que comunica via WiFi.

O projeto consistiu no desenvolvimento de uma maquete representativa de uma
estrutura com quatro recipientes interligados por tubos com as devidas unidades
de atuação propriamente instaladas. Para tal foi realizado o levantamento de
pré-requisitos funcionais e das soluções comerciais existentes para os diversos
componentes. Após o desenvolvimento conceptual da estrutura física da
maquete, foram implementadas as soluções encontradas para os módulos que
simulam a operação das unidades de atuação, até à estrutura que integra esses
módulos. Também foi desenvolvida a unidade de software do PLC para controlo
nas diversas etapas da implementação do sistema. Ainda é referida a
implementação de uma interface de utilizador alocada num servidor web criado
no módulo de WiFi do PLC.

O intuito da maquete reside no pressuposto de replicar uma aplicação direta
num sistema real. Desta forma, foi possível implementar, progressivamente, um
algoritmo de controlo para o PLC que reproduz o processo pretendido, e realizar
testes funcionais ao sistema. Finalmente, foram registados e analisados os
resultados de testes ao funcionamento normal do sistema e em situações de
falhas imprevistas que pudessem comprometer a integridade do processo de
trasfega.

keywords

Automation, racking system, Programable Logic Controller (PLC)

abstract

The project described in this document arises from the need to automate racking
systems that the Watgrid company has found in the wine industry, and in its
production process. The document describes the implementation of the control
system composed by electrovalves, transfer pumps and liquid level sensors,
through a PLC which communicates through WiFi.

The project consists in the development of a mock-up representing a structure
with four containers connected by tubes, with the proper actuation units properly
installed. To this end, a survey of functional prerequisites and existing
commercial solutions for the various components was carried out. After the
conceptual development of the physical structure of the mock-up, the solutions
found for the modules that simulate the operation of the actuating units were
implemented, up to the structure that integrates these modules. A PLC software
unit was also developed to control in the various stages of the system's
implementation. It is also mentioned the implementation of an user interface
allocated on a web server created in the PLC WiFi module.

The purpose of the mock-up lies in the assumption of replicating a direct
application in a real system. Thus, it was possible to progressively implement a
control algorithm for the PLC that reproduces the intended process and perform
functional tests on the system. Finally, test results were recorded and analysed
for the normal operation of the system and in situations of unforeseen failures
that could compromise the integrity of the racking process.

1

Index

Figure list ...3

Table list ...6

 Introduction ..7

 Objectives .. 7

 Company presentation ... 7

 Project framework with Watgrid .. 8

 Project outline .. 9

 Document outline .. 9

 Project Requisites ... 10

 Operation ... 11

 Programable Logic Controller ... 12

 Market analysis .. 14

 Electrovalve ... 15

 Racking Pump ... 16

 Conceptual Solution .. 17

 Component Selection ... 17

 Hardware Implementation .. 21

 PLC configurations .. 21

 Mock-up planning ... 22

 Modules structure and operation.. 22

 Required Components ... 24

 Module Implementation .. 26

 Initial approach .. 30

2

 One module implementation.. 30

 One vat and one tank system implementation ... 31

 System integration ... 33

 PCB development .. 33

 Platform ... 35

 Final assembling .. 37

 Software ... 41

 Introduction to PLC programming .. 41

 Control of one module ... 42

 Control of one vat and one tank ... 43

 Control of the system mock-up ... 47

 Implemented functionalities .. 54

 Interface with the WiFi module ... 59

 Webserver .. 62

 Experiments and results .. 75

 Individual module test ... 75

 Basic operation .. 75

 Power failure scenario ... 76

 Valve malfunction ... 77

 Conclusions .. 78

 Future work ... 79

References .. 80

Appendixes ... 85

3

Figure list

Figure 1: Diagram of Watgrid's solution [1] ... 8

Figure 2: Transfer system scheme. .. 9

Figure 3: Liquid path according to valve positioning. ... 10

Figure 4: System on the company. .. 11

Figure 5: PLC architecture [2]. .. 13

Figure 6: List of the 10 most popular PLCs and their manufacturing company, according to market share [4].

 ... 14

Figure 7: Cross section of an electrovalve example [28]. .. 15

Figure 8: MDUINO 53 ARR PLUS [13]. .. 18

Figure 9: Racking pump and specifications [36]. .. 19

Figure 10: Valve’s possible positions with flow plan B [37]. ... 19

Figure 11: Electrovalve CR5 02 wirig diagram [37]. ... 19

Figure 12: Scheme of the system to be implemented in the mock-up. .. 22

Figure 13: Block and state diagram of the electrovalves implemented in the modules. 23

Figure 14: Acquired components: (a) - DC Motor [38]; (b) - Limit switch [49]; (c) - Green LED [47]; (d) - Red

LED [48]. .. 25

Figure 15: H-bridge integrated circuit: (a) - component; (b) - circuit; (c) - pinout. [50]. 25

Figure 16: H-bridge circuit with DC motor power supply .. 26

Figure 17: Limit switch a LED circuit. .. 26

Figure 18: 3D model of the dc motor (with dimensions) [53]. .. 27

Figure 19: Limit switch 3D model (with dimensions) [54]. .. 27

Figure 20: LED 3D model (with dimensions) [55]. .. 27

Figure 21: 3D model of the module support: (a) – perspective from front with elements marked; (b) -

perspective from back; (c) – top view with dimensions; (d) – vertical cut from front view with dimensions. 28

Figure 22: Reed 3D model with dimensions. .. 29

Figure 23: 3D model of the expected module (with components) - front and back views, respectively 29

Figure 24: Assembled valve module (front and back, respectively).. 30

Figure 25: PLC to module connection scheme. ... 31

Figure 26: Relay configuration for DC motors power supply. .. 32

Figure 27: One vat and one tank system mount .. 33

Figure 28: Pcb scheme of the circuit that includes all modules. .. 33

Figure 29: Board of the circuit that includes all modules . .. 34

Figure 30: 3D model of the pcb: (a) – top view; (b) – bottom view; (c) – 3D view with all components mounted;

and assembled PCB (d). .. 34

Figure 31: Platform 3D model. .. 35

4

Figure 32:Bottom side of the platform. ... 36

Figure 33: 3D model of the platform with modules. ... 37

Figure 34: 3D model of the din rail with dimensions. ... 38

Figure 35: PLC peripheral adaptions: (a) - dc motor supply; (b) - Digital outputs supply. 39

Figure 36: Assembled mock-up (top and bottom, respectively). ... 40

Figure 37:Mduino pinout table [35]. ... 41

Figure 38: Arduino IDE coding structure. ... 42

Figure 39: One-module control code ... 43

Figure 40: One-vat and one-tank system’s software diagram. .. 44

Figure 41: Structure definition. ... 44

Figure 42: openV() and closeV() code. ... 45

Figure 43: Function initModules(). ... 45

Figure 44: One-vat and one-tank system’s loop() function. .. 46

Figure 45: Code of the transfers. ... 46

Figure 46: Structures for valves and pumps. ... 47

Figure 47: Functions to open and close a single valve. ... 48

Figure 48: Functions to open and close multiple valves. ... 49

Figure 49: Functions to open and close all valves. .. 49

Figure 50: Function to fill vat. ... 50

Figure 51: Function to empty vat. ... 51

Figure 52: setup() function. ... 52

Figure 53: Functions to set initial configurations. ... 52

Figure 54: Function running on the PLC. .. 53

Figure 55: Transfer functions. ... 53

Figure 56: (a) – Function to check valves’ initial state; (b) – Application. ... 54

Figure 57: Function to close valves with valves timeout. .. 55

Figure 58: Function to set valve state. ... 55

Figure 59: Function to change a valve position. .. 56

Figure 60: Function to enable EEPROM reading and writing. .. 57

Figure 61: Chunk of code from activateTC() with break points and state saving. .. 58

Figure 62: Code to restart from break point .. 58

Figure 63: Chunk of code from activateTC() (with stop command). .. 59

Figure 64: Function responsible to send modules states to ESP32. ... 60

Figure 65: Function to parse json document.. 61

Figure 66: ESP32 loop() function where data from PLC is read. .. 62

Figure 67: ESP32 WiFi connection. .. 62

Figure 68: Structure for webserver handling. .. 63

Figure 69: Developed interface. .. 64

Figure 70: Interface image html code. ... 64

5

Figure 71: State table implementation. .. 65

Figure 72: Function to parse json files with icon colour update. ... 65

Figure 73: Operation status implementation. ... 66

Figure 74: Form for user input. ... 67

Figure 75: Form submission handling. .. 67

Figure 76: Calibration implementation. ... 68

Figure 77: Stop operation button. .. 68

Figure 78: State check to set stop button availability. ... 69

Figure 79: Change button html code. .. 69

Figure 80: Handle change position request. .. 69

Figure 81: Interface on valve malfunction... 70

Figure 82: Alert notification on valve malfunction code. .. 71

Figure 83:Code for valve state indetifications icons. .. 72

Figure 84:Code for buttons when system operation breaks. .. 72

Figure 85: Interface when system stops unexpectedly. ... 73

Figure 86: Code for system reset in middle of operation. ... 74

Figure 87: Individual module test result (opened valve and closed valve). ... 75

Figure 88:Test routine. .. 76

Figure 89: Flow chart .. 89

file:///C:/Users/tester/Desktop/Tese/Dissertação%20de%20Mestrado/Escrita/Dissertação%20de%20Mestrado_v12_anotada_AN3135_LB_AN.docx%23_Toc65688875

6

Table list

Table 1: PLC price list .. 15

Table 2: Peripheral estimation ... 21

Table 3: Peripheral estimation for adapted system .. 23

Table 4: DC motors’ specifications and prices. ... 24

Table 5: Components’ price table. ... 25

Table 6: PLC peripherals’ distribution .. 32

Table 7: PLC peripheral distribution ... 38

Table 8: Flash memory coding .. 56

Table 9: Serial commands to interact with the system. ... 59

Table 10: Indicative commands of the operation state. ... 61

Table 11: Expected results after continuing operation on all transfer states.. 76

Table 12: Basic operation test results .. 86

Table 13: Power failure obtained results ... 87

Table 14: Valve failure obtained test results ... 88

file:///C:/Users/tester/Desktop/Tese/Dissertação%20de%20Mestrado/Escrita/Dissertação%20de%20Mestrado_v10_anotada_AN3135_LB_AN.docx%23_Toc63632042

7

 Introduction

Nowadays, most of the processes responsible for liquid transfers between containers, such as wine racking,

tank truck filling, inventory, allotment, among others, are not totally automated and require the supervision of

a human, who is able to monitor and optimize these processes. Thus, the performance and precision achieved

in liquid transfer systems is limited and considerably prone to human errors. That can be critical for a system

that requires some level of accuracy. Any flaw can compromise the integrity and quality of a certain liquid,

causing the company to incur on a financial loss equal to the product’s market value.

 Objectives

This project aims to develop a liquid transfer system capable of real time monitoring with several sensors that

can indicate transfer state variables such as container capacity, liquid-filled volume of the container, and

transfer’s flow. All information collected by the sensors should be transmitted to a control unit, where it will

be examined. Afterwards, the actuation units, responsible for the mechanical transfer operation, are activated

in a specific order depending on the application. The system parameters can be specified by the user through

an interface that will have to be developed.

 Company presentation

This project was developed in the company Watgrid, a company based on the development of solutions for

monitoring indicative parameters that state the quality and integrity of different types of liquids.

Nowadays, the main focus of Watgrid remains in the wine production market, through the brand Winegrid,

with solutions able to monitor the wine quality in the different winemaking processes, namely fermentation

and aging. Their product becomes particularly useful in industrial cellars, where thousands of litters of wine

are produced and stored in wine tanks. The solution monitors the wine/must directly inside the vats and send

the data wirelessly to a webserver. This data can be accessed through a web-based platform making it easier to

check a required parameter instead of having sparse manual readings. In Figure 1 is shown a diagram that

represents this solution.

8

Figure 1: Diagram of Watgrid's solution [1]

Besides the development, production, and setup of the products, Watgrid also binds in giving its costumers top

quality assistance.

 Project framework with Watgrid

As the company works around the winery industry, developing a system capable of automatically transfer

liquids would be an interesting opportunity to introduce this system into the market as a new product line. A

fully developed racking system would be an optimized way to fill the need felt by some wineries when it comes

to exchange the wine between containers, providing a chance to optimize human resources and to low down

the possibility of human error.

On the other hand, the sensors produced by Watgrid must be calibrated. For that purpose, Watgrid possesses a

system composed of five storage tanks containing different liquids and seven vats, all connected in series

through a pipe structure. The vats are filled with the different liquids straight from the mimicking different

wine fermentation states. Therefore, a structure like this one works perfectly as a test bed when developing the

system meant to be implemented in this project.

Furthermore, the preparation of this calibration liquids and the complex liquid transfer circuit is operated

manually and prone to errors leading to a waist of materials and a financial loss to the company. Therefore,

developing a system capable of performing this process automatically would lead to fewer losses of product

and, consequently, reduced financial loss, as well as an increased productivity, since the system could be

operated remotely.

To develop this project in Watgrid allowed the development of new skills, the introduction to the industrial

strand and also to dynamics of the daily work in a company.

9

 Project outline

The developed project is a mock-up of a system comprised of a monitoring unit, a control unit, an actuating

unit, and a user interface. The monitoring unit includes sensors that measure the liquid level in the containers

and the valves’ feedback signals that will then be transmitted to the control unit.

The control unit should be able to read the sensor data, process it and then generate a signal that will activate

the actuating unit’s operation in a certain way. Since there is a need to follow some industrial requirements,

the implementation of this unit was based in programmable logic controller (PLC).

As for the actuating unit, racking pumps and electrovalves were used as actuators, thus responding directly to

the PLC to pump the liquid and set the flow path between containers, respectively.

Finally, the complete system can be accessed and manipulated through an interface allocated on the company’s

server. A draft of the project architecture is presented in Figure 2.

Figure 2: Transfer system scheme.

 Document outline

The document is organized as follows:

• Chapter 2: It begins by explaining the project’s imagined structure, followed by an investigation

concerning all specifications of the main components used and their benchmarking. It ends by

addressing the solution that will be developed.

• Chapter 3: Describes the implementation process of the hardware modules.

• Chapter 4: Describes the implementation process of the software modules.

• Chapter 5: Consists in the demonstration and verification of the obtained system’s functionality

through tests in different scenarios.

• Chapter 6: States the conclusions obtained at the end of the project, including future considerations.

10

 Project Requisites

As mentioned before, the company has built a system with five tanks and seven vats connected through a pipe

structure. It is an ideal test bench for the purpose of this project. This chapter will describe how the system is

arranged and specify its working process.

The tanks are placed on the room’s ground level, each one with the capacity of a thousand litters. Above the

tanks, a platform was built at halfway the room’s height, in order to support seven vats (six of them with a

capacity of three hundred litters and one of them with a thirteen hundred litter capacity), which are used to

blend the compounds that originate the wine-simulating solution and where the calibrations will take place.

The goal of this system is to transfer one tank’s liquid into one vat at a time, or the other way around. To do

that, the first need is to define a path for the liquid to flow from/to the desired containers without deviation.

That was accomplished with the application of valves in the pipe system. These valves prevent the blending of

liquids from different containers and isolate the transfer between two containers. These valves can be set into

two different positions to let the liquid into two different paths:

• The resting position (when the valve is blocking the way to the assigned container and letting the way

through the main pipe opened for the other containers);

• The flowing position (when a container is selected to receive or send liquid, the valve is activated to

set the path into that container and blocking the way to the consecutive recipients).

Figure 3 illustrates this behavior in a system with two vats and two tanks, where the direction imposed to the

liquid is represented by the valves’ symbols.

Figure 3: Liquid path according to valve positioning.

Since the vats are placed at a higher level, whenever there is a need to drain them out, the liquid will flow down

the pipes just by gravity. On the other hand, when the reverse process must be fulfilled, the liquid must be

11

pumped from the tanks through the pipe system, all the way up to the vats. The racking pumps are responsible

for this action and there is a pump installed for each tank.

