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LIDAR e obstáculos de velocidade para definição
em tempo real das zonas de colisão

Multi target tracking and detection using LIDAR and Ve-
locity Obstacles for real time definition of collision zones





Universidade de Aveiro Departamento de Engenharia Mecânica
2020

Rui Pedro
Leite Carvalho Costa

Deteção e seguimento de alvos múltiplos usando
LIDAR e obstáculos de velocidade para definição
em tempo real das zonas de colisão

Multi target tracking and detection using LIDAR and Ve-
locity Obstacles for real time definition of collision zones
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pela robótica que transmitiu.
Ao Prof. Doutor Jorge Almeida pelo aux́ılio e feedback prestado.
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abstract The implementation of autonomous vehicles on public roads faces many
challenges, being the most important ensuring the safety for everyone within
that environment. In order for these unmanned machines to be applied in
our every-day lives, they first need to be able to correctly identify all pos-
sible threats, to then act accordingly. As part of the Atlas project, this
dissertation main goal is to determine these threats based on the velocity
and dimensions of the detected obstacles. The detection is made using two
2D laser sensors SICK LMS151. These sensors, strategically placed in the
front bumper of the ATLASCAR2, allow to perceive its surrounding in an
almost 360° (except in the back near the trunk). A detection and tracking
algorithm, previously developed at Universidade de Aveiro, was used and
refurbished to determine the obstacles’ velocity used to verify if the AT-
LASCAR2 is in a collision path.
Initially, the detection and tracking algorithm was tested using a static
LIDAR to retrieved data, resulting in good performances. However the de-
ployment in dynamic environments led to a study of the influence of the
ATLASCAR2 ego motion, specifically while it is turning, on the perceived
obstacle velocity. The LIDAR’s moving coordinate frame imposes an appar-
ent velocity on the obstacles making the tracking algorithm’s data not as
reliable. From this study resulted also a ROS application which allows to
visualize the short term path of the ATLASCAR2.





palavras-chave LIDAR, Deteção de obstáculos, Deteção de colisões, Obstáculos de Veloci-
dade, Estrutura ROS

resumo A implementação de véıculos autónomos nas estradas enfrenta inúmeros
desafios, sendo a segurança de todos os intervenientes o mais importante.
Com o intuito de introduzir estas máquinas autónomas no nosso quotidiano,
estas devem primeiramente ser capazes de detetar corretamente todas as
posśıveis ameaças para depois agir de acordo. No âmbito do projeto Atlas,
esta dissertação tem como objetivo determinar estas ameaças baseando-se
na velocidade dos obstáculos detetados. Esta deteção é realizada através
de dois sensores laser 2D SICK LMS151. Estes sensores, posicionados es-
trategicamente na parte da frente do parachoques do ATLASCAR2, permite
uma perceção de aproximadamente 360° em volta do carro (com a exceção
da parte traseira do véıculo). Um algoritmo de deteção e seguimento, já de-
senvolvido na Universidade de Aveiro, foi usado e adaptado para determinar
a velocidade de obstáculos e para verificar se o ATLASCAR2 se encontrava
num percurso que poderia resultar numa colisão.
Inicialmente, o algoritmo de deteção e seguimento foi testado usando o sen-
sor LIDAR estático para retirar dados, resultando numa boa performance.
No entanto, a utilização do mesmo em ambientes dinâmicos deu origem a
um estudo para avaliar a influência do movimento próprio do ATLASCAR2,
com foco na situação em que se encontra a realizar uma curva, na veloci-
dade de um obstáculo detetado. O referencial em movimento do LIDAR
impõe uma velocidade aparente nos obstáculos, fazendo com que os dados
recolhidos pelo algoritmo não sejam de confiança. Deste estudo resultou
uma aplicação ROS, esta permite a vizualisação do movimento (durante
um curto espaço de tempo) do ATLASCAR2.
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Chapter 1

Introduction

One of the present society’s goal is to introduce machines into human being’s environ-
ment to facilitate daily tasks. With that in mind the automotive sector has perhaps
the hardest challenge. This industry’s ultimate goal is the implementation of fully au-
tonomous vehicles capable of providing their users a safe and comfortable ride, reducing
the driver’s intervention or even removing the driver. Applications of autonomous ve-
hicles are endless and will certainly make a huge impact in the world, possibly making
it safer, cheaper and more efficient. However, with the chaotic and sometimes deadly
environment present in today’s roads and highways, this technology is still a long way
from reaching the highest level of autonomy, defined by SAE International [1].

First of all, an autonomous vehicle must have the ability to perceive its surroundings
and identify every element in its neighbourhood. This is a fundamental step and possibly
the hardest one, due to the shear amount of raw data gathered and the potential hazard
to everyone in the road in case of a miss identification. This raw data collection can
be done in several ways, being cameras and LIDAR sensors the most commonly used
nowadays. For the purpose of this dissertation, 2D LIDAR sensors will be used for
data collection. The raw data must then be filtered for noise reduction and converted
into road objects, i.e. targets. These targets can be other road vehicles, road signs,
pedestrians, among many others.

Once all the targets are identified, the decision making process begins. This second
step is responsible to interpret the targets data and identify possible risks for the car
to then define the best action to take, in order to avoid or minimize the mentioned
risks. The work developed throughout this dissertation is focused in this second step,
and studies the possible collision zones between the ATLASCAR2 and its surrounding
targets using velocity data. This collision zone data can then be used by a decision
algorithm to determine the best collision-free course.

The third and last step of an autonomous vehicle is the ability to autonomously
maneuver the vehicle to a safe course.

1.1 ATLAS Project

The study developed in this dissertation is inserted in the ATLAS Project. First started
in 2003 in the Robotics and Automation Laboratory (LAR) at the Department of Me-
chanical Engineering of the University of Aveiro, the ATLAS Project main objective is

1



2 1.Introduction

to research sensory and active systems to employ in autonomous vehicles. The first hard-
ware developed in this project was the Atlas robot, which competed in the Portuguese
national robotics competition.

After many awards and with the knowledge acquired throughout the years, the team
decided to take a step further and started working on a full scale prototype car, the
ATLASCAR1. The Ford Escort Station Wagon from 1998 was equipped with state of
the art sensory equipment to perceive its surroundings to then act accordingly.

A few years later, and after all the research done with the ATLASCAR1, it was
time to upgrade the vehicle to a more modern and suitable one. So the ATLASCAR1
was replaced with a Mitsubishi i-MiEV electric car, the ATLASCAR2. This vehicle is
equipped with multiple LIDAR sensors, among others, needed for the development of
this work.

1.2 Problem Description

With the increasing implementation of autonomous vehicles on public roads, motion
planning techniques are of the most importance. These techniques allow autonomous
vehicles to determine the best action to take, ensuring the safety of the vehicle itself and
its surroundings.

Studies on motion planning are numerous, and may focus on different planning ap-
proaches, however, the main goal is common: obtain a collision-free path between two
points in space. The environment where the study is applied will hugely influence the
approach, and can vary between static and dynamic. A good example of a dynamic
environment can be a street or highway with multiple moving vehicles, i.e. obstacles.
The ATLASCAR2’s, as any other car, ”workplace” fits in this example, as so the work
developed in this dissertation.

Motion planning techniques in dynamic environments is one of the most researched
topic in the field of mobile robotics, mainly due to its complexity and applicability, and
many approaches were formulated [2]. The study developed in this dissertation focuses
on the velocity approach and its main goal is to determine whether there will be a
collision or not, and if so where, using the velocity information of the ATLASCAR2 and
its colliding obstacle.

Although the work developed in this dissertation does not determine the best path
to avoid collision, it is the foundation to determine a collision-free path.

1.3 Objectives

The main goal of this dissertation is to determine whether or not the ATLASCAR2 is
in collision course with its surrounding obstacles. In order to achieve this, data will
first be gathered by the car’s two LIDAR sensors, located near the front headlights, and
be put through a target tracking ROS application developed at LAR [3] which reports
back the obstacles position and velocity, among other attributes. With the obstacles’
and the car’s information, a ROS package will be developed which informs the user and
subscribing nodes if the ATLASCAR2 is in a collision course. If a collision is imminent,
some of its details are also to be calculated, such as the distance to the colliding object
and the predicted time to collision.

R.P. Costa Master Degree



1.Introduction 3

Since the target tracking ROS application was developed a few years back, a migra-
tion to the new version of the ROS environment is needed before it can be applied in
this work.

Still with the main goal in mind, a visualisation tool is to be developed to display the
short term path of the ATLASCAR2 and graphically better identify the possible collision
location. The mentioned tool must rely on another work developed at the university [4],
using the car’s current velocity and steering wheel angle.

In short, the main objectives of this dissertation are:

• Migrate the required ROS applications developed in the past to the current version
of the ROS environment

• Determine the collision zones between the ATLASCAR2 and its surrounding ob-
stacles

• Develop a visual tool that displays the ATLASCAR2 short term path

1.4 Document Structure

This document is divided into seven chapters. In the current chapter 1 a brief explanation
of the goals of this dissertation is presented, as well as a presentation of the project where
it is applied. Chapter 2 provides an overview of the methods developed and applied by
different authors. In chapter 3 is described the hardware currently available on the
ATLASCAR2 and the previously developed software used throughout this dissertation.
Chapter 4 presents the method used to determine if the ATLASCAR2 is in a collision
course. In chapter 5 a study is presented on the influence of the ATLASCAR2 ego
motion in the detected obstacles velocity; A presentation of external target and car
properties which influence the collision definition is also given. Chapter 6 presents the
results obtained when applying the developed architecture. Finally, chapter 7 concludes
this work and presents future possible improvements.
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Chapter 2

State of the Art

2.1 Target Detection and Tracking on ATLASCAR2

As mentioned before, the work developed in this dissertation relies on data from a target
detection and tracking algorithm. Being one of the most researched topics of the robotics
research community, several algorithms exist to detect and track obstacles in a dynamic
environment. The two main approaches use cameras and computer vision or LIDAR
sensors. Both approaches have their pros and cons and ideally merging the two would
result in a more robust tracking.

This work uses data provided by the Multi Target Tracking (MTT) algorithm [3].
The robustness of this algorithm proved itself worthy not only for this dissertation but
also for many other works developed at LAR, as described next.

In [5] both approaches were merged to detect pedestrians in exterior dynamic en-
vironments (Figure 2.1). By using the fast detection MTT algorithm, the author was
able to reduce the detection time compared to only using a computer vision detection
algorithm. In this work, the MTT was used to restrict the area where the computer
vision algorithm is applied.

Figure 2.1: Sensor Fusion LIDAR-Camera with LIDAR detected objects in red dots [5].

5



6 2.State of the Art

In [6] the author used LIDAR sensor data as well as a camera to detect, track and
label targets on a road in a semi-automatic fashion. A computer vision algorithm was
first used to detect targets based on their appearance and then the MTT algorithm
was implemented to track the targets. The core of this work is in the computer vision
algorithm to label the targets correctly, however, due to the much faster tracking ability
of the MTT algorithm, it allowed the author to track the targets’ position after the
slower labelling process was finished.

