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abstract Nowadays, virtual predictions are essential in the design and development
of new engineering parts. A critical aspect for virtual predictions is the
accuracy of the constitutive model to simulate the material behaviour. A
state-of-the-art constitutive model generally involves a large number of para-
meters, and according to classical procedures, it requires many mechanical
experiments for its accurate identification. Fortunately, this large number
of mechanical experiments can be reduced using heterogeneous mechanical
tests, which provide richer mechanical information than classical homogen-
eous tests. However, the richness is much dependent on the specimen’s
geometry and can be improved with the development of new specimens.
Therefore, this work aims to design a uniaxial tensile load test that presents
heterogeneous strain fields using a shape optimisation methodology, by con-
trolling the specimen’s interior notch shape. The optimisation problem is
driven by a cost function composed by several indicators of the heterogen-
eity present in the specimen. Results show that the specimen’s heterogeneity
is increased with a non-circular interior notch, compared to a circular one.
The achieved virtual mechanical test originates both uniaxial tension and
shear strain states in the plastic region, being the uniaxial tension strain
state predominant.





palavras-chave Heterogeneidade, ensaio mecânico, otimização de forma, método dos ele-
mentos finitos (MEF), medições de deformação, comportamento do mater-
ial, projeto através de otimização

resumo Hoje em dia, as previsões virtuais do comportamento dos materiais são es-
senciais para o projeto e desenvolvimento de novas peças e componentes
de engenharia. Um aspeto fulcral para a sua virtualização é a exatidão dos
modelos constitutivos. Um modelo constitutivo do comportamento de ma-
teriais geralmente implica um elevado número de parâmetros que, para uma
correta identificação, são necessários diversos ensaios mecânicos clássicos.
Este número de ensaios pode ser reduzido utilizando ensaios mecânicos het-
erogéneos, que providenciam mais informação mecânica do que os ensaios
homogéneos clássicos. Contudo, a riqueza do ensaio mecânico é bastante
dependente da geometria do provete usado, que pode ser melhorada através
do desenvolvimento de novos provetes. Portanto, o objetivo deste trabalho
é desenvolver um ensaio de carregamento uniaxial que apresenta estados de
deformação heterogéneos, utilizando uma metodologia de optimização de
forma, com o intuito de controlar a geometria do recorte interior do provete.
O problema de otimização é guiado através de uma função objetivo com-
posta por diversos indicadores de heterogeneidade presente no provete. Os
resultados mostram que a heterogeneidade de um provete com um recorte
interior não circular é superior ao de um circular. O ensaio mecânico obtido
origina estados de tensão uniaxial e corte puro, na região de deformação
plástica, sendo o estado de tensão uniaxial predominante.
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Chapter 1

Introduction and background

1.1 Framework and motivation

Nowadays, for companies to be competitive, it is necessary to produce faster, with better
quality and with the least waste of resources. The traditional production method based
on empirical knowledge generates lots of waste as well as non-productive time. The
improvement of modeling and numerical simulation tools has shown to improve these
issues. The finite element method (FEM) can foretell the process of manufacturing and
usage of the final product. Besides, more complex components can be analysed, leading
to better quality outcomes. Finally, this technology can reduce the waste produced,
make the time more valuable, thus, generate economic success. However, inadequate
material parameters and simple constitutive models can result in unreliable conclusions.
An accurate numerical simulation requires complex constitutive models, which involve
significant amount of material parameters. To achieve an accurate material parameter
calibration, many experimental tests are essential, such as the uniaxial tensile, simple
shear, plane strain tension, and hydraulic bulge test. However, the large number of
necessary experiments are costly and time-consuming.

Currently, classical tests are the core of the prediction of material macroscopic beha-
viour. Although these provide the stress and strain results for a fixed stress state, these
do not resemble the complex stress and strain fields originated in many manufacturing
procedures [Cooreman et al. 2008]. Therefore, a more complex mechanical test is neces-
sary to better predict the behaviour of materials. Due to full-field measurements (FFM),
such as digital image correlation (DIC), it is possible to obtain the strain fields along
the surface of a specimen of an inhomogeneous mechanical test. DIC techniques allows
the acquisition of rich and sufficient mechanical information with just a few experiments,
or even for just one. Mechanical experiments with a specimen of a particular geometry,
along with its specific boundary conditions, can result in a large range of stress and strain
states. This approach can significantly reduce the number of mechanical experiments, as
well as, enhance the calibration of the constitutive models and reliability of numerical
simulations.

As demonstrated in Fig. 1.1, an improvement on a specimen’s geometry could reduce
the number of mechanical tests and improve the numerical material characterisation
resulting in more accurate finite element simulation of sheet metal forming procedures
and better development of components from different fields, such as aeronautics and
automotive. The goal is to use validated modelling to replace physical testing at the
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2 1.Introduction and background

structural level of components.

Figure 1.1: Framework and impact of this work.

1.2 Literature review

1.2.1 Homogeneous mechanical tests

Uniaxial tensile test
Uniaxial tensile tests provide information on the strength and ductility of materials under
uniaxial tensile stresses [ASTM E8 2010]. For testing metallic materials in the form of
plate, shapes, and flat material having a nominal thickness of 5 mm or over, a plate-type
specimen is used. For testing materials in the form of sheet, plate, flat wire, strip, band,
hoop, rectangles, and shapes ranging in nominal thickness from 0.13 to 19 mm, it is
used sheet-type specimen. These two types of samples are the most commonly used and
are represented in Fig. 1.2, along with the standard dimensions. The round specimens
are used quite generally for testing metallic materials, both cast and wrought, and are
represented in Fig. 1.3.

During a uniaxial tensile test with a round specimen, the engineering stress and
engineering strain curve is obtained, as shown in Fig. 1.4. In Block 1, elastic and uniform
deformations are undergoing up to the yielding point [Choung and Cho 2008]. From
that point to the onset of diffuse necking, deformation is still uniform, but the material
experiences plastic deformation. In Block 3, non-uniform plastic deformation occurs until
fracture.

Shear test
Shear tests, among others, have turned out to be an effective way to characterise sheet
metal yielding [Brosius et al. 2011]. Briefly, the device is designed in order to impose a
parallel displacement of two lateral grips. The resulting deformation of the rectangular
specimen is shown in Fig. 1.5.

When compared to the commonly used uniaxial test, the simple shear test has no
necking development, it achieves a large range of homogeneous strains, the geometry
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1.Introduction and background 3

Figure 1.2: Rectangular tension test specimen [ASTM E8 2010].

Figure 1.3: Round tension test specimen and examples of small-size specimens propor-
tional to the standard specimen [ASTM E8 2010].

is simple, and it is possible to reverse the load direction in the course of the experi-
ment [Rauch 1998].

Concerning the one-sided shear test (Fig. 1.6a), the clamping areas are moved parallel
to each other to generate a shear deformation in the gauge area [Brosius et al. 2011]. This
experiment results in difficulties to achieve enough quality due to the reaction moment
created by applying two opposing forces on shifted lines of action. Hence, compensation
of the relatively high reaction moment must be reached by complex clamping devices.
Though, slipping of the clamps cannot be completely avoided.

The symmetrical shear test according to Miyauchi presents a specimen geometry
which involves three clamping areas and two shear zones in between (Fig. 1.6b). Through
a parallel displacement of the middle clamps relative to the outer ones, the zones in
between are deformed by simple shear [Brosius et al. 2011]. Depending on the aniso-
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4 1.Introduction and background

Figure 1.4: Engineering stress-strain representing three typical blocks in the ductile metal
specimen under tensile load [Choung and Cho 2008].

Figure 1.5: Geometry of a shear sample. The deformed volume is delineated by the
indentations resulting from the clamping of lateral grips [Rauch 1998].

tropy, the angle between the rolling direction and pre-straining, the shear zones can
develop different results. Hence, the measured data may contain the averaged inform-
ation from both shear zones, which makes it difficult to separate the exact reaction of
each alone [Brosius et al. 2011].

(a) (b)

Figure 1.6: (a) One-sided shear test specimen and (b) shear test specimen according to
Miyauchi [Brosius et al. 2011].

The shear test according to ASTM B831 is presented in Fig. 1.7a. Also operating
with one single shear zone, this specimen can be installed in a universal testing machine
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without extensive modification or high-strength clamping [Brosius et al. 2011]. The
area between the fillets is sheared when loading with a tensile force. Due to the lack
of any spatially adjacent clamps, a rotation of the shear area may occur for higher
displacements [Brosius et al. 2011]. This sample is not recommended for cyclic loadings
because of its buckling tendency.

The twin bridge shear specimen (Fig. 1.7b) has been introduced by [Brosius et al. 2011],
along with the demonstration of the stress and strain calculus. By rotating the outer
clamps against the inner ones, a plane torsional moment is transferred through the spe-
cimen and both bridges are sheared in the same way. This mechanical test is able to
characterise the plastic behaviour of sheet metals and no unwanted high reaction mo-
ments need to be compensated. Since no high compressive forces need to be applied to
the experimental setup, there is no danger of buckling, for cyclic loadings. Better results
are reached when using optical strain measurements.

(a)

(b)

Figure 1.7: Schematic design of the (a) shear test specimen according to ASTM B831-
05 [Brosius et al. 2011] and (b) the twin bridge shear specimen analysed in [Brosius
et al. 2011].

Plane strain test
The plane strain test defines the location of the plane strain point in the first principal
stress direction [Pijlman 2001]. A tensile test is performed on sheet metal with a large
width compared to its length. The stress in the transverse direction cannot be measured,
so the second principal stress is not determined. The gradient in the plane strain point
is infinite due to a zero strain in the transverse direction [Pijlman 2001].

[Wagoner 1981] proposed two specimen geometries (Fig. 1.8a) with the intention of
characterizing plane strain tension. Using a universal testing machine, a tensile loading is
applied to the samples, resulting in near plane strain tension in the centre of the samples.

[Pijlman 2001] suggested an experiment that combines plane strain and shear de-
formation using biaxial test equipment, shown in Fig. 1.8b. The sample is fixed between
two pairs of clamps and the vertical translation of the clamps results in plane strain de-
formation. The centre of the specimen highlighted in Fig. 1.8b is the deformed zone. So
that plane strain tension is obtained, the width of the deformation zone must be larger
than the height.

Hydraulic bulge test
The hydraulic bulge test consists of the expansion of sheet metal with internal pressure
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6 1.Introduction and background

(a)
(b)

Figure 1.8: Specimen geometries (dimensions in mm) for plane strain testing proposed
by (a) [Wagoner 1981] and (b) [Pijlman 2001].

while the edges of the specimen are held to prevent axial movement. During the ex-
periment, the internal pressure, bulge curvature and thickness at the pole are measured
continually up to rupture using analytical equations, optical methods or even mechanical
methods. This test is used to determine the formability of various materials [Slota 2008].
Large strains are obtained during the bulge test, leading to a better description of the
plastic properties of sheet metal, compared to the uniaxial tensile test. This test has
advantages, such as the inexistence of frictional interactions, the simplicity of sample
preparation and the stress-strain curve extending to the range of effective strain as found
in many sheet metal forming processes [Campos et al. 2014].

Figure 1.9: Geometric parameter of the hydraulic bulge test [Slota 2008].

1.2.2 Unconventional mechanical tests

Since the material parameters obtained from classical tests, in many cases, do not provide
enough information to originate accurate numerical simulations, heterogeneous mechan-
ical tests are crucial. Applying complex loading conditions, testing complex specimen
geometries or a combination of both originates a non-homogeneous response of the ma-
terial. Additionally, techniques are required to measure the strain fields and material
parameter determination. Full-field deformation techniques are used to measure the het-
erogeneous strain fields on the surface of the specimen during the mechanical experiment
and an inverse method is adopted to identify the material parameters employing for
instance the finite element model updating (FEMU) in which an iterative procedure is
used to minimise a cost function concerning the gap between experimental and numerical
results.

Concerning biaxial loading conditions, the lack of standard cruciform specimens lead
to the development of a new geometry based on the best combination of geometric para-
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meters by [Makinde et al. 1992]. The method used was based on the statistical tools of
factorial and response surface designs. The resulting geometry is a cruciform specimen
with a circular reduced central region, as presented in Fig. 1.10.

Figure 1.10: Typical cruciform specimen with a circular reduced central section geomet-
rically analysed in [Makinde et al. 1992].