After every liquid transfer, the liquid residues that still exists at the pipes must be drained before the next

transfer happens to avoid unwanted contamination between solutions. Therefore, a purging method was

implemented. This method consists in having a valve applied at the end of the pipe system (and connected to

open air). When a transfer ends, the purging valve opens, releasing the pumping-resulting pressure and making

the liquid drain out from the pipes into the utilized tank. In addition, a non-returning valve is used after every

pump. In its resting position, this valve is capable of both letting liquid pass through in one direction and

blocking the reverse direction. Furthermore, the valves will only open only when there is a need to let liquid

flow into a tank, i.e. transfers from vats to tanks and purging.

Figure 4 shows part of the system mounted on the company. In the left, some of the tanks connected to the

pipes and respective electro valves and pumps are shown, as well as the control panel. On the right side, is a

picture of some vats (with sensors attached) on the platform, above the tanks, that are also connected to the

pipes.

Figure 4: System on the company.

As for the approach used by the company, an ESP module (WiFi module) was integrated to receive the orders

from a webserver and the signal to the actuators and to control the electrovalves and the racking pumps.

The ESP module lacks in terms of peripherals, and so, there are fewer than those required to control all the

actuators. To solve this issue, several GPIO expanders (a module that increases the number of available

peripherals) were connected in series to the ESP through I2C. Furthermore, the actuator’s activation signals

require a greater amount of power supply than the ESP outputs provide, so, instead of directly signaling the

actuators, the ESP control relays are connected to a power supply.

 Operation

To assure that the liquid transfer occurs without flaws, there must be an order for the position of each

intervening valve. For this purpose, a flowchart was created containing all steps that must be taken for every

transfer – they are displayed in Figure 89 depicted in Appendix 5.

12

The flowchart represents two main paths: one indicating the process needed for a transfer from a tank to a vat

and the other for the opposite transfer.

When the user wants to send a solution into a vat, firstly he must open the valves assigned to the chosen vat

tank, freeing the path through the main pipe. Considering that only the required valves are opened, the transfer

can begin with the activation of the pump.

After the transfer is concluded and the pump is turned off, the liquid must be purged into the tank, so the pipes

are clean for the next transfer. In order to undertake the purging, a new path right towards the tank must be set,

and so, the vat valve can be closed and the non-returning valve is opened as well as the purging valve, which

initializes the purge. After a defined interval of time, all the opened valves are closed, thus terminating the

transfer.

As for the transfer from a vat to a tank, the opening the pump and tank valves at the beginning is required, so

the liquid can flow into the tank. Then, the vat valve is opened, and the transfer begins with the pump’s

activation in the right direction.

Once the transfer ends, the vat valve is closed and, as the pump valve is already opened, only the purging valve

needs to be opened to drain the liquid into the tank. Next, after a specified delay, all the opened valves are

closed. These tasks can be achieved by positioning the actuators one at a time through an interface hosted on

the company’s webserver.

 Programable Logic Controller

A PLC, or programmable logic controller, is a digital computer using easy programming to control systems

that require high processing viability and process flaw diagnoses. These systems can be used in manufacturing

processes, assembly lines, robotic devices or any other industrial activity that requires a consistent control unit

[2]. It is a computer based on a microcontroller with a real time operational system that is built to operate in

extreme environmental conditions such as, high temperature, pressure, humidity, among other conditions that

an ordinary microcontroller could not handle [2].

PLCs are usually defined by their processing capacity and number of peripherals. They are also ranked as

compact or modular, depending on the possibility of attaching extra port modules to control systems with

different peripheral requirements. It can read, as well as write, signals of either digital or analogue nature. In

Figure 5, an example of a PLC architecture is shown.

13

Figure 5: PLC architecture [2].

In short, the benefits mostly considered when acquiring a PLC are [3]:

• Best balance between reliability and cost reduction per number of relays and maintenance.

• The immunity to electromagnetic noise because of its isolation structure.

• The programming easiness.

• The flexibility to be used in different scenarios, due to the possibility of changing peripheral

specifications through the attachment of I/O modules.

• Real-time and multitasking processing resources, allowing a greater accuracy on task execution.

• The online monitoring system that allows various controllers to keep communicating while an

ongoing real time monitoring of the processes takes place.

One of the main specifications of a PLC is the scan cycle. It represents the time interval that a series of

operations are carried out by the PLC . It corresponds to the time it takes to execute 1024 Boolean instructions

(such duration is generally provided by the producer).

When a PLC is initializing, there is a set of pre-programmed operations awaiting execution before running the

main program. Firstly, a status check is performed to the processor unit, the memories, and the auxiliary

circuits. Moreover, another check is performed to know if there is an ongoing user program the state of the

entire operation. Then, the results obtained from the input peripherals during processing are firstly compared

with user-defined instructions and then stored in the memory. The output peripherals are updated with the

relevant value thus initiating a new scan cycle.

14

 Market analysis

When it comes to choose a PLC, first it is necessary to understand the several options available in the market.

For this purpose, looking into the market share is a good way to judge the popularity of PLCs. In 2017, Interact

Analysis conducted a study on this matter and the top ten brands (i.e. holding more market shares) are listed

on Figure 6 [4].

Figure 6: List of the 10 most popular PLCs and their manufacturing company, according to market share [4].

From the previous ranking, four manufacturers were chosen to undergo investigation. The first two, Siemens

and Rockwell Automation, and other two, Omron and Schneider Electric. These brands produce PLCs for

many-scaled applications. In this case, the system meant for development was found to fit in medium/small

scale ranges. Therefore, the products available are more accessible in terms of costs and, even so, can meet the

stated requirements.

Still, these brands belong to the top shareholders of the automation market. The product’s architecture is not

revealed and the software must be bought for programming the PLC. Thus, an open-source solution was also

investigated.

The most reasonable solutions found on the internet were Industrial Shields’, Controllino and Unipi.

Industrial Shields have a wide range of products. Their solutions offer the possibility to choose the following:

the processor (Arduino, Raspberry pi or even ESP32), functionalities such as Wi-Fi (through an ESP32-

embedded module or an Ethernet port), and GSM/GPRS connectivity. Options for IoT applications are also

provided [5].Yet, Controllino has a range of products equipped with nothing but Arduino processors of

different models (and adapted to the wide application range) [6]. As for Unipi, the PLCs are based on Raspberry

pi modules, and, like the other two, their products change based on the application range.

Table 1 allows the comparison of the above mentioned PLCs regarding: the type of architecture, the number

of available relays and the price. Information is also displayed on each brand’s specific peripheral expansion

modules.

15

Table 1: PLC price list

The selection of the PLC was done considering the most feasible products regarding price and peripherals for

this project. Mainstream brands are generally tagged with a higher cost than the open-source options, and, as

the number of peripherals increases, the item becomes less affordable, as expected. The same goes for the

expansion modules.

 Electrovalve

Electrovalves are valves attached to a mechanical structure that changes their position according to a provided

electrical signal and have two main parts. The magnetic head, which mainly includes a coil, a pipe, a breech,

an offset ring, a spring, and the body, which includes connection holes, seat, obturator, membrane, piston,

among others, according to the type of technology employed [28].

When voltage is applied to the coil, a magnetic field is generated which causes the movable core to be displaced

and, consequently, the position of the valve shifts to open or close position, depending on the valve

specifications [28]. Figure 7 displays a cross section of an electrovalve example.

Figure 7: Cross section of an electrovalve example [28].

Architecture Brand Product name

Peripherals

(inputs;

outputs;

relay

outputs)

Price Link Expansion module

Peripherals

(inputs;outputs;relay

outputs)

Price Link

Controllino CONTROLLINO MEGA 21 ; 24 ; 16 279.00 € [9]

CONTROLLINO MAXI Automation 18 ; 18 ; 10 209.00 € [10]

Industrial Shields M-DUINO PLC Arduino 57AAR 32 ; 25 ; 7 372.75 € [11]

M-DUINO PLC Arduino Ethernet 58 PLUS 36 ; 22 ; 0 336.00 € [12]

M-DUINO PLC Arduino Ethernet 53ARR 25 ; 28 ; 15 402.15 € [13]

Unipi Unipi Neuron L203 36 ; 28 ; 28 469.00 € [14] Unipi Extension xS11 12 ; 13 ; 13 158.99 € [21]

Siemens SIEMENS SIMATIC S7-1200 14 ; 10 ; 0 367.57 € [7]

SIEMENS SIMATIC S7-1200F 16 ; 12 ; 10 822.85 € [8]

Omron OMRON CP1E-N40S1DR-A 24 ; 16 ; 1 374.78 € [16]

OMRON CP1E-N14DR-A 8 ; 6 ; 1 220.59 € [17]

Schneider Schneider Electric Modicon M221 PLC 24 - 16 - 16 366.62 € [15] TM3DM24R 16 ; 8 ; 8 138.37 € [24]

Allen Bradley Micro850 28 ; 20 ; 20 768.83 € [18] Allen Bradley Micro 800 PLC I/O Module 16 ; 0 ; 0 158.36 € [25]

Allen Bradley Micro 800 PLC I/O Module 0 ; 16 ; 16 193.93 € [26]

Automation Direct C0-00DR-D 8 ; 6 ; 6 75.53 € [19] C0-16CDD1 8 ; 8 ; 0 54.84 €

C0-11ARE-D 8 ; 6 ; 6 149.24 € [20] C0-16CDD1 8 ; 8 ; 0 54.84 €

337.20 €

Open Source

[27]

[23]

[22]

OMRON CP1W-40EDR 24 ; 16 ; 0

Depends on necessityAnother PLC through I2C

Another PLC through I2C Depends on necessity

Closed Source

.

.

267.00 € 16 ; 16 ; 0SIEMENS 6ES7223-1BL32-0XB0

16

Some considerations about Figure 7 are the following [28]:

• Offset ring: It is placed on the bottom part of the breech, above the movable core. It provides

alternating current to limit vibrations.

• Coil: It is intended to generate a magnetic field.

• Seat: It is used to close the main hole.

• Breech: A metallic mass located on the far end of the pipe, allowing an enhancement of the

magnetic field during operation.

• Sealing chamber: It assures ingress of fluid on the valve’s body.

• Core: A cylinder displaced by magnetic force.

• Calibrated hole: It ensures the valve is closed through inlet pressure from the membrane or the

piston.

• Core Spring: On absence of supply, it imposes the position of the core.

In addition, there are various types of electrovalves, distinguished by their amount of ports (commonly referred

as “ways”), their different positions and their operation method.

Electrovalves 2/2 or 2/3 types (number of ways/number of positions) can be driven through direct or indirect

command. As for the ones with direct command, the core opens or closes the hole according to the voltage

applied to the coil. On the other hand, the operation of the indirect command is defined by the differential

pressure between entry and upstream. There are still electrovalves with greater amounts of ways and positions

and with distinguished operation from the previous; however, it is not necessary to mention them within the

scope of this project. [28]

 Racking Pump

Considering reduced liquid volumes, the transfer process can be carried out with the help of gravity (through

a method called siphoning) [29]. This method consists in positioning a container, from which the liquid will

be excluded, at a higher height level comparing with the container that will receive the liquid. This way, the

liquid will be drained only due to the gravitational force. It is a method with a very low implementation cost

but also inefficient and time-consuming [29]. That said, when the amount of liquid about to be transferred is

considerable, the use of a racking pump is recommended, which makes the process much more efficient [29].

When selecting a pump, one should mind the pumped material’s physical structure (liquid, solid or liquid with

solid sediments), as there are different types of pumps for different jobs. In the case of wine fermentation, the

pump must allow the transfer of liquids with solid particles, but this specification becomes irrelevant when the

process is bottling. Another important point to consider is the turbulence imposed to the wine during pumping

procedure [29].

In addition, a poor pump assembly can cause an early termination of the transfer due to a gas bubble generated

in the pump, which is called cavitation [30]. To prevent cavitation, there are pumps, called self-priming pumps,

17

with the ability to vacate air on the suction side before pumping starts. This process forces the liquid into the

suction line while the air is extracted due to the pressure, until a pressure balance around the liquid is met [30].

In terms of choosing a suitable racking pump, the main technical characteristics to be considered are the

following:

• Indication: target application: e.g. wine, alcoholic beverages, etc.

• Capacity / flow: flow rate (L/h).

• Filter: Type of filter used.

• Rotation type: Rotation speed (in this case low) to prevent deterioration of the wine.

• Rotation inversion: It indicates whether it pumps in both directions.

• Inlet and outlet diameter: It specifies the flow width.

• Self-priming and direction of the vacuum: Information of the air-evacuation functionality.

 Conceptual Solution

Although the system implemented in Watgrid is operational, it is not automated. The valves must be positioned

one at a time by the user for further activation of the pumps. This will initiate the transfer and later make the

purge happen. At the end, the valves are repositioned into the initial state, ending the transfer process. Another

issue to be considered arises from the use of peripheral expander modules. The system has a considerable

power consumption and electromagnetic interferences may happen and, consequently occasional signal errors

may cause a failure of the system.

 Component Selection

Beginning with the PLCs, to shorten the pre-selected ones, we started by choosing only those with an open-

source architecture. This is a plus for the company because it allows the study of the hardware and an adaptation

to the application requirements. In addition, they have a lower price compared to PLCs with a protected

architecture and the programming software is free.

Hereupon, based on the PLC benchmarking, only the Controllino, Industrial Shields and Unipi brands remain.

These brands offer products with at least one Ethernet port, which guarantees connectivity. However, of all

these three brands, Controllino is the only one that does not offer wireless communication methods, such as

Wi-Fi or Bluetooth, and was discarded for this reason [31].

The remaining two brands are controlled by different processors (Arduino and Raspberry pi). Therefore, the

programming software also differs. Unipi PLCs can be configured using various software solutions: Mervis

(an official supported software platform using SCADA language to programme the Unipi controllers [32]),

nodeRed (an open-source web-based programming tool [33]), among others [34]. On the other hand, Industrial

Shields’ PLCs use the Arduino editor based on C and C ++ languages. Considering these, it was concluded that

18

the acquisition of an MDUINO would be more workable, because it is more convenient to program in a more

familiar programming language.

Now with the brand selected, it is necessary to find out which PLC model is more suitable for the project. For

this purpose, one must achieve a correspondence between the controller’s price, the number of peripherals and

the presence of a WiFi module.

Considering all the aspects mentioned previously, the chosen PLC was the MDUINO 53ARR PLUS with WiFi,

shown in Figure 8. This controller has fifteen relays and twenty-five possible digital inputs. Relays will be

essential to activate the actuation units and digital inputs will be required to read actuation unit states. The

ESP32 module allows wireless operation. The cost was 432.64€ [13].

Figure 8: MDUINO 53 ARR PLUS [13].

The acquired PLC has the following main characteristics [35]:

• 25 inputs: 14 analog (10 bits, 0-10Vdc) / digital (7-24Vdc) configurable by software; 5 digital inputs

(7-24Vdc); interrupt inputs (7-24Vdc) that can function as digital inputs.

• 28 outputs: 15 relays (220Vac-5A); 8 analog (10 bits, 0-10Vcd) / digital (5-24Vdc) outputs; 5 opto-

isolated digital outputs (maximum 24Vdc).

• Communication: WiFi and Bluetooth with ESP32; Ethernet, USB, I2C, RS-2323, RS-485, SPI ports;

TCP IP / Modbus TCP / Modbus RTU.

Bearing in mind that a functional system is already implemented in the company, the remaining components

(the electrovalves, the racking pumps and the level sensors) are already available, and, therefore, it is possible

to use them without having to acquire new ones.

The pumps are the Rover BE-M 20 from Figure 9. These are self-priming pumps, which work in both directions

and are suitable for wines (among other liquids). They have a small solid-pumping percentage [36].

19

Figure 9: Racking pump and specifications [36].