2.2 Velocity Obstacles

In the matter of collision detection techniques, a considerable amount of research was
made throughout the past decades. Inserted in the grand scheme of motion planning
for robots, the collision assessment is essential to determine a collision area to avoid.
In this dissertation, the mentioned area is determined by studying the velocity of the
surrounding obstacles and this approach was first mentioned by Fiorini et al. [7]. In
this work, the Velocity Obstacles (VO) concept was presented. The author studies a
collision in a simplistic scenario between a circular obstacle moving at a constant speed
in a known linear trajectory, and a circular object avoiding the mentioned collision. By
studying the relative velocity vector of the avoiding object, relative to the obstacle, if
this vector lies within the ”Relative Collision Cone”, CC(A,B) in Figure 2.2, a collision
between the two will occur. The main goal of this work was to, after computing all
the collision-free velocity vectors, select the optimal one. Later on, the author used the
same collision detection method (VO), but improving the collision-free velocity vector
selection, according to robot motion restrictions [8, 9].

Figure 2.2: ”Relative Collision Cone” CC(A,B) [7].

On more recent works, similar methods are applied. In [10] the Forbidden Velocity
Map was developed. The author states that a collision occurs if the object’s velocity lies
within a set of velocities (Figure 2.3) . These velocities are defined considering that the
object will apply it’s maximum break power in order to avoid a collision with a moving
obstacle and takes into account the obstacles’ velocity, distance and shape. Wilkie et al.
[11] adapts the VO concept taking into account the fact that a car-like robot evading
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(a) Representation of three objects
with velocity vectors

(b) Forbidden velocity map

Figure 2.3: Forbidden velocity map example [10].

maneuver is not rectilinear due to kinematic constraints, i.e. when a car turns, its path is
curved and this curvature might be in the mentioned Velocity Obstacle Collision Cone.
In Berg et al. [12] the Acceleration-Velocity Obstacle principle is presented. Based
on the VO principle, this method chooses the velocity vector which obeys the robot’s
acceleration constraints. This work allows to overcome problems in cases where a velocity
cannot be reached instantaneously, by applying a valid acceleration proportional to the
difference between the new and the current velocity. This paper presents the possibility
of using the algorithm by two robots in the same workspace, as they try to change places
while avoiding a collision. Gyenes et al’s [13] collision avoidance approach uses the same
VO principle as in Fiorini et al. [7], however this work differs in the velocity vector
selection by choosing one focused on the safety of the robot. The author claims that
by choosing a collision-free velocity vector that provides a faster solution to reach the
destination, the robot’s safety is compromised. This is due to the fact that the faster
path is usually closer to the obstacle.

2.3 Ego-motion

The knowledge of the car’s ego-motion allows to retrieve the detected targets real position
and velocity. This is due to the fact that since the LIDAR sensors are moving along
with the ATLASCAR2, the data collected will be affected by this movement, imposing
a false velocity on the targets [14, 15]. To counteract this false velocity, the LIDAR data
must be converted to a global reference frame.

Commonly used sensors such as Global Position System (GPS), Inertial Measuring
Units (IMU) and also wheel encoders can be used to calculate the ego-motion. However,
this type of equipment, besides having poor accuracy, can behave inaccurately in some
environments. GPS relies on line of sight to satellites, making it useless in confined
environments such as road tunnels. Wheel encoders rely on wheel turn which, in rough
terrain, can fail due to wheel slip.

Due to the constraints explained above, several different approaches were developed
using cameras [16] or LIDAR sensors [15]. The principle in these approaches is to deter-
mine the spatial distance between two frames to then define the vehicle’s own motion.
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Using camera data, also known as Visual Odometry, as in Abiel Aguilar-González et
al. [16], the process starts by selecting one feature of an image, then the pixels of that
specific feature are tracked using a dynamic search template which informs the feature
matching algorithm. Afterwards, by feeding the lookup table with the search parame-
ters of two consecutive image frames, a preliminary ego-motion results is presented. This
preliminary result is then refined by a post-processing step (Figure 2.4). Even though
using Visual Odometry may result in great accuracy, the computational demand and
processing speed is also larger when compared to other approaches such as using LIDAR
sensors.

Figure 2.4: A Visual Odometry set up [16].

Figure 2.5: A LIDAR based ego-motion estimation setup [15].

In the case of ego-motion estimation using LIDAR, the principle is similar and cal-
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culates the displacement between consecutive planar laser scans, aided by the car’s
odometry [15] (Figure 2.5). In this work, two LIDAR sensors were used to perceive the
surrounding environment. In order to only use one set of data, a sensor fusion technique
was formulated to merge the two LIDAR data and get an almost 360° sensing angle. The
author developed a scan matching algorithm using an Extended Kalman filter with a
non-holonomic motion model. Since the Kalman filter relies on measured data, a trans-
formation between two scans is provided as a vector. The vector represents a translation
in the X and Y axis, and a rotation along the Z axis of the car. By using this vector,
the instantaneous turning center point of the car is determined which allows to calculate
the car’s ego motion, namely the steering wheel angle and velocity. If these values do
not comply with the vehicle constraints, the measurement is discarded and the filter is
iterated without a measurement.

2.4 Analysis

Fiorini et al.’s [9] approach can be considered as a baseline for all collision detection
work using velocity data, such as this dissertation. The simplicity of the used geometric
calculations is extremely useful to reduce the computational effort and therefore ease
its application in real time collision calculations. In terms of ego motion definition,
wheel encoders will be used despite its known flaws, however, since the velocity data is
retrieved from the car’s speedometer, no additional hardware is needed. LIDAR could
be used however it would increase the computational effort.
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Chapter 3

Experimental Infrastructure

This chapter describes both the software and hardware used during this dissertation.
The hardware collects data used by the software to achieve the main purpose of collision
detection.

3.1 Hardware

3.1.1 SICK LMS151-10100

The hardware used to detect the multiple objects around the ATLASCAR2 is the 2D
LIDAR sensor SICK LMS151-10100 (Figure 3.1). A LIDAR (also known as laser range
finder) emits a high-frequency laser beam in different directions which are then reflected
by the objects it encounters and the reflection is captured by the device. This type
of laser sensors are widely used in the field of robotics to determine objects distances.
In order to do so, most LIDAR measurement sensors apply the Time of Flight (TOF)
principle which measures the round trip time taken by the laser between the sensor and
the object.

Figure 3.1: 2D LIDAR sensor SICK LMS151-10100.

Multiple configurations of the sensor are available from the manufacturer and the
configuration used during this work is available in Table 3.1.

Currently, the ATLASCAR2 has two 2D LIDAR sensors located near the front head-
lights. With this setup, it is possible create a 2D representation of almost 360 degrees
around the car, only missing a small portion in the back of the vehicle.

11



12 3.Experimental Infrastructure

Table 3.1: Used specifications of SICK LMS151-10100.

LIDAR specifications

Laser class 1 (IEC 60825-1:2014) EN 60825-1:2014

Minimum angle (◦) -135

Maximum angle (◦) 135

Angle increment (◦) 0.5

Time increment (s) 2.77× 10−5

Scan time (s) 0.0199

Minimum range (m) 0.0099

Maximum range (m) 20

3.1.2 ATLASCAR2

As described in chapter 1, the ATLASCAR2 [17, 18] is the main platform of the Atlas
Project (Figure 3.2). It is a prototype vehicle for autonomous driving research and,
for that purpose, multiple state of the art sensors and cameras are equipped to collect
data. Besides the two main LIDAR sensors mentioned before, it’s current inventory
consists of: four optoelectronic sensors Sick DT20 Hi, one 3D LIDAR sensor, a GPS and
IMU combo, one PointGrey ZBR2-PGEHD-20S4C and two PointGrey FL3-GE-28S4-C
cameras.

Figure 3.2: ATLASCAR2.

The optoelectronic sensor is an optical measuring sensor that determines the distance
between the fixed car frame and the ground. This sensor model can measure from 50 to
1000 millimeters with a measuring resolution of better than 1 millimeter. The sensors’
main task is to determine the car’s inclination by measuring the difference between the
four sensors and applying trigonometric calculations to determine the inclination angles
(tilt and roll).

The 3D LIDAR sensor works similarly to the LIDAR sensor used in this dissertation,
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with the main difference being the ability to measure in three dimensions via its four
measuring planes. This sensor can measured object distances for up to 250 meters.

The PointGrey cameras are an alternative method to perform road perception via
computer vision. They are more commonly used to detect road lanes.

The GPS and IMU combo consists of a Novatel GPS-702-GG Dual-Frequency GPS
Antenna and a Novatel SPAN-IGM-A1 Inertial Measurement Unit (IMU) and their task
is to accurately determine the ATLASCAR2’s position in the world reference frame.

Aside from the data collection hardware, the car is also equipped with a computer
with Ubuntu Bionic Beaver Desktop operating system installed, two monitors for visu-
alization purposes and a Uninterruptible Power Supply (UPS) that provides about 30
minutes of power to the on-board computer while the car is on the move.

3.2 Software

3.2.1 ROS - Robotic Operating System

ROS (Robotic Operating System) is an open-source robot software development frame-
work created at the Stanford University in 2007, which aims to help the robotics research
community on collaborative projects. With its wide variety of tools and libraries, it sim-
plifies the robot software writing throughout many robotic platforms. The version of
ROS used in this dissertation was ROS Melodic.

A ROS project is constituted by a package, i.e a catkin workspace directory, where all
the nodes are located and the dependencies between each are defined using a package.xml
file. A rosnode is a process that performs computation, i.e it’s the execution of the code
that the ROS programmer writes. This code can be written in many programming lan-
guages by using client libraries, being the most common Python and C++. The rosnodes
communicate between each other via topic streaming, meaning that one node publishes
a message in a topic, and another subscribes to it to receive the topic’s message data.
These messages can be a “ROS standard” or a custom one made by the user. Another
way that the nodes can communicate is using a ROS service. In this case, one node
requests for an information and expects a response to be given.

All these nodes and topics are controlled and managed by the ROS master which
keeps track of all this information.

Rviz

Rviz is a 3D visualization tool used to represent a certain type of message data by
subscribing to a topic. The message type used in this dissertation was laser scan, to
represent the laser points of objects detected by the LIDAR sensor, and visualization
message of type Marker, to represent several geometric objects such as lines, cubes
and cylinders. A robot model can also be displayed as a visual scale of the surrounding
environment. Other types of messages can also be subscribed and displayed by rviz such
as camera images, tf data and axes, among others. An example of data representation
is presented in Figure 3.3.
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Figure 3.3: Rviz environment displaying the ATLASCAR2 robot model, the LIDAR
laserscan, and several markers of the targets.

Rosbag

Rosbag is an essential tool to playback all the recorded data of every hardware of the
ATLASCAR2. Since the access to the car is not always possible to test the code devel-
oped in real time, rosbag allows to record all the messages of a topic in a bagfile. In this
case, laser scan messages where recorded of the LIDAR sensors to then use offline for
tests.

3.2.2 ROS Packages

Simple Planar PC Generator

This package, composed by a single simple planar pc generator node, was developed
by Almeida [3]. The code, developed in C++, subscribes to the laser scan data, provided
by the LIDAR sensors, and transforms it into a planar PointCloud2 data message. This
node also has the advantage of merging two LIDAR data to a single topic.