[Meuwissen 1998] investigated the usefulness of possible applications of the mixed
numerical experimental methods for the mechanical characterisation of materials in a
domain relevant for industrial metal forming processes. DIC was used to determine the
displacement fields of the experimental tests. The material parameters were determined
by means of an inverse method. It was performed a classic uniaxial tensile test, a uniaxial
tensile test for an irregular plate with two perforations and one cyclic shearing experiment
with a particular geometry, as presented on Fig. 1.11. In the non-standard tensile test,
the geometry of the sample caused inhomogeneous stress and strain fields. For the shear
experiment, the applied constitutive models resulted in relatively large prediction errors.

(a) (b) (c)

Figure 1.11: Geometry (dimensions in mm), thickness 1.5 mm and loading conditions
of the (a) uniaxial tensile test specimen, (b) non-standard tensile test specimen and (c)
shearing test specimen. α denotes the angle from the global x-axis to the rolling direction
(ξ) of the material [Meuwissen 1998].

Regarding the uniaxial loading, a T-shape specimen was designed by [Grédiac et al. 1999]
resulting in heterogeneous strain fields (Fig. 1.12). During the experiment, the dis-
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8 1.Introduction and background

placement field over the specimen was measured with an optical technique, using a grid
method. The parameters identified showed some discrepancies from the expected, due
to the need to differentiate the displacements. The differentiation tends to magnify the
measurement noise of the displacements and to reduce the gradients. It is not just enough
to develop a heterogeneous specimen it is also desirable an accurate method to analyse
it.

Figure 1.12: T-shape specimen and loading conditions considered in [Grédiac et al. 1999].

[Kajberg and Lindkvist 2004] presented a method for material characterisation sub-
jected to large strains. The authors identified the material parameters in two types
of constitutive models by inverse modelling using the specimen presented in Fig. 1.13
on a uniaxial test machine. The experimental field information was provided by Di-
gital Speckle Photography (DSP) technique and the numerical data by Finite Element
Analysis (FEA). Five material parameters were identified and the stress-strain curves
obtained showed a good agreement with the standardised ones.

Figure 1.13: Specimen geometry for a non-standard uniaxial tensile test (dimension in
mm) analysed in [Kajberg and Lindkvist 2004].

[Mohr and Henn 2007] developed an experimental technique along with a sample
geometry to investigate the onset of fracture in metals at low and intermediate stress
triaxialities. The mechanical test is performed on a universal biaxial testing device as
showed in Fig. 1.14b. The flat specimen (Fig. 1.14a) exhibits different stress states within
its gauge section depending on the direction and orientation of the displacement loading.
For 90°loading, the predominant stress state is uniaxial tension at moderate strains; at 0°,
it is pure shear and at an in-between angle, the stress distribution is non-uniform. The
sample was designed in order to develop cracks in the centre area, due to the amplitude
of the strains. The mentioned mechanical test offers different strain states depending on
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the loading conditions, which does not reduce the number of experiments nor the number
of samples but minimises the number of testing machines.

(a) (b)

Figure 1.14: Shape and dimensions in mm (a) of the designed flat specimen and (b)
mechanical testing sketch developed in [Mohr and Henn 2007].

[Belhabib et al. 2008] proposed a specimen geometry for a non-standard tensile test,
to identify material parameters using Finite Element Model Updating (FEMU). The aim
was to get large strain heterogeneity in the gauge area, large strain-paths diversity and
good sensitivity of the strain field to the material parameters. The authors have compared
numerically and experimentally the strain fields, revealing qualitative accordance for
three different specimen geometries. It was evaluated a classical tensile test, a plane
tensile test and the proposed heterogeneous tensile test (Fig. 1.15). The proposed sample
presented a wide heterogeneous strain field in the gauge area and a large diversity of the
strain-paths in comparison to the two other specimens.

Figure 1.15: Shapes of the samples used in [Belhabib et al. 2008]: classical tensile test
(CTT), plane tensile test (PTT) and the proposed heterogeneous tensile test (HTT).

[Cooreman 2008] made a similar study with a uniaxial specimen test on a perfor-
ated specimen as well as on a more complex geometry and a biaxial tensile test with
a perforated cruciform, as can be seen in Fig. 1.16. Six material parameters were suc-
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10 1.Introduction and background

cessfully identified, reducing the number of the required experimental tests from at least
three standard tensile tests to only one complex experiment. Additionally, it was recom-
mended by the authors to develop the mechanical tests in agreement with the forming
process, if the material behaviour is described by simple phenomenological models.

(a)
(b)

(c)

Figure 1.16: Set-up of (a) the uniaxial tensile test on the perforated tensile specimen,
(b) the uniaxial tensile test on the complex shaped material specimen and (c) the biaxial
tensile test on the perforated cruciform specimen studied in [Cooreman 2008].

[Syed-Muhammad et al. 2009] made a study on the optimisation of a bending test
performed on anisotropic plate specimens. It was analysed the supports location, the
applied force location, the shape of the specimen and the orientation of the material fibres
separately or in combination. The heterogeneous strain fields were the input data for the
determination of the constitutive parameters using the virtual field method (VFM). The
global sensitivity to noise of the parameters to be determined was introduced as a cost
function to be minimised. The main parameters influencing the optimisation process were
the location of the supports and loads. The boundary specimen’s shape optimisation,
presented in Fig. 1.17, revealed to be less significant to the optimisation approach.

(a)
(b) (c)

Figure 1.17: (a) Initial configuration of the shape optimisation procedure and (b) result-
ing shape with and (c) without fixed supports and force application analysed in [Syed-
Muhammad et al. 2009].

[Banabic et al. 2010] made an interesting review regarding the advances of aniso-
tropy and formability, in which is presented the experimental methods for measuring
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and modelling the anisotropic plastic behaviour of metal sheets. Concerning the biaxial
tension test using a cruciform specimen, the authors distinguish the samples into three
types, as presented in Fig. 1.18. Type A provides difficulties in identifying an effective
cross-sectional area for determining biaxial stress components accurately, due to having
slits in the arms. The type B specimen has a gauge section thinner than the periphery.
Hence, the thick periphery may prohibit uniform deformation of the gauge section. Be-
sides, it has a varying thickness, so it is not easy to produce the sample. The type C
samples provide a simple way to determine biaxial stress components in the gauge section
by virtue of slits in the arms or welded thin strips. Moreover, this type of specimen is
easy to make, although the C1 type requires welding for fixing the thin strips to the
gauge section.

Figure 1.18: Cruciform specimens for biaxial tension experiments presented in [Banabic
et al. 2010].

[Ishiki et al. 2011] carried out biaxial stress tests and in-plane tension/compression
tests of pure titanium sheets to evaluate the anisotropic plastic deformation behaviour
under linear stress paths. It was performed a biaxial tensile test of a cruciform speci-
men, combined tension-internal pressure tests on tubular specimens, combined tensile
and compressive tests using a newly designed specimen (Fig. 1.19) and uniaxial in-plane
compression test. The authors developed a new methodology for analysing the differ-
ential work hardening behaviour of the pure titanium sheet using the spline function of
Bezier curves. The results showed good agreement with the differential work hardening
behaviour of the pure titanium sheet.

[Pottier et al. 2011] compared three specimen geometries using uniaxial tensile tests:
a classic tensile test with a basic sample, one perforated specimen, and one shear-like
tensile test (Fig. 1.20). The authors applied the FEMU inverse method by the means
of DIC to identify six material parameters of an anisotropic elastic-plastic constitutive
model. A validation through simulation of a deep drawing forming operation was per-
formed. It was proved that the proposed inverse method is able to decrease the number
of tests required for the determination of the material parameters. The parameters iden-
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12 1.Introduction and background

Figure 1.19: Specimen for combined tension-compression test (dimensions in mm) ana-
lysed in [Ishiki et al. 2011].

tified from the classic tensile test were unable to predict the global reaction force when
other kinds of strain fields are involved. On the contrary, the shear-like specimen is the
best to provide a good force prediction. Hence, it was demonstrated the improvement of
parameter identification when heterogeneous strain fields are used. Regarding the deep-
drawing validation, it was showed that the quality of the shape prediction increases with
the strain field heterogeneity.

Figure 1.20: Investigated specimens geometries in [Pottier et al. 2011] and DIC analysis
zones (dimensions in mm).

[Güner et al. 2012] proposed a method to include the distribution of strains in the
identification of the planar anisotropy of sheet metals, including optical measurement of
strains and an inverse parameter identification scheme. Aiming the generation of an in-
homogeneous deformation field and giving equal importance to all types of deformation,
the authors analysed numerically three notch radius variations of a uniaxial tensile test
specimen (Fig. 1.21). The 5 mm radius sample showed difficulties in setting the tool dis-
placement, with respect to a selected maximum strain not to exceed the flow curve limits.
The 40 mm radius specimen hardly showed a deformation gradient. These two specimens
were not selected for further studies. The deformation state of the 25 mm radius sample
lied between the uniaxial tension and plane strain tension states. This geometry was ex-
perimentally tested and further analysed to determine the material parameters, revealing
overall accordance in the distribution of the strains. However, the material parameters
obtained were not accurate due to the assumption of neglecting the kinematic hardening.

[Pottier et al. 2012] proposed a heterogeneous mechanical test using a new sample
geometry based on out-of-plane deformations. The sample was designed to exhibit tensile,
shear and expansion behaviours, as can be seen in Fig. 1.22. The material parameters of
an elasto-plastic constitutive model were successfully identified and, therefore, was con-
cluded that the identification based on the heterogeneous test leads to better calibration
of material behaviour than using a planar inverse identification.

[Zidane et al. 2014] numerically investigated several cruciform specimens from the
literature and proposed a new specimen based on the geometry developed in [Johnston
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Figure 1.21: Specimen geometries and the finite element meshes with varying notch radii
analysed in [Güner et al. 2012].

Figure 1.22: Sample geometry investigated in [Pottier et al. 2012] and principal strain
directions after punch displacement uz = 10 mm. E is the axial component of the
Green-Lagrange strain tensor.

et al. 2002]. A parametric study on the length between the ends of the grooves and the
edge of the square central zone, the fillet of the arms, the thickness and diameter of the
central section was carried out to develop a sample that shows strain localisation in the
central zone (Fig. 1.23). Experimental validation was successfully conducted.

Figure 1.23: Geometry of the specimen developed in [Zidane et al. 2014].

[Kim et al. 2014] developed a specimen for a uniaxial tensile test based on trial and
error which can provide heterogeneous stress states (Fig. 1.24). The authors analysed
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four sample shapes using FFM technique and used the VFM to find the constitutive
parameters of the Hill1948 yield criterion with Swift hardening law. It was concluded that
the simultaneous identification of all anisotropic plastic parameters was reasonable only
when the tests could offer enough heterogeneous information relevant to each anisotropic
parameter. Geometry (d) offered some heterogeneous stress fields but did not provide
enough information for each parameter. Therefore, the mentioned geometry by itself
was unsuited for the simultaneous identification of all anisotropic parameters. Even
though geometry (a) yielded very satisfactory identification results from the numerical
simulation data, the sample tended to buckle in the experiments. Geometry (b) provided
several heterogeneous stress states and the identification of the anisotropic parameters
was carried out successfully. Geometry (c) provided biaxial stress states in the central
area between the two holes and necking occurred at very early stages in the hole areas
during the experiments, resulting in unsuccessful identification.

(a) (b) (c) (d)

Figure 1.24: Specimen geometry (a), (b), (c) and (d) analysed by a uniaxial tensile test
(dimensions in mm) presented in [Kim et al. 2014].

[Prates et al. 2014] proposed an inverse analysis methodology for determining the
parameters of plastic constitutive models, using a biaxial tensile test on cruciform samples
of sheet metals. The specimen was studied based on some geometric parameters, such
as the fillet radius R, the L1/L2 ratio and the opening angle of the arms β. The aim
was to select the values in order to cover as much as possible strain paths from uniaxial
tension to biaxial tension in a balanced way, to maximise the strain value attained in the
centre of the specimen while minimizing the stress concentration in the fillet region and
ensuring a relatively high strain value in the centre of the specimen. The chosen geometry
is presented in Fig. 1.25 and it accomplishes the previously mentioned objectives. The
proposed identification approach was shown to be competitive with classical strategies,
requiring only the measurement of the load evolutions during the biaxial tensile test of
the cruciform specimen and the evaluations of the equivalent plastic strain distribution
along the axes of the sample, at a given moment of the experiment.