To define the fluid path, Tonhe A100-T valves are used. These offer three routes, with two possible positions,

and provide the user some model flow plans. The ones in the company follow the flow plan B shown in

Figure 10.

Figure 10: Valve’s possible positions with flow plan B [37].

The user will decide how to control and monitor these valves. Several connection circuits are shown in the

datasheet, thus providing different ways of interaction. In this application, the CR5 02 diagram, shown in

Figure 11, was used, as it can be controlled with an on/off signal and provides a feedback signal for each

valve’s position.

Figure 11: Electrovalve CR5 02 wirig diagram [37].

When assembling the valves with the connection diagram of Figure 11, it is possible to change their position

by applying, or not, a voltage on the RD terminal. It is also possible to obtain the status of the valve through

two other terminals: one indicating that the valve is open, “Fully open signal” (BL), and the other that it is

20

closed, “Fully closed signal” (YW). In addition, with this diagram, the operating voltage can be 110-230 V AC

or 12-24 V DC [37].

21

 Hardware Implementation

 PLC configurations

First, it is essential to understand the peripheral dimensions for monitoring all the components of the actuation

unit:

• The racking pumps have two activation signals, each one responsible to start the operation in a specific

direction, without any feedback signals. Thus, for each pump, two relays would be required.

• The electrovalves responsible for fluid path definition (V 3/2) alternate their position according to the

voltage applied to a terminal and indicate their status through two other terminals. For this reason,

these valves require one relay and two digital inputs each.

• The electrovalves that control the passage of liquid to each tank (V2/2) have two terminals monitoring

their position and, as is the case with the valves mentioned above, return to their state through two

terminals. Therefore, they need two control relays and two digital inputs, each.

• The ON / OFF level sensors (Level S.) are activated when they detect liquid and only have a terminal

indicating their state: on or off. Therefore, they only need 1 digital input to check the status.

Now, considering all the components used in the system, the number of necessary input and output ports is

calculated, and for this purpose, Table 2 was developed.

Table 2: Peripheral estimation

Peripheral estimation

Application Peripherals

Tank Vat R DI Quantity Total R Total DI

V 3/2 x x 2 2 12 24 24

V 2/2 x 1 2 5 5 10

Pump x 2 0 5 10 0

Level S. x 0 1 7 0 7

V 3/2 (Purge) n.a. n.a. 2 2 1 2 2

 Total 41 43

In short, a total of 41 relays and 43 digital inputs is required. The acquired PLC does not have the required

number of peripherals to control the system in the company. This means that later it will be crucial to acquire

an input and output expansion module. In the case of Industrial Shields, the only way to increase the number

of peripherals is to acquire another PLC and connect it to the main PLC via I2C - one being the slave and the

other the master, respectively.

Since both pumps and electrovalves are powered by a 230Vac signal, the PLC cannot act as power supply. An

external power source will be needed to supply the components through the relays.

22

 Mock-up planning

The main objective of the project is to implement the PLC on the company's testbed. However, it was

concluded that it would be prudent to develop before a test mock-up for safety reasons.

Since the PLC lacks in peripherals, initially, it was necessary to adapt the system. For this purpose, when

developing the mock-up, the simulation-targeted system was minimized to two vats and two tanks, thus

reducing the number of components in the actuating unit. This way, only six electrovalves, two pumps and two

level sensors were considered. Figure 12 represents the schematics of the control system.

Figure 12: Scheme of the system to be implemented in the mock-up.

To develop this mock-up, it was also necessary to adapt all components of the real system, all elements of the

actuation unit, as well as some aspects of their operation. Then, the following sections will describe the carried

approach in order to simulate the system.

 Modules structure and operation

To simulate the components, representative modules of the electrovalves, pumps and the level sensor/vat set

were developed. These modules are a set of elements working together to reproduce an electrical behaviour

like that of the system’s mechanical components.

Starting with the electrovalves, as already mentioned, two types are being used, but it was considered that,

despite having a different operation and goals, both their activation and state reading were implemented in the

module similarly (that is, one module, with two control signals and two feedback signals, represents both

valves). Therefore, the required peripherals are mentioned Table 3 (now there are two required relays for valves

2/2).

23

Table 3: Peripheral estimation for adapted system

Peripheral estimation

Application Peripherals

Tank Vat R DI Quantity Total R Total DI

V 3/2 x x 2 2 4 8 8

V 2/2 x 2 2 2 4 4

Pump x 2 0 2 4 0

Level S. x 0 1 2 0 2

VP 3/2 (Purge) n.a. n.a. 2 2 1 2 2

 Total 18 16

In the Figure 13 it is possible to check both the structure of an electrovalve through the block diagram and its

operation with the state diagram. As for the state diagram, it can also be added that the transition between states

is not immediate. The mechanical process of the electrovalve takes few seconds and, during this period, the

outputs are zero.

Figure 13: Block and state diagram of the electrovalves implemented in the modules.

Thus, to simulate the operation of a valve, a DC motor (which represents the valve transition) and two limit

sensors (which, when pressed, indicate the position of the valve) were considered. An LED was also connected

to each sensor in order to allow visual inspection of the position.

The components were assembled in such a way that, at a certain point, the motor rotation activates one of the

limit sensors. This arrangement can be achieved with the development of a 3D support structure, which can be

produced at the company on two available 3D printers (Creativity CR-10).

As the level sensors are installed in the vats, we considered it appropriate to represent the vat with the level

sensors attached in a single module, instead of representing just a separate sensor. Therefore, it is possible to

use the same module to simulate the variation of the liquid in the vats. In this case, the position of the motor

represents the liquid’s level (and the limit sensors the level sensors). Thus, the motor would have to be rotating

and, when reaching one of the limit sensors, the state of the tank would be indicated: full or empty. The structure

would also be the same.

24

Finally, since transfer pumps do not produce any feedback signal and as there is a shortage of relays, the

conclusion was reached that the pumps would be represented by two LEDs, each illustrating the pumping

direction. They would be activated by two digital PLC outputs.

 Required Components

Since most of the components can be simulated by the same module mentioned above, the development of nine

of these modules was considered: two representing the vats, two the pump valves, four the tanks and vat valves,

and one the purge. Nine DC motors, eighteen limit sensors and eighteen LEDs, and four more LEDs were used

to represent the two remaining pumps.

Starting with the DC motors, these were chosen considering the price and the speed of rotation. As they

represent the valves, the rotation speed must be comparable to of the speed of the valve transition. Therefore,

they will have to present a relatively low speed: about 180º in 1 to 3 seconds. A benchmarking of DC motors

is shown in Table 4.

Table 4: DC motors’ specifications and prices.

Name Shop Price (€) Rot/min sec/90º delivery fee (€) Link

FIT0495-A DFROBOT tme 12.64 15 1 7.9 [38]

82869014 CROUZET tme 82.98 13 1.15 7.9 [39]

499:1 METAL

GEARMOTOR 25DX58L

MM LP 6V POLOLU tme 16.25 11 1.36 7.9 [40]

ROB-12472 SPARKFUN

ELECTRONICS INC tme 33.7 6 2.5 7.9 [41]

Motorreductor DC con

escobillas RS PRO, 7 rpm rs 16.58 7 2.14 free [42]

Motorreductor DC con

escobillas RS PR6 rpm rs 17.72 6 2.5 free [43]

JGY370 Reversible High

Torque Worm Geared 12V

6rpm ptrobotics 14.88 6 2.5 4.67 [44]

1000:1 Micro Metal

Gearmotor ptrobotics 25.95 14 1.07 4.67 [45]

Cytron 12V 17RPM 194.4oz-

in Spur Gearmotor robotshop 11.93 16.7 0.90 10.9 [46]

From the previous table, the motor FIT0495-A DFROBOT from TME with a speed of 15 r.p.m. was selected.

This was the chosen motor because the company places several orders at TME, which mitigates the shipping

cost. It is also the one with the better price-to-speed ratio. It can be powered at between 2 to 7.5 Vdc, has a

working current of 50 mA and turns 180º in 2 seconds.

When selecting sensors and LEDs, only TME was the brand of choice. 10 mm green and red LEDs were chosen

to illustrate the valves’ two states. The green LED works on a voltage of 1.7 V to 2.8 V and a current of 20 mA

[47], and the red one between 1.6V and 2.6V at the same current [48]. The sensors, on the other hand, allow a

maximum voltage of 250Vac and a maximum current of 1 A [49]. Figure 14 contains pictures of the acquired

components.

25

Figure 14: Acquired components: (a) - DC Motor [38]; (b) - Limit switch [49]; (c) - Green LED [47]; (d) - Red LED

[48].

DC motors have two terminals and the rotation direction is dependent on the supply bias. Therefore, it is easy

to conclude that the terminals of the electrovalves do not match to those of the motor. One way to solve this

problem is to use an H bridge, which allows the current to flow in both directions. For this purpose, the

ZXMHC10A07N8 H-bridge integrated circuit from Diodes Incorporated was selected. It is shown in Figure

15.

Figure 15: H-bridge integrated circuit: (a) - component; (b) - circuit; (c) - pinout. [50].

Finally, in Table 5 of necessary components is shown below. Note that there are resistances available at the

company and the ones in the table are a similar component from TME that were selected in order to estimate

the total price of the components.

Table 5: Components’ price table.

 TME Components List

Component Name Reference Price (€) Quantity Total (€)

DC motor FIT0495-A DFROBOT [38] 12.64 9 113.76

H-bridge ZXMHC10A07N8 [51] 0.66 9 5.94

Limit Sensor MSW-22 NINIGI [49] 0.38 18 6.84

Red LED
LL-1003VD2D-V1-

1A LUCKYLIGHT
[48] 0.11 11 1.21

Green LED LL-1003GD2D-1A LUCKYLIGHT [47] 0.11 11 1.21

Resistance SMD AR03BTCX1001 VIKING [52] 0.046* 36 1.66

 130.62

*Price per unit when ordering 100+ items.

26

 Module Implementation

Starting with the DC motor’s power supply, Figure 16 shows a configuration of the H-bridge circuit connected

to the DC motor.

Figure 16: H-bridge circuit with DC motor power supply

Analysing the previous circuit, it is possible to observe that the gates of the nmos and pmos pairs (from Figure

15: (c), P1G-N1G and P2G-N2G) are connected. This allows the current to flow in one of the two represented

directions when feeding one of the terminals: In 1 or In 2. When supplying voltage to the In 1 terminal, the

transistor n1 will reach the driving zone and p1 the cutting zone, while p2 and n2 are driving and cutting,

respectively, thus causing the current to flow through the motor in the direction represented in blue. Feeding

the In 2 input, the opposite will happen and the current flow will be the one represented in red. The 1kΩ

resistors were placed to protect the transistors from the input current.

Further than the valve operation and control, it is also necessary to implement the limit sensors as feedback

signals. Here, the goal was simply to design a circuit that connects a LED and sets a terminal on whenever the

sensor is pressed. The circuit is shown in Figure 17.

Figure 17: Limit switch a LED circuit.

To dimension the previous circuit, a 24V Vdd and a 20mA current flowing through the LED with a voltage

drop equivalent to 2V was considered, thus obtaining 𝑅 ≈
24−2

0,02
= 1000Ω. Two circuits like this are required

for each electrovalve module.

27

Now, to develop the structure that will merge the components of the modules, a study of their dimensions was

conducted (shown right below in Figures 18, 19 and 20).

Figure 18: 3D model of the dc motor (with dimensions) [53].

Figure 19: Limit switch 3D model (with dimensions) [54].

Figure 20: LED 3D model (with dimensions) [55].

28

The 3D parts of the previous figures were obtained from the web and changed (using the modelling software

Autodesk Fusion 3D) to match to the exact dimensions of the components.

Now, knowing the dimensions of all components needed for this module, the support and integration structure

was designed in Autodesk Fusion 3D. The designed 3D model of the support is shown below in Figure 21.

Figure 21: 3D model of the module support: (a) – perspective from front with elements marked; (b) - perspective from

back; (c) – top view with dimensions; (d) – vertical cut from front view with dimensions.

Figures (a) and (b) show the structure’s 3D drawings. The numbered items are described below:

• 1 - LEDsholder. (2)

• 2 - Holder for the limit switch. (2)

• 3 - Base of the motor with space for the rotation axis. (1)

• 4 - Cylindrical base to support the DC motor. (1)

• 5 - Slit open under the motor base, where a clamp was placed to hold the motor (2).

• 6 - Screw holes for the limit sensors (2x2).

• 7 - Hole for the motor screw (1).

• 8 - Screw holder to fix the module (2x2).

Figure 21(c) represents the top view of the model, with all the relevant measures and (d) represents the view

of a vertical-cut section in the middle of the limit sensors and LEDs sockets. The dimensioning of this last

piece was carried out considering a 1mm margin of (added to the actual measurements). A piece to fit the motor

shaft was also designed follow the motor’s rotation and press the limit sensors (Figure 22).

29

Figure 22: Reed 3D model with dimensions.

Finally, the 3D model of the module was obtained, with all the components assembled. It meets the expected

result and is shown in Figure 23.

Figure 23: 3D model of the expected module (with components) - front and back views, respectively

Due to the error margin of the printers, the first printed parts were discarded as they the LEDs and limit sensors

did not fit. After the drawing’s correct margin of error was setup, the parts were printed and the module

assembled. The assembly consisted in welding wires to the terminals of all components, attach them to the

corresponding supports. The full module is shown in Figure 24.

30

Figure 24: Assembled valve module (front and back, respectively).

 Initial approach

The purpose of this initial approach was to test the operation of the modules and their components, as well as

to include a PLC control. The circuits necessary for this early implementation were assembled on a bread

board.

It started by using just one module to understand if everything was working as intended. Several points were

tested: the rotation of the motors, the activation of the limit sensors when pressed and, consequently, the LEDs

connection. Then, next steps would be the control of a set of modules to simulate a vat and a tank, in order to

confirm how modules behaved when working together. It is noteworthy that, as these systems were being

implemented, the H bridges used to drive the motors proved to be an unfriendly structure when used on bread

board mounting. For this reason, instead of these bridges, alternative ways of feeding the motors were used,

described later in this chapter.

 One module implementation

Two circuits (like the one shown in Figure 17, designed for the limit sensors) and LEDs were assembled on a

breadboard. These circuits have direct supply from the PLC (24 V) and the motor was connected to a digital

PLC output. A diagram of this assembly can be seen in Figure 25.

31

Figure 25: PLC to module connection scheme.

In the previous diagram, LEDs connection wires may be seen in green and black. The wires of the limit sensors

are in purple and red (power signal). PLC’s digital inputs (for sensor state reading) are shown in yellow. Also

note that the motor connection, orange and blue (GND signal), is made directly with the PLC’s digital output

Q0_1 (also orange) and has a specific polarization, which implies the operation of the motor in just one

direction. To change the motor’s rotation direction, the changing of this polarization proved to be sufficient.

A simple code was developed for the PLC. Activation only occurs by the digital output Q0_1, which initiates

the motor operation. Switching it off occurs as soon as any of the digital inputs (I1_1 and I1_2) read the value

1. In other words, as soon as one of the limit sensors is pressed by the reed attached to the motor it stops the

operation.

 One vat and one tank system implementation

To implement a vat and tank system, five modules are required, four to represent the electrovalves of the tank,

the vat, the purge and the pump, and another one to represent the vat.

As an alternative to the H bridges in the motor supply, Finder 40.52 relays available on the company were

used. These relays have two configurable contacts, so it is possible to assemble a motor drive circuit in both

possible directions, as the one shown in Figure 26.

32

Figure 26: Relay configuration for DC motors power supply.

The previous circuit consists of two PLC relays, one that supplies 24 V of PLC power to the control relay drive

coil, and another one that supplies 6 V to the motor. Connection occurs in terminals 12/24 and 22/14,

respectively. Therefore, when the 6 V relay is activated the motor will be polarized from top to bottom,

according to the image, and when the 24 V relay is activated, the position of the control relay will switch, and,

consequently, change the motor polarization, leading to a rotation in the opposite direction. It should be noted

that the 6 V comes from a voltage regulator (available at Watgrid) and is sufficient to power the motor.