Multi Target Tracking with Global Nearest Neighbour

This package was also developed by Almeida [3] and it provides the necessary tar-
get information that will be used throughout this work. The node subscribes to the
simple planar pc generator topic and assigns each group of points, i.e. objects, to a
target to track its position. In short, the code is divided in 4 major steps:

1. Pre-processing

2. Clustering
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3. Position prediction

4. Data association

In the first step, the PointCloud2 message is received and its points are converted
into Cartesian coordinates. A noise reduction filter is also applied. The second step is
responsible to add every point detected to a cluster. This cluster of points will be labeled
as measurements which will then be associated to a target to be tracked. To better track
the objects while they are occluded, this algorithm uses object position prediction with
an adaptive Kalman filter to adjust the objects’ search area accordingly. The last step
associates the mentioned measurements to a target, where the Global Nearest Neighbour
algorithm is applied. The cluster is associated based on the nearest distance to a target,
while evaluating simultaneously every target. If there is no target within the stipulated
search area, a new one is created. This process repeats at every scan received.

In the code’s original version, the node publishes for every target the following in-
formation:

• Id number

• Centroid position and orientation

• Linear velocity

• Position of the first and last point, based on the angle

• Size

Colormap

Similar to matlab’s Colormap, this auxiliary visual package enables adding color to rviz
markers by simply associating a target id to random color. By using this package it
makes it easier to add color to the different targets without specifying the RGB values
to each manually.

canReceiveAndUpdateStatus

This package was developed by Figueiredo [4] and publishes the telemetry of the AT-
LASCAR2 namely its velocity and steering wheel angle.
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Chapter 4

Collision Zone Detection

This chapter presents the collision calculations. In the first section a theoretical resolu-
tion of the problem is given. In the second section is presented a code overview. The
third section explained some of the modifications made to the existing MTT package.
The fourth section explains the collision detection procedure and, finally, in the fifth
section the procedure to launch the package.

4.1 Approach

The main goal and approach of this dissertation was defined since the beginning: deter-
mine the collision zones with the Velocity Obstacles principle [9]. The VO concept allows
to determine if a collision will occur based on the geometric properties of the relative
velocity vector between an object, in this case the ATLASCAR2, and an obstacle.

With the knowledge of the obstacle’s position and velocity relative to a reference
frame, and by approximating the obstacle to a circular shape, the Velocity Cone can
be defined with the known variables. Consider two circular objects A and B, being A
the evading object and B the obstacle, with respective velocities vA and vB; the first
stage of the VO concept is to add B to the Configuration Space of A. The Configuration
Space [19] defines a forbidden configuration for an object due to the presence of an
obstacle. This is determined by reducing A to a point and adding the radius of A to
circle B, resulting in the point Â representing the object and the circle B̂ representing
the obstacle.

To allow the use of geometric calculations to determine the event of a collision,
the Velocity Space is determined. This is done by adding the velocity vectors to the
Configuration Space explained above. By doing so, the velocity vectors of the object
and obstacle are represented in its corresponding centroid.

Afterwards, the Collision Cone CCA,B is represented by two lines tangent to B̂ (γr
and γf ) with apex in Â (Figure 4.1). A collision between the object-obstacle pair will
occur if the relative velocity vector vA,B, lies within the tangent lines γr and γf .

This method allows to determine the potential ATLASCAR2 collisions with static
obstacles or with dynamic obstacles with linear trajectories.
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Figure 4.1: ”Collision Cone” CCA,B represent by the gray area. Adapted from [9].

4.2 Code Overview

To collect data from the ATLASCAR2 surroundings, 2D LIDAR sensors were used,
allowing to detect obstacles in an almost 360 degree angle around the car. To perform
the detection and tracking of the obstacles the Multi Target Tracking (MTT) algorithm
[3] was used. This ROS package uses the LIDAR data to assign the measured obstacle to
a target using the Global Nearest Neighbour (GNN) approach. The target is then tracked
throughout its lifetime. The work developed by Almeida performs particularly well with
occluded obstacles by using an adaptive Kalman filter to estimate the obstacles’ position.
The GNN approach associates the measured data to the closest target predicted position.
This data association has some conditions that need to be met in order to assign the
measured data to a target. These conditions, as well as some others, are defined in
a yaml file in order to make it easier to adjust the values without changing the code
(Listing 4.1).

Listing 4.1: MTT’s yaml file.

1 %YAML:1.0
2

3 clustering distance: 0.5
4 exclusion zone A: 0.0
5 exclusion zone B: 0.0
6

7 max missing iterations: 20
8 max ellipse axis: 0.6
9 min ellipse axis: 0.2

10

11 size factor: 0.1
12 not found factor: 0.1

The MTT package contains two main nodes, the Simple Planar PC Generator and the
GNN node. The latter publishes several target information such as position and velocity,
needed by the VO. However, the package available was outdated and a migration to the
ROS version Melodic was needed before applying it in this work.
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4.Collision Zone Detection 19

The ROS package itself has additional developments by the author which were not
needed; so, for the initial step, a cleanup of unessential code was done. Due to the way
ROS framework is built, all the code dependencies were corrected in order to compile
only the code needed for this dissertation.

Afterwards, with the information of the multiple targets detected by the MTT pub-
lished as a ROS message, the VO principle is applied. This method is divided in three
main tasks: target approximation to a circle, collision detection and representation.

4.3 GNN node Improvements

In order to achieve the end goal of this work, some minor modifications to the MTT

package, specifically the GNN node, were needed. However, firstly it is important to
understand what type of information it gathers. The GNN node provides two major
types of information, a visual representation and the targets data. The visual data is
represented on Rviz (Figure 4.2) and consists of the target id number, a square in the
targets centroids, the scaled velocity vector and an ellipse representing the search area
of the target. This information is coloured using the Colormap auxiliary package, which
allows to add different colors based on the target id number. The node also publishes
another topic to represent the measured obstacles centroids with a square.

Figure 4.2: Displayed MTT visualization data on Rviz.

To avoid the excessive amount of data transfer by publishing every target data indi-
vidually, the GNN node uses two different ROS custom messages. ROS custom messages
allow the programmer to create a unique type of message by combining preexisting types
of standard messages to a single .msg file. In this case two .msg files were created, the
TargetList.msg and the Target.msg. The TargetList message is essentially an array
of Target messages which display all the targets’ information in a single message to be
published. The original Target.msg consists of the following data:

• Header - A ROS standard message which states the time stamp of the message
and the coordinate frame;

• ID - a uint32 variable of the number of the tracking target;
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• Pose - A geometry message of type Pose which consists of two geometry messages
of type Point, informing the position, and of type Quarternion, informing the
orientation of the centroid of the target;

• Initial Pose - A geometry message of type Point regarding the position of the first
point of a target;

• Final Pose - Same as the Initial Pose stating the position but of the last point of
a target;

• Velocity - A geometry message of type Twist regarding both the linear and angular
velocity of the target. It is important to note that only the linear velocity is stated
by the code.

Only the TargetList message is available to be subscribed to, on the /targets

topic.

4.3.1 Target Information Update

To achieve a better perception of the target, especially in cases were multiple targets are
close to each other, a line representation was added. This line connecting every point
of a target was easily done since the code already saved all the points of a new target
in a grid. This is the first step in the GNN code when data is received from the LIDAR.
The PointCloud2 points received are initially in polar coordinates so a transformation
into Cartesian coordinates is made. Since the initial points are sorted by angle (from
smallest to biggest) the Cartesian coordinates points are added to a grid in the same
order. Additional data, such as distance and angle of each point, are also available in
this grid.

Figure 4.3: Representation errors due to old point data. The target first detection is
represented by the cyan line. The target then moved, however the line position was not
updated.

However, as stated, this point data was only added when a new target is detected,
meaning that the tracking process did not updated the points. This led to multiple
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errors in displaying the targets (Figure 4.3) as well as the Initial and Final Pose data
which uses this information.

So, in order to constantly update these points, a single line was added in the data
association function of the code (Listing 4.2). This line of code simply replaces the
targets points with the measured points, every time a measurement is associated with
an existing target.

Listing 4.2: Line of code added to update the target points

1 target−>points = measurement−>points

With this point information, a Line Strip Marker was added, representing a straight
line between each point. Some previously displayed information irrelevant for this work
was discarded in order to declutter the workspace, resulting in the final representation
shown in Figure 4.4.

Figure 4.4: Final representation, displaying the target ID, the velocity vector, and a line
connecting all points of every target.

4.3.2 Target Reduction

In order to reduce the amount of targets detected by the GNN node, some restrictions were
added. These restrictions determine the minimum size and minimum number of points
that a target must have in order to be accounted for. This strategy allows to disregard
small detected obstacles which possibly relate to unfiltered sensor noise, and do not pose
a serious threat to the ATLASCAR2. These restrictions were added to the existing
yaml file, allowing to tweak the values easily. To limit the number of target calculations
these restrictions were added in the data association process, only allowing to match a
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measurement with a target if these conditions are met. By doing so, this measurement
information is still kept, but the calculations and representations are disregarded. These
restrictions allowed to further declutter Rviz, especially in cases where the surrounding
vegetation is detected, as well as reduce the computing time of both the GNN and the VO

nodes.

4.4 Collision Calculation

4.4.1 ATLASCAR2 Frames

Since the ATLASCAR2 has multiple devices installed throughout the car’s body, the
data collected from different devices are in different coordinate frames. These frames
are all connected to the main frame through transformations matrices. The matrices
indicate the rotation and translation between the main frame and every other frame.
The transformation of every frame is published by the ATLASCAR2 core package in
the form of a tf tree (Figure 4.6), using the ROS package tf. The ATLASCAR2 core
package initializes all the sensors and cameras and publishes its data in several topics,
as well as the previously mentioned tf tree. These frames can be displayed on Rviz and
the most relevant ones for this work are displayed in Figure 4.5.

Figure 4.5: The ATLASCAR2 relevant frames; From left to right: Right laser, base link,
left laser.

The Figure shows three frames, all with different orientations; the different colours
represent the x (red), y (green) and z (blue) axles. The two LIDARs are located in the
left and right front bumpers of the car, and the data collected are in the Left laser

and Right laser coordinate frame, respectively. In the front of the car, in the center,
lies the base link frame. This frame was used as the reference frame for all the collision
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calculations, since it is, approximately, the first colliding point of the car. This frame
also benefits from having the same orientation as the car instant velocity vector.

The MTT package receives the left and right LIDAR data and merges both in one frame
(either left or right). This process is done by the Simple Planar PC Generator node
which publishes the merged laser scans as a filtered PointCloud2 message. Since the
GNN node uses this data, all the targets information are related to one of those reference
frames. In order to transform the relevant data from the GNN node to the base link

several Transform functions from the tf package were used to transform each Point

from the GNN node published message.

4.4.2 Circle Approximation

To apply the VO principle, all the targets must be approximated to a circle. Since in
most cases the detected obstacles are only represented by a line of points, the solution
chosen was to set this line as the circle diameter. Using the information given by the GNN
node regarding the initial and final points of the target, the distance between them was
calculated. Considering that the radius of the evading object, i.e. the ATLASCAR2,
must be added to every target circle, the same method was applied. In this case, the
width of the car was used as the approximated circle diameter of the ATLASCAR2. The
position of the circle was set to the centroid point, given by the GNN node. The GNN node
defines the centroid based on the point distribution of the target. This definition means
that if the target’s points are not well balanced, some of them may lie outside of the
circle.