[Liu et al. 2015] investigated the potential of the in-plane biaxial tensile test on the
cross specimen for characterizing the hardening behaviour of metallic sheets under large
strains. The authors proposed a cruciform specimen shape as presented in Fig. 1.26a
and 1.26b. The sample was developed based on some literature review knowledge and
numerical simulations of some geometry attempts. The authors considered relevant to
determine the radius r of the thickness-reduced zone, the position D and radius R of
the notches and the positions S1 and S2 of the slots. It was obtained parametrically the
best set of parameters that lead to large strains in the thickness-reduced zone and small
strains located in the notches and at slot ends.
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Figure 1.25: Geometry and dimensions in mm of the cruciform specimen considered
in [Prates et al. 2014]. The grips, represented in grey, hold the specimen by grabbing it
along the dashed grey lines.

(a) (b)

Figure 1.26: (a) Sketch of the optimised cruciform specimen (dimension in mm) and (b)
specimen machined explored in [Liu et al. 2015].

[Souto 2015] proposed a computational design of heterogeneous tests for material
parameters identification using a shape optimisation method for the determination of
the specimen’s boundaries. In addition, the authors have proposed an indicator to rate
and rank mechanical tests regarding the strain state range covered by the test, the de-
formation heterogeneity of the specimen and the strain level achieved up to rupture. It
was generated the optimum shape of the specimen for a uniaxial tensile test as well as
a biaxial tensile test, resulting in a butterfly-shaped sample and a cruciform specimen,
respectively, as shown in Fig. 1.27. Concerning the uniaxial tensile test, the specimen
exhibited a strain state range between simple shear to plane strain tension, for a one-
step procedure, while the biaxial tensile test provided more mechanical information. The
authors have also determined effectively the material parameters for complex phenomen-
ological models involving many parameters.

Following on the previous research, [Souto et al. 2016] focused on the investigation of
the design by optimisation using either Cubic Splines or B-Splines for characterisation
of the specimen shape for a uniaxial tensile test. The resulting shapes are presented
in Fig. 1.28. The authors proved that a specimen shape leading to a rich strain field
information is achieved using B-Splines. However, the designs obtained show high strain
gradients and stress intensification on the outer edges of the blank, which can result in
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(a) Butterfly test. (b) Cruciform test.

Figure 1.27: Initial (left) and optimal (right) specimen shapes obtained by a design
optimisation process with one step procedure using (a) 1 tool and (b) 2 tools analysed
in [Souto 2015].

edge cracking in a real experimental test. It is proposed to adopt a constraint avoiding
situations where the maximum stress is on the edges and preventing sharp concave radii
in the optimisation problem.

(a) (b) (c)

Figure 1.28: (a) Initial and optimal shapes using (b) Cubic Splines and (c) B-Splines
presented in [Souto et al. 2016].

In order to minimise the cost function that provides the optimum heterogeneous
specimen shape for a uniaxial tensile test, based on the indicator developed by [Souto
2015], [Andrade-Campos et al. 2019] investigated the best curve parametrisation and
optimisation algorithm. Seven optimisation strategies were used, but only four of them
were able to converge to a solution: the Nelder-Mead, pattern search, SDBOX, and CMA-
ES. It was also determined the number of control points that minimises the cost function
regarding the different curve parametrisation. The result was seven control points for
B-splines and NURBS, and six for Splines. The specimen that was able to provide more
mechanical information was obtained by using NURBS with CMA-ES. However, CMA-
ES optimisation strategy can be considered as good as SDBOX, providing similar results
and presenting a 10-times faster convergence. The resulting sample shows a butterfly
shape, providing most strain states fitting in the neighbourhood of uniaxial tension due
to the tensile load conditions of the test and the best solutions offered shear and uniaxial
compression states for small values of strain. None of the tests was able to produce the
biaxial strain state. Furthermore, not a unique test presented both the overall range of
stress/strain and large levels of plastic strains.

[Aquino et al. 2019] made an experimental validation of the butterfly mechanical
test proposed in [Souto et al. 2017] using a parameter identification framework. Due to
machining constrains, the virtually designed butterfly test was adapted, resulting in a
higher value of the heterogeneity indicator developed [Souto 2015]. However, there is
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a measuring zone in the experiments smaller than the virtual one, resulting in loss of
information and reduction of the indicator value. It was proved experimentally that the
butterfly test does not show any plane strain information nor has privileged the anisotropy
characterisation. Regarding the parameter identification, the results demonstrated that
the solutions are dependent on the initial set of parameters, but the material behaviour
is quite accurate compared to the experimental observations. Although, differences in
the yield surface are visible.

[Jones et al. 2018] focused on identifying model parameters using VFM, which is
based on the principle of virtual work. With the aim of maximise the stress heterogeneity
and the range of strain rates, minimise large gradients in stress or strain near specimen
edges, restrict the geometry to planar, while preventing buckling and ensure a uniaxial
loading direction, the authors developed a new specimen geometry via an iterative process
(Fig. 1.29). Starting from an initial shape selected by intuition, performing a finite
element analysis and adjusting the design manually for the geometry to fit the criteria,
a final capital letter "D" shape specimen was obtained. The numerical analysis showed
a good heterogeneity of the stress field and the most probable stress states were tension
along the vertical axis, with some amounts of biaxial and shear. Although this specimen
did not cover all the possible strain states, it showed more strain heterogeneity than a
standard dog bone sample before necking.

Figure 1.29: Geometry of the D-specimen used for model calibration with VFM in the
work presented in [Jones et al. 2018].

A complex geometry of a heterogeneous specimen for a uniaxial tensile test was pro-
posed by [Küsters and Brosius 2019] and it is represented in Fig. 1.30. The sample was
studied to demonstrate the extended method for damage characterisation and provide
a wide range of different stress conditions with only one experiment. They performed
experimental tests on a universal tensile testing machine using DIC analysis for acquisi-
tion of the heterogeneous strain field distribution. The specimen presented mainly stress
states between uniaxial tension and plane strain, in the plastic region and equi-biaxial
tension stress state with very low plastic deformation.

Figure 1.30: Geometry of the heterogeneous specimen (dimension in mm) proposed
in [Küsters and Brosius 2019].
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A finite element modelling coupled with the orthogonal design was used to evaluate
the influence of some geometric parameters of a biaxial tensile test of a cruciform spe-
cimen by [Zhu et al. 2019]. Three specimen geometries (Fig. 1.31) were experimentally
analysed, and the process was successfully validated. It was concluded that an inner
chamfer is effective in reducing the degree of stress concentration and increase the ho-
mogeneous stress distribution in the centre region of the specimen and the thinning of
the sample can restrict the plastic flow in the centre region.

Figure 1.31: Three different specimens tested experimentally for validation of the geo-
metry optimisation in [Zhu et al. 2019].

[Oliveira et al. 2020] proposed an indicator based on the principal direction asso-
ciated with the maximum principal stress in absolute value and the material frame to
evaluate the sensitivity of the mechanical tests to anisotropy. Three specimens from the
literature [Belhabib et al. 2008,Kim et al. 2014,Jones et al. 2018] were virtually studied
and qualitatively ranked in terms of heterogeneity by the use of the major and minor
strain diagram, the major and minor stress diagram and histogram of rotation angle dis-
tribution, in function of the equivalent plastic strain. This work provides a good way to
qualitatively classify heterogeneous tests. Although, a quantitative approach is necessary
for a precise ranking.

It was proposed to use topology optimisation for the specimen design by [Chamoin
et al. 2020]. The purpose was to find the geometry of a uniaxial tensile test sample
that maximises the sensitivity of the measured displacement field to sought parameters,
under volume fraction constrains and without any a priori information on the specimen
shape. Numerical results and experimental validation have confirmed the method. The
design obtained from the optimisation procedure (Fig. 1.32a) revealed a part of the
specimen not linked to the remainder of the structure after filtering. For the experimental
approach, the geometry suffered some adaptations due to manufacturing limitations and
it is presented in Fig. 1.32b. This approach revealed a strong issue to face regarding the
physical feasibility of some outcoming shapes. Hence, it is required further research on
the machining capabilities, the smoothing of boundaries as well as the manufacturing
constraints that could be introduced in the cost function. Topology optimisation was
also used by [Barroqueiro et al. 2020] to design a new specimen for a tensile test. The
obtained specimen presented pure shear, compression and tensile stress states in the
plastic region. However, no experimental validation took place.

1.2.3 Commercial review

Regarding the material mechanical characterisation patents, [Knoxville et al. 2012] presen-
ted a method to characterise materials under multiple strains and strain states. Speci-
mens (Fig. 1.33a) for measuring the behaviour of a material with only a single strain
test, a system (Fig. 1.33b) and a method for characterizing material behaviour were in-
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(a) (b)

Figure 1.32: (a) Sketch of the specimen geometry and (b) manufactured sample obtained
using topology optimisation for a uniaxial tensile test developed in [Chamoin et al. 2020].

troduced. The new method, the specimen design and the testing procedure can produce
continuously varying levels of plastic strain achieved at various locations in the specimen
and at different strain rates [Knoxville et al. 2012].

(a)
(b)

Figure 1.33: (a) Sketch of the specimens to be used with the (b) measuring system
presented in [Knoxville et al. 2012].

The invention held by [Hanabusa 2014] relates to a tensile testing machine used for
a biaxial tensile test of thin sheet material and is shown in Fig. 1.34a. Using a uniaxial
tensile testing device, it is performed a synchronised tensile test in four directions along
two axes perpendicular to each other. The main advantages are the simplification of the
structure of the device and the reduced number of components required.

A type of cruciform specimen was patented in [Yulong 2015] to apply in a thermal
environment with a biaxial tensile loading. This way, the centre region of the sample is
subjected to large deformations.

Regarding the commercial point of view, there are no heterogeneous mechanical test
specimens nor specific equipment available for acquisition. This area is still on scientific
development. Though, there are universal uniaxial testing machines available that can
perform uniaxial tensile test on non-standard specimen geometries if the sample has
specific attributes. Hence, it is appropriate to develop sample designs capable of being
tested on this type of machines.
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(a) (b)

Figure 1.34: Sketches illustrating (a) the biaxial tensile testing machine of the invention
in [Hanabusa 2014] and (b) the cruciform specimen for thermal environment testing
introduced in [Yulong 2015].

1.3 Discussion and proposed solution

More complex mechanical tests, providing different stress and strain fields are required
for a better material parameter identification and thus, a more precise material behaviour
numerical prediction. Complexity can be introduced thanks to non-standard specimen
geometries, complex loading conditions or a combination of both.

Many scientific advances on the specimen’s geometry were due to trial and error
on uniaxial loadings as well as biaxial loadings, generating heterogeneous strain fields.
These advances were mainly based on uniaxial tests on perforated specimens, notched
specimens, shear-like tensile zones on samples and other more complicated shapes. Re-
garding the biaxial loading, much research has been done on cruciform shaped samples
with plenty of differences on some geometrical parameters as well as introducing perfora-
tions. Concerning the optimisation approaches, interesting studies have been made using
shape optimisation of the specimen outer boundaries in [Souto 2015] and also topology
optimisation in [Chamoin et al. 2020] and [Barroqueiro et al. 2020].

Regarding the reliability on heterogeneous mechanical test for the material para-
meter identification, numerical prediction and simulation of materials, its success was
proved in [Kajberg and Lindkvist 2004, Cooreman et al. 2008, Cooreman 2008, Pottier
et al. 2011, Pottier et al. 2012, Kim et al. 2014, Prates et al. 2014, Souto 2015, Zhang
et al. 2015, Jones et al. 2018]. It was concluded in [Cooreman et al. 2008, Pottier
et al. 2012, Prates et al. 2014] that parameter identification from heterogeneous spe-
cimens outcomes the one using classical homogeneous tests, such as uniaxial tensile test.
Experimental procedures performed in [Belhabib et al. 2008,Güner et al. 2012,Aquino
et al. 2019,Küsters and Brosius 2019,Zhu et al. 2019,Chamoin et al. 2020] on this type
of specimens also demonstrated its reliability. In [Pottier et al. 2011] was demonstrated
that, regarding the deep-drawing validation, the quality of the shape prediction increases
with the strain field heterogeneity. Furthermore, it was proved in [Cooreman 2008] that
heterogeneous mechanical tests can reduce the number of the required experimental clas-
sical tests for the material parameter identification.