Using the LED connections and limit sensors from the previous implementation, together with this relay

configuration to drive the motors, the module is then fully operational. Therefore, the circuits of the five

modules were assembled, and the PLC peripherals were used as indicated in Table 6. Figure 27 shows how the

five modules and the PLC were placed together.

Table 6: PLC peripherals’ distribution

PLC peripherals Bomb valve Tank valve Vat valve Vat Purge valve

24V relay R1_4 R1_5 R1_6 R1_7 R1_8

6V relay R1_1 R1_2 R1_3 R2_1 R2_2

Opened DI I1_2 I1_4 I2_2 I2_4 I0_7

Closed DI I1_3 I1_5 I2_3 I2_5 I0_8

33

Figure 27: One vat and one tank system mount

 System integration

 PCB development

For the final integration of the system, a PCB that addressed all the circuits necessary for a proper module

operation was developed. The connection points between the PLC and the modules were also considered. The

PCB started to be outlined in the electronic design software EAGLE from AUTODESK®. Figures 28 and 29

show the schematics and the board.

Figure 28: Pcb scheme of the circuit that includes all modules.

34

Figure 29: Board of the circuit that includes all modules .

In the schematics of Figure 28, it is possible to check the nine H-bridges, T1 to T10, connected to the

JP3_DCMOTOR connector (where the motors are powered) and to the JP4_RELAY connector (where the PLC

relays are connected), which stipulates the motor rotation’s direction. In the upper left corner, there are

connectors for the limit sensors, the PLC inputs and the LEDs (JP1, JP6 and JP2, respectively), which represent

eighteen circuits, just like the one shown in Figure 17. 1kΩ resistors with SMD package were used, as can be

seen on the board in Figure 29. One of the goals of this PCB was size reduction to lower down the production

cost.

Figure 30 show a 3D version of the expected result of the PCB. It served its purpose of checking whether

everything would be within the supposed dimensions of the components.

Figure 30: 3D model of the pcb: (a) – top view; (b) – bottom view; (c) – 3D view with all components mounted; and

assembled PCB (d).

In Figure 30, it is possible to observe the expected result of the printed PCB without (a-b) and with (c)

components, and the assembled PCB (d). the PCB was produced at Eurocircuits with a cost of 38.12 € [56].

35

 Platform

After all the necessary modules assembled and fully operational, the next step was focused developing a

support platform for all modules. This platform allowed the modules to be arranged with a specific system

layout. Since the company has 3D printers, the conclusion was reached that the most economical and workable

option was to print the platform in 3D. For this, a 3D model showed in Figure 31 was designed.

Figure 31: Platform 3D model.

The platform was dimensioned according to the arrangement of the modules in the image of the system, which

is represented in Figure 12 of Section 3.2, and their respective occupied space, which resulted in the above

structure.

 The space dedicated to an electrovalve module can be seen in red. In this space, there are four holes where

supporting paws will be screwed, two identical holes through which the LEDs and limit sensors are placed (on

each side of the module), and another hole for the motor wires. It should be noted that the front of the module

faces the two largest holes (and that its rear is faced towards the tightest). For each position where a valve

should be represented, this hole configuration was considered. The green colour is displayed where the vat

module will be positioned. As these modules are physically the same as those of the solenoid valves, the size

of the holes is also the same. Finally, the space enclosed in blue may be observed. This is where the PLC will

be placed. On each side, two holes were made for the passage of the wires connecting to the PLC.

Since the printers have a limit printable area, the platform has been divided into four parts.

36

When looking at Figure 32, it is possible to identify the four parts resulting from the division of the platform:

A, B, C and D. In these parts, some elements have been inserted to reinforce the structure. All parts have two

inner walls (1), thinner than the outer ones, with three holes each. The holes represented by 3 (one per inner

wall) serve as a tunnel for the wires to pass between parts, and the two holes represented by 4 allow to fix them.

These walls only touch at the far ends, base and centre (2), thus avoiding irregularities when assembling the

platform. The element 5 represents holes, which are in a semicircle and do not penetrate the base of the

platform, thus making it possible to clamp the wires connecting the modules and the PLC to the pcb shown in

space 6. Figure 33 shows a 3D model of what is expected to result from the platform, with all modules

assembled.

Figure 32:Bottom side of the platform.

37

Figure 33: 3D model of the platform with modules.

The four pieces of the platform structure were printed. Although these were dimensioned according to the

limits of the printers, they continued to be relatively large pieces for what was recommended, and the prints

came out with some defects, namely on the surfaces of the bases, which were not completely flat and displayed

some relief. To correct these flaws, they were filled with resin, which ended up to minimize these defects. After

the parts had been attached, an image of the system with the appropriate dimensions for the platform was

printed on vinyl, and then glued to its surface. The outcome is that the platform is ready to support the modules

and the PLC.

 Final assembling

With all the mock-up components ready, the integration proceeded. It started with the screwing of all the

modules in the concerning spot, the same happening with the PCB. In addition, it was also necessary to

attach the PLC to the platform. Therefore, the 3D printing of a din rail was considered since the PLC has its

own fitting for it. The 3D model of a din rail was obtained from the website [57]. It was later resized to match

the PLC’s appropriate size. The 3D model obtained is shown in Figure 34.

38

Figure 34: 3D model of the din rail with dimensions.

The din rail was screwed to the platform in the PLC area, and then the same occurred with the LEDs aimed to

demonstrate the transfer pumps: the red LED on the left, indicating liquid flow into the tank, and the green

one on the right, indicating the liquid outgoing from the tank.

After the integration of the components on the platform, the modules and PLC were connected to the PCB.

Table 7 indicates the PLC peripherals used by the modules.

Table 7: PLC peripheral distribution

Tank

valve 1

Pump

valve 1

Vat

valve 1 Vat 1

Purge

valve

Tank

valve 2

Pump

valve 2

Vat

valve 2 Vat 2

DC

Motor

open R2_4 R2_6 R2_7 R2_8 R2_1 R2_2 R1_3 Q0_0 Q0_2

close R1_4 R1_6 R1_7 R1_8 R1_1 R1_2 R2_3 Q0_1 Q0_3

Limit

Sensor

opened

(Green) I0_8 I0_9 I0_12 I2_3 I1_4 I1_2 I2_5 I0_3 I0_1

closed

(Red) I0_7 I0_10 I0_11 I2_2 I1_5 I1_3 I2_4 I0_2 I0_0

 Bomb 1 Bomb 2

Out

(Green) Q1_0 Q0_6

In

(Red) Q1_1 Q0_7

Note that, in Table 7, in vat valve 2 and vat 2, digital outputs are being used instead of relays. It turns out that

three more relays are required to cover the needs of all components of this system, so it was decided to use the

digital outputs that, in this case, only activate the H bridges. This is possible because the PLC’s digital outputs

provide enough current for the H bridge transistors to transit through zones. In a real system, the corresponding

valves would not work due to the lack of power from the digital outputs. In addition, other adaptations have

been considered and are illustrated through the scheme presented in Figure 35.

39

Figure 35: PLC peripheral adaptions: (a) - dc motor supply; (b) - Digital outputs supply.

In section (a) of the diagram, there is the JP5 PCB connector with the 24 V and GND pins, for supply of the

LEDs connected to the PLC power supply. The Vcc pin, on the other hand, from where the H bridges are

supplied, and which will later supply the motors, has a relay connected (when active, it provides 6 V) and an

analogue output from the PLC. This analogue output connection was implemented because the need to decrease

the rotation speed of the vat-representative modules motors. By software, it was possible to turn ON the

analogue peripheral and leave the relay open only when these modules work, so that the current supplied to the

motor is reduced. Then, after turning OFF the analogue output and closing the relay, the power to the Vcc pin

is changed again, which will now supply the 6 V to the electrovalve modules.

Figure 35(b) shows how the sets of the PLC digital outputs are powered ON, the explanation being that the

logical values ‘1’ and ‘0’ they reproduce are dependent on ‘QVdc’ and ‘COM-’, respectively. Just observe the

supply of the second block of digital outputs that corresponds to the 24 V PLC supply. This occurs because it

is the necessary voltage to supply pumps’ green LEDs.

Regarding to the LEDs that represent the transfer pumps no connectors were added. They were wired connected

to the PLC: the anodes connected to the digital outputs, and the cathodes to a resistance of 1 kΩ and then

connected to the PLC ground.

Finally, with all the model’s components integrated, the mock-up was obtained and is shown in Figure 36.

40

Figure 36: Assembled mock-up (top and bottom, respectively).

41

 Software

 Introduction to PLC programming

Before starting to write the modules’ control code for the PLC, it was necessary to understand how to interact

with the peripherals and other functionalities.

As already mentioned, to program the PLC, it is necessary to use the Arduino open-source software, Arduino

IDE, since an Arduino Mega is used. For this purpose, the MDUINO 53 ARR + datasheet contains instructions

about the setup of the editor and has the required resources to make the programming more accessible.

The first step was to add the specific PLC board library to the Arduino IDE and provided by Industrial Shields.

Once installed, all boards corresponding to Industrial Shields products can be programmed using this software

by just selecting the board and model of the PLC in question. After completion of the previous steps, the

software is ready to compile functional code for the PLC.

The installed library assigns specific names to the PLC peripherals and configures their operation mode, which

can be seen in Figure 37.

Figure 37:Mduino pinout table [35].

To interact with the PLC peripherals in the Arduino IDE, it is necessary to run the already defined writing and

reading functions. These functions are described below:

• digitalWrite(pin, value):

42

o Description: It adds a “High” or “Low” value to a digital pin. It is used for driving relays and

digital outputs.

o Pin: Arduino pin number.

o Value: Value that has to be assigned to the pin, “HIGH” or “LOW”.

• analogWrite(pin, value):

o Description: It adds a square PWM wave to a digital pin. It is used for analogue outputs.

o Pin: Arduino pin number.

o Value: The duty cycle between 0 (always off) and 255 (always on).

• digitalRead(pin):

o Pin: Arduino pin number.

• analogRead(pin):

o Description: It reads the “High” or “Low” value of a specific digital pin. It is used for reading

digital inputs.

o Pin: Arduino pin number.

In addition, the Arduino has a defined programming structure, which is followed by most users. This structure,

which can be seen in Figure 38, is divided into:

• The setup() function, that is called only at the beginning of a program and it is used to initialize

variables, to define the pin mode, among other possible configurations that need to be performed

before the program starts [58]

• The loop() function is where the control code of the Arduino board should be and it is executed

consecutively in a cycle, allowing changes and program response [59].

Figure 38: Arduino IDE coding structure.

 Control of one module

This section describes the software developed for monitoring only one module(chapter 3.1.3.2). As already

mentioned, the goal was to write a code for the PLC that would allow to activate the module's motor and detect

when one of the limit sensors is pressed, which will then stop the motor.

Starting with the peripherals from Figure 25, it is possible to check that the digital output Q0_1 is responsible

for the motor control, and digital inputs I1_1 and I1_2 are responsible for reading the sensors status. The code

developed for this operation is shown in Figure 39.

43

Figure 39: One-module control code

On the setup() function of the, the detection of the initialization of the PLC's serial communication and the

assignment of a wave with a 100% duty cycle to the analogue output A0_5 happens. Serial communication

was used to make it possible to control the module's operation through the terminal, in order to prevent some

problematic hardware operation (for example: the motor not stopping when the limit sensor is active). The

analogue output A0_5 is set to its maximum, as it was used for powering the digital output Q0_1.

Regarding module monitoring (the instructions in the loop() function), if there is no user input initially, nothing

happens. When the user enters the value “1” in the terminal, the digital output Q0_1 is set high and the motor

rotation starts according to the previously polarised direction. If the user does not send anything else, the motor

will run until one of the limit sensors is activated, and then the digital output is set to zero, thus ending motor

operation. After changing the motor terminals, it is possible to repeat the process, and the motor will run in the

opposite direction. In the case where a sensor is connected and the user enters option “1” without changing the

motor polarization, the digital output is turned off almost at the same time it is turned on, and the module will

remain in the same state.

 Control of one vat and one tank

After assembling the vat and tank system described in chapter 3.1.2.3, the code that controls the electrovalves

and vat modules was developed. Figure 40, shows a diagram that describes the software-run process.

44

Figure 40: One-vat and one-tank system’s software diagram.

Looking at the diagram in Figure 40, four structures were defined to differentiate each module’s functionality

and store the peripherals assigned to them. Thus, two lower-level structures were considered, which establishes

the physical element that a module represents and the definition of peripheral assignments (VALVE and

SENSOR). Two other higher-level structures are established that gather the modules according to their function

in the system (VAT and TANK). The structures were implemented with the code in Figure 41.

Figure 41: Structure definition.

The VALVE structure is composed of four fields:

• the “relay_pwr” and “relay_dir”, where the PLC relays are assigned to supply the motor and make

the Finder 40.52 relay commute (by changing the motor direction), respectively,

• the “pos1” and “pos2”, which store the digital inputs of the PLC connected to the limit sensors that

represents the position of the valve.

The SENSOR structure fields are identical to the previous ones. In this case, “pos1” and “pos2” are “empty”

and “full”, respectively, and now represent the tank state, empty or full, and the rest remains.

45

In the TANK and VAT structures, the following are initialized: the modules assigned to the relevant container,

the pump valve (vb), the tank valve (vt), the vat valve (vc) and the vat (sn). Here, although only one tank and

one vat are needed, two of each were defined because the algorithm was developed to be scalable.

In order to put the electrovalve modules into operation, two functions were created, openV(struct VALVE v)

and closeV(struct VALVE v), which activate the relays of a module to perform the valve opening or closing

operation, respectively, shown in Figure 42.

Figure 42: openV() and closeV() code.

In the functions of Figure 42, the state of the relay that dictates the direction of the motor rotation must run in

(relay_dir). It is initially set for “high”, when the opening operation is pretended, or “low” when it wants to

close. Then the relay that supplies the motor will be turned on (relay_pwr) and start the operation. This order

prevents the engine from starting to run in a direction opposite to the desired one. After activation of the relays,

the program waits for the sensor until the desired position is attained and then continues the operation by

turning off the power relay.

The program starts by executing the initModules() function described in Figure 43, according to which, as seen

in Table 7. The PLC peripherals are assigned to the previously initialized modules. Also, the system is placed

in the initial state, which consists in closing the electrovalve modules using the closeV() function.

Figure 43: Function initModules().

Next, the system control cycle begins. At this stage, the PLC remains stable, ready for receiving a user's input

via serial. When an entry is received, the transfer proceeds.

From the code in Figure 44, it is possible to identify two blocks. Block 1 is responsible for reading and

processing a user input with the format (int)a # (int)b if no operation is occurring; it does so by assigning the

variables “a” and “b” to the source and destination containers, respectively. It considers the values from 1 to 6

for the vats and from 7 to 12 for the tanks (in this case, only vat 1 and tank 7 were used). The beginning of the

transfer is thus indicated. In block 2, after the operation is started, variables “a” and “b” are compared between

46

them and the direction of the transfer will be defined, as the variable with the lowest value will represent the

vat (the tank being assigned the other variable). The process is performed by means of the transferTV() and

transferVT() functions, which are examined below.

Figure 44: One-vat and one-tank system’s loop() function.

Figure 45 shows the code for the transfer from a tank to a vat on the right and from a vat to a tank on the left.

It is possible to check that the logical grounds to both functions include a vat and a tank. This is because, as

already mentioned above, it adds scalability to the program, although - in this case - only one vat and one tank

are used. The transfer process follows the flow diagram in Figure 89 in Appendix 5.

Figure 45: Code of the transfers.

In the case of the transfer from a tank to a vat, it starts with the opening of the tank and valves, proceeding with

the transfer, until the vat is full. Then, the tank valve is closed, and the pump valve is opened to perform a

three-second purge, which ends with the closing of the tank and pump valves.