Reliability of the circle approximation is limited by the information given by the
LIDARs and the GNN node. The full size of the obstacles cannot be detected in some
situations, reducing the collision calculations reliability and possibly jeopardizing the
ATLASCAR2 and its surroundings. However, by using the same approximation for the
ATLASCAR2, the car-on-car collision prediction is more accurate than a car-on-truck
collision.

4.4.3 Velocity Cone Calculation

The next step in the collision calculation is the definition of the velocity cone. This
process defines the relative velocities that would result in a collision. The VO principle
states that the points that define the cone are the centroid of the evading object and the
two tangent points to the target’s circle. The centroid of the ATLASCAR2 was set to
the origin of the base link, since it is the potential contact point in case of a collision.
The two tangent points were calculated using geometric equations. Using the example
in Figure 4.7, being P the target, O the base link coordinate frame, T1 and T2 the
tangent points and r the radius of the circle.

Both PO and r are known or measurable variables. The tangent angles θ1 and θ2
are calculated using Equations 4.1, 4.2, 4.3 and 4.4, using n = 1, 2, respectively.

PO
2

= r2 +OTn
2

(4.1)

α = arcsin
r

PO
(4.2)

β = arctan
Py

Px
(4.3)
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Figure 4.7: Velocity Cone Schematics.

θ1 = β − α
θ2 = β + α

(4.4)

Equation 4.4 calculates two angles (θ1 and θ2) representing the angles of the two
tangent lines of the circle. To calculate the tangent points for the line representation,
Equation 4.5 can be used to determine the x and y coordinate.

Tn,x = OTn × cos θn

Tn,y = OTn × sin θn
(4.5)

Where:

n = 1, 2

4.4.4 Velocity Definition

To determine if a collision is imminent, the approach defined in this dissertation makes
use of the velocity data of the targets. Considering that the ATLASCAR2 is gathering
data while on the move, the perceived data of the targets is corrupted with the car’s
own ego-motion. The only velocity that can be calculated using the raw data from the
LIDARs is in fact the relative velocity between the car and the target. The target real
velocity cannot be perceived by the moving sensor. These velocity errors without the
ego-motion compensation led to additional studies explained further in the upcoming
chapter.

4.4.5 Collision Detection

Assuming the velocity given by the GNN node is correct, the collision detection makes
use of this vector to determine if it lies within the previously defined Velocity Cone. To
do so, angle comparisons are made. Firstly, the angle of the velocity vector is calculated
based on the x and y coordinates of the linear velocity. Being the previously calculated
θ1 and θ2 the angles of the tangent lines to the circle, i.e. the VO cone, and ∠Vv the
angle of the velocity vector. If θ1 < ∠Vv < θ2 a collision will occur.

When a collision is detected, a message is published on the /collision topic con-
taining the colliding target ID and the Expected Time of Colision (ETC) if all the
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26 4.Collision Zone Detection

conditions are kept. The ETC is calculated using Equation 4.6 with the minimum dis-
tance of the target, i.e. the distance to the closest target point, and the modulus of the
target velocity.

ETC =
distance

velocity
(4.6)

A visual representation of the Velocity Cone is also displayed on Rviz. However, to
reduce the amount of visual data, this representation is restricted and is only displayed
if an expected time of collision parameter is met. This parameter allows to disregard
targets further away or with minimal relative velocity, only representing vital informa-
tion.

4.5 Launching Node Procedure

To ease the initialization of the developed package, launch files were created. The launch
files allow to run all the nodes with a simple terminal command. To start the collision
detection package, first all the needed ATLASCAR2 sensors are initialized, by using
the previously developed atlascar2 bringup.launch file. Afterwards, by running the
developed vo.launch file (Listing 4.3), it initializes the Simple Planar PC Generator

node, the GNN node, the VO node and, finally, the Rviz node. The Rviz node, however,
is only initialized if defined by the user, as it uses a Boolean argument from the launch
command (show:=0 or show:=1). To launch the visualization on Rviz, another launch
file (view vcones.launch) was developed with all the needed topics already subscribed
to at start. This, in fact, is the file that the main vo.launch will initiate if the show:=1

condition is met. This condition was developed to ease the debug, since if any of the
other nodes were to be shutdown to recompile, Rviz needed to be closed as well. By
having two separate launch files the code recompilation was possible without closing
Rviz.

Listing 4.3: vo.launch file which launches all the needed nodes and Rviz.

1 <?xml version="1.0"?>
2 <launch>
3 <!−− This starts the Velocity Obstacles with the GNN
4 and simple planar pc generator−−>
5

6 <remap from="/laserscan1" to="/left laser/laserscan"/>
7 <remap from="/laserscan2" to="/right laser/laserscan"/>
8

9 <remap from="/tracking frame" to="/left laser"/>
10 <remap from="/pc out" to="/laser/points"/>
11

12 <node name="planar pc" pkg="mtt" type="simple planar pc generator">
13 <param name="output frequency" value="100.0"/>
14 <param name="perpendicular treshold" value="0.15"/>
15 <param name="wait for laser 1" value="true"/>
16 <param name="wait for laser 2" value="true"/>
17 </node>
18

19 <remap from="/points" to="/laser/points"/>
20

21 <node name="gnn" pkg="mtt" type="gnn" output="screen">
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22 <param name="parameters" value="package://mtt/src/gnn.yaml"/>
23 <param name="perpendicular treshold" value="0.15"/>
24 </node>
25

26 <node name="vo" pkg="velocityobstacle" type="vo.py" output="screen">
27 </node>
28

29 <!−− Launch rviz with the propper parameters for loading
30 the atlascar rviz configuration file if argument SHOW is 1−−>
31 <include file="$(find velocityobstacle)/launch/view vcones.launch"
32 if="$(arg show)"/>
33

34 </launch>
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Chapter 5

Ego and Target Motion
Interaction

The main goal of this chapter is to study the impact of the ATLASCAR2 ego motion
on the predicted velocity given by the GNN node. To do so, an auxiliary ROS node
is proposed to calculate and publish some important ATLASCAR2 data such as the
instantaneous turning center point, the car’s angular velocity and a short term path
displayed on Rviz, among others. This node allows to determine when the car is turning
and add additional information about the car’s path.

5.1 ATLASCAR2 Short Term Path

As stated in the previous chapter, the data collected by moving LIDAR sensors can be
unreliable to determine the velocity of the targets using the MTT package. This miss
perception is higher when either the ATLASCAR2 or the obstacle are turning, since the
angular velocity is not accounted for on the current MTT package.

This issue can be overcome by implementing an ego motion estimation algorithm
such as the one developed by Almeida [15]. This algorithm detects the ATLASCAR2
motion using LIDAR data which allows to change the moving coordinate system of the
objects to a global reference frame. Currently all the detected object points are related
to the moving frame of the ATLASCAR2, this means that the car is static and the
points move according to the relative velocity between them and the ATLASCAR2 own
velocity. By changing the frame of the points to a global reference frame, the detected
points would move only according to their true velocity.

In order to determine the current ATLASCAR2 status, a ROS node was developed
in Python language. This Short Term Path node verifies if the car is turning and deter-
mines its instantaneous turning center point, its angular velocity and other important
data. The node also displays on Rviz the short term path of the car, i.e., the trajec-
tory of the ATLASCAR2 in the near future if the velocity and steering attitudes remain
constant.

To calculate this, the node subscribes to the ATLASCAR2 velocity and steering
wheel angle data, provided by the NominalData topic from the package developed by
Figueiredo [4].

29



30 5.Ego and Target Motion Interaction

5.1.1 Instantaneous Turning Center Point

By analysing the car’s velocity and steering wheel attitude, it is possible to determine
its instantaneous turning center point. Most of the commercial four-wheel vehicles uses
the Ackermann steering geometry principle or a variation from it [20], which allows the
vehicle to curve without tire slip. This principle states that when a vehicle is performing
a curved path, all of its wheel axles are arranged so that the wheels all face to the same
center point. Since the rear wheels of the vehicle are not allowed to rotate, the turning
center point is located at the intersection of a line extension of the rear axle and a line
perpendicular to either of the front wheels. Using this principle the two front wheels
rotate at different angles, being the inner wheel angle greater than the outer wheel angle.

To calculate the instantaneous turning center point, first a relationship between the
steering wheel angle and the front wheels angle is needed. According to the car’s manual,
the maximum wheel angle for the outer and inner wheel is 38° and 45°, respectively. The
node made by Figueiredo [4] publishes the steering wheel angle from −635° to 635°
(being the angle positive when turning left). To determine this relationship, the steering
ratio was calculated with the known maximum steering wheel angle and both the inner
and outer wheel maximum angle (Equation 5.1). This steering ratio is then used to
determine both front wheel angles based on the given steering wheel angle by adjusting
the previous equation.

steering ratio =
max steering wheel angle

max wheel angle
(5.1)

To calculate the turning center point only one wheel angle is needed, in this case the
inner wheel was used for the rest of the calculations. The representation of the following
terms can be seen in Figure 5.1 and 5.2 , being L the car’s wheelbase, d the car’s width,
and y the car’s front overhang.

O

L

d x

δ2

δ1

Figure 5.1: Schematics of the Ackermann steering geometry.

According to trigonometric rules, both angles (δ1 and δ2) are equal, so the distance
(x ) between the car’s rear wheel and the turning center point can be calculated using
Equation 5.2. This value is then used to determine the distance between the turning
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center point to the front of the car (C in Figure 5.2), using Equation 5.3 to determine
angle α and then Equation 5.4.

The Point C in Figure 5.2 is located at the front of the car and is an approximation to
the base link frame origin of the ATLASCAR2. All calculations and data acquisition
are made relative to this frame.

tan δ2 =
L

x
(5.2)

tanα =
L+ y
d
2 + x

(5.3)

sinα =
L+ y

OC
(5.4)

O

C

L

y

d x

δ1

α

Figure 5.2: Schematics of the Ackermann steering geometry.

A line between the ATLASCAR2 rear axle and the instantaneous turning center
point is displayed on Rviz (Figure 5.3).

5.1.2 Angular Velocity

The ATLASCAR2 angular velocity is calculated based on the distance between the
base link and the instantaneous turning center point and the current car velocity by
applying Equation 5.5.

ω =
v

r
(5.5)

5.1.3 Instantaneous Velocity

The ATLASCAR2 instantaneous velocity vector was calculated based on the angle be-
tween the rear axle and the base link origin (α on Figure 5.2). A representation of this
vector is also displayed on Rviz by an arrow which allows to see the direction where the
car is heading (Figure 5.3).
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32 5.Ego and Target Motion Interaction

5.1.4 Path Representation

With the instantaneous turning center point defined, a representation of the ATLAS-
CAR2 short term path is displayed on Rviz (Figure 5.3). This path takes into account
the wheel angle and the car velocity to display a circular arc with its center on the
turning center point and with its radius as the distance from the turning center point to
the base link origin. The starting angle is α (in Equation 5.3) and the end angle varies
considering the car’s angular velocity multiplied by a scale factor. If the α = 0 then the
path as the same length as the velocity vector.

The Rviz marker displays the path that the ATLASCAR2 will take at every scan if
all conditions remain constant.