The work developed in [Souto 2015, Souto et al. 2016,Andrade-Campos et al. 2019,
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Aquino et al. 2019] generated an experimentally validated butterfly-type specimen for
uniaxial loading using shape optimisation of the contours. It was also created a cruciform-
type specimen for a biaxial loading using the same approach. The butterfly sample
virtually exhibits strain state range between simple shear to plane strain tension and
experimentally similar results, but without plane strain. It also revealed poor anisotropy
characterisation and limitations due to the symmetries of the design. However, this
specimen has problems related to the slipping of the grips, due to the irregularity of the
boundaries. Besides, the irregular geometry of the outer boundaries cannot be analysed
via DIC because of the smaller region of interest, thus strain measurements near the
edges of the sample are not possible. Moreover, loss of mechanical information occurs for
the exact same reason. A big advantage is the possibility of performing the experiment
in a universal tensile test machine, on contrary of the cruciform specimen obtained by
the same method. Although, the cruciform specimen shape provides finer mechanical
information.

The present work aims to design a uniaxial tensile load test that presents heterogen-
eous strain paths using shape optimisation methods. However, the design shape is limited
to the specimen’s interior notch. The outer boundaries of the sample are rectangular,
which can be simply tested in a standard tensile test machine, reducing the sliding of the
grips. Besides, the specimen has two symmetries assuring the balance during the exper-
imental test. The proposed solution is expected to reduce the number of evaluations of
mechanical tests and, consecutively, acquire higher quality on numerical simulations of
the materials due to better parameterisation of complex constitutive models. A uniaxial
tensile virtual test of the specimen is held up to rupture with a continuous loading path.
Curve parametrisation of the specimen’s perforation is considered as design variable that
generates the larger amount of mechanical information. An indicator which rates the
strain field of the experiment by quantifying mechanical information will be part of the
cost function of the optimisation procedure. For every defined geometry, this indicator
is calculated in order to seek for the most inhomogeneous material behaviour solution
with greater strain intensities. A suitable optimisation algorithm which provides a good
relation between efficiency and precision is applied to find the best solution. ABAQUS
software [Dassault Systèmes 2014] and Python [Python Software Foundation 2020] scrips
are used to simulate the numerical behaviour of the specimen in specific conditions and
to hold the optimisation formulation and algorithm.

1.4 Reading guidelines

This work is divided into four parts. The first part presents the framework and motiva-
tion, literature reviews, such as the scientific, commercial and industrial review, proposed
solution, and reading guidelines. The second part of this work is related to the methodo-
logy used and its implementation. It involves the general methodology, the optimisation
problem formulation, and the solution’s evaluation. Concerning the implementation and
the numerical simulation procedure, it is presented the specimen’s dimension and curve
definition, the material characteristics, the boundary conditions applied, the finite ele-
ment mesh implemented, and the rupture criterion used. Besides, it is mentioned the
optimisation algorithm and the initial solution used in the optimisation procedure. It is
presented in the third part the finite element type and dimension analysis and its con-
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clusions, as well as the reference solution used for further comparisons. In the same part,
several parameters’ dependency analysis is performed, to find the best combination of
them. It is studied the objective function and the heterogeneity criterion, the boundary
conditions, the number of curve control points, the specimen’s height/width ratio, the
initial solution, and the optimisation algorithm. In addition, it is also presented the
results that outcome from the combination of the best parameters and the three better
solutions are highlighted. The last part is related to the conclusions and suggestions for
future works.

—————————————————————-
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Chapter 2

Methodology and implementation

2.1 General methodology, problem formulation and solu-
tion’s evaluation

An iterative process was used to design by optimisation the heterogeneous specimen, as
depicted in Fig. 2.1. The process starts by defining the design variables of the optimisa-
tion procedure. These design variables are the radial coordinate of the points that define
the interior notched specimen shape. For the definition of the specimen shape, different
curve parametrisations can be used. The specimen outer contours are established and
constant during the process. The uniaxial tensile-load test is simulated, and the result-
ing strain and stress states and fields are evaluated using a heterogeneity criterion. This
criterion is used as objective function in the optimisation procedure that generates new
design variables for another evaluation, until convergence is obtained. The best solution
is a shape of the interior notched specimen that generates large number of heterogeneous
strains and stress states during the test until rupture.

Figure 2.1: Iterative process methodology for the design of the heterogeneous specimen.

Regarding the problem formulation, the iterative process aims to maximise the het-
erogeneity of the specimen, by varying the shape of the curve. The interior notched curve
is defined by n control points, as shown in Fig.2.2a. The location of the control points

23
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are the design variables.
Also, for the reduction of optimisation variables number, only the radial coordinate

of the curve was considered as design variables. The angular space was equally split for
the number of control and fixed points, as shown in Fig.2.2b and a search space was
defined.

(a) (b)

Figure 2.2: Representation of the specimen perforation and (a) its curve control points
and (b) their search space.

Therefore, the aim is to find r = [ri], with i = 1, . . . , n, that maximises the specimen’s
heterogeneity (H), and can be formulated as:

Max: H(r,u)

r ∈ IRn

subjected to:

rmin
i ≤ ri ≤ rmax

i ,with i = 1, ...,n
K · u = F.

(2.1)

Every time a solution is defined, it is evaluated in terms of stress and strain heterogen-
eity. It is required a way to quantify and rank the specimen’s heterogeneity. Considering
that there is no heterogeneity criterion standardisation, its definition is necessary.

To analyse the mechanical test’s richness, the strain or the stress states can be used
(Fig. 2.3). The strain states are defined using the minor and major strain ratio ( ε2ε1 ),
whereas the stress states are calculated concerning the ratio between the minor and
major stresses (σ2

σ1
). This way it is possible to identify the strain and stress states in the

specimen’s sheet plane. In sheet metal forming processes, the most common observed
strain and stress states are the equibiaxial tension, plane strain tension, uniaxial tension,
shear, and less commonly uniaxial compression [Oliveira et al. 2020]. On Tab. 2.1 there
are the strain and stress states defined with the ratio intervals, for an isotropic material.
In the work, it is considered that more and different strain and stress states will outcome
in a more heterogeneous mechanical test and, therefore, a more rich test.

Besides, it is also necessary to perform mechanical tests with high strain levels in a
large specimen region. The equivalent plastic strain (εP) is a standard indicator par-

Conde, M. P. Master Degree



2.Methodology and implementation 25

(a) (b)

Figure 2.3: An overview of mechanical tests for material characterisation of sheet metal
forming processes on (a) major and minor strain, and (b) major and minor stress diagrams
[Oliveira et al. 2020].

Table 2.1: Main strain and stress states observed in mechanical tests for material charac-
terisation of sheet metal forming processes, for an isotropic material [Oliveira et al. 2020].

Strain Stress
Equibiaxial tension ε2

ε1
= 1; ε2 > 0; ε1 > 0 σ2

σ1
= 1; σ2 > 0; σ1 > 0

Plane strain tension ε2 = 0; ε1 > 0 σ2
σ1

= ν; σ2 > 0; σ1 > 0

Uniaxial tension ε2
ε1

= 0.5; ε2 < 0; ε1 > 0 σ2 = 0; σ1 > 0

Pure shear ε2
ε1

= −1; ε2 < 0; ε1 > 0 σ2
σ1

= −1; σ2 < 0; σ1 > 0

Uniaxial compression ε2
ε1

= −2; ε2 < 0; ε1 < 0 σ2 < 0; σ1 = 0
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26 2.Methodology and implementation

ticularly important to measure the level of plastic strain reached during the mechanical
tests [Oliveira et al. 2020].

So, a heterogeneity indicator should benefit solutions with different strain and stress
states, as well as large equivalent plastic strain in every state.

In this investigation, three different heterogeneity indicators where analysed. The first
is an adaptation of the heterogeneity criterion used in [Souto 2015]. Instead of evaluating
continuously the specimen strain and stress fields until rupture, it was only analysed the
moment just before rupture. So, the equation terms were only evaluated at the end of
the test. This simplification was made since almost all cases considered in [Souto 2015]
showed that the equivalent plastic strain and strain state standard deviation reached
its larger values at the end of the test. Besides, it was also proved in [Souto 2015]
that the equivalent plastic strain distribution increases along the test, and the strain
state distribution is almost constant along time, due to linear strain paths. Besides, the
maximum equivalent plastic strain of the test is achieved at the end of it, as well as the
average deformation. Therefore, the indicator used is given as:

IT1 = wr1 ·
Std(ε2/ε1)

wa1
+wr2 ·

(ε2/ε1)R
wa2

+wr3 ·
Std(εP)

wa3
+wr4 ·

εP
MAX

wa4
+wr5 ·

AvεP

wa5
(2.2)

The mention indicator has in consideration the strain state range ((ε2/ε1)R), the
strain state standard deviation (Std(ε2/ε1)), the equivalent plastic strain standard devi-
ation (Std(εP)), the mean of each strain state maximum equivalent plastic strain and
maximum equivalent plastic strain of the test (εP

MAX) and the average deformation
(AvεP). These terms have relative weights (wr1, wr2, wr3, wr4, wr5) and absolute values
(wa1, wa2, wa3, wa4, wa5) for the terms adjustment of importance and normalisation. The
maximum possible value achieved by the indicator is 1. For this indicator, the cost func-
tion to be minimised is CFT1 = 2−IT1 and the used relative weights and absolute values
are indicated on Tab. 2.2. These were adjusted in order to improve the optimisation
results. An importance increase of the terms concerning the strain level group pro-
moted the global deformation of the specimen and reduce premature strain localisation
effects [Souto et al. 2017].

Table 2.2: Absolute values and relative weights used in the indicator IT1 having in
consideration [Souto et al. 2017].

wa1 wa2 wa3 wa4 wa5 wr1 wr2 wr3 wr4 wr5

1 4 0.25 0.8 0.4 0.13 0.02 0.25 0.35 0.25

The second indicator used was an adaptation of the one proposed in [Barroqueiro
et al. 2020]. The original indicator was developed and used for a topology optimisation
method and had in consideration the numerical elements’ density (ρe) that was replaced
by the elements’ volume (Ve) in this work. It benefits solutions with less stress concen-
trations, and can be written as:

IT2 =
3∏
s=1

3∑n
e=1 Ve

·
ne∑
e=1

(δse · Ze · Ve) , (2.3)

where s denotes indexes defined in Eq. 2.6, corresponding to a stress state. In this case,
1, 2, and 3 indicate compression, shear, and tension strain states, respectively. The total
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element’s number (ne) are analysed, either under plastic or elastic deformation. The term
Ze penalizes solutions with stress concentrations and non-stressed material (Fig. 2.4a),
given as:

Ze =
1

1 + (b · σ∗e)2
, (2.4)

where b is a constant for the penalisation "aggressiveness" (fixed as 3) and σ∗e is calculated
as:

σ∗e =
σVM
e − σVM

σVM
. (2.5)

The subscript VM refers to von Mises and σVM is the mean stress. The operator δse
filters the elements correspondent to the s stress state [Barroqueiro et al. 2020]. In order
to identify the referred stress state of each element, the principal strains are used (see
Fig. 2.4b) [Barroqueiro et al. 2020]. The referred operator (δse) takes approximately the
value of one if the element is in the s stress state and zero otherwise. This is achieved
via a 2D generalization of the smooth Heaviside function, being formulated as:

δse =


1
2 · (1− tanh(β · (ε11

e + 0.75 · ε22
e ))), s = 1

1
4 · (1 + tanh(β · (ε11

e + 0.75 · ε22
e ))) · (1− tanh(β · (ε11

e + 1.5 · ε22
e ))), s = 2

1
2 · (1 + tanh(β · (ε11

e + 1.5 · ε22
e ))), s = 3.

(2.6)
In order to facilitate the reader’s interpretation of the operator, a graphical repres-

entation is provided in Fig. 2.5, with a 3D representation as well as its projection (2D)
in the principal strain plane [Barroqueiro et al. 2020].

(a) (b)

Figure 2.4: (a) Von Mises stress penalisation function representation and (b) stress state
identification via principal strains [Barroqueiro et al. 2020].

The larger is the indicator IT2, the more heterogeneous is the solution. So, the cost
function to be minimized is CFT2 = −IT2.