When a transfer takes place from the vat to the tank, the pump and tank valves open, followed by the vat valve,

and the pump is turned on, starting the transfer. After the vat empties and the pump is turned off, the tank valve

is closed and the purge is started; then, the opened valves are closed and the process is finished.

47

 Control of the system mock-up

With the system of two vats and two tanks fully assembled, the development of its monitoring algorithm begins.

The control was carried out in a similar way to the one described in chapter 3.2.4, with some changes in the

structures and the module’s interaction functions.

In the previous section, four structures had been developed: one for the valve modules, another one for the vat

modules, and two more for the tanks and vats. This time, only two structures were considered (for valves and

pumps), as shown in Figure 46.

Figure 46: Structures for valves and pumps.

In Figure 46, the top structure, VALV, was defined to integrate the electrovalve modules. In addition to the

fields already targeted at registering the peripherals, it has two identification fields (“name” and “id”), and one

to store the current position of the module, (“state”). As H-bridges are now used for powering the motors,

instead of the Finder 40.52 relays, the trigger of one of the two PLC relays will activate the bridge's transistors,

and the motor will rotate in a specific direction. This way, the “relay_open” and “relay_close” fields are made

available to choose which mode the motor will operate: open or close, respectively. The digital inputs

connected to the limit sensors (that indicate whether the valve is open or closed) are represented by the fields

“led_green” and “led_red”, respectively. In this case, arrays of the electrovalve modules are initialized with

the same size as the amount of tank/vat sets (two in this system). It should be noted that the vat modules (sn)

also use this structure because they have the same operation as the electrovalve modules.

The bottom structure, BOMB, was designed to represent the pump modules (only two LEDs each module). In

addition to the identification (“id”) and state (“state”) fields, “green” and “red” fields were created to store the

digital outputs associated with each of the module's LEDs, that when active indicated the operation of pumping

out or into the tank, respectively.

48

The functions for opening and closing valves, shown in Figure 47, also had to be adapted to the new structure.

Now a pointer of an already-defined valve is given as argument, and, at the beginning, the relay respective to

the operation in progress, “relay_close” or “relay_open”, is turned ON, thus starting the motor. After pressing

the limit sensor (dependent on the valve’s final-stage position), the previously connected relay is turned off

and the status is updated. These functions return a value of 1 (at the end) that is not used for now.

Figure 47: Functions to open and close a single valve.

The previous functions can open or close one valve at a time. For convenience, two functions were developed,

both capable of carrying out this process on several valves at once. This makes system operation more realistic,

since, during the transfer process, several valves may be positioned at the same time. Then, the functions

closeValves() and openValves() were developed and are represented below in Figure 48.

49

Figure 48: Functions to open and close multiple valves.

These functions are logically grounded on an array of pointers corresponding to the electrovalves (that are

meant to be repositioned) and the concerning length. One by one, the current status of the valve is checked. If

the operation in progress did not reached the final stage, the relevant relay is switched on, the status is updated

to “not set” and the number of activated valves is incremented (variable cnt). The system waits for the valves

to reach the desired position. When a valve in the “not set” state is detected signalling that it is in the expected

position, the respective relay is switched off. Its status is changed to “opened” or “closed”, and the number of

valves reaching the operation’s conclusion stage (end variable) is incremented. The process continues until the

number of valves reaching the conclusion stage is equal to the number of valves to be transitioned (end ==

cnt).

Based on the functions in Figure 48, two more functions were developed to open or close all valves to define

an array with the system’s seven valves and to run one of the previous functions, openValves() or closeValves(),

as can be seen in Figure 49.

Figure 49: Functions to open and close all valves.

50

Still regarding module operation, two specific functions were developed for vat module application, in order

to represent module filling and emptying. Next, the process underlying these functions is described.

Figure 50: Function to fill vat.

Figure 50 contains the code written so that a vat module might perform the representative operation of the vat

filling (through the fillCuba() function). As the pumps are activated so that the vat fills or empties, the logical

grounds to this function include both the vat to be filled (sn) and the pump that performs the process (bb). The

blocks shown in the figure are explained below:

• 1a: As it was intended to lower the rotation speed of the DC motors in this process, an analogue output

from the PLC (A2_0) with a duty cycle of 50% was used to supply them. It turns out that this analogue

output does not provide enough current to start the motor, but it can maintain its operation. This means

that, with the connection displayed in Figure 35 (a), it is possible to start it through relay R1_5 and

(almost immediately) change the supply to the analogue output A2_0. First, the relay associated to

the vat filling (relay_close) is started. Then, the analogue output A2_0 is switched off and relay R1_5

is switched on. The motor is started and, after fifty milliseconds, relay R1_5 is switched off and the

analogue output A2_0 is switched on at 50%, which keeps the motor rotation at a slower speed.

• 2: Initially, it must be confirmed that the vat is not full. In that case, pump status is changed to “filling”,

and cyclical checking occurs to determine when the vat is full, by reading the vat’s digital input

“led_red”, which is connected to one of the limit sensors. When the sensor is pressed, the program

exits the cycle to block 4 to end the operation.

51

• 3: To simulate the pump’s operation, the variable “count” was used, which increases with each cycle

while checking the state of the vat. Every 7000 cycles, the pumping direction’s LED (in this case, the

green LED) switches, causing a flashing effect, which signals the pump operation. After some tests

with arbitrated values, the value 7000 was selected because it makes the flashing visually possible.

• 4: When the tank is full, the filling relay is switched off and, consequently, both the motor and the

green LED on the pump module signal the conclusion of the pump operation. Pump and vat states are

updated to “stopped” and “full”, respectively.

• 1b: The process ends with the repositioning of the motor’s power supply, that is, the A2_0 analogue

output is switched off and the relay R1_5 is switched on.

The process of emptying the vat is identical to that shown in Figure 50. As opposed to the filling process, only

the peripherals used by the vat and pump modules and their final state are changed. The function responsible

for it, emptyCuba(), is displayed in the chunk of code in Figure 51.

Figure 51: Function to empty vat.

Next, the program is started with the Arduino setup() function shown in Figure 52. In this section, the serial

communication is initialized. Then, the PLC peripherals responsible for feeding the motor-related relays are

setup. Relay R1_5 is switched on and analogue output A2_0 is switched off (operation previously referred to

in 1_a and 1_b of Figure 50), the digital output assigned to supply the H-bridge control relays (digital output

Q0_4) is switched on, and likewise for the PLC digital outputs supply (analogue output A0_5 at 100%). Then,

the setValves() function is executed, where peripherals are assigned to the modules, and then the initRelays()

function, which reverts the relays to their initial state (off) and sets initial states for the modules, stopping all

52

resetting of the electrovalve modules in the closed position, by using the closeAllValves() function. These two

functions are described below.

Figure 52: setup() function.

Figure 53: Functions to set initial configurations.

On the left side of Figure 53, the code for the setValves() function is displayed, and on the right, the initRelays()

function. It can be seen that, in the setValves() function, the following are assigned to all electrovalve modules:

• Two identification fields (“name” and “id”),

• Two fields that identify the relays that trigger the operation (“relay_open” and “relay_close”),

• Two fields for the digital inputs connected to the limit sensors (“led_green” and “led_red”),

• The state field (“state”) with the value zero (“not set”).

The pumps are also initialized here with the identification (“id”), the relevant digital outputs connected to the

LEDs (“green” and “red”) and the status (“not working”).

After configuring all modules, the initRelays() function is executed. All relays connected to the modules are

closed to interrupt any possible operation that may be taking place. Then, a status is assigned to the module

depending on its position (0 - “not initiated” if no sensor is pressed; 1 - “Opened” / ”Empty” if the sensor

connected to the green LED is pressed; 2 - “Closed”/ “Full” if the sensor connected to the red LED is pressed).

53

This process is performed on all valves and vats through a cycle that travels the arrays, and, finally, on the

purge valve.

The program proceeds to the loop() cycle, where the system control algorithm is located. The code used in this

section is the same as the one described in the previous chapter (Figure 44). Only the functions responsible for

liquid transfer from a tank to a vat and vice versa have been changed. Figure 54 shows the code for the loop()

function.

Figure 54: Function running on the PLC.

As can be seen, the program is waiting for an input, via serial, with the format (int)a # (int)b; these two integers

are compared and one of the transfer functions is performed. The difference is that now, the transfer functions’

only logical foundation is the indicative value of the origin and destination containers (int cuba and int tank),

unlike those in the previous chapter that received the containers (objects from the TANK and VAT structures).

Figure 55 shows the new transfer functions.

Figure 55: Transfer functions.

These functions, like those of the previous system, follow the flow diagram in Figure 89 in Appendix 5. They

start by checking if the tank is already full, when transferring from a tank to a vat, or empty, otherwise. When

neither status is confirmed, the operation continues. At times, when it is possible to open or close more than

one valve, an array is created with the valves that will run and be provided to one of the opening or closing

functions (openValves() or closeValves ()) together with the number of valves in the array. It should be noted

that now, if one of the valve-operating functions returns zero (i.e. it was not completed successfully), the

54

transfer will be interrupted by also returning the value zero; otherwise, at the end of the transfer the value 1 is

returned. This last feature was used on later implementations.

 Implemented functionalities

To make the system more realistic, it was convenient to add some features to the algorithm that could prevent

possible problems from a real system implementation such as equipment malfunction, as well as others that

allow a broader interaction.

System status diagnosis

Before starting a racking, it is necessary to check that all valves are in the rest position. This is because if any

of the valves, intervening or not in the process, is in the wrong position, it may condition the liquid's path, and

when starting the transfer, it is possible that it flows into the wrong container, or that it mixes with another

liquid that is not supposed to be there, which could cause significant damage. The considered way to solve this

problem was to check and, if necessary, reposition the valves. For this purpose, a function was created,

checkValvesReady(), which, through an array of valves, checks whether all of them are closed. If any of them

are, the function returns zero. At the beginning of the two transfer functions, the previous function is run and,

if any valve is open, the closeAllValves() function is executed, closing all valves and proceeding with the

process. Figure 56 shows the checkValvesReady() function, in section (a), and the way it is applied at the

beginning of the activateTC() and activateCT() functions, in section (b).

Figure 56: (a) – Function to check valves’ initial state; (b) – Application.

Malfunctioning valves

In a real system, it is possible for the valves to be damaged for some reason, and/or to stop responding.

Therefore, the system is required to have the capability of identifying the failure of one or more valves, and to

apply preventive solutions. The implemented solution consists of defining a time interval (that each valve must

have) to transit from one position to another; exceeding this interval finishes the operation in process. In the

functions closeValves() and openValves(), code was added that performs the described process (such code is

identified in red in Figure 57). In the first block, the recording of the time taken during the instant immediately

after the activation of the valves occurs ; then, valves must take their time to complete the operation. In the

wait cycle, the second code block was added, which checks the time elapsed since the activation. If it exceeds

six seconds (value defined in VALVE_TIMEOUT), the valves that remain in the “not set” state are checked,

55

as they are the ones that did not transit, and are then updated to the “Not responding” state, and finally a value

of zero is returned indicating that the operation has failed, causing the current transition to end.

Figure 57: Function to close valves with valves timeout.

Electrovalves status change

Subsequently to the previous point, it was necessary to develop a method that would allow the user to carry

out the proper damaged valve maintenance, and then to set the system functional again. To perform this

procedure, the setValveState() function was developed (shown in Figure 58). This function changes the user-

provided state of a specific valve, and, for this, it is founded on a logic resulting from the valve’s “id” field and

the desired state field (“state”). An array of all valves is defined, and the status of the valve in the “id” position

is updated to “state”. The user can define the status of the valve by entering the command &(int)id. Since the

only functionality of this function is to update the status of valves that have been fixed, it is only used to define

the status as “not set”. In other words, when the user sends the previous command, the function is executed

with the “id” supplied and the zero state, setValveState(id,0), changing the state from “not responding” to “not

set”, which turns the system functional again. The command interface will be discussed later in this chapter.

Figure 58: Function to set valve state.

56

Still within the scope of changing the status of the valves, a function was developed that would allow the user

to change the valve’s position. As can be seen in Figure 59, the changeValveState() function’s logical input is

“id”, which identifies the valve chosen for transition, and, if it is open or “not set”, the valve is closed. If it is

already closed, it proceeds with its opening. The function can be performed using the command “*”.

Figure 59: Function to change a valve position.

Stop in the middle of an operation

Since there may be some power failure and the system will then go down, which causes it to start from the

initial state, a method was developed so that the operation status could be recovered after the restart. Next, the

best way to recover the staging point after a system reboot would be using the Arduino flash memory. Through

the “EEPROM” library [60]provided by the Arduino developers, it is possible to read and write information

into the flash memory that will not be lost even after the processor is turned off. From this library, only the

functions of writing and reading in memory (EEPROM.read(address) [61] and EEPROM.write(address) [62],

respectively) were required, which implies that each memory address represents 1 byte of information.

First, it was defined that it would be necessary to keep only four fields: the identification of the tank and the

vat in operation, the direction of the transfer and the stopping point. All these fields can be represented

numerically, and none of them exceeds the value 15, which allows the use of only four bits per field, that is,

only two bytes of the flash memory need to be used to store this information. Therefore, the following

organization was used:

Table 8: Flash memory coding

Address Bits 7-4 Bits 3-0

0 Vat id Tank id

1 Direction (op) Break Point (bp)

Afterwards, two functions were developed to interact with the memory: one for writing and the other for

reading, both represented in Figure 60. The saveState() function’s logical inputs are the four mentioned fields

- in case the operation is transferring from a vat to a tank (op = 2) or from a tank to a vat (op = 1) - which are

written on the flash, as referred to in Table 8. In the case where the system is not in operation (op = 0), the two

bytes are filled with ones, which indicates that the system is at rest.

The write function, getState(), is run with two pointers that represent the origin and destination containers (* a

and * b, respectively). Here, addresses zero and one from memory are read and stored in two variables

("containers" and "states"). Then, depending on the four most significant bits of address one, the transfer’s

57

direction is identified, and pointers a and b are updated with the number of the relevant container, coming from

the zero address of the memory. At the end, the stop point stored in the memory’s least significant four bits of

address one is returned. In case the system is not in operation, a zero value is returned, indicating that the

system is at rest.

Figure 60: Function to enable EEPROM reading and writing.

In order to make it possible to recover the operating state, the saveState() function is run within the transfer

(activateTC() and activateCT() functions), each time one or more valves finish opening or closing, as shown

in green in Figure 61. A stopping point was always considered before a valve or vat transition. Therefore, in a

tank-to-vat transfer function, six stopping points are identified, and in a vat-to-tank one, seven. Note that, at

the end of the transfer, the stopping point returns to zero.

In addition, each of the transfer functions had to be provided with two logical inputs: the breakpoint (bp) and

the indication of whether the function should run normally or not (run). If the run logical input is 1, the transfer

will occur normally; if it is zero, the transfer will occur only from the last break point, bp, that is, from the last

successful valve transition, because the condition, in red in Figure 61, is applied to all transitions.

58

Figure 61: Chunk of code from activateTC() with break points and state saving.

With these features added, it remains to add the code responsible for identifying the last stopping point and

telling the system how to proceed. This was achieved with the addition of the code chunk in Figure 62 at the

end of the PLC setup() function. Initially, checking occurs as to whether the system stopped in the middle of a

transfer or not. This is carried out through the getState() function, which returns the stopping point stored in

the variable bp and updates the pointers a and b with the containers of the last transition. If bp is zero, the

system proceeds normally as if nothing has been interrupted; if not, the program waits for a user input starting

with the character “$”. Then, if the user enters “continue”, the system proceeds from the point where the

transfer it was stopped; if he enters anything different, the system is reverted to its initial state, the flash

addresses, the stop point and the container variables are reset, and normal operation continues.