Figure 5.3: Representation of the ATLASCAR2 Short Term Path on Rviz.

5.1.5 Node Topics

Gathering all the information explained before, the node publishes a message on the
/Telemetry topic containing the following data:

• The ROS header

• The current direction of the ATLASCAR2 - Left, right or forward

• The outer wheel angle

• The inner wheel angle

• The angle between the rear axle and the base link origin

• A geometry message of type Twist containing the linear and angular velocity

• A geometry message of type Point informing the instantaneous turning center point

• The distance between the base link origin and the instantaneous turning center
point
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This information allows other subscriber nodes to know the current status of the AT-
LASCAR2 at approximately the same rate of the /NominalData topic, which is currently
at 1 kHz.

5.2 Problem Description

The detected velocity errors of the GNN targets are due to the false movement of the
obstacles perceived by the moving LIDARs. Since the collected data is relative to the
car, so is the calculated target velocity. The car movement will impose an apparent
velocity, both linear and angular, on the target due to its own ego motion. This apparent
velocity will be added to the targets own velocity, resulting in a wrong relative velocity
between the ATLASCAR2 and the target. When the ATLASCAR2 is performing a
linear trajectory all of the static target points are moving in the opposite direction of
the car, with the same velocity. However, when the ATLASCAR2 is turning, the static
target points rotate, imposing an even greater apparent velocity. The most extreme case
is when the car is performing a 90° turn, which, depending on the distance of the target,
its velocity can wrongly reach extremely high velocities. In addition, the target points
90° rotation also cause problems of target association to the GNN node.

Being the angular velocity the key issue, this problem can be divided into four sep-
arate instances of velocity errors of the GNN node:

• The ATLASCAR2 is turning and the obstacle is static

• The ATLASCAR2 is turning and the obstacle is moving straight

• The ATLASCAR2 is static and the obstacle is turning

• Both the ATLASCAR2 and the obstacle are turning

This study is only focused on the first two instances since, with the current setup,
the detection of an obstacle angular velocity is not viable. This, however, proves to be
an important matter for further investigation and in the near future this perception will
certainly be facilitated with the implementation of Vehicle to Vehicle communication,
where cars share their status to other agents on the road. The assessment of when the
obstacle is turning is also useful since the current version of the VO is only viable for
rectilinear trajectories.

5.2.1 Static and Dynamic Targets

Since the LIDARs are moving along with the ATLASCAR2, the collected data, the
velocity in particular, is considered to be relative to the car and is always being affected
with its movement. This means that a known static object, in the LIDAR’s perspective,
will move according to the ATLASCAR2 velocity. The target velocity is then calculated
based on this imposed movement to the target’s points, by the GNN node. For a linear
trajectory the car velocity is replicated by the target, since it is the only one moving.
However, when the car is turning the same does not apply.

When the ATLASCAR2 is performing a turn it rotates around the previously cal-
culated instantaneous turning center point with an angular velocity. In the LIDAR’s
perspective it is the target which rotates around this point. In theory the target angular
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velocity is the same as the car’s, calculated by the Short Term Path node, however the
linear velocity is not, as the target may be at a different distance from the turning cen-
ter compared to the ATLASCAR2 (Equation 5.5). The difference in the distance to the
instantaneous turning center point determines how severe the influence of this imposed
velocity on the target is. For a static target placed exactly in the turning center point
its velocity is considered to be null, since according to Equation 5.5 for r = 0,v = 0 as
well.

On the other hand, when a dynamic target is rotating around the same turning
center point at the same distance to it as the ATLASCAR2, its velocity is also perceived
as null. This is due to the fact that the target is moving at the same velocity as
the ATLASCAR2 (Equation 5.5 being rATLASCAR2 = rtarget) with the target’s points
constantly at the same distance to the LIDARs, therefore not moving (apparently). In
contrast to the previously mentioned cased, this perceived velocity is in fact the relative
velocity between the car and the target.

For better understanding, Figure 5.4 presents an example of the ATLASCAR2 per-
forming a right turn. The ATLASCAR2 has velocity (vc) and a target T is initially
detected at a distance j, represented by Ti. The path of the car is represented by an arc
Pcar with its center on the instantaneous turning center point O and radius R. Since only
the target T will be moving relative to the ATLASCAR2 frame, its path is represented
by the arc Ptarget with the same center O but instead with radius D. The car’s path is
clockwise, so the LIDAR perceived target path is the opposite (counter clockwise). Both
O and Ti coordinates are known, or measurable, and used to determine the distance
D using the Euclidean Distance equation. The angular velocity of the ATLASCAR2 is
calculated using Equation 5.5. Since both the target and the car share the same angular
velocity, using again Equation 5.5, now with the distance D and the ATLASCAR2’s
angular velocity, the relative velocity between the target and the ATLASCAR2 (vtc) is
obtained. As the target is further away from the turning center point its linear velocity
is greater than the car’s. This means that the theoretical velocity of the target (vt) is
the difference between vtc and the car velocity (vc) as in Equation 5.6.

vt = vtc − vc (5.6)

The velocity calculated by the GNN is expected to be equal to the target relative
velocity (vGNN = vtc). If not, it can be assumed that the target has velocity of its own
: vt = vGNN − vc.

Apart from the apparent velocity errors some additional issues may rise due to the
GNN architecture. The code updates the target’s points at every scan; this update creates
some issues in the clustering process, particularly if a point is close to the clustering
distance of a target. This means that the number of points of a target can change
at every scan due to measurement noise. When a new point is added to a target its
centroid can shift, especially if the new target point is further away from other target
points. This is due to the fact that the centroid of the target is calculated based on
point density, meaning that the centroid is located in an area where more points are.
This shift in the target centroid is perceived as movement of the target by the GNN. Even
when the ATLASCAR2 is static this issue itself causes errors in the GNN velocity. The
GNN node also uses the Kalman filter with a constant velocity motion model, this means
that when the ATLASCAR2 is accelerating or decelerating its tracking and velocity
detection performance decreases and therefore the velocity prediction is more prone
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Figure 5.4: Example of a static target T while the ATLASCAR2 is performing a right
turn.

to errors, the same happens from the centroid shift with its rapid change of position
therefore an extreme acceleration. An implementation of a motion model which better
represents road environment users can potentially improve performance in the first case,
as in the latter case this implementation can improve the performance however it is not
the desirable solution.

5.3 Refinement of ETC using target and contextual prop-
erties

The VO principle predicts collision between two objects based on the relative velocity
between them. The Expected Time of Collision (ETC) is therefore based on this velocity
and the distance between the two colliding objects. The definition of a collision is based
on the approximation of the objects to a circle, as explained in the previous chapter.
This method, however, is very sensitive to the correct detection of the colliding target.
Additional external properties, such as the weather or road maintenance also plays a big
role on ETC.

5.3.1 Target properties

In a road environment, the usage of LIDAR sensors alone to detect other vehicles trav-
elling on the same lane can be insufficient to describe the full dimensions of the possible
colliding vehicle. A vehicle travelling in front of the ATLASCAR2 is described by the
LIDAR as a set of points with which can be calculated the vehicle’s width (Figure 5.5).
This width information is similar to both a passenger vehicle and a heavy truck which
leads to the same circle approximation. These two types of vehicles, however, have
different volumes and may lead to a incorrect collision detection.

The same case occurs in the distinction between a bicycle and a motorcycle, so
an additional characterization algorithm is necessary in these cases. To do so, a more
appropriate hardware is needed such as a 3D LIDAR sensor, or even using cameras and
computer vision algorithms which allows to perceive the front vehicle’s height. With
the information of the height of the vehicle, a proper distinction between a passenger
vehicle and a truck is possible, adding more information of the obstacle. This information
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ATLASCAR2
Passenger

vehicle

(a) Detection vehicle travelling in the same lane in
front of the ATLASCAR2.

ATLASCAR2 Passenger

vehicle

(b) Detection of same type of vehicle, but instead
with added point data.

Figure 5.5: Detection of passenger vehicles. The front vehicle’s LIDAR detected points
are represented in red and its centroid in blue. As displayed, by adding additional
points to the target its centroid shifted greatly, adding false movement to the target.
The added point data also increases the target calculated width resulting in different
collision calculations for the same type of vehicle.

can be used to develop a bounding box of the detected obstacle, which is continuously
being updated as target points increase. This bounding box can then be compared to
a database of road vehicles, allowing to achieve a better characterization of the vehicle
true or approximated dimensions.

Vehicle characterization also allows to determine the risk to the passengers on board
of the ATLASCAR2 in case of a possible collision. A larger vehicle has less maneu-
verability which decreases the probability of a truck avoiding the collision, therefore
increasing the accuracy of the VO collision detection, assuming the circle approximation
is correct. A smaller vehicle, on the other hand, is more unpredictable due to its high
maneuverability and high acceleration. This is also the case for a pedestrian, where
the rapid change of direction and extreme unpredictability makes the collision detection
unstable, putting in risk all road users.

Knowing the obstacles constraints allows to adjust the ETC based on target maneu-
verability and predictability.

In the unfortunate case where a collision cannot be avoided and multiple road users
are at risk, a good distinction between them can be advantageous by determining the
“safest” collision for all. A greater ETC can be related to a slower colliding velocity
and therefore a more “safe” collision. So, if the ATLASCAR2 is allowed to change its
course to collide with other road users, the ETC paired with a colliding hierarchy allows
to determine which is the chosen colliding object.

5.3.2 Contextual properties

As stated, the ETC is based on the relative velocity and distance between objects. This,
however, can be further refined based on other aspects of the surrounding environment.
The weather plays a big role on road safety. Road users change their behaviour based
on the conditions of the weather, and it is commonly advised to slow down when driving
in the rain, for example. This is due to loss of tire adherence to the road which increases
the risk of vehicle collision. The same happens in poorly maintained roads. These
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proprieties should be accounted for when calculating the collision risk, and the ETC can
change since the brake distance is expected to be higher.

As seen, the collision detection and ETC calculation is very sensitive to external
properties. The maximum safety can only be achieved if all of these are accounted for.
Human beings constantly change their driving behaviour based on the surrounding envi-
ronment and are always assessing their risk based on numerous variables. An Advanced
Driver-Assistance System (ADAS) must be able to keep track of all these variable in
order to provide a safer journey to its user.
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Chapter 6

Tests and Results

This chapter presents the experiments made to demonstrate the reliability of the collision
detection algorithm developed, and to access the influence of the apparent velocity on
the velocity detected by the GNN node. Figure 6.1 shows the satellite view of the parking
lot where the experiments took place at Aveiro University. These experiments involved
the ATLASCAR2, a passenger vehicle portraying a dynamic target and pedestrians
representing a static target. Therefore the following chapter is divided into two sections
explaining the experiments for each target profile. Some of the following experiments
are available on youtube1, being the dynamic target portrayed by a bicycle.

Figure 6.1: Satellite view of the parking lot where the experiments where conducted.

6.1 Static Target

Three types of experiments were conducted using static pedestrians: imminent front
collision, after turn collision and rotating around two pedestrians. The first two, as the
name implies, were aimed to evaluate the collision detection algorithm, while the latter
one evaluates the influence of the apparent velocity.