The third indicator studied was another adaptation to the indicator proposed in
[Barroqueiro et al. 2020]. Instead of evaluating the stress concentrations, it was taking
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Figure 2.5: Graphical representation of the operator δse [Barroqueiro et al. 2020].

into consideration the equivalent plastic strain value of each element, using:

IT3 =
3∏
s=1

3∑n
e=1 Ve

·
ne∑
e=1

(
δse · εP

MAXe
· Ve
)
. (2.7)

The goal of this indicator is to benefit solutions with larger equivalent plastic strain values
and strain state diversity. The remaining equation’s terms were evaluated similarly to
the indicator IT2. The cost function to be minimized is CFT3 = −IT3.

2.2 Implementation and numerical simulation procedure

A more detailed flowchart of the iterative optimisation process is depicted in Fig. 2.6.
The optimisation variables are initialised using polar coordinates to define the radial
distance to the centre of the specimen, while it is imposed an equal angular spacing
between the points and a variable transformation technique is used for the normalisation
and limit restriction. For the variable normalisation and boundary constraint, a variable
transformation technique is applied [Andrade-Campos et al. 2015].

Then, these variables are converted to cartesian coordinates values, and the extra and
fixed points are introduced for writing a complete spline’s coordinates on a text file. A
fixed point is introduced for giving another point to the curve and at the same to reduce
the number of optimisation variables. It is assumed that the shape obtained at the end
of the optimisation procedure can be scaled up or down without loss of information. This
simplification is made having into consideration a variable dependency analysis on the
specimen’s height/width ratio. To make sure that the curve C1 continuity or even C2

continuity are established in the FEA specimen symmetries, extra points were introduced
just next to the first and last points of the spline. Having two consecutive points in the
same direction is expected to produce a spline’s first and second continuous derivatives.
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Figure 2.6: Design by optimisation procedure flowchart.

These points are introduced based on the numerical element size, just horizontally next
to the fixed point and vertically to the last control point. The spline’s coordinates file is
read and the specimen part is drawn in Abaqus, and all the simulation parameters are
introduced. The finite element analysis (FEA) analysis is submitted, and the damage
initiation is analysed to write a report file at the moment just before rupture occurs.
The report file presents the results necessary for the solution’s evaluation. It is analysed
using Python scripts and the heterogeneity criterion is calculated. The iterative process
continues until the stopping criterion is verified and the optimum solution is achieved,
terminating with the results charting.

2.2.1 Specimen geometry: dimensions and curve definition

Some numerical analysis simplifications were made to reduce the computational time.
Only 1

4 of the sample was modelled, considering symmetric and plane stress conditions.
There were used two symmetries, one along the xx axis and another along the yy axis.
Although, having no symmetries might have created a more heterogeneous specimen,
since the optimisation procedure could originate a non-symmetric sample, with a different
interior notched shape. It would require the quadruple number of control points and of
numerical elements. This would increase considerably the optimisation procedure elapsed
time. A non-linear quasi-static analysis is staged with a vertical displacement enough to
break the sample.

Considering the uniaxial standard tensile test machine, a outer rectangular shape was
considered for the specimen. The specimen dimensions initially used in the FEA analysis
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are depicted in Fig. 2.7.

Figure 2.7: Specimen overall dimensions.

The sample’s top and bottom parts are used for the grips and not considered for the
numerical analysis since the strain and stress states cannot be analysed experimentally in
that location. These dimensions were chosen having in consideration the standard tensile
testing specimen’s dimensions and the DIC camera attributes, such as the size of the
region of interest (ROI). It was preferred a smaller height/width ratio than the standard
tensile test specimen, giving more freedom for the algorithm to generate the curves.
Bearing in mind that is assumed to have no loss of information with the specimen’s
size scaled up or down, these dimensions are merely indicatives. Thus, it is given more
importance to the height/width ratio, which in this case is 265

50 = 5.3. The Abaqus
software has a spline tool to calculate the shape of the curve using a cubic spline fit
between all points along the spline; besides, the first and second derivatives of the spline
are continuous [Dassault Systèmes 2014]. This was the technique used for the specimen
perforation curve definition since it is easy to implement, has a small number of defining
parameters, and shows enough flexibility. More complex curve parametrisation could
be used, but it would involve having more design optimisation variables to deal with.
Increasing the number of curve parameters implies increasing the computational time
required for the optimisation process.

2.2.2 Material behaviour

It was specified an elastoplastic material, using the Swift hardening law. To account
for damage, the material’s forming limit diagram was used. A dual-phase steel (DP600)
was specified for the specimen numerical simulation. The DP600 steel elastic proper-
ties: Young Modulus (E) and poisson’s ratio (ν); as well as the Swift hardening law’s
parameters (K, σ0 and n) are specified in Tab. 2.3.

To evaluate the range of specimen’s strain and stress paths the Abaqus’ forming
limit diagram (FLD) (Fig. 2.8a) was used as rupture criterion. The deformation state is
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Table 2.3: DP600 steel elastic properties and Swift hardening law’s parameters [Ozturk
et al. 2014].

Elastic Plastic
E (GPa) ν K (MPa) σ0 (MPa) n

210.0 0.3 979.46 355.0 0.194

determined by [Dassault Systèmes 2014]:

ωFLD =
εmajor

εFLD
major(εminor, θ, fi)

, (2.8)

as a function of the current deformation state and is defined as the ratio of the current
major principal strain (εmajor), to the major limit strain on the forming limit curve (FLC)
(εFLD

major) evaluated at the current values of the minor principal strain (εminor), temperature
(θ) and predefined field variables (fi) [Dassault Systèmes 2014].

The DP600 steel forming limit curve is defined by the experimental data depicted in
Fig. 2.8b. The damage initiation is verified when ωFLD = 1.

(a) (b)

Figure 2.8: Forming limit diagram (a) for damage initiation criterion [Dassault Systèmes
2014] and (b) referring to DP600 steel specifications [Ozturk et al. 2014].

2.2.3 Boundary conditions and finite element mesh

The displacement required for the virtual uniaxial tensile test is the one enough to break
the specimen. It depends on the material used, as well as the sample’s geometry. It was
numerically analysed the minimum displacement required for the specimen rupture with
the smallest perforation possible. The conclusion was that it is only necessary about 2 %
of the specimen height, to reach rupture of the sample, which is approximately 5.3 mm
of vertical displacement.

The numerical mesh is automatically defined whenever a new solution is evaluated in
the design by optimisation procedure. It is used a non-parametric mesh with two seeded
edges, depicted in Fig. 2.9. The element size and type were further evaluated in terms
of dependency on the results.
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Figure 2.9: Seeded edges for the mesh definition (element edge dimension of 1 mm).

2.3 Optimisation algorithm and procedure

The design problem here defined is non-linear, with continuous optimisation variables
that are within a minimum and maximum values. To impose the variables domain, it is
used a variable transformation, as mentioned before. Thus, it is considered a problem
with no constraints. The cost functions used are also non-linear.

There are two types of algorithms for non-linear optimisation problems: in the direct
search algorithms, that only use the information about the cost function evaluation to
find the optimum solution. These techniques require a large number of evaluations but
can better search the variables domain. Heuristics, meta-heuristic, or classical direct
search methods are examples of this type of algorithms and the other kind of algorithms
is based on the function’s gradient to find the direction of search. These are more efficient
and ensure the local minimum finding for convex and differential functions.

Since it is not possible to know the cost function’s gradient of this problem, a direct
search algorithm must be used. The stopping criterion of this type of algorithm is based
on the cost function and optimisation variables variation.

The Nelder-Mead simplex algorithm was selected for this problem’s first approach
since it revealed a good performance in a similar optimisation problem in [Souto 2015].
It was used SciPy Python’s library for its implementation. The algorithm is based on
the n-dimensional space geometric properties to find the best solution. The simplex is
a geometric figure formed by n + 1 vertices of an n dimensional space. Each vertex is
a possible solution to the optimisation procedure. The optimisation procedure iterative
evolution is defined by the n + 1 simplex vertices cost function value comparison and
its gradual movement in direction to the minimum. The simplex movement is based on
three operations: reflection, expansion, and contraction. These are used to replace the
point with the larger cost function value by a new one [Andrade-Campos et al. 2015]. In
the first iteration, the n + 1 solutions are analysed. Then, for each iteration, only one
or two evaluations are required. Due to the starting-point dependence of this problem,
different initial solutions are going to be further analysed to find the one that reaches a
better final solution. A multi-starting method is a solution to avoid local minimums.

—————————————————————-
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Chapter 3

Analysis and results

3.1 Element dimension dependency analysis

The numerical elements dimension is crucial for the quality of the FEA results. On
the overall, a larger number of elements (finer mesh) would outcome in more accurate
results. Although, with a smaller element dimension, the computational time required
for the numerical simulation analysis is way higher. It is necessary to have a compromise
between the quality of the results and the simulation’s elapsed time.

It was noticed that for a 1 mm vertical displacement imposed, when the specimen’s
interior notch area increases, the maximum equivalent plastic strain (PEEQ) obtained
also increases. This was expected since when the specimen area decreases, the stress and
strain become larger. The element dimension dependency was analysed with this test
with a 1 mm specimen thickness.

It was used a free mesh with 2 seeded edges with a 4-node bilinear plane stress
quadrilateral with reduced integration and hourglass control element. All the 5 control
points were increased gradually and equally with a perturbation depending on the element
edge size, while the fixed point was kept in place. Some solutions are presented in Fig. A.1,
for better understanding. It was tested the element dimensions of 1 mm, 0.8 mm, 0.5 mm,
0.3 mm, 0.2 mm and 0.1 mm as presented in Fig. A.2. The element size dependency
results are plotted in Fig. 3.1a. The maximum equivalent plastic strain values of each
solution were normalised by the highest equivalent plastic strain of all solutions, while
the control points position was normalised by the value of the fixed point (10 mm). The
number of analysed solutions with 0.1 mm was reduced due to the computational time
required for the study. In this case, it was used 1 mm as a control point’s position
perturbation.

The reached curves nearly follow a fourth-degree polynomial and by comparison to
the obtained data, it can be noticed the solutions’ noise. This noise is verified in all the
considered element dimensions.

Besides, the solutions with larger element edge dimensions show lower equivalent
plastic strain, while the solutions with smaller element dimensions present larger strain.
This fact can be due to the strain concentration at one element with a smaller area when
refining the mesh. In terms of absolute value, the maximum equivalent plastic strain
obtained in all the solutions studied was 0.310 and it is the result of the solution with
1.6 control points normalised position for the element dimension of 0.1 mm (Fig. A.3).
More accurate results are achieved when using a smaller element edge dimension.
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The computational time per evaluation required for the analysis of each solution is
plotted in Fig. 3.1b.
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Figure 3.1: (a) Maximum normalised equivalent plastic strain achieved during the test
with the different control points’ position and (b) its required computational time due
to element edge dimension variation.

It is noticed a large variation of the elapsed time per evaluation, depending on the
element dimension. The smaller the element edge dimension, the larger is the elapsed
time per evaluation. For the solutions with an element edge dimension smaller than
0.3 mm, the required time for each solution is more than 250 seconds. The following
analyses adopt the element edge dimension of 0.3 mm, since it finds a relatively accurate
solution, with little noise within an acceptable computational time. Although, it must be
kept in mind that the results of this process are still element size-dependent and future
error can be due to it. These errors can be associated with the heterogeneity criterion
evaluation as well as the specimen spline drawing.

3.2 Element type dependency analysis

The stress and strain outputs are evaluated in the numerical elements’ integration points.
Different element types can influence the numerical simulation results, so it is necessary
to study its dependency. In the overall, an element type with more integration points
will require more computational time for the solution’s evaluation.

The numerical elements investigated in this analysis were CPS4R, CPS4, and CPS8R,
depicted in Fig. B.1. CPS4 is a four-node bilinear plane stress quadrilateral with complete
integration, having 4 integration points. CPS4R is a similar numerical element but has a
reduced integration method and hourglass control. It has just one integration point and
is expected to take less computational time for the numerical evaluation than the CPS4.
CPS8R is an eight-node quadrilateral with four integration points.

It was adopted an element dimension of 0.3 mm and a dependency analysis similar
to section 3.1 was performed, but this time, varying only the element type. The results
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obtained are depicted in Fig. 3.2a.
The curves are also near a fourth-degree polynomial, showing similar behaviour as

before. CPS4 results reveal a lot of noise when varying the control points position.
CPS4R and CPS8R show similar behaviour in terms of variation, but different absolute
values. It is noticed some noise in both solutions, but CPS8R reaches larger equivalent
plastic strain values. Concerning the elapsed time for each numerical evaluation and
analysing Fig. 3.2b, CPS8R is the most time-consuming element and CPS4R the least.
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Figure 3.2: (a) Maximum normalised equivalent plastic strain achieved during the test
with the different control points’ position and (b) its required computational time due
to element type variation.