Figure 62: Code to restart from break point

A method was also developed that enables users to stop the system in the middle of a transfer, on a voluntary

basis, with the possibility of later continuing from the same point (or not). This functionality was achieved by

adding the red code line of Figure 63 to the transfer functions, before any operation with a valve or vat. Thus,

if the user sends the character "_" in the middle of a transfer, zero ends up being returned. Then, the system is

waiting for a command that can be “+ continue”, which will make the program resume the stopped operation,

or another command associated with the options mentioned above.

59

Figure 63: Chunk of code from activateTC() (with stop command).

Interface Serial

After all the features reported in the previous points, the implementation to execute them will now be described.

The interface was inserted in the loop() control cycle, using the C language switch / case method. When the

user enters a command at a time when the program is at rest, the first character is stored in variable “c”, then

the case to which “c” corresponds is executed. Note that, if more information is required from the user, it is

possible to send the character of the desired command followed by other characters that will be associated to

the second field of the initial command. All commands that can be executed by the user are listed in Table 9.

Table 9: Serial commands to interact with the system.

1st

cmd 2nd cmd Function When it can be used Observations

(int)a#(in

t)b

Sets "a" as origin recipient and "b"

as the destination

System waiting for

input vats 1-6; tanks 7-12:

@ cal Initiates calibration

System waiting for

input

& valve id

Sets valve with specified id to state

"not set"

System waiting for

input

* valve id

Changes the states of valve with

specified id

System waiting for

input

("not set", "opened")->"closed";

“closed”->"opened"

+ continue

Continues transfer from last break

point

System waiting for

input

Used after transfer interrupted,

otherwise does nothing

_

not

defined Stops operations During transfer

Operation can be resumed with

"+continue"

$ continue

Continues transfer from last break

point System setup

Used after system reboot in mid

operation

 Interface with the WiFi module

As already mentioned, the PLC has a WiFi module integrated, ESP32. Therefore, it was decided to implement

the system interface on a webserver allocated in the module. For this, it is necessary to send the information

about the PLC-read status of the system elements to the ESP32 module, so that it can represent the system in

process on the webserver; it is also necessary to transmit the user's options back to the PLC.

The Arduino and ESP32 are internally connected by UART, which indicates that it is possible to send and

receive, in both directions, frames of information in the same way that until now has been utilized by the user,

60

that is, via serial. This communication can be carried out through UART 1 of Arduino (Serial1) and UART 2

of ESP32 (Serial2), with the proper initialization of the serial ports in the setup() function.

Starting with the transmission from the PLC to the WiFi module, the status of all system modules will have to

be forwarded whenever any change occurs. To do so, the json data format was considered, because it is

relatively easy to generate and analyse by machines and humans and has a relatively small size,.

Through the “ArduinoJson” library, a function was developed to send an information grid with the

identification of the electrovalve modules and tanks and their states. This function can be seen in Figure 64.

Figure 64: Function responsible to send modules states to ESP32.

The sendAll() function starts by generating a json document whose size is dependent on the number of fields.

It includes nine modules, the objects associated with those fields, the state of the modules, and parameters that

are then created in the document, “valve” and “state” respectively. Subsequently, through an array with all

modules, the module's “id” and its respective state (“state”) are added to the document. Finally, the document

is sent to Serial1, which, as already mentioned, is associated with ESP32. This function is run at all times when

there is a change in the status of one or more modules (i.e. after using the openValves() function or at the end

of the initRelays() function).

61

In addition to the status of the modules, it is also necessary to convey the state which the system's operation is

in. In this case, the approach taken was simply to send to Serial1 the instruction %(int)state, where "state"

represents an indicative number of the state, as indicated in Table 10.

Table 10: Indicative commands of the operation state.

Command State Command State

%0 Init transaction %9 Cuba full

%1 Open VT and VC %10 Open VT and VB

%2 Filling Vat %11 Open VC

%3 Close VC %12 Draining Vat

%4 Open VB and VP %13 Open VP

%5 Purging %14 Cuba empty

%6 Close VP %15 Calibrating

%7 Close VT and VB %16 Operation interrupted

%8 End transaction

Once the data sent from Arduino to ESP32 is defined, it remains to be seen how ESP32 receives and treats

system information. As the Arduino code editor has a programming interface dedicated to the ESP32 board, it

is possible to program this module in a similar way to Arduino. To read and decode the json files received from

the PLC, the library “ArduinoJson” was used, resulting in the readJson() function described in Figure 65. This

function’s logical grounds result from a document in the json format, which will be saved in another json

document with the same capacity. Subsequently, decoding is carried out, and in the variable “Valve”, the “id”

of the modules is inserted, and, in the variable “State”, the relevant states are entered. Then, the states are stored

in an array ("states") with the position indicated by the corresponding "id".

Figure 65: Function to parse json document.

The reading of the data received on the PLC's Arduino is performed in the loop() control cycle, as shown in

Figure 66. Here, the first character of the received frame is read. If it is “%” the system has entered in a new

state of operation; therefore, the global “status” variable responsible for storing this information is updated

according to the “AllStatus” array, which contains all the states referred to in table 10. In case the first character

62

received happens to be “{“, a json file is received; it is subsequently read in its entirety and incorporated into

the readJson() function.

Figure 66: ESP32 loop() function where data from PLC is read.

 Webserver

Next, the interface is designed where: i) the data indicating the system’s state will be exposed and ii) it will be

possible to interact with it through a web page. To do so, it is initially necessary to connect the ESP to a wireless

network, that is possible with the use of the “WiFi” library. In the code shown in Figure 67, it is observed that

the network data is provided, and in the setup() function the connection is initialized and followed by its

verification until it is stable.

Figure 67: ESP32 WiFi connection.

Then, with the WiFi module connected to a network, it is necessary to generate a webserver to allocate the

interface page. The “ESPAsyncWebServer” library allows ESP32 to create an asynchronous server on the ip

assigned by the network. Figure 68 shows the necessary structure for ESP to run the server. In block 1, included

is a library where the code of the webserver-represented html page is stored and, in block 2, the processor()

function, which is executed by the webserver to replace specific fields in the html code. Block 3 contains the

function responsible for managing the server and all requests that will be made. For now, a single request is

63

observed: the one requiring to run the html page created on the server with the necessary replacements

undertaken by the processor() function. A reference must also be made to block 4, where the instruction that

the server will start is present.

Figure 68: Structure for webserver handling.

Then, interface implementation proceeded. To explain all its elements, Figure 69 shows the final model

obtained from the interface where the different elements were identified by numbers. Next, all the code

developed to implement each element will be described (both the one applied directly to the ESP and the

relevant html code).

64

Figure 69: Developed interface.

Block 1

In the block marked with 1, the image representing the system is present. The image was uploaded to an image

hosting server, imgur, and it is incorporated into the html code (in the style defined by the upper block code in

Figure 70) and through the instruction contained in the lower block with a size of 200 by 240.

Figure 70: Interface image html code.

Block 2

Block 2 represents a table that contains all the valves and their status. Through the html code of the table

represented in Figure 71 (a), it is possible to check the markers where the status of each module will be present

(second column). The processor() function, shown in Figure 71 (e), checks whether the marker corresponds to

65

the desired module, comparing it with the “valves” array elements, in (d), and replacing it with the appropriate

state indicated in the “states” array.

As the modules change their status, the table must follow the changes. That is why the updateField() function

was developed, which performs a “GET” request to the server of the specified field, and is run by the

setInterval() function, which makes requests every second, as can be seen in Figure 71 (b) and (c). On the ESP

side, requests are answered according to their address (“uriv”) and through the code snippet displayed in (f),

which returns to the server the status of the request module present in the “states” array.

Figure 71: State table implementation.

Block 3

In this block, there is another element indicating the status of the modules. These circles are positioned in the

image above each represented module, and can come in three different colours (green, red or yellow) indicating

open valve or empty vat, closed valve or full vat, and module in indefinite state, respectively. In order for the

colour of the circles to follow that of the valve’s status, the code chunk in Figure 72 in the red block was added

to the readJson() function, which updates the colour (as stored in the “color” array) according to the state, as

indicated above.

Figure 72: Function to parse json files with icon colour update.

The rest of the implementation is identical to the previous one. In this case, code was added to the processor()

function to replace the markers with circles with the appropriate colours. Regular update requests are also

66

performed with the setInterval() function, which calls the updateField() function with the respective circle

address. The requests are fulfilled by ESP in the same way, now with a different array of addresses.

Block 4

The small table represented in this block is where the status of the system's operation is indicated. As already

mentioned, within the ESP, this information is stored in the “status” variable, which is why another line was

added to the processor() function to replace the marker with the transfer status, as shown in blue in Figure

73(c). The page code builds a table with two lines – see Figure 73(a) - and the second is where the status of

the operation is displayed, which makes regular requests to update itself, in the same way as it was done

previously: through of the setInterval() and updateField() functions, as shown in section (b) of Figure 73.

Again, the request is answered through the code snippet in (d).

Figure 73: Operation status implementation.

Block 5

This block is where the user can choose the transfer to be executed. The user must pick the desired source and

destination container, which is present in the form, and then make the submission. This form was built using

the code shown in Figure 74 on the left, and when submitting, a request will be made to the server with the

address /get, which contains the indication of the chosen containers. Note that the choice of the second option

is limited by the first, since transfers can only occur from a vat to a tank and vice versa, which is performed

through the show_select() function shown in Figure 74 on the right.

67

Figure 74: Form for user input.

The request made in the submission is answered by the server from the chunk of code on the bottom block of

Figure 75. Here, if the parameters exist, they are assigned to the “Origin” and “Destination” variables, followed

by the operation status change to “Init transaction”. The “s2e” variable is also set to 1, which will cause the

#Origin#Destination instruction to be sent to the PLC in the loop cycle, in order to proceed with the transfer.

Figure 75: Form submission handling.

Block 6

The user has the option to reposition all modules to return the system to its initial state, through the calibration

operation. Block 1 in Figure 76 contains the code used to create a button that, when pressed, performs the

function of block 2 that sends a request to the webserver “/calibration” address. When the ESP receives the

calibration request, it sends the command “@cal” to the PLC, as described in block 3 of Figure 76, and, if the

system is at rest, the calibration starts.

68

Figure 76: Calibration implementation.

Block 7

Within this block is the “stop” button that allows the user to finish a transfer in progress. Figure 77 shows, in

block 1, the construction of the button, which when pressed will execute the stop() function of block 2. In this

function, the operation and calibration buttons are disabled, and two new buttons, “Continue” and “End”, are

available, allowing the user to continue with the operation or to finish and return to the initial state, respectively

(the implementation of these two buttons will be described later). Then, a GET request is made with the address

“/stop” to the Webserver, and when it is answered, ESP32 sends the command "_" to the PLC (block 3 of

Figure 77), which stops the operation.

Figure 77: Stop operation button.

In Figure 77, the “stop” button is disabled, because there is no operation in progress. When a transfer starts,

the button becomes available until the system finishes the operation. Figure 78 shows that the availability of

the button is dependent on the state of the system, which is regularly checked with a 1 second period. This

request is handled on the “/status” address by the ESP32 as previously mentioned in block 4.

69

Figure 78: State check to set stop button availability.

Block 8

In the case that a valve is in the wrong position, the “change” button on block 8 has been added, which allows

the user to change its position. A column was added to the status table containing a “change” button for each

module, as can be seen in the upper block of Figure 79. Below in this figure, the changePos() function is

represented, which makes a request to the server with the identification of the respective module.

Figure 79: Change button html code.

In ESP32, the placed order is fulfilled by executing the code in Figure 80. The ID associated with the order is

compared with the valves array (“valves []”), and when the valve is identified, the command “*(int)id ” is sent

to the PLC, that will alternate its position.

Figure 80: Handle change position request.

In addition to the interface features mentioned above, methods to inform the user in the event of a system

failure, namely power failures and non-operational valves, were also implemented, which allow the user to

choose the procedure after the fault is resolved.

70

Starting with the malfunction of a valve, when, in the middle of a racking, a valve does not respond, the system

suspends the operation. In this situation, the interaction with the user on the interface is shown in Figure 81,

which consists of three phases, the user notification, the representation of non-functional valves and the user

options after maintenance, which will be described below.

Figure 81: Interface on valve malfunction.

Phase 1

In this phase, it is highlighted the notification that one or more valves have failed, with the message “Feedback

from all valves was not received, click on the valves to set them ready and proceed”. This happens when a

valve state is updated to “not responding” on the PLC, which is then sent to ESP32. At the address “/block”,

represented in the upper block of Figure 82, the status of all valves are analysed, and if any of them does not

respond, the message “block” is sent to the server. If there are no failing valves, the message sent is “/ unblock”,

and the operation is updated to the respective state. Upon receiving the message indicating a failure, the server

blocks the user's options and displays the alert message mentioned above, using the code of the second block

in Figure 82.

71

Figure 82: Alert notification on valve malfunction code.

Phase 2

After the user selects the “ok” option of the alert, the interface page will represent the faulty valves in grey,

highlighted in red, and update their status in the table, highlighted in blue. This is where the user should fix the

non-functioning valves, and then press the grey ball of the respective valve. In Figure 83, block 1, the html

code used to represent each of the valve icons is present, which when pressed will execute the changeState()

function, represented in block 2, which makes a request to the server at the address “/changestate” with the ID

of the selected valve. The order is then fulfilled using the code in block 3 of Figure 83, where the repaired

valve is identified and the PLC is signalled through the &(int)id command, which will put the valve in the “Not

set” state.

72

Figure 83:Code for valve state indetifications icons.

Phase 3

When all the faulty valves are in the “Not set” state, in blue, the “Continue” and “End” buttons, highlighted in

red, made with the code of block 1 in Figure 84, are set available in the interface. Pressing the button “End”,

the blockBreak() function (Figure 84 block 2_a) is executed, which enables the interaction buttons again, and

in ESP32 the command “+break” is sent to the PLC (Figure 84 block 2_b) that will make the system return to

initial state. The “Continue” button runs the blockCont() function (Figure 84 block 3_a), and, in ESP32, the

command “+continue” (Figure 84 block 3_b) is sent, indicating the PLC that should continue the suspended

operation.

Figure 84:Code for buttons when system operation breaks.

That said, remains the unexpected system shutdown situation, which is the case in the event of a power failure.

When this happens, the PLC notifies ESP32 and the message “Operation interrupted. Do you want to

continue?”, pops up, with the selection options “ok” and “Cancel”, as seen in the red block of Figure 85,

73

limiting the user to choose whether to proceed from the point where the system stopped, or to reposition the

system in the initial state, respectively.

Figure 85: Interface when system stops unexpectedly.

Figure 86 shows the implementation of this latter functionality on the server. As the PLC indicates that the

system stopped unexpectedly, by transmitting the character “$” via serial communication to the ESP32, loop()

function was added to the code indicated in the first block of the figure. When this character is read, the variable

“fint” is updated with it, which will later be sent to the server as shown in the second block of Figure 86. In the

third block of Figure 86, when the “fint” contains the character “$”, the message in Figure 85 appears, and, in

the case of “ok” option being selected, a request will be sent to the address “/continue” continuing with the

operation from the stop point. Otherwise, the request will be sent to the address "/break" which returns the

system to its initial state. Addresses “/continue” and “/break” are the same used in the buttons “Continue” and

“End” mentioned earlier.

74

Figure 86: Code for system reset in middle of operation.

75

 Experiments and results

 Individual module test

After all modules built and before they were assembled on the platform, tests were carried out on how each

module was running, in order to identify possible problems in their operation. These tests were performed at

the breadboard assembly shown in Section 3.4.1, where all modules were, one by one, connected to the PLC,

as in Figure 25, and programmed with the algorithm shown in Figure 39 of Section 4.2.

The procedure consisted in connecting the limit sensors to the appropriate digital inputs and the motor to the

digital output, and, after PLC initialization, sending the command “1” via serial to the PLC, which would start

the motor rotation in one direction. As soon as one of the limit sensors was reached, the motor should stop,

confirming half of the process, and then the motor wires are changed. Repeating the process would provide the

engine a chance to run in the opposite direction, to confirm the rest of the operation.