1https://youtu.be/dtRU35QLUhk
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6.1.1 Front Collision

In this experiment a static pedestrian was placed at approximately 12 meters away
from the ATLASCAR2 which drove at approximately 6 km/h towards the target. The
initial setup and Rviz visualization is presented in Figure 6.2. This experiment allows to
determine the correct collision detection as soon as the car accelerates, as indicated by
the collision cone representation in the figure. During the experiment, the code gathers
data and publishes on the collisions topic which is then used to evaluate the accuracy
of the ETC by analyzing the graphics in Figure 6.3.

Figure 6.2: Front collision setup on the left and on the right the Rviz visualization of
the VO cone (the blue lines) as well as the enlarged target circle .

Graphic 6.3(a) displays the distance detected by the GNN node throughout the dura-
tion of the experiment. The graphic shows that after the initial acceleration the target
distance is decreasing at an approximately constant rate throughout the majority of the
experiment, though in the final section the car reduced its speed when within a few
meter to the pedestrian, in order to avoid an extreme deceleration.

Graphic 6.3(b), displays the velocity modulus of the target in blue as well as the
ATLASCAR2 velocity. In this case, since the target is static, the velocities of both the
target and the ATLASCAR2 are expected to be the same. Despite the low resolution
of the ATLASCAR2 velocity data, the graphic shows that the target velocity follows
the accelerations and deceleration of the car, however, when the ATLASCAR2 velocity
stabilizes at 6 km/h the same does not happen with the target velocity, increasing the
difference between the two. With a more in depth analysis, it is possible to denote more
point oscillation in the first few seconds of the data. This was when the target was first
detected and the ATLASCAR2 is not moving. The velocity oscillation is due to the
centroid shift, which makes the target appear to be moving despite that its detected
points are not (see subsection 5.2.1). The average velocity of the target in this time
period where the ATLASCAR2 is static is 0.73 km/h. As this occurs when there is
no movement of both the ATLASCAR2 and the pedestrian, it can be assumed that
the centroid shifts throughout the duration of the experiment, which could explain the
overall velocity difference. Throughout the experiment, the target velocity average is 4.4
km/h as for the ATLASCAR2 its velocity average is 2.94 km/h, representing a significant
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difference between the two.

(a) Target distance over time. (b) Target velocity as detected by the GNN (in
blue) and ATLASCAR2 velocity (in black) dur-
ing the experiment.

(c) Target ETC over time, being 0 when a collision
is not detected.

Figure 6.3: Charts of distance, velocity modulus and ETC data collected in a frontal
collision with a static target.

The plot 6.3(c) displays the ETC over time, being 0 when a collision is not detected.
Since the ETC is calculated based on the target distance and velocity, the represented
data is in line with the distance and velocity charts, being the ETC higher in the end
of the experiment as the ATLASCAR2 velocity is lower. By counting the non-zero
values and dividing by the number of data collected throughout the experiment, the
percentage of time when a collision was detected can be measured, which in this case
resulted in approximately 54%. This value however takes into account the initial part
of the experiment when the ATLASCAR2 was not moving, thus no risk of collision. By
only accounting for the (t > 2s) time period the percentage is close to 65%. This value
may be influenced by the centroid shift which causes the target to move sideways relative
to the car, in the car’s y axis (see subsection 4.4.1 for the car’s coordinate frame), and
therefore the relative velocity vector lies outside the VO cone. As the velocity decreases,
this lateral shift error increases since the target’s lateral velocity (velocity in the y axis)
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is higher compared to the velocity in the car’s x axis, thus the miss detection in the final
stage of the experiment.

Overall the graphics demonstrate the known vulnerabilities of the VO node and its
high dependency on the accuracy of the GNN velocity data. Despite the car accelerations
throughout the experiment, the Kalman filter constant velocity motion model was able
to track the target during the car’s course and detect an average velocity approximated
to the car’s velocity.

6.1.2 After Turn Collision

The after turn collision experiment main goal was not only to study the collision detec-
tion accuracy but also the influence of the apparent velocity mentioned in the previous
chapters. The setup consisted of a static pedestrian placed in the end of a 90° left turn
as represented in Figure 6.4. The car’s velocity profile is the same as the previous ex-
periment of approximately 6 km/h. The collected data is represented in the graphics of
Figure 6.5.

Figure 6.4: Image of the experiment of the After Turn Collision experiment on the top;
On the bottom the Rviz representation of the target to be collided with in red with
id number 0, the ATLASCAR2 short term path in blue and the instantaneous velocity
vector in red.

Figure 6.5(a) shows the target distance and, similarly to the previous experiment, the
distance is decreasing at an approximately constant rate after the initial acceleration.
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The velocity data is displayed on chart 6.5(b). The initial acceleration is clear until
around the 6 second mark which after that the previously mentioned point oscillation is
shown, this time however reaching a maximum velocity of 12.29 km/h at 12.44 seconds in
the experiment, which translates to 4.96 meters away from the target. The ATLASCAR2
velocity data is similar as before stabilizing at 6 km/h. The overall target velocity average
is 4.55 km/h mainly due to the initial static period, since the velocity average after this
is 6.05 km/h. The ATLASCAR2 average velocity is 3.05 km/h in the full duration of the
experiment and 4.67 km/h in same non-zero velocity period. This data again concludes
the same error magnitude as the previous experiment.

(a) Target distance over time. (b) Target velocity as detected by the GNN (in
blue) and ATLASCAR2 velocity (in black) dur-
ing the experiment.

(c) Target ETC over time.

Figure 6.5: Graphic representation of target distance, velocity and ETC data collected
in a collision with a static target in the end of a 90° left turn.

In the matter of ETC calculation, the graphic 6.5(c) clearly shows the low 12%
accuracy of the VO node. This conclusion was expected as the current VO principle is
only to be applied in linear trajectories, and in this case it only detects collision in the
final meters from the target.
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6.1.3 Rotating Around Two Pedestrians

The main goal of the following experiment’s was to study the effects of the apparent
velocity since both static pedestrians did not face any risk of collision. The setup con-
sisted of a static pedestrian placed in the car’s turning center point and another placed
outside the turn, while the car performed two 360° rotations around them. Its initial
setup is displayed in Figure 6.6.

Figure 6.6: On the top an image of the Rotating Around Two Pedestrians experiment;
On the bottom the Rviz representation . The target placed in the turning center point
is represented in cyan with id 1065 and the pedestrian placed outside the turn in green
with id number 1053.

ATLASCAR2 velocity was set at about 6 km/h. The collected data is divided into
two sets of plots: the charts of Figure 6.8 represent the data related to the target placed
on the car’s turning center point (target id 1065 in 6.6), while the charts of Figure 6.9
display the data of the target placed outside the turn (target id 1053 in Figure 6.6).
The latter however is divided into three sets of data, as the GNN node was not able to
successfully track the pedestrian during the full duration of the experiment. When the
ATLASCAR2 was facing away from the target the background measurements, such as
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vegetation and the road curb, would move and embrace the pedestrian’s target points
making it impossible to distinguish it from the remaining points (Figure 6.7). This was
due to target being close the LIDAR detection angle edge which caused the pedestrian
id to be lost and then be assigned a new one when its points are found by the LIDAR.
These sets of data were then merged to be displayed in a single graphic.

Figure 6.7: Rviz representation of the Rotating Around Two Pedestrians experiment
error. The target placed in the turning center point is still being tracked with the same
id 1065, however the target outside th8 turn (id number 1053) is being embraced by the
background measurements, causing the target to merge with the remaining points and
therefore lose the pedestrian tracking.

Following the previous presentations, plot 6.8(a) presents the distance of the target
placed in the turning center point. Due to its placement, the target does not move, which
confirms the statements of subsection 5.2.1, hence the small distance oscillation in the
graphic. The initial distance values (t < 5s) are different due to the pedestrian adjusting
its placement. The average distance is approximately 4.5 meters, which is the stated
minimum turning distance of the car. Relative to the target velocity (graphic 6.8(b))
the pedestrian position adjustment is also detected in the same time period, otherwise
it oscillates around the 1.42 km/h mark. As previously stated, this velocity should be
perceived as 0 since the target points are not moving, these values must again be due to
the centroid shift. Despite the target not being in risk of collision, the node detects it
around 5% of the duration of the experiment. Due to its high expected time of collision,
the same conclusion as before is acceptable.

Regarding the pedestrian placed on the outer side of the turn, graphic 6.9(a) shows
the expected oscillation in the target distance denoting the data set switch in the points
of highest distance to the car. Apart from that, the remainder of the data is in line
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with what is expected. In terms of velocity, graphic 6.9(b) represents the magnitude of
the apparent velocity influence on the target velocity. In comparison with the previous
velocity graphic, the placement of the target when the ATLASCAR2 is turning is related
to the inaccuracy of the GNN target velocity. In this case, the average target velocity is
19.87 km/h with a maximum of 30.55 km/h at the 21.25 second mark, or at 9.10 meters
away from the car. These values are far from the car’s real velocity, which indicates the
extreme influence of the apparent velocity. Despite not confirmed, it is believed that the
further the initial distance of the target to the car, the higher its detected velocity it
would be.

(a) Target distance over time. (b) Target velocity as detected by the GNN.

(c) Target ETC over time.

Figure 6.8: Graphic representation of distance, velocity and ETC data collected while
rotating around a static target placed on the car’s turning center point.

On the other hand, graphic 6.9(c) shows that during the experiment there was no
collision detected which, in this case, is a good result as initially there was no risk to the
pedestrian.

6.2 Dynamic Target

This section describes the experiments made with a moving target. Throughout all of
the following experiments an effort was made to stabilize the target velocity to around
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(a) Target distance over time. (b) Target velocity as detected by the GNN.

(c) Target ETC over time.

Figure 6.9: Graphic representation of distance, velocity and ETC data collected while
rotating around a static target placed on the outer side of the turn.

8 km/h. Even with some deviations from this velocity goal, this is the value considered
for the target velocity while discussing the results. The main goal of the following ex-
periments is to access the apparent target velocity while the ATLASCAR2 is performing
linear and circular trajectories. Despite the fact that two vehicles were not intended to
simulate a collision, the study of the ETC is still valid to understand how the architecture
behaves with dynamic targets.

6.2.1 Pass By

In the following experiment both ATLASCAR2 and the passenger vehicle perform linear
trajectories passing by each other. The evolution of the detected points throughout the
experiment is shown in Figure 6.10. Initially, due to the GNN clustering architecture,
the front of the incoming vehicle is detect by two sets of points, therefore two targets
with its respective id (first image in Figure 6.10). As the target gets closer to the
car, these points are merged into only one target still representing the front of the car
(second image in Figure 6.10). When the passenger vehicle is side by side with the
ATLASCAR2 the detected points now represent the side of the car (third image in
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Figure 6.10). As the target drives away from the ATLASCAR2 the LIDAR now detects
the back of the passenger vehicle (fourth image in Figure 6.10). This change of detected
points throughout the experiment makes the target centroid move, in this case backwards
thus affecting the GNN velocity data. Since no additional id was created throughout the
experiment, the graphics in Figure 6.11 represent the data from the remaining target
after the merge.