It is assumed that the solutions analysed using this process have element type de-
pendency and future errors might be caused by it. CPS4R was chosen for the following
work as element type since it provides a good time-accuracy compromise.

3.3 Reference solution

Having the finite element mesh size and element type defined for the FEA, a solution
was used as a reference for further comparisons. It is the best solution obtained out
of the optimisation procedure, with an initial circular interior notch specimen shape,
with a 10 mm radius. The used finite element mesh is non-parametric and made with
CPS4R elements with 0.3 mm along the edges. The cost function used to evaluate the
solutions is IT1. It was considered five curve control points, and a fixed point is introduced
in the vertical symmetry. The specimen’s height/width ratio used in the design by
optimisation method is 5.3, obtained by an overall specimen’s height of 265.0 mm and
width of 50.0 mm. The optimisation algorithm used is the Nelder-Mead, a direct search
type. The mentioned parameters are analysed in the following, by varying each one and
comparing it to the reference solution results. This way, the best parameters can be
chosen and used together to obtain the most heterogeneous specimen shape.
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3.4 Objective function dependency analysis

One of the most challenging goals of this work is the use of a heterogeneous indicator
as a cost function for the solution’s evaluation. Keeping in mind that the goal is to find
the specimen’s geometry that provides the most amount of mechanical information, such
as many strain and stress states, as well as a significant strain levels, the optimisation
analysis was performed with the different indicators.

Fig. 3.3 shows each cost function evolution along with the iterations and evaluations,
as well as the obtained final solutions’ and the respective first and second spline’s de-
rivative. Every optimisation process terminated successfully, reaching an inferior value
compared to the first evaluation, as can be seen in Fig. 3.3a, 3.3c and 3.3e. The con-
vergence to a minimum is noticed, although it cannot be proved that it is the global
minimum. Since the number of evaluations required for IT3 analysis is lower than the
others, it might be due to premature convergence and local minimum finding.

All the achieved solutions show different interior notch shapes, although some partic-
ularities in the solutions generated with IT2 and IT3 are visible in the solution obtained
with IT1. The spline’s C1 continuity is checked for every achieved solution since the
x first derivative is zero in one end and the y first derivative is zero in the other end,
ensuring symmetry conditions of the specimens. In contrast, the second derivative is
different from zero in the symmetries, thus the C2 spline’s continuity is not verified.

To compare the variation of the cost function value between the initial solution and
the best solution, it was calculated the normalised cost function variation mathematically
given as:

CFnorm,var =

∥∥∥∥CFbest − CFfirst

CFfirst

∥∥∥∥ . (3.1)

These values are presented in Fig. 3.4, as well as the number of evaluations normalised
by the reference.

The highest cost function variation is reached with the indicator IT3 and the lowest
was obtained with the indicator IT1. A lower normalised cost function variation value
can indicate that the solution has converged to a local minimum, but not guaranteed.

The minor and major stress (SMinSMaxRatio) and strain ratios (LEMinLEMaxRa-
tio), von Mises stress (S, Mises) and equivalent plastic strain (PEEQ) of the moment just
before rupture can be analysed in Fig. 3.5. The range of strain and stress states is limited
to the considered states in this work. That is why some elements are coloured black and
grey. Comparing the values of the Tab. 2.1 with the solutions’ strain and stress ratios,
it can be concluded that the majority of the specimens’ surface is within tension state,
showing uniaxial compression and pure shear states in the top and bottom surroundings
of the interior notch. The optimum solutions obtained with the indicators IT1 and IT3

have similar von Mises stress distributions. The larger PEEQ value is obtained with
the indicator IT1 and the lowest with IT2, although all indicators result in similar max-
imum PEEQ values, as expected due to the rupture criterion. Concerning the PEEQ
distribution along the specimen, it can be noticed that the top part of the specimen
has no plastic strain, meaning that the grips will not interfere in the experimental data
acquisition. Besides, the opposite occurs along the specimen width, meaning that this
dimension should be further analysed.

The strain and stress diagrams (Fig. 3.6) offer a better understanding of the strain
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Figure 3.3: Cost function evaluation and best-obtained solution, using (a) IT1, (c) IT2

and (e) IT3. Best solution’s first and second derivative, using (b) IT1, (d) IT2 and (f)
IT3.
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Figure 3.4: Analysis of the optimisation cost function and number of evaluations, de-
pending on the heterogeneity criterion used.

and stress states and its intensity, resulting in a good method for the specimens’ het-
erogeneity comparison. Looking at the principal strain diagrams, the sample generated
with the indicator IT3 seems to show a larger number of elements with higher plastic
strain values, than the other specimens. This is a characteristic that should be valued
in a heterogeneous mechanical test. Whereas the solution created with the indicator IT1

presents an interesting stress state sweep starting in the uniaxial tension state, ending
in the compression state, going through the pure shear state and every in-between stress
states. While the solution obtained with IT2 seems to show a larger number of elements
in the uniaxial compression.

In Fig. 3.7 it can be seen the average PEEQ of each considered strain state at the
moment just before rupture occurs of the best geometries obtained with each criteria.
None of the specimens produces the biaxial neither the plane strain states. The best
geometry generated with IT1 shows uniaxial tension, pure shear and uniaxial compression
strain states, whereas the specimen obtained with IT2 favours the uniaxial compression
strain state and the solution created with IT3 favours the pure shear strain state. The
average PEEQ is larger in the solution obtained with the indicator IT3.

Tab. 3.1 shows, for the three specimens obtained with the different indicators, its cost
function value considering the other heterogeneity indicators. For all cases, the best cost
function value is obtained with the respectively best-obtained solutions, except for the
solution obtained with IT3 that has a better performance with the indicator IT1 than
the solution originated by the IT1. This indicates that the solution obtained with IT1 is
a local minimum, and the solution of IT3 outperforms the solution of IT1

Table 3.1: Analysis of the best solutions using the three different heterogeneity indicators.

CF value with IT1 CF value with IT2 CF value with IT3

IT1 1.826 -0.639 -1.81E-06
IT2 1.867 -0.992 -2.18E-06
IT3 1.820 -0.664 -5.62E-06

In conclusion, the different heterogeneity criteria show different benefits and none of
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(a)

(b)

(c)

Figure 3.5: Best obtained solutions’ minor and major stress (SMinSMaxRatio) and strain
ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic strain
(PEEQ) at the moment just before rupture using (a) IT1, (b) IT2 and (c) IT3.
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Figure 3.6: Minor and major strain and stress diagrams at the moment just before
rupture using (a) IT1, (b) IT2 and (c) IT3.
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Figure 3.7: Average equivalent plastic strain for each strain state depending on the
heterogeneity criterion used.

them is clearly better than the others. Since that a choice has to be made for the further
analysis, it was chosen the IT1 indicator, because of its promising principal stress diagram
with a range of elements with stress states from the uniaxial tension until the uniaxial
compression. Besides, this indicator is obtained from the literature and has already been
well studied and applied for many different specimens.

3.5 Boundary conditions dependency analysis

The specimen’s boundary conditions in the vertical and horizontal axis are symmetries
and one of them has a fixed curve point. The fixed point introduced in the spline in the
vertical symmetry must be analysed in order to understand its influence in the final result.
So, it was changed its position in the curve. It was performed an optimisation procedure
with the same number of curve control points, but the fixed point was introduced in the
horizontal symmetry, while the vertical symmetry had a free radius position for its point.

The cost function evolution, as well as the final solution and its first and second
spline’s derivative are presented in Fig. 3.8. The solution referring to Fig. 3.8a is the
reference and has its fixed point in the vertical symmetry, while Fig 3.8c belongs to the
solution with the fixed point in the horizontal symmetry. Both optimisation procedures
terminated successfully with a cost function value of 1.826 for the reference solution and
of 1.843 for the solution with the fixed point in the horizontal symmetry. The reference
solution achieved a better cost function final value. The obtained shapes are different,
but both have C1 continuity in the symmetries.

Comparing the cost function best value (Fig. 3.9), the solution with the fixed point in
the horizontal symmetry is approximately 1.01 times the reference’s cost function value
and the number of required evaluations is smaller than for the reference.

Analysing the solutions’ minor and major stress (SMinSMaxRatio) and strain ratios
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Figure 3.8: Cost function evaluation and best-obtained solution, when the fixed point
is in (a) the vertical symmetry and (c) in the horizontal symmetry. Best solution’s first
and second derivative, when the fixed point is in (b) the vertical symmetry and (d) in
the horizontal symmetry.
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Figure 3.9: Analysis of the optimisation cost function and number of evaluations, de-
pending on the boundary conditions applied.

(LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic strain (PEEQ)
at the moment just before rupture, depicted in Fig. 3.10, all the variables reveal similar
distributions. The specimen’s top part is not under plastic deformation, so there will not
be a problem concerning the grips interfering in the experimental data extraction.

Having in consideration the best-obtained solution’s principal strain and stress dia-
grams shown in Fig. 3.11, both are quite similar in terms of strain and stress elements’
distribution along the deformation states. Although, it seems that the reference solution
presents more elements in the pure shear state.

For a better strain states and comparison, Fig. 3.12 is presented. It shows the best
solution’s average value of the obtained equivalent plastic strain for each strain state.
Both solutions achieved the same strain states, but the reference solution reached larger
average strain values for all the states. A larger difference is noticed in the uniaxial
compression strain state.

The best-obtained solution with the fixed point in the horizontal symmetry achieved
lower strain levels, resulting in a worse cost function evaluation, comparing to the refer-
ence solution.

3.6 Analysis of the number of curve control points

It was performed an analysis varying only the number of the spline’s control points. It
was studied the solutions with 4, 5, 6, 8, 10, 12, and 14 control points. The cost function
value along the evaluations, as well as the best solutions and its derivatives, are presented
in Fig. 3.13. All processes have successfully converged to a better solution. The solution
analysed with 14 control points has stopped due to the reaching of the maximum number
of iterations of 500, resulting in more than 2000 evaluations. However, looking at the
figure, the process shows convergence. When using a larger number of control points, the
number of evaluations is higher, apart from the solution obtained with 8 control points.
This might be due to a local minimum finding. It is noticeable small variances when
adding another control point to the previous spline’s solution. It is verified C1 splines’
continuity in every solution, for both symmetries.
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(a)

(b)

Figure 3.10: Best obtained solutions’ minor and major stress (SMinSMaxRatio) and
strain ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic
strain (PEEQ) at the moment just before rupture, when the fixed point is in (a) the
vertical symmetry and (b) in the horizontal symmetry.
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Figure 3.11: Minor and major strain and stress diagrams at the moment just before
rupture, when the fixed point is in (a) the vertical symmetry and (b) in the horizontal
symmetry.
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Figure 3.12: Average equivalent plastic strain for each strain state, depending on the
boundary condition applied.

Concerning the cost function value and number of evaluations comparison, Fig. 3.14
is presented. Overall, for a larger number of control points, the cost function value
is higher, whereas, for a smaller number of control points, the cost function value is
lower. Every number of control points analysed generated worse solutions, in terms of
cost function value, compared to the reference solution, apart from the solution with 6
control points. The solution with the best cost function value was the one obtained with
6 control points.

It can be noticed that the strain and stress distributions presented in Fig. 3.15 are
relatively similar to each other, whatever the number of control points is used. All the
solutions show a large predominance of the uniaxial tensile strain state, as expected.
However, in the area near the interior notch it is noticeable uniaxial compression and
pure shear strain states. None of the solutions exhibit possible problems regarding the
experimental test and its data acquisition.

Analogous conclusions can be made when observing the principal strain and stress
diagrams in Fig. 3.16. The number of control points little influences the strain and stress
states.