The test’s obtained results are shown in Figure 87. Here, only one module is observed in the final two positions,

but they all passed the test. One of the modules did not work well the first time due to contact issues at the

motor terminals which were solved allowing the module to work correctly.

Figure 87: Individual module test result (opened valve and closed valve).

 Basic operation

After the system was completely assembled, it was necessary to verify that all the operations carried out were

completed successfully, as in the ideal case in which the system is not subject to failures. To this end, a test

routine consisting of transfers between containers was stipulated below:

76

Figure 88:Test routine.

Figure 88 shows the various containers connected by arrows, which corresponds to an arrow-direction transfer.

Next to the containers, the state of the two vats is observed after the transfer of the container that precedes it.

This routine was applied ten times, and in all executions, the status of each module was checked at each stage

of each transfer, whether the transfer ended without errors or not, and if the transfer did not end. These data

were recorded in the table in appendix 2. The system's response was confirmed as follows: a case in which it

is supposed to fill a vat when it is already full, or, on the contrary, to empty the vat when it is already empty.

All operations went smoothly with no anomaly, which resulted in a 100% success rate, indicating that, in an

ideal scenario, the system should work without any problems. The system operating normally can be seen at

https://drive.google.com/file/d/1KqGsjJvpAy0B_YWfah6TMo4BVub5G41C/view?usp=sharing.

 Power failure scenario

The experiments performed here served to test the system's response to a power cut but can also be related to

the voluntary shutdown of the system in the middle of a transfer. When this happens, the system, after

restarting, should ask the user if he wants to continue at the point where he left off or if he intends to return to

the initial stage. Tests were then carried out that made it possible to analyse these two options. Transfers from

a tank to a vat (unspecified) and vice versa were considered, and at each point of the transfer, the power was

cut. After the restart, the system's response to each of the options provided was recorded. The expected response

when selecting the option to continue in each transfer status can be seen in Table 11.

Table 11: Expected results after continuing operation on all transfer states

Transfer 1 2 3 4 5 6 7

Vat->Tank O(VB,VT) O(VC) E(SN) C(VC) O(VP) C(VP) C(VT,VB)

Tank->Vat O(VT,VC) F(SN) C(VC) O(VP,VB) C(VP) C(VT,VB) x

Legend:

-O(x,…)-> Open valve x,…

-C(x,…)-> Close valve x,…

-E(x)-> Empty vat x

-F(x)-> Fill vat x

https://drive.google.com/file/d/1KqGsjJvpAy0B_YWfah6TMo4BVub5G41C/view?usp=sharing

77

Afterwards, the tests were performed ten times for each hypothesis and the results obtained were recorded in

the table in Appendix 3. It appears a failure occurred in one case alone. When transferring from a vat to a tank,

it stopped at the beginning of the purge process and the purge valve did not open after the system reset. A new

restart solved the situation, which indicates that the status was saved correctly; so, it is likely that there was a

communication failure between ESP32 and Arduino, when it comes to sending the user's choice. All other tests

were successful. A video with the response of the system to a power cut simulation is presented in

https://drive.google.com/file/d/1TlCPMNFwCkYr5Ygy02tG04eRMVRm80y2/view?usp=sharing.

 Valve malfunction

The last set of tests was conducted to understand the system's response to the malfunction of a valve. If a valve

is damaged and, therefore, does not react to the trigger signal or transitions to the wrong position, then, after a

specified time (six seconds in this case), the transfer in process must stop, and, at the interface, the user can

choose if he wants to proceed or move the system back to the initial stage.

To test this functionality, the transfer state’s scheme shown in Table 11 was used. In this case, in each of the

states, the tab that presses the limit sensors of the active modules was removed. Thus, the modules in question

do not give a feedback to the PLC, and, after the time limit is reached, the system should stop. The results were

recorded after the user's choice, in the event that the tab is replaced and the transfer is continued or stopped for

all possible combinations of containers. The table in Appendix 4 contains the confirmation of each hypothesis’

expected results. An example of this process can be seen in https://drive.google.com/file/d/1c-

bj_wO0OH4kbfuQs8mJetkicEuENocb/view?usp=sharing.

The system responded to all tests as expected. It should be noted that in the case of the transition from a

representative module of a vat, the tests were not carried out, as the functionality was not implemented because

it cannot be transposed to a real case.

https://drive.google.com/file/d/1TlCPMNFwCkYr5Ygy02tG04eRMVRm80y2/view?usp=sharing
https://drive.google.com/file/d/1c-bj_wO0OH4kbfuQs8mJetkicEuENocb/view?usp=sharing
https://drive.google.com/file/d/1c-bj_wO0OH4kbfuQs8mJetkicEuENocb/view?usp=sharing

78

 Conclusions

The automation of liquid transfer systems is a slightly explored facet in the area of automation and industrial

control. As Watgrid is a company mostly focused on the wine market, it was able to acknowledge this and

realize that it would be an opportunity to expand its range of applications and provide its customers with a

product capable of optimizing wine production. Developing such a project becomes even more advantageous

for the company, as it brings the possibility of automating its own racking system, allowing a more cost

effective products’ calibration and maintenance.

The company’s structure already contains some level of control over the actuating elements but does not have

the necessary power to launch the product into the market. The use of a PLC will provide the system with the

ability to mitigate these flaws, resulting in a stable system and one prepared for multi-scaled applications. In

addition, the fact that the system is completely structured and ready to be automated makes it ideal for

developing and testing such a project.

Even though the company’s system is suited for the project, it is a delicate structure regarding the proper

interaction with its components. One failure is enough to jeopardise the whole process, thus incurring in high

costs. Developing a model with modules that (in the eyes of the programmer) work in the same way as the

components of the real system allows a risk reduction when implementing in the real system.

The developed modules do not represent, to the maximum resemblance, the real components, but present an

identical operation. That way, with some software changes, the PLC can control them, and thus, all the

necessary tests can be performed with no substantial damage. The control algorithm implemented also can

control several sets of components associated with tanks and vats, as it was designed to be scalable.

The developed model behaved well when subjected to functional tests. In an ideal scenario, the PLC should be

able to control the real system without failure. Regarding situations in which failures occur, the mitigation

strategies implemented in the software provided risks mitigation measures for damage prevention. This

mitigation measures were tested with satisfactory results. They evidenced only one issue in the power cut

scenario, which was solved with a system restart. This failure may have been a communication error between

the Arduino and the PLC, which indicates that there is a lack of robustness in this connection. That said, it is

concluded that, with the necessary adjustments, it should be possible to adapt the developed work to the real

system.

Throughout the development of this project with Watgrid, several work areas were explored, starting from

automation with the PLC and the various mechanical components, all the way to the design of support parts

(also through simple back and front ends software programming in ESP32). Not to mention the thorough work

of assembling the electrical circuits of the PCB.

79

 Future work

In addition to the main goal, future work to implement the project in a real system may include:

• Connecting the PLC to the company network via Ethernet cable, which provides more robustness than

wireless, and using the company interface allocated on its server, with access via a Websocket.

• Develop software to handle possible failure scenarios other than the ones approached in this project.

80

References

[1] Watgrid, “Winegrid,” [Online]. Available: https://www.winegrid.com/wp-

content/uploads/2020/07/solution_graphic_whitebg2.jpg.

[2] Unitronics, “What is the definition of "PLC"?,” [Online]. Available:

https://www.unitronicsplc.com/what-is-plc-programmable-logic-controller/.

[3] D. Eller, “Velki - PLCs: O que são e quais as suas vantagens?,” [Online]. Available:

https://velki.com.br/pt/blog/aprenda-com-a-velki/plcs--o-que-sao-e-quais-as-suas-vantagens.

[4] Ladder Logic World, “PLC Manufacturers: The Latest PLC Brands, Rankings & Revenues,” [Online].

Available: https://ladderlogicworld.com/plc-manufacturers/.

[5] Industrial Shields, “Industrial Shields,” [Online]. Available: https://www.industrialshields.com/.

[6] Controllino, “controllino,” [Online]. Available: https://www.controllino.com/.

[7] TME, “SIEMENS SIMATIC S7-1200,” Siemens, [Online]. Available:

https://www.tme.eu/pt/details/6es7214-1ag40-0xb0/controladores-plc/siemens/.

[8] TME, “SIEMENS SIMATIC S7-1200,” Siemens, [Online]. Available:

https://www.tme.eu/pt/details/6es7214-1ag40-0xb0/controladores-plc/siemens/.

[9] Controllino, “CONTROLLINO MEGA,” [Online]. Available:

https://www.controllino.com/product/controllino-mega/.

[10] Controllino, “CONTROLLINO MAXI Automation,” [Online]. Available:

https://www.controllino.com/product/controllino-maxi-automation/.

[11] Industrial Shields, “ M-DUINO PLC Arduino 57AAR I/Os Analog / Digital / Relay PLUS,” [Online].

Available: https://www.industrialshields.com/shop/product/is-mduino-57aar-m-duino-plc-arduino-

57aar-i-os-analog-digital-relay-plus-436?category=1.

[12] Industrial Shields, “M-DUINO PLC Arduino Ethernet 58 I/Os Analog/Digital PLUS,” [Online].

Available: https://www.industrialshields.com/shop/product/is-mduino-58-m-duino-plc-arduino-

ethernet-58-i-os-analog-digital-plus-176?category=1.

[13] Industrial Shields, “MDUINO PLC ARDUINO ETHERNET & WiFi & BLUETOOTH LE 53ARR I/Os

ANALOG/DIGITAL/RELAY PLUS,” [Online]. Available:

81

https://www.industrialshields.com/shop/product/007001001000-mduino-plc-arduino-ethernet-wifi-

bluetooth-le-53arr-i-os-analog-digital-relay-plus-1243?search=53+ARR.

[14] Unipi, “Unipi Neuron L203,” [Online]. Available: https://www.unipi.technology/unipi-neuron-l203-

p100.

[15] RS, “Schneider Electric Modicon M221 PLC CPU, Mini USB Interface,” Schneider Electric, [Online].

Available: https://uk.rs-online.com/web/p/plcs-programmable-logic-controllers/8066815/.

[16] TME, “OMRON CP1E-N40S1DR-A,” OMRON, [Online]. Available:

https://www.tme.eu/pt/details/cp1e-n40s1dr-a/controladores-plc/omron/.

[17] TME, “OMRON CP1E-N14DR-A,” OMRON, [Online]. Available:

https://www.tme.eu/pt/details/cp1e-n14dr-a/controladores-plc/omron/.

[18] RS, “Allen Bradley Micro850 PLC CPU - 28 Inputs, 20 Outputs, Ethernet, USB Networking,” Allen

Bradley, [Online]. Available: https://uk.rs-online.com/web/p/plcs-programmable-logic-

controllers/7867213/.

[19] Automation Direct, “C0-00DR-D,” [Online]. Available:

https://www.automationdirect.com/adc/shopping/catalog/programmable_controllers/click_series_plcs_

(stackable_micro_brick)/plc_units/c0-00dr-d.

[20] Automation Direct, “C0-11ARE-D,” [Online]. Available:

https://www.automationdirect.com/adc/shopping/catalog/programmable_controllers/click_series_plcs_

(stackable_micro_brick)/plc_units/c0-11are-d.

[21] Unipi, “Unipi Extension xS11,” [Online]. Available: https://www.unipi.technology/unipi-extension-

xs11-p336?categoryId=40.

[22] TME, “SIEMENS 6ES7223-1BL32-0XB0,” Siemens, [Online]. Available:

https://www.tme.eu/pt/details/6es7223-1bl32-0xb0/controladores-plc/siemens/.

[23] TME, “OMRON CP1W-40EDR,” OMRON, [Online]. Available: https://www.tme.eu/pt/details/cp1w-

40edr/controladores-plc/omron/.

[24] RS, “Módulo de E/S PLC Schneider Electric, Serie TM3, 24 x Entrada/Salida,” Schneider Eletric,

[Online]. Available: https://pt.rs-online.com/web/p/accesorios-para-automatas-

programables/8066988?cm_mmc=PT-PPC-DS3A-_-google-_-3_PT_PT_M_A_and_C_Exact-_-

Schneider_Electric%7CM%C3%B3dulos_E%2FS_para_Aut%C3%B3matas_Programables-_-

TM3DM24R&gclid=CjwKCAiA-vLyBRBWEiwAzOkGVND0MU_.

[25] RS, “Allen Bradley PLC I/O Module for use with Micro850 Series,” Allen Bradley, [Online]. Available:

https://uk.rs-online.com/web/p/plc-accessories/7867229/.

82

[26] RS, “Allen Bradley PLC I/O Module for use with Micro850 Series,” Allen Bradley, [Online]. Available:

https://uk.rs-online.com/web/p/plc-accessories/7867248/.

[27] Automation Direct, “C0-16CDD1,” [Online]. Available:

https://www.automationdirect.com/adc/shopping/catalog/programmable_controllers/click_series_plcs_

(stackable_micro_brick)/dc_i-z-o/c0-16cdd1.

[28] Asco Joucomatic, “TECNOLOGIA ELECTROVÁLVULAS E VÁLVULAS - Funcionamento,

terminologia,” [Online]. Available:

http://www.asconumatics.eu/images/site/upload/_pt/pdf1/00005pt.pdf.

[29] More Wine, “Racking & Transferring Wine,” [Online]. Available:

https://morewinemaking.com/category/racking-transferring-wine.html.

[30] Michael Smith Engineers, “Useful information on Self-Priming Pumps,” [Online]. Available:

https://www.michael-smith-engineers.co.uk/resources/useful-info/self-priming-pumps#.

[31] Controllino, “Instruction Manual,” [Online]. Available: https://www.controllino.com/wp-

content/uploads/2019/02/CONTROLLINO-Instruction-Manual-V1.5-2018-12-14.pdf.

[32] Unipi Technology, “Mervis,” [Online]. Available: https://kb.unipi.technology/en:sw:01-mervis.

[33] Unipi Technology, “Node-RED,” [Online]. Available: https://kb.unipi.technology/en:sw:03-3rd-

party:nodered.

[34] Unipi Technology, “Choosing the right software,” [Online]. Available:

https://kb.unipi.technology/en:sw:00-start.

[35] Industrial Shields, “MDUINO 53ARR PLUS - datasheet,” [Online]. Available:

https://www.industrialshields.com/web/content?model=ir.attachment&field=datas&id=94002&.

[36] Rover Pompe, “Pumps and Electropumps Self-Primers - Dual Rotation,” [Online]. Available:

https://www.hidraulicart.pt/wp-content/uploads/manual-rover-pt.pdf.

[37] TONHE, “A100-T Series Electric Stainless steel304 Shut off Valve,” [Online]. Available:

http://www.motorized-valve.com/Upload/Image/pdf/Tonhe-A100-Motorized-valve.pdf.

[38] TME, “FIT0495-A DFROBOT,” [Online]. Available: https://www.tme.eu/pt/details/df-fit0495-

a/motores-de-cc/dfrobot/fit0495-a/.

[39] TME, “82869014 CROUZET,” [Online]. Available:

https://www.tme.eu/pt/details/crouzet82869014/motores-eletricos/crouzet/82869014/.

83

[40] TME, “499:1 METAL GEARMOTOR 25DX58L MM LP 6V POLOLU,” [Online]. Available:

https://www.tme.eu/pt/details/pololu-1591/motores-de-cc/pololu/499-1-metal-gearmotor-25dx58l-mm-

lp-6v/.

[41] TME, “ROB-12472 SPARKFUN ELECTRONICS INC,” [Online]. Available:

https://www.tme.eu/pt/details/sf-rob-12472/motores-de-cc/sparkfun-electronics-inc/rob-12472/.

[42] RS, “Motorreductor DC con escobillas RS PRO, 1500 gcm, 7 rpm, 3 V dc, 1,71 W,” [Online]. Available:

https://pt.rs-online.com/web/p/motorreductores-dc/0420681/.

[43] RS, “Motorreductor DC con escobillas RS PRO, 15 Ncm, 6 rpm, 12 V dc, 1.31 W,” [Online]. Available:

https://pt.rs-online.com/web/p/motorreductores-dc/0420647/.