Figure 6.10: Rviz representation of the ”Pass By” experiment. Initially the GNN clus-
tering architecture identified the incoming vehicle as two sets of points representing the
front of the vehicle, therefore two targets with respective ids and colors (cyan and blue).
Afterwards one of the id is removed when the target is closer to the ATLASCAR2. When
both vehicles are side by side, the LIDAR now only detects the side of the passenger
vehicle. As the target drives away from the ATLASCAR2, the side of the passenger
vehicle is no longer detected, but rather its trunk. This change in detected points makes
the centroid move, in this case backwards, affecting the GNN velocity data.

As expected, graphic 6.11(a) accurately displays the distance of the target initially
decreasing and then, after crossing the ATLASCAR2, increasing. The target and AT-
LASCAR2 velocity is displayed on graphic 6.11(b). Since the target is moving, the
displayed data informs the relative velocity between the two. As the pair is moving in
opposite directions (the angle between the two velocity vectors is approximately 180°),
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the ATLASCAR2 velocity is added to the target real velocity, as in subsection 5.2.1, thus
the GNN target average velocity of 19.46 km/h when the ATLASCAR2 average velocity
was 7.16 km/h. By subtracting these average velocities the data averages at 12.3 km/h,
which is more approximate to the target’s real velocity. By analysing the graphic it is
clear that the target reaches its lowest velocity when closest to the ATLASCAR2. This
is due to the change of detected points, previously mentioned. Apart from this, the
average velocities error seems to increase for the dynamic target when compared to the
static. Graphic 6.11(c) shows that the VO node detected a collision in several occasions
throughout the experiment. This must again be due to the centroid shift of the target, as
there was never a collision risk between the two and these detection are when a velocity
spike occurs. Overall, the displayed data relates to, in this case, an approximately 4%
inaccuracy.

(a) Target distance over time. (b) Target velocity as detected by the GNN (in
blue) and ATLASCAR2 velocity (in black) dur-
ing the experiment.

(c) Target ETC over time.

Figure 6.11: Graphic representation of distance, velocity and ETC data collected while
passing by a dynamic target moving in the opposite direction.
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6.2.2 Intersection

The following experiments, divided into two separate road situations, simulate an in-
tersection. Firstly, the ATLASCAR2 merges into a road where the passenger vehicle
travels, to then drive side by side with the detected target. In the second experiment,
the ATLASCAR2 merges again into the road where the passenger vehicle travels, this
time driving in opposite directions. Its aim is to study the apparent velocity inflicted
into the target in both situations. Initially, the collision detection is expected to be un-
reliable since, as stated previously, the developed architecture is not suited for circular
trajectories.

Same direction

As mentioned previously, Figure 6.12 displays the experiment where the ATLASCAR2
merges into a intersection. Figure 6.13 displays the graphics of the experiment where the
ATLASCAR2 merges the road to then travel side by side with the target. As expected
the distance displayed on graphic 6.13(a) shows the distance decreasing to stabilize at the
closest distance to the target of 3 meters. Graphic 6.13(b) clearly denotes two situations
regarding the velocity. As the ATLASCAR2 is moving perpendicular to the target, the
GNN detected target velocity is higher; afterwards, as both travel side by side, the target
velocity decreases to approximately 0 km/h. This a good example of the subtraction of
both velocities vectors, since in the two cases they lie at different angles (> 0 in the first
case and 0 in the last). The overall GNN average velocity was 6.24 km/h while for the
ATLASCAR2 its average velocity was 7.55 km/h. The plot 6.13(c) displays the collision
detected in the beginning of the experiment; according to this both vehicles would collide
if the ATLASCAR2 did not change its course, which, despite not being tested, is a good
assumption.

Figure 6.12: On the left an image of the experiment, in this case with a bicycle portraying
the dynamic target; On the right the Rviz representation of the data collected using a
passenger vehicle. The target is represented in pink with id 279, the ATLASCAR2 short
term path in blue and the instantaneous velocity vector in red.
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(a) Target distance over time. (b) Target velocity as detected by the GNN (in
blue) and ATLASCAR2 velocity (in black) dur-
ing the experiment.

(c) Target ETC over time.

Figure 6.13: Graphic representation of distance, velocity and ETC data collected while
the ATLASCAR2 merged into a road where a vehicle was traveling (in the same direc-
tion) after which driving side by side with the target.

Opposite direction

Regarding the second experiment, still studying the behaviour of the vehicles in an
intersection, Figure 6.14 exemplifies the motion of the ATLASCAR2 as well as the Rviz

representation. Charts 6.15 displays the data when the ATLASCAR2 merges into the
opposite lane of the passenger vehicle. Graphic 6.15(a) presents the expected values
for the distance of the target. Plot 6.15(b), in contrast with the previous intersection
situation, shows the velocity to be always higher than the ATLASCAR2. Even though
the difference is not as clear, the graphic still depicts two different velocity profiles.
Initially, when the ATLASCAR2 is perpendicular to the target, its velocity is similar
as previous experiment. On the other hand, when the ATLASCAR2 is driving away
from the passenger car, its velocity increases, similar to the ”drive by” experiment. The
results show an overall GNN target velocity average of 17.11 km/h, and the ATLASCAR2
velocity average of 6.55 km/h. Analogous to the previous experiment, graphic 6.15(b)
informs of an eventual collision if the ATLASCAR2 continued to drive forward.
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Figure 6.14: On the left an image of the experiment, in this case with a bicycle portraying
the dynamic target; On the right the Rviz representation of the data collected using a
passenger vehicle. The target is represented in yellow with id 312, the ATLASCAR2
short term path in blue and the instantaneous velocity vector in red.

(a) Target distance over time. (b) Target velocity as detected by the GNN (in
blue) and ATLASCAR2 velocity (in black) dur-
ing the experiment.

(c) Target ETC over time.

Figure 6.15: Graphic representation of distance, velocity and ETC data collected while
the ATLASCAR2 merged into a road where a vehicle was traveling (in the opposite
direction).
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6.3 Circle approximation

In the following segment three separate, yet similar, sideways collisions will be described.
First, the ATLASCAR2 will be colliding with a stationary passenger vehicle perpendicu-
larly placed, aiming for its middle section between the front and back doors. Afterwards,
the same situation is studied, this time being the ATLASCAR2 static while the passen-
ger vehicles performs the above described movement. Lastly, while the ATLASCAR2
is static and still perpendicular to the passenger vehicle, the latter will drive towards a
collision with the ATLASCAR2 rear headlight. Its main goal is to study the collision
detection algorithm of the VO node and the influence of the circle approximation radius
on its accuracy. Despite not having velocity data from the passenger vehicle real velocity,
it is assumed to be approximately 8 km/h.

6.3.1 ATLASCAR2

The initial setup of the following experiment is displayed in Figure 6.16 while the ATLAS-
CAR2 drives towards the static passenger vehicle. As described previously the graphics
displayed on 6.17 related to the first sideways collision with the moving ATLASCAR2
with the static passenger vehicle. Similar to the previous experiments, the graphics
6.17(a) and (b) depict the expected distance and velocity behaviours. Focusing on the
graphic 6.17(c) displaying the ETC data, the overall good results of collision detection
by the developed architecture can be seen. The node is able to detect the collision almost
immediately, despite some minor miss detection afterwards, allowing the driver to safely
adjust its course to avoid a collision. In terms of numbers, the collected data shows that
the VO node detected a collision 71% of the time.

Figure 6.16: Rviz representation of the ATLASCAR2 sideways collision experiment with
the target id 199. The collision cone can also be seen with the pink lines as well as the
enlarged target circle.

6.3.2 Passenger vehicle

Regarding the second part of this sideways collision experiment, the graphics to be
analysed are presented in Figure 6.19. Graphic 6.19(b) displays the already known static
velocity of the ATLASCAR2 in black, while in blue the target velocity is considered
to be a good approximation to the passenger vehicle velocity. This target velocity,
despite no accurate measurement of the vehicle’s real speed, is in line with the data
gathered from the experiment in subsection 6.1.1, where in both situations the velocity
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(a) Target distance over time. (b) Target velocity as detected by the GNN (in
blue) and ATLASCAR2 velocity (in black) dur-
ing the experiment.

(c) Target ETC over time.

Figure 6.17: Graphic representation of distance, velocity and ETC data collected in a
collision simulation between the ATLASCAR2 and a stationary passenger vehicle per-
pendicularly placed.

profile is approximate. The graphic displayed in 6.19(c), in contrast to the first part
of this experiment, shows a much poorer collision detection, even thought the colliding
vehicle movement in both is the same, translating to a 35% decrease in accuracy (36%
collision detection accuracy for this case). This poor accuracy has to do with the circle
approximation and the location of the VO cone apex point. As mentioned in previous
chapters, the ATLASCAR2 is approximated to a circle of radius equal to its width and
the VO cone apex point is locate at the front of the vehicle. Since in this case the colliding
point is not at the front of the vehicle, but rather on the side of the car, the VO node
does not detect a collision between the two. Additionally, the collision is not detected
due the fact that the ATLASCAR2 circle radius is smaller than the distance, in the car’s
x axis, between the VO cone apex point and the target centroid. If the ATLASCAR2
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width is enlarged the collision would in fact be detected as shown in Figure 6.18.

Figure 6.18: ATLASCAR2 circle radius comparison between two situation in the ap-
proximately same position. On the left the ATLASCAR2 circle radius is 3 meters so a
collision is detected. On the right its radius is 1.5 meters and a collision is not detected.

Maintaining the initial ATLASCAR2 circle width, if the passenger vehicle would aim
to collide further back in the ATLASCAR2, its detection would be even lower as the
graphic 6.20(c) shows with a 1% collision detection accuracy.

(a) Target distance over time. (b) Target velocity as detected by the GNN (in
blue) and ATLASCAR2 velocity (in black) dur-
ing the experiment.

(c) Target ETC over time.

Figure 6.19: Graphic representation of distance, velocity and ETC data collected in a
collision simulation between the passenger vehicle and the ATLASCAR2 placed perpen-
dicular to it.
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(a) Target distance over time. (b) Target velocity as detected by the GNN (in
blue) and ATLASCAR2 velocity (in black) dur-
ing the experiment.

(c) Target ETC over time.

Figure 6.20: Graphic representation of distance, velocity and ETC data collected while
the passenger vehicle drove towards a tail collision with the ATLASCAR2.

6.4 Overall Result Analysis

In conclusion, Table 6.1 shows the results of the collision detection percentage and the
modulus of the difference between the average velocity of the GNN target and the AT-
LASCAR2, of the static target experiments. As expected, the collision detection is more
accurate when the ATLASCAR2 performs a linear trajectory, as in the ”Front collision”
experiment, compared to the ”After Turn Collision”. This proves the unreliability of this
architecture when applied to circular trajectories, as a collision is only detected when
the ATLASCAR2 is within a few meter to the target. The average velocity difference
for both experiments demonstrates the centroid shift error, since the GNN target velocity
is expected to be equal to the ATLASCAR2 velocity. These errors are similar to the
average target velocity when the ATLASCAR2 is static (0.73 km/h in the initial stage
of the ”Front Collision” experiment). Regarding the ”Rotating Around Two Pedestri-
ans” experiment, the difference between the GNN and the ATLASCAR2 velocity clearly
demonstrates the inaccuracy of the GNN architecture to detect the target velocity, which
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is affected based on the distance of the target to the car’s turning center point. This
error is due not only to the centroid shift, experienced in the inner pedestrian, but also
to the apparent velocity influence on the outer pedestrian.