Concerning only the equivalent plastic strain average of each strain state, shown in
Fig. 3.17, it is verified that the solution obtained with 6 control points presents a larger
PEEQ average mainly due to the tension strain state, whereas the solution with 12
control points generates larger PEEQ subjected to shear and compression strain states.
Nevertheless, it shows a smaller PEEQ averaged for the tension strain state. The solution
with 14 control points is the one with a larger PEEQ average subjected to the compression
strain state.
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Figure 3.13: Cost function evaluation and best-obtained solution, using (a) 5 control
points, (c) 4 control points, (e) 6 control points, (g) 8 control points, (i) 10 control
points, (k) 12 control points and (m) 14 control points. Best solution’s first and second
derivative, using (b) 5 control points, (d) 4 control points, (f) 6 control points, (h) 8
control points, (j) 10 control points, (l) 12 control points and (n) 14 control points.
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Figure 3.14: Analysis of the optimisation cost function and number of evaluations, de-
pending on the number of the curve control points used.
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(d)

(e)

(f)
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(g)

Figure 3.15: Best obtained solutions’ minor and major stress (SMinSMaxRatio) and
strain ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic
strain (PEEQ) at the moment just before rupture, using (a) 5 control points, (b) 4
control points, (c) 6 control points, (d) 8 control points, (e) 10 control points, (f) 12
control points and (g) 14 control points.

3.7 Specimen height/width ratio dependency analysis

Since the specimen’s width and height were not considered as optimisation variables and
considering that they can influence the results, it was performed a height/width ratio
dependency analysis. The widths of 50 mm, 60 mm, 65 mm, 80 mm, 100 mm and 120 mm
were tested, keeping the specimens’ height, corresponding to height/width ratios of 5.30,
4.42, 4.08, 3.31, 2.65 and 2.21, respectively. The evaluations’ cost function value, the
obtained solutions, and its splines’ first and second derivatives are depicted in Fig. 3.18.

Every analysed solution seems to have successfully converged to a better solution
within approximately 800 evaluations. All the obtained solutions are different from each
other and show spline C1 continuity.

Seeing Fig. 3.19, it is noticed that the cost function value improves (reduce) with
larger height/width ratios than the reference, until ratios larger than 4 where it starts
to get worse (higher), with the exception of the solution obtained with the height/width
ratio of 2.65. The best solution value is obtained with this ratio.

In Fig. 3.20, the best-obtained solutions’ minor and major stress and strain ratios,
von Mises stress and equivalent plastic strain are illustrated at the moment just before
rupture, along the specimens’ surface. Here it is observed that, for some solutions, the
spline’s continuity is lost when transferred to Abaqus [Dassault Systèmes 2014]. Several
differences in the strain and stress distributions are noticed. However, all the solutions
exhibit uniaxial tension, uniaxial compression and pure shear strain states. Concerning
the grips interference in the experimental test, the solutions with a smaller height/width
ratio show some problems, since the plastic deformation is verified in the specimen’s
bottom and top parts.

The minor and major strain and stress diagrams at the moment just before rupture,
with the different height/width ratios, are presented in Fig. 3.21. On the overall, the
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Figure 3.16: Minor and major strain and stress diagrams at the moment just before
rupture, using (a) 5 control points, (b) 4 control points, (c) 6 control points, (d) 8
control points, (e) 10 control points, (f) 12 control points and (g) 14 control points.
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Figure 3.17: Average equivalent plastic strain for each strain state, depending on the
number of control points used.
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Figure 3.18: Cost function evaluation and best-obtained solution, with a height/width
ratio of (a) 5.30, (c) 4.42, (e) 4.08, (g) 3.31, (i) 2.65 and (k) 2.21. Best solution’s first and
second derivative, with a height/width ratio of (b) 5.30, (d) 4.42, (f) 4.08, (h) 3.31,(j)
2.65 and (l) 2.21.
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Figure 3.19: Analysis of the optimisation cost function and number of evaluations, de-
pending on the height/width ratio used.

diagrams are identical but have a larger number of points when the height/width ratio
is smaller. However, the principal stress’ diagram of the 2.65 height/width ratio shows
several elements within the equibiaxial tension, facing elastic deformation. Notice that
the 4.08 height/width ratio solution exhibits elements with uniaxial tension stress state to
the uniaxial compression state with the in-between stress states all covered and presenting
plastic deformation.

Concerning the best solutions’ average equivalent plastic strain of each considered
strain state (see Fig. 3.22) the 4.08 height/width ratio solution shows larger average strain
for the tension strain state than the reference solution and all the other tested solutions,
whereas the solution obtained with the height/width ratio of 2.21 demonstrates larger
average strain for the pure shear and compression strain states.

3.8 Initial solution dependency analysis

Three different initial shapes were tested, as shown in Fig. C.1, with the aim of under-
stating the dependency of the initial solution used in the final solution. The reference
solution in this analysis is again the specimen with the circular-shaped interior notch
(Fig. C.1a). A solution with a cross-like shaped interior notch (Fig. C.1b) was analysed
as initial solution as well as with an ellipse shape’s interior notch (Fig. C.1c).

The obtained cost function value along each evaluation and iteration is depicted in
Fig. 3.23, for each analysis, as well as the final solution obtained from each initial solution
and its first and second spline derivatives. The three optimisation processes finished
successfully with a similar number of evaluations, resulting in a similar computational
time.

The initial solution that reached the best cost function value was the specimen with
the ellipse-shaped interior notch, with approximately 1.786, whereas the reference solu-
tion (circular shaped interior notch) reached 1.826. The cross-like shaped interior notch
solution achieved approximately 1.864 as cost function value. In terms of cost function
variation, the larger result was with the cross-like as an interior notch.

Concerning the resulting splines, it is confirmed the C1 continuity in both symmetries,

Conde, M. P. Master Degree



3.Analysis and results 59

(a)

(b)

(c)
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(d)

(e)

(f)

Figure 3.20: Best obtained solutions’ minor and major stress (SMinSMaxRatio) and
strain ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic
strain (PEEQ) at the moment just before rupture, with a height/width ratio of (a) 5.30,
(b) 4.42, (c) 4.08, (d) 3.31, (e) 2.65 and (f) 2.21.
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Figure 3.21: Minor and major strain and stress diagrams at the moment just before
rupture, with a height/width ratio of (a) 5.30, (b) 4.42, (c) 4.08, (d) 3.31, (e) 2.65 and
(f) 2.21.
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Figure 3.22: Average equivalent plastic strain for each strain state, depending on the
height/width ratio.

except for the ellipse solution that loses its C1 continuity in the horizontal symmetry when
converted to Abaqus, as can be seen in Fig. 3.25c. However, theoretically this condition
is verified (Fig. 3.23f).

Different interior notch final shapes were obtained out of different initial solutions in
the optimisation procedure, so the design method depends on it. A possible way to avoid
this situation is to use a multi-starting algorithm, giving several different initial solutions
to analyse, instead of just one. However, que computational effort required would be
very large.

It is presented the normalised best cost function value and normalised number of
evaluations of each analysis in Fig. 3.24. The solution obtained with the initial ellipse
shape generated a better cost function but required a larger number of evaluations.

In Fig. 3.25 it can be seen the minor and major stress (SMinSMaxRatio) and strain
ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic strain
(PEEQ) at the moment just before rupture of the final achieved solutions. In terms of
minor and major strain and stress ratios, it can be noticed again in all solutions that
the surrounding top and bottom of the interior notch show shear and compression state,
whereas the majority of the specimen reveals tension state. The maximum PEEQ and
von Mises stress results are very similar in the three shapes. The solution originated out
of the cross-like shaped interior notch shows a smaller number of elements subjected to
plastic strain, whereas the solution achieved with the ellipse interior notch has a very
different PEEQ and von Mises stress distribution along its surface. None of the solutions
reveal possible problems regarding the interference of the grips with the material plastic
deformation.

In Fig. 3.26 it can be seen the minor and major strain and stress diagrams for the
three final solutions. The circular and cross-like interior notch strain and stress states
are relatively similar, while the ellipse interior notch demonstrates more differences.
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Figure 3.23: Evaluation of the cost function value, initial and best solutions obtained
with (a) the circular interior notch, (c) the cross-like interior notch, and (e) the ellipse-
shaped interior notch as initial solution. Best solution’s first and second derivative for
(b) the circular interior notch, (d) the cross-like interior notch and (f) the ellipse-shaped
interior notch as initial solution.
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Figure 3.24: Analysis of the optimisation cost function and number of evaluations, de-
pending on the initial solution used.

The obtained average equivalent plastic strain for each strain state is depicted in
Fig. 3.27. None of the final solutions has exhibited the plane and biaxial strain states
in plasticity. The solution obtained out of the cross-like shaped interior notch shows
the same strain states as the reference solution, but with smaller amounts. Although
the solution achieved with the ellipse interior notch has a better cost function value, it
does not exhibit the compression strain state with plastic deformation. However, the
equivalent plastic strain of the different strain states is larger than the reference, as well
as its mean value.

It is concluded that the optimisation process with this algorithm is dependent on the
initial solution. A multi-starting strategy might be a way of avoiding local minimums
and obtain a better final solution.

3.9 Optimisation algorithm dependency analysis

The way an optimisation procedure evolves is crucial for the best solution’s finding.
The convergence to local minimums dependes on the used optimisation algorithm. So,
an optimisation algorithm dependency analysis was performed. The reference solution
uses Nelder-Mead method, whereas the other solution uses a differential evolution al-
gorithm. The optimisation procedures’ results are depicted in Fig. 3.28. Concerning
the evaluations’ evolution, the procedure using a differential evolution algorithm, using
a population size of 30 and random initial solutions, completes more than 1500 evalu-
ations with no signs of convergence. Although the optimisation process was forced to
stop, it showed higher cost function values compared to the reference process. The out-
coming best solution was analysed, anyway. All the obtained solutions have spline’s C1

continuity.
In terms of cost function value, the generated solution from the differential evolution

algorithm shows a worse evaluation, comparing to the reference solution (Fig. 3.29), even
with a large number of the performed evaluations.

The minor and major stress and strain ratios, the von Mises stress and equivalent
plastic strain at the moment just before rupture are depicted in 3.30. It is noticeable that

Conde, M. P. Master Degree



66 3.Analysis and results

(a)

(b)

(c)

Figure 3.25: Best obtained solutions’ minor and major stress (SMinSMaxRatio) and
strain ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic
strain (PEEQ) at the moment just before rupture, using (a) the circular interior notch,
(b) cross-like interior notch and (c) the ellipse interior notch as initial solutions.
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Figure 3.26: Minor and major strain and stress diagrams at the moment just before
rupture, using (a) circular interior notch, (b) cross-like interior notch and (c) the ellipse
interior notch as initial solutions.
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Figure 3.27: Average equivalent plastic strain for each strain state, depending on the
initial solution used.

the maximum PEEQ from the solution obtained with the differential evolution algorithm
is smaller than the reference and fewer elements are exhibiting plastic deformation. The
maximum von Mises stress is also smaller. Concerning the strain and stress ratios,
these show a very large predominance of the uniaxial tensile state. Regarding the grips’
compatibility, it is verified since the plastic deformation is only observed in the specimen’s
middle area.

It is also noticeable in the minor and major stress diagram (Fig. 3.31) the predom-
inance of the uniaxial tensile state, as well as the small strains in the minor and major
strain diagram.

Regarding the average equivalent plastic strain of the considered strain states, once
again the solution obtained with the differential evolution algorithm shows a smaller
strain average and fewer strain states, comparing to the reference.

3.10 Analysis of the best parameters combined

Analysing all the performed parameters dependency analysis, it was found the best fea-
tures of the optimisation procedure, in order to find the most heterogeneous specimen,
varying only the spline’s control points position. Concerning the finite element mesh,
the CPS4R element type with a 0.3 mm edge leads to a good compromise between com-
putational time and accuracy. The heterogeneous criterion used as cost function that
outcome in a more interesting solution in terms of strain and stress states variety was
the IT1 since it exhibited a range of elements with stress states from the uniaxial tension
until the uniaxial compression and is previously well-studied indicator from the literat-
ure. However, since the IT3 also led to good conclusions, it was also evaluated in this
final approach.