[44] PTRobotics, “JGY370 Reversible High Torque Worm Geared 12V 6rpm,” [Online]. Available:

https://www.ptrobotics.com/dc-com-engrenagens/8054-jgy370-reversible-high-torque-worm-geared-

12v-6rpm.html.

[45] PTRobotics, “1000:1 Micro Metal Gearmotor,” [Online]. Available: https://www.ptrobotics.com/dc-

com-engrenagens/2381-1000-1-micro-metal-gearmotor.html.

[46] Robot Shop, “Cytron 12V 17RPM 194.4oz-in Spur Gearmotor,” [Online]. Available:

https://www.robotshop.com/eu/en/cytron-12v-17rpm-1944oz-in-spur-gearmotor.html.

[47] TME, “LL-1003GD2D-1A LUCKYLIGHT,” [Online]. Available: https://www.tme.eu/pt/details/ll-

1003gd2d-1a/leds-tht-10mm/luckylight/.

[48] TME, “LL-1003VD2D-V1-1A LUCKYLIGHT,” [Online]. Available: https://www.tme.eu/pt/details/ll-

1003vd2d-v1-1a/leds-tht-10mm/luckylight/.

[49] TME, “MSW-22 NINIGI,” [Online]. Available: https://www.tme.eu/pt/details/msm-

22/microcomutadores-snap-action/ninigi/msw-22/.

[50] Diodes Incorporated, “ZXMHC10A07N8,” [Online]. Available:

https://pt.mouser.com/datasheet/2/115/ZXMHC10A07N8-78491.pdf.

[51] TME, “ZXMHC10A07N8TC DIODES INCORPORATED,” [Online]. Available:

https://www.tme.eu/pt/details/zxmhc10a07n8tc/transistores-multi-canal/diodes-incorporated/.

[52] TME, “AR03BTCX1001 VIKING,” [Online]. Available: https://www.tme.eu/pt/details/ar0603-1k-

0.1%25/resistencias-de-precisao-smd-0603/viking/ar03btcx1001/.

[53] Grabcad, “motor robot fit0495,” [Online]. Available: https://grabcad.com/library/motor-robot-fit0495-

b-20rpm-6v-itytarg-1.

84

[54] Grabcad, “micro limit switch,” [Online]. Available: https://grabcad.com/library/micro-limit-switch-1a-

1.

[55] Gabcad, “All leds,” [Online]. Available: https://grabcad.com/library/all-leds-1.

[56] Euro Circuits, “Euro Circuits,” [Online]. Available: https://www.eurocircuits.com/.

[57] Duncan Hine, “TS-35 Din Rail Top Hat, Slotted, 35mm x 7.5mm,” 20 5 2019. [Online]. Available:

https://grabcad.com/library/ts-35-din-rail-top-hat-slotted-35mm-x-7-5mm-1.

[58] Arduino, “setup(),” [Online]. Available:

https://www.arduino.cc/reference/en/language/structure/sketch/setup/.

[59] Arduino, “loop(),” [Online]. Available:

https://www.arduino.cc/reference/en/language/structure/sketch/loop/.

[60] Arduino, “EEPROM library,” [Online]. Available: https://www.arduino.cc/en/Reference/EEPROM.

[61] Arduino, “EEPROM.read(),” [Online]. Available:

https://www.arduino.cc/en/Tutorial/LibraryExamples/EEPROMRead.

[62] Arduino, “EEPROM.write(),” [Online]. Available:

https://www.arduino.cc/en/Tutorial/LibraryExamples/EEPROMWrite.

85

Appendixes

Appendix 1: Company's System Scheme

86

Appendix 2:

In
itial state

O
rigin

D
estin

Exp
ected o

p
eratio

n
Esp

ected state
tests

N
o

t fin
ish

ed
Fin

ish
ed

 w
ith erro

rs
Su

ccessfu
lly fin

ish
ed

Erro
rs

Su
ccess rate

Erro
r rate

V
1

T1
O

(V
B

1
,V

T1
)>O

(V
C

1
)>E

(SN
1

)>C
(V

C
1

)>O
(V

P
)>C

(V
P

)>C
(V

T1
,V

B
1

)
C

1
->E

10
0

0
10

100%
0%

T1
V

2
O

(V
T1

,V
C

2
)>F(SN

2
)>C

(V
C

2
)>O

(V
P

,V
B

1
)>C

(V
P

)>C
(V

T1
,V

B
1

)
C

2
->F

10
0

0
10

100%
0%

V
2

T2
O

(V
B

2
,V

T2
)>O

(V
C

2
)>E

(SN
2

)>C
(V

C
2

)>O
(V

P
)>C

(V
P

)>C
(V

T2
,V

B
2

)
C

2
->E

10
0

0
10

100%
0%

T2
V

1
O

(V
T2

,V
C

1
)>F(SN

1
)>C

(V
C

1
)>O

(V
P

,V
B

2
)>C

(V
P

)>C
(V

T2
,V

B
2

)
C

1
->F

10
0

0
10

100%
0%

V
1

T2
O

(V
B

2
,V

T2
)>O

(V
C

1
)>E

(SN
1

)>C
(V

C
1

)>O
(V

P
)>C

(V
P

)>C
(V

T2
,V

B
2

)
C

1
->E

10
0

0
10

100%
0%

T2
V

2
O

(V
T2

,V
C

2
)>F(SN

2
)>C

(V
C

2
)>O

(V
P

,V
B

2
)>C

(V
P

)>C
(V

T2
,V

B
2

)
C

2
->F

10
0

0
10

100%
0%

V
2

T1
O

(V
B

1
,V

T1
)>O

(V
C

2
)>E

(SN
2

)>C
(V

C
2

)>O
(V

P
)>C

(V
P

)>C
(V

T1
,V

B
1

)
C

2
->E

10
0

0
10

100%
0%

T1
V

1
O

(V
T1

,V
C

1
)>F(SN

1
)>C

(V
C

1
)>O

(V
P

,V
B

1
)>C

(V
P

)>C
(V

T1
,V

B
1

)
C

1
->F

10
0

0
10

100%
0%

V
1

T1
N

o
 Execu

tio
n

C
1

->E
10

0
0

10
100%

0%

V
1

T2
N

o
 Execu

tio
n

C
1

->E
10

0
0

10
100%

0%

V
2

T1
N

o
 Execu

tio
n

C
2

->E
10

0
0

10
100%

0%

V
2

T2
N

o
 Execu

tio
n

C
2

->E
10

0
0

10
100%

0%

T1
V

1
N

o
 Execu

tio
n

C
1

->F
10

0
0

10
100%

0%

T2
V

1
N

o
 Execu

tio
n

C
1

->F
10

0
0

10
100%

0%

T1
V

2
N

o
 Execu

tio
n

C
2

->F
10

0
0

10
100%

0%

T2
V

2
N

o
 Execu

tio
n

C
2

->F
10

0
0

10
100%

0%

(V
1

 F, V
2

 E)

Test ro
tin

e

(V
1

 E, V
2

 E)

(V
1

 F, V
2

 F)

L
e
g
e
n
d
:

-O
(x

,…
)->

 O
p
e
n
 valve

 x
,…

-C
(x

,…
)->

 C
lo

se
 valve

 x
,…

-E
(x

)->
 E

m
p
ty

 vat x

-F
(x

)->
 F

ill vat x

Table 12: Basic operation test results

87

Appendix 3:

Table 13: Power failure obtained results

Operation State Option Expected

tests Failed

Finished with
errors Successfully finished Errors

Success
rate Error rate

V->T

1

Continue

O(VB,VT) 10 0 0 10 0 100% 0%

2 O(VC) 10 0 0 10 0 100% 0%

3 E(SN) 10 0 0 10 0 100% 0%

4 C(VC) 10 0 0 10 0 100% 0%

5 O(VP)>d 9 0 1 9

VP did not
open -
reset
worked 100% 11%

6 C(VP) 10 0 0 10 0 100% 0%

7 C(VT,VB) 10 0 0 10 0 100% 0%

1

End

C(VB,VT) 10 0 0 10 0 100% 0%

2 C(VT,VB,VC) 10 0 0 10 0 100% 0%

3 C(VT,VB,VC) 10 0 0 10 0 100% 0%

4 C(VT,VB,VC) 10 0 0 10 0 100% 0%

5 C(VT,VB,VP) 10 0 0 10 0 100% 0%

6 C(VT,VB,VP) 10 0 0 10 0 100% 0%

7 C(VT,VB) 10 0 0 10 0 100% 0%

T->V

1

Continue

O(VT,VC) 10 0 0 10 0 100% 0%

2 F(SN) 10 0 0 10 0 100% 0%

3 C(VC) 10 0 0 10 0 100% 0%

4 O(VP,VB) 10 0 0 10 0 100% 0%

5 C(VP) 10 0 0 10 0 100% 0%

6 C(VT,VB) 10 0 0 10 0 100% 0%

1

End

C(VT,VC) 10 0 0 10 0 100% 0%

2 C(VT,VC) 10 0 0 10 0 100% 0%

3 C(VT,VC) 10 0 0 10 0 100% 0%

4 C(VT,VB,VP) 10 0 0 10 0 100% 0%

5 C(VT,VB,VP) 10 0 0 10 0 100% 0%

6 C(VT,VB) 10 0 0 10 0 100% 0%

88

Appendix 4:

Table 14: Valve failure obtained test results

OperationOperation stateValve not respondingOption Expected Obtained OperationOperation stateValve not respondingOption Expected Obtained

Cont O2->SO1->c->O1->… v Cont O3->SO1->c->O1->… v

End O2->SO1->e->C1C2 v End O3->SO1->e->C1C3 v

Cont O1->SO2->c->O2->… v Cont O1->SO3->c->O3->… v

End O1->SO2->e->C1C2 v End O1->SO3->e->C1C3 v

Cont SO3->c->O3->… v 2 x x x x

End SO3->e->C1C2C3 v Cont SC3->c->C3->… v

3 SN1 x x x End SC3->e->C1C3 v

Cont SC3->c->C3->… v Cont O5->SO2->c->O2->d->… v

End SC3->e->C1C2C3 v End O5->SO2->e->C1C2C5 v

Cont SO5->c->O5->d->… v Cont O2->SO5->c->O5->d->… v

End SO5->e->C1C2C5 v End O2->SO5->e->C1C2C5 v

Cont SC5->c->C5->… v Cont SC5->c->C5->… v

End SC5->e->C1C2C5 v End SC5->e->C1C2C5 v

Cont C2->SC1->c->C1 v Cont C2->SC1->c->C1 v

End C2->SC1->e->C1 v End C2->SC1->e->C1 v

Cont C1->SC2->c->C2 v Cont C1->SC2->c->C2 v

End C1->SC2->e->C2 v End C1->SC2->e->C2 v

Cont O7->SO6->c->O6->… v Cont O8->SO1->c->O1->… v

End O7->SO6->e->C6C7 v End O8->SO1->e->C1C8 v

Cont O6->SO7->c->O7->… v Cont O1->SO8->c->O8->… v

End O6->SO7->e->C6C7 v End O1->SO8->e->C1C8 v

Cont SO3->c->O3->… v 2 x x x x

End SO3->e->C6C7C3 v Cont SC8->c->C8->… v

3 x x x x End SC8->e->C1C8 v

Cont SC3->c->C3->… v Cont O5->SO2->c->O2->d->… v

End SC3->e->C6C7C3 v End O5->SO2->e->C1C2C5 v

Cont SO5->c->O5->d->… v Cont O2->SO5->c->O5->d->… v

End SO5->e->C6C7C5 v End O2->SO5->e->C1C2C5 v

Cont SC5->c->C5->… v Cont SC5->c->C5->… v

End SC5->e->C6C7C5 v End SC5->e->C1C2C5 v

Cont C7->SC6->c->C6 v Cont C2->SC1->c->C1 v

End C7->SC6->e->C6 v End C2->SC1->e->C1 v

Cont C6->SC7->c->C7 v Cont C1->SC2->c->C2 v

End C6->SC7->e->C7 v End C1->SC2->e->C2 v

Cont O2->SO1->c->O1->… v Cont O3->SO6->c->O6->… v

End O2->SO1->e->C1C2 v End O3->SO6->e->C6C3 v

Cont O1->SO2->c->O2->… v Cont O6->SO3->c->O3->… v

End O1->SO2->e->C1C2 v End O6->SO3->e->C6C3 v

Cont SO8->c->O8->… v 2 x x x x

End SO8->e->C1C2C8 v Cont SC3->c->C3->… v

3 x x x x End SC3->e->C6C3 v

Cont SC8->c->C8->… v Cont O5->SO7->c->O7->d->… v

End SC8->e->C1C2C8 v End O5->SO7->e->C6C7C5 v

Cont SO5->c->O5->d->… v Cont O7->SO5->c->O5->d->… v

End SO5->e->C1C2C5 v End O7->SO5->e->C6C7C5 v

Cont SC5->c->C5->… v Cont SC5->c->C5->… v

End SC5->e->C1C2C5 v End SC5->e->C6C7C5 v

Cont C2->SC1->c->C1 v Cont C7->SC6->c->C6 v

End C2->SC1->e->C1 v End C7->SC6->e->C6 v

Cont C1->SC2->c->C2 v Cont C6->SC7->c->C7 v

End C1->SC2->e->C2 v End C6->SC7->e->C7 v

Cont O7->SO6->c->O7->… v Cont O8->SO6->c->O6->… v

End O7->SO6->e->C6C7 v End O8->SO6->e->C6C8 v

Cont O6->SO7->c->O7->… v Cont O6->SO8->c->O8->… v

End O6->SO7->e->C6C7 v End O6->SO8->e->C6C8 v

Cont SO8->c->O8->… v 2 x x x x

End SO8->e->C6C7C8 v Cont SC8->c->C8->… v

3 x x x x End SC8->e->C6C8 v

Cont SC8->c->C8->… v Cont O5->SO7->c->O7->d->… v

End SC8->e->C6C7C8 v End O5->SO7->e->C6C7C5 v

Cont SO5->c->O5->d->… v Cont O7->SO5->c->O5->d->… v

End SO5->e->C6C7C8 v End O7->SO5->e->C6C7C5 v

Cont SC5->c->C5->… v Cont SC5->c->C5->… v

End SC5->e->C6C7C5 v End SC5->e->C6C7C5 v

Cont C7->SC6->c->C6 v Cont C7->SC6->c->C6 v

End C7->SC6->e->C6 v End C7->SC6->e->C6 v

Cont C6->SC7->c->C7 v Cont C6->SC7->c->C7 v

End C6->SC7->e->C7 v End C6->SC7->e->C7 v

T1->V1

1

VT1

4 VC1

VT1

V1->T1

1

VT2

VB2

VB1

1

2 VC1

VC1

VB1

3 VC1

1

VT1

VC2

T1->V2

2 VC1

4

VP5

6 VP

7

VT1

VB1

VB1

1

VT1

VB1

2 VC2

4 VC2

VC1

5 VP

6 VP

7

VT2

VB2

5 VP

6 VP

7

VT1

5 VP

6 VP

7

VT2

VB2

1

VT2

VB2

2 VC2

4 VC2

3 VC2

4

VB1

VP

5 VP

7

VT1

VB1

4

1

VT2

VC1

3 VC1

4

VB2

VP

5 VP

7

VT1

VB1

T2->V1

T2->V2

V1->T2

V2->T1

V2->T2

VP

5 VP

6

VT2

VB2

1

VT2

VC2

3 VC2

4

VB2

VP

5 VP

7

VT2

VB2

Name ID Legend Description

VT1 1 Ox Open Vx

VB1 2 Cx Close Vx

VC1 3 SOx Timout opening Vx

SN1 4 SCx Timout closing Vx

VP 5 c Continue pressed

VT2 6 e End pressed

VB2 7 d delay

VC2 8

SN2 9

89

Appendix 5:

Figure 89: Flow chart