Table 6.1: Static Target experiment results of the collision detection percentage and the
modulus of average velocity difference between the GNN target velocity and the ATLAS-
CAR2 velocity.

Static Target

Collision detection |Average velocity difference|
(%) (km/h)

Front collision 65% 1.46

After turn collision 12% 1.38

Rotating around two pedestrians
- Outer pedestrian

5% 5.58

Rotating around two pedestrians
- Inner pedestrian

0% 12.87

Regarding the Dynamic Target experiments, Table 6.3 display the results obtained.
Since no collision was expected and the motion of the ATLASCAR is similar to the
previous static experiments, only the average velocity difference is to be analysed. The
overall results demonstrate the influence of the angle between the ATLASCAR2 velocity
vector and the GNN target velocity vector. Throughout the ”Pass by” experiment both
vectors were at an approximately 180° angle, thus its difference resulting in an higher
velocity modulus. The average velocity however was affected by the detected passenger
vehicle points, as when the incoming car passed by the ATLASCAR2 its target points
were no longer related to the front of the vehicle, but rather its side and afterwards the
back of the car, as it drove away. This change resulted in a momentarily decrease in the
target velocity as the centroid made this movement from the front to the back of the
passenger vehicle (Figure 6.10).

The ”Intersection” experiment was divided in two separate scenarios, ”Same direc-
tion” and ”Opposite direction”. These were meant to illustrate the difference in the GNN

velocity as the ATLASCAR2 drove parallel to the passenger vehicle and, in the second
part of the experiment, while it drove away from the passenger vehicle. Therefore, the
average velocity difference clearly demonstrates the influence of the angle between the
GNN target and the ATLASCAR2 velocity vectors. Initially this angle is the same in
both experiments. In the ”Same direction” experiment, after merging into the road,
the angle was approximately 0° thus their velocity modulus were subtracted, resulting
in a low average velocity difference. On the other hand, in the ”Opposite direction”
experiment the angle was approximately 180° resulting in a higher velocity difference, as
both velocity modulus were added.

Finally, the last set of experiments test the collision detection accuracy in a sideways
collision. In the first scenario the ATLASCAR2 simulated a collision with a static pas-
senger vehicle placed perpendicular to it. In the second scenario, the passenger vehicle
is the one who collides with the static ATLASCAR2. Lastly, the previous scenario is ex-
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Table 6.2: Dynamic Target experiment results of the modulus of the average velocity
difference between the GNN target velocity and the ATLASCAR2 velocity.

Dynamic Target

|Average velocity difference|
(km/h)

Pass by 12.3

Intersection - Same direction 1.31

Intersection - Opposite direction 10.59

perimented, this time the passenger vehicle simulating a collision with the ATLASCAR2
rear headlight. These results demonstrate the influence of the circle approximation ra-
dius of the ATLASCAR2, as in the last two experiments, by targeting the rear end of the
ATLASCAR2, the collision detection accuracy decreased 35%, resulting in an extremely
dangerous 1% accuracy. This is due to the fact that the current architecture expects
the ATLASCAR2 to collide front first with an object rather being collided with on the
side. This error, however, can be decrease by enlarging the ATLASCAR2 circle, adding
a safer margin to detect a collision.

Table 6.3: Circle approximation experiment results of the detected collisions percentage.

Circle approximation

Collision detection
(%)

ATLASCAR2 71

Passenger vehicle 36

Passenger vehicle - rear headlight 1
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

Before a vehicle is prepared to drive midst the chaotic road environment with no input
from the driver, it must be able to ensure maximum safety for its user, as well as everyone
surrounding it. For that, a collision prediction algorithm, such as the one studied in this
dissertation, must perform with the highest accuracy.

There are several different techniques to detect a collision between two objects and,
in this case the proposed approach was to use LIDAR detected velocity data and target
properties, such as its dimensions. Consequently, the developed architecture heavily
relies on this data, which, in this dissertation, was provided by the ROS package MTT,
specifically the GNN node, previously developed at Universidade de Aveiro. The code
in question was refurbished to allow its execution in more recent versions of ROS and
provide additional data needed for the remaining architecture. Initially, the developed
ROS package was intended for detection and tracking of objects while its LIDAR is static,
resulting in very good performances. However, the deployment in dynamic environments,
as the LIDAR accompanied the ATLASCAR2 attached to the front bumper, led to a
study of the influence of the ego motion inflicted apparent velocity, specifically while
the car is turning. From this study also resulted an auxiliary ROS node capable of
representing the short term path of the ATLASCAR2.

By comparing the velocity data from a known static target with the collected data
from the ATLASCAR2 velocity, the study concluded that without any ego motion com-
pensation, the GNN node is unable to successfully determine the target’s real velocity
nor the relative velocity between the target and the ATLASCAR2. Regarding dynamic
targets, despite being clear the relative velocity changes based on the angle between both
target and ATLASCAR2 velocity vectors, the same error is presented. A possible reason
for this is the target centroid constant shift due the GNN point clustering architecture
which would add false velocity to the target. The erroneous velocity data compromises
the ETC calculations since it is purely based on distance and velocity. The mentioned
centroid shift is also responsible for decreasing the collision detection accuracy, since in
cases where the centroid shifts sideways it may cause the relative velocity vector to lie
outside the VO cone. Despite this setback, the VO node behaved as expected with good
collision detection performances in linear trajectories. The VO technique applied was
only viable to these linear trajectories so the experiments made proved the expected poor
accuracy in circular trajectories. The conducted experiments allowed also to verify the
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VO node circle approximation, which proved to influence the collision detection accuracy.
In this case, it was initially set that the section of the car, which would be expected to
collide, was the front of the vehicle, so the cone was placed in the middle front section
of the car and the car’s width as the radius of the circle. With this setup the VO node
was able to detect a collision between the front bumper of the ATLASCAR2 and every
target on the road. However, in the case where a collision was to happen with the side
of the car the node was not as accurate, decreasing as the collision point was further
back in the ATLASCAR2. The behaviour is expected to be similar in cases where the
colliding target dimension are not well defined thereby reducing the collision detection
algorithm performance.

In conclusion, the collision detection algorithm performed as expected when account-
ing for the known vulnerabilities. The developed architecture was able to accurately
detect collisions in linear trajectories, as in a front collision or in an intersection. On the
other hand, the correct localization of where and when the collision is going to occur,
with the current setup, is not reliable as it depends on the correct velocity definition.
The usage of LIDAR to detect and track targets has some disadvantages, such as the
limited definition of dimensions due to the lack of target information, which in certain
cases could reduce the algorithm’s performance. This and several other constraints, while
using the current setup, were also addressed in this dissertation, proving a good start
up point if addressing collision detection using LIDAR. Regarding the initial objectives
of this dissertation, the migration of previously developed tools to the most recent ver-
sion of ROS was accomplished, thus allowing to use them in their full capabilities. The
auxiliary visualization tool to display the ATLASCAR2 short term path was also proved
useful to understand the behaviour of the car in the short term. The ultimate goal to
determine the collision zones can be divided into two parts: detection of the imminent
collision and definition of the location of said collision. Based on the results for the front
collision, the first can be considered successful, for the current setup. The definition of
the location of a collision, due to the high dependency on the correct detection of the
target velocity, as greater margin of improvements.

7.2 Future Work

In the pursuit of maximum road safety, collision detection architectures as the one de-
veloped in this dissertation can always improve. These improvements can be separated
in different areas such as object detection and collision detection.

In the target detection algorithm, results show that an improvement is needed to
better determine the exact location of the eventual collision and also to improve the ETC
accuracy. The usage of LIDARs alone to perceive the ATLASCAR2 surroundings is not
sufficient to get the full dimensions of the obstacles, thus reducing the collision detection
accuracy. Pairing the 2D LIDARs used in this dissertation with, for example, cameras
and computer vision algorithms would allow to obtain the obstacles full dimensions or
even distinguish it from different categories such as pedestrians, bicycles, heavy trucks
or passenger vehicles. This target characterization is essential as for heavy trucks and
passenger vehicles the detected LIDAR points is similar despite their dimensions and
driving behaviour is completely different, influencing the collision results. With the
target dimensions fully defined it can then be tracked using a bounding box which

R.P. Costa Master Degree



7.Conclusion and Future Work 61

reduces the mentioned centroid shift error, increasing the GNN target velocity accuracy,
therefore improving the ETC calculation. The target detection and tracking algorithm
is the base of any collision detection algorithm hence the importance of improving the
architecture used in this dissertation.

In the collision aspect of this work, the implementation of a additional or improved
algorithm to account for circular trajectories of both the target and the ATLASCAR2
is a must. The implementation of Vehicle to Vehicle communication which allows cars
to share their status with other road agents is certainly going to facilitate this process
to determine when a target is turning and its short term path, to then act accordingly.
Additionally, the current setup allowed to point out several occasions where the circle
approximation, of both the colliding target and the ATLASCAR2, reduced the collision
detection, thus jeopardizing road users. The mentioned bounding box implementation
would aid this circle approximation, as all dimensions of the target can now be accounted
for.

Finally, contextual properties such as weather or road condition can also be accounted
for when calculating the ETC. These properties change drivers behaviours and should
also play a role in the autonomous vehicle calculations. Increasing the ATLASCAR2
circle approximation based on these factors can be considered as a first step in providing
a safer journey in these conditions. By doing so, the collision calculations would have a
safer margin, allowing the ATLASCAR2 to change its course if an obstacle was to pass
too close to the car.
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Appendix A

Instructions to Install and Run
the Developed Packages

The packages developed in this dissertation were created in the ROS Melodic version. To
download this framework follow the instructions on https://wiki.ros.org/melodic/

Installation/Ubuntu. As of right now, additional versions of ROS were made available,
however these were not tested and compatibility issues may rise.

After setting up the catkin workspace by following the initial ROS tutorials available
in https://wiki.ros.org/ROS/Tutorials, github clones are necessary to download the
needed packages. The auxiliary packages (Colormap and canReceiveandUpdateStatus)
are available on https://github.com/lardemua. The core VO, GNN and Short Term Path

nodes are available on https://github.com/ruipcosta, however a branch of this repos-
itory is expected be made to LARDEMUA. All the packages must be inside the /src

folder within the previously made catkin directory.
To compile, within the catkin directory, do catkin make.
To launch the ATLASCAR2 LIDARs, first start up the car, afterwards, in the Atlas

machine, launch the sensor by running roslaunch atlas2 bringup bringup.launch.
Check if the LIDAR points are being represented on Rviz. Afterwards, if the data is to be
recorded, in another terminal run roslaunch atlas2 bringup record sensor data.launch.

To execute the full collision detection architecture (VO and GNN) run roslaunch

velocityobstacle vo.launch show:=1; if Rviz is not intended to initiate, substitute
the ”1” to ”0” in show:=1.

To run the ATLASCAR2 Short Term Path node, the canReceiveandUpdateStatus

node must be initiated to publish the NominalData topic. This node however requires
hardware outside of this dissertation topic. If the topic is being published, simply run
the command rosrun velocityobstacle ShortTermPath.py to begin the node.
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