The fixed point position that outcome in a solution with better cost function value

Conde, M. P. Master Degree



3.Analysis and results 69

0 200 400 600 800
Number of evaluations

1.84

1.86

1.88

1.90

C
o
st

fu
n

ct
io

n

Cost function value along the optimisation process

Along iterations

Along evaluations

0 25
(mm)

0

20

40

(m
m

)

Best solution

(a)

0 10 20
x derivative

−20

−15

−10

−5

0

y
d

e
ri

v
a
ti

v
e

First order spacial derivative

−100 0
x derivative

−150

−100

−50

0

50

100

150

y
d

e
ri

v
a
ti

v
e

Second order spacial derivative

(b)

0 200 400 600 800 1000

Number of evaluations

1.88

1.89

1.90

1.91

1.92

1.93

1.94

C
o
st

fu
n

c
ti

o
n

Cost function value along optimisation process

Along iterations

Along evaluations

0 20

(mm)

0

10

20

30

40

50

(m
m

)

Best solution

(c)

0 5 10 15 20

x derivative

−25

−20

−15

−10

−5

0

5

y
d

e
ri

v
a
ti

v
e

First order spacial derivative

−300 −200 −100 0 100 200

x derivative

−300

−200

−100

0

100

200

y
d

e
ri

v
a
ti

v
e

Second order spacial derivative

(d)

Figure 3.28: Cost function evaluation and best-obtained solution, using (a) Nelder-Mead
algorithm and (c) differential evolution algorithm. Best solution’s first and second deriv-
ative, using (b) Nelder-Mead algorithm and (d) a differential evolution algorithm.
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Figure 3.29: Analysis of the optimisation cost function and number of evaluations, de-
pending on the algorithm used.
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(a)

(b)

Figure 3.30: Best obtained solutions’ minor and major stress (SMinSMaxRatio) and
strain ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic
strain (PEEQ) at the moment just before rupture, using (a) Nelder-Mead algorithm and
(b) differential evolution algorithm.
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Figure 3.31: Minor and major strain and stress diagrams at the moment just before
rupture, using (a) Nelder-Mead algorithm and (b) differential evolution algorithm.
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Figure 3.32: Average equivalent plastic strain for each strain state, depending on the
algorithm used.

was in the vertical symmetry. The number of curve control points that revealed a more
heterogeneous specimen was 6. In terms of height/width ratio, the best is 2.65, which
means a 100 mm overall specimen’s width.

About the initial solution, a large dependency was seen, when used the Nelder-Mead
algorithm. The obtained final solutions were always different from each other, with differ-
ent cost function values, but similar to each initial solution. It was expected that using
a multi-starting method along with a differential evolution algorithm this dependency
would be avoided. However, the success of this method was not achieved. So, for the
procedure’s best parameter’s combination, it was used the Nelder-Mead algorithm with
the ellipse-shape as initial solution.

Observing Fig. 3.33, it can be noticed that the number of evaluations required for
convergence of the solution using IT1 is smaller than the usual with the same algorithm.
Therefor, a local minimum was probably reached. The process using IT3 required a
larger number of evaluations, comparing to the previous design process using this cost
function. The final solutions show different interior notch shapes, but both show C1

spline’s continuity in the symmetries. The first is just one hole in the middle of the
specimen, despite it looks like two.

Comparing the cost function evolution in Fig. 3.34, the solution using IT3 presents
larger variation as well as larger number of evaluations.

For a better comparison, both solutions were analysed using the non-respective het-
erogeneous criterions as cost function, as depicted in Tab. 3.2. For both cases, the final
solution shows better performance with the respective heterogeneity criterion.

From Fig. 3.35, it can be noted that the solution obtained with the IT1 shows larger
heterogeneity since it has a larger range of minor and major strain and stress ratios,
compared to the one obtained with IT3. Note that, the solution obtained with the IT1

indicator shows different strain states in the middle area of the specimen and not just
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Figure 3.33: Cost function evaluation and best-obtained solution using the best paramet-
ers combined and (a) the heterogeneous criterion IT1 and (c) IT3. Best solution’s first
and second derivative using the best parameters combined and (b) the heterogeneous
criterion IT1 and IT3.

Table 3.2: Cost function value evaluated with the two different heterogeneity indicators
for the best solutions obtained with the best parameters combination.

CF value with IT1 CF value with IT3

IT1 1.775 -1.319E-07
IT3 1.857 -1.312E-05
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Figure 3.34: Analysis of the optimisation cost function and number of evaluations using
the best parameters combined with heterogeneous criterion IT1 and IT3.

near the interior notch border. However, it exhibits some elements within the plane
strain state in the specimen’s top and bottom part, which might interfere with the grips
in the experimental data acquisition.

Concerning the strain and stress diagrams of Fig. 3.36, it can be noticed that the
obtained solution using IT1 shows stress states around the uniaxial tension, uniaxial
compression and pure shear in the plastic region. Besides, it also presents equibiaxial
tension stress state but with smaller intensities, whereas the solution obtained with IT3

shows uniaxial tensile stress state predominance and well-filled range of stress states
going from the uniaxial tensile stress state until the uniaxial compression, in the plastic
region. There are fewer elements exhibiting strain in the elastic region.

Fig. 3.37 shows with more detail the equivalent plastic strain average of each con-
sidered strain state exhibiting in both specimens. It can be noticed that the solution
obtained with IT3 presents a larger number of strain states in the plastic region. How-
ever, the PEEQ average in both cases has a very similar value.

3.11 Best solutions discussion and conclusions

Taking into account the several design optimisation procedures and its analysis in terms
of mechanical richness, the most interesting specimen’s designs obtained must be high-
lighted. Those are, from section 3.7, the solution with a height/width ratio of 2.65, from
section 3.8, the solution generated by the ellipse interior notch shape as initial solution
and, from section 3.10, the solution obtained with the combination of the best analysed
parameters and the IT1 indicator as cost function. These are depicted in Fig. 3.38.

Their normalised cost function value and number of evaluations are compared in
Fig. 3.39. The solution obtained from the procedure with the height/width ratio of 2.65
is the one showing the lowest cost function value. Besides, the same solution required
more evaluations for its finding.

Comparing the average equivalent plastic strain of each strain state, depicted in
Fig. 3.40, it is noticeable a larger uniaxial tension PEEQ value for the solution obtained
from the ellipse initial solution. The pure shear PEEQ value is similar for all solutions.
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(a)

(b)

Figure 3.35: Best obtained solutions’ minor and major stress (SMinSMaxRatio) and
strain ratios (LEMinLEMaxRatio), von Mises stress (S, Mises) and equivalent plastic
strain (PEEQ) at the moment just before rupture using the best parameters combined
and (a) the heterogeneous criterion IT1 and (b) IT3.
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Figure 3.36: Minor and major strain and stress diagrams at the moment just before
rupture using the best parameters combined and (a) the heterogeneous criterion IT1 and
(b) IT3.
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Figure 3.37: Average equivalent plastic strain for each strain state using the best para-
meters combined and the heterogeneous criterions IT1 and IT3.
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Figure 3.38: Best obtained solutions geometry. Solution obtained with (a) a height/width
ratio of 2.65, (b) an interior notch ellipse-shaped as initial solution and (c) the best
parameters combined with the IT1 indicator as cost function.

Some particularities to emphasize are that the solutions obtained with the height/width
ratio of 2.65 and with the best parameters combined with the IT1 have a similar geo-
metry. Hence, there minor and major strain and stress states distribution along the
specimens’ surface are very similar. The three different solutions exhibit uniaxial tension
and pure shear states with plastic deformations. Besides, they also present the uniaxial
compression state mainly with elastic deformations. The solutions obtained with the
height/width ratio of 2.65 and with the best parameters combined also show the equibi-
axial and plane states with elastic deformations. It was proved that it is possible to
increase the specimen’s heterogeneity by using an interior notch shape different from a
circular when evaluating it with the IT1 indicator. Since a specimen as the reference
with an interior circular notch shape achieves a cost function value of 1.889 and the ones
mentioned in the present section have a cost function value inferior to 1.789.

—————————————————————-
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Figure 3.39: Optimisation procedure’s cost function normalised by the reference and
normalised number of evaluations for the best-obtained solutions.
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Figure 3.40: Best solutions’ equivalent plastic strain average of each considered strain
state for the best-obtained solutions.
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Chapter 4

Conclusions and future works

4.1 Conclusions

The main goal of the present work is virtually design by optimisation a symmetric het-
erogeneous specimen for a uniaxial tensile load test. The controlled variables were the
curve control points of an interior notch in the middle area of a rectangular specimen.
These design constraints allow to develop a future experimental test using a universal
tensile test machine with no need of special grips.

First, it was analysed the state of the art in order to know the homogeneous and non-
homogeneous tests already developed along with the strain and stress states achieved by
them. Then, it was developed a methodology to iteratively perform a virtual uniaxial
tensile load test and, by the means of an optimisation algorithm, obtain the richest
specimen in terms of mechanical behaviour. A heterogeneity indicator was used to rank
the generated solutions in terms of mechanical richness.

Several parameters were analysed, such as the numerical element dimension and type,
the optimisation objective function, the specimen’s boundary conditions, the number of
curve control points, the specimen’s height/width ratio, the initial solution as well as the
algorithm used for the optimisation procedure. All these parameters demonstrated to
have influence in the process and are the reason for local minimums finding and strain
and stress states prediction errors. The generated solutions were analysed in terms of
mechanical behaviour and compared to the reference solution.

The best-obtained parameters were then used all together so that an even better
solution would be generated. There were emphasized three geometries that exhibit a
better cost function value. These three specimens exhibiting a butterfly interior notched
shape, produce uniaxial tension and pure shear states in plastic regime, as well as uniaxial
compression state mainly in elasticity. Besides, two of the specimens show equibiaxial and
plane states within elastic deformations. None of the obtained geometries revealed the
biaxial state. When using the heterogeneity indicator IT1 for comparison, it was proved
that for a uniaxial tensile load test, a rectangular specimen with a non-circular interior
notch in the centre displays larger heterogeneity than a circular one. There were noted
some problems concerning the methodology, such as the way the specimen’s boundary
conditions were dealt. In some solutions, the spline’s C1 continuity in the symmetries
was not verified when performing the numerical simulation, although theoretically, the
curve presents this feature. This issue was not verified in the highlighted solutions, being
C1 continuity verified.
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This methodology did not consider several experimental limitations, such as the dif-
ficulty of acquiring the data of the specimen’s surface near the boundaries, which means
that the virtual heterogeity indicator evaluation should be different from the experi-
mental one. In addition, the numerical mesh used does not match with full field spatial
resolution, which can also reveal some discrepancies in the comparison. Therefore, the
reliability of the developed tests must be verified by performing the experimental test
along with the material parameter identification. In terms of the objective function used,
this is still a subject that requires more study, since its dependency in the final result
is very large. The heterogeneity indicator IT3 revealed some interesting solutions, since
it privileged specimens with larger equivalent plastic strain, resulting in few elements
within the elastic region. However, more strain and stress states could be considered in
this indicator, not just the uniaxial tensile, the uniaxial compression and the pure shear.

4.2 Future works

After the development of the present work, some future research can be outlined:

• A more complex constitutive model in order to simulate more accurately the ma-
terial mechanical behaviour.

• A numerical mesh coincident to the ones employed in the experimental data ac-
quisition can be used.

• Besides, the non-consideration of the elements near the specimen’s border for the
heterogeneity criterion evaluation could lead to more realistic results.

• The experimental validation and the identification of the material parameters could
be performed to find the reliability of the design test.

• The overall methodology could also be improved with the analysis of some new
possibilities, such as the use of a non-symmetric specimen, or a specimen with
more than one hole, or even the interior notch definition with other curve paramet-
risations. A non-symmetric specimen could provide larger mechanical information
than symmetric ones. The same could occur when having several different shaped
holes, whereas the use of different curve parametrisations could generate different
shapes to analyse and compare.

• In addition, it is proposed to develop the heterogeneity indicator IT3 for more strain
and stress states, or even develop new ways of ranking and comparing the mech-
anical information. This issue is very relevant for the guidance of the optimisation
procedure and should be well defined.

• The performed research with the differential evolution algorithm did not reveal the
expected results, so it could be interesting to better analyse this strategy and even
perform it with a different objective function. This type of algorithms requires large
computational time, but could avoid the local minimum finding, and therefore find
an even better solution than the here obtained.
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Appendix A

Figures from the element dimension
dependency analysis

Figure A.1: Some of the analysed solutions for the elements dimension dependency ana-
lysis.

Figure A.2: Numerical meshes used for the elements dimension dependency analysis.
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Figure A.3: Equivalent plastic strain obtained for the specimen with 1.6 control points’
normalised position and 0.1 mm element edge dimension.
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Appendix B

Figure from the element type
dependency analysis

(a) (b) (c)

Figure B.1: Numerical element types used for the variable dependency analysis [Dassault
Systèmes 2014].
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Appendix C

Figure from the initial solution
dependency analysis

(a) (b) (c)

Figure C.1: Initial solutions used in the optimisation procedure: (a) a round, (b) a
cross-like and (c) an ellipse-shaped interior notch.
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