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Abstract: 

Protein design is the field of synthetic biology that aims at developing de-novo custom 

made proteins and peptides for specific applications. Despite exploring an ambitious 

goal, recent computational advances in both hardware and software technologies have 

paved the way to high-throughput screening and detailed design of novel folds and 

improved functionalities. Modern advances in the field of protein design for small 

molecule targeting are described in this review, organized in a step-by-step fashion: 

from the conception of a new or upgraded active binding site, to scaffold design, 

sequence optimization and experimental expression of the custom protein. In each 

step, contemporary examples are described, and state-of-the art software is briefly 

explored. 

 

Keywords: 

Protein design; Computational chemistry; De-novo design; Protein synthesis 

 

Statement: 

Rational protein design can unlock the potential of new functions of proteins that nature 

has not explored yet. By designing proteins specific for a given task, science may be 

able to overcome some of the major hurdles that humanity faces today. With an impact 

in the most various areas of research, such as medical applications, industrial 

catalysis, soil remediation, among others, protein design is a growing topic of interest 

for the future. 

  



 

1. Introduction 

Synthetic biology is defined as the interdisciplinary scientific field that makes use of 

concepts from both biotechnology and engineering to design and construct new or 

improved biological systems.1 The main difference setting this field apart from others 

such as genetic engineering is the focus to standardize, model and predict the 

biological behaviours, feeding back the gathered information to the design and 

improvement of new systems.2 Part of this endeavour is centred around the 

development of new biological pathways and, therefore, newly modified proteins.3 

Proteins are naturally the workhorse of biological systems, and current estimations 

place the number of human proteins at ≈20 000 entities, excluding alternative splicing 

and post-translational modifications.4 Traditionally, scientists made use of this large 

catalogue of engineerable protein parts to knock-out existing cellular pathways in 

detriment of newly upgraded ones, and, more recently, modern tools for genomic 

editing such as the CRISPR-Cas9 system opened the path to the creation of synthetic 

protein species by mutation and mixing of existing ones.5 By tinkering with the old, 

scientists have paved the way for the creation of the new. Although labour-intensive 

and time-consuming, the development of improved proteins has already proven 

successful: some examples of commercially available engineered proteins are 

synthetic insulin homologues, as well as some engineered amylases and lipases used 

in food industry.6 The new or improved proteins can be employed in numerous 

applications including, but not limited to, medical diagnosis and therapeutics, 

biosensors, research tools, environmental remediation and industrial enzymes.13 

Given this set of applications, a major topic of interest is the design of proteins for small 

molecule recognition (such as drugs or environmental pollutants). However, the list of 

readily available functional proteins is, despite extensive, limited, and naturally 



 

obtainable proteins with specific sets of properties may not always exist. It is believed 

that the natural selection pressure blocks the complete exploration of folds and 

sequences, as proteins are natively picked for functions within the cell context.7 This 

suggests the existence of huge untapped potential with uncharted functions and 

properties not explored by nature, but now made available to us by the implementation 

of de-novo protein design studies.8  

Protein design is, in specific, the field of synthetic biology that explores this potential 

by rationally producing sequences of aminoacids “à la carte” that will fold into unnatural 

folds with novel activities or behaviours.9 As Jane S. Richardson wrote in 1989:10 “No 

more need we be content with admiring the elegant and varied proteins produced by 

living things for doing their chemical, structural and organizational work – now we can 

tinker with those proteins however we please, and can even start from scratch and try 

to invent new ones.”  

Traditionally, this goal was achieved via experimental directed evolution, where a 

potential gene was subject to iterative rounds of mutagenesis and screening for 

amplification of the desired function.11 However, more recently, one of the main 

strategies for the design of synthetic proteins harnesses the potential of computer 

simulations to design sequences and folds, including the incorporation of new 

functions, with high throughput from the ground up in silico before running experimental 

synthesis.12 Each of these approaches comes with its own advantages and 

disadvantages, and, more often than not, the two work synergistically to achieve the 

best possible solution for a defined problem. Besides the introduction of new and/or 

improved functions, another drive for the implementation of computational tools for the 

study of protein folding is the ever widening gap between the known sequences and 

their corresponding 3D structure.14 Addressing this gap will unveil unknown functions 



 

of proteins in the cell, as well as expand our understanding of the underlying 

mechanisms behind protein folding mechanics. Before delving into more practical 

aspects of computational protein design, a brief exploration of the historical evolution 

of the topic is summarized. 

Historically, computer-aided approaches started to gain traction in the 90’s, as the 

ever-increasing computational resources necessary for the simulations were made 

available,15 with improvements such as the introduction of dead-end elimination 

(DEE)16 and genetic algorithms.17 The works of Dahiyat et al.18 and Harbury et al.19 

constitute two of the most complete works during this initial phase, among others.20–22 

In 1994 the first Critical Assessment of protein Structure Prediction (CASP) experiment 

was held worldwide and has been on-going every 2 years since then: the objective is 

to summarize and improve recent advances in the protein folding prediction problem.23 

As the available protein databases increased in volume and detail, novel protein 

design strategies became possible. In 1999, Simons et al., from the Baker group, 

presented some of the first applications of homology-based methods for protein folding 

prediction,24 resulting in the first release of the Rosetta software, one among the 

popularly used software since.25 Research efforts have since shifted from fold 

prediction towards design of novel folds: in 2003, the first-ever unnatural fold was 

presented by Kuhlman et al., from the Baker group, using an improved version of the 

Rosetta software.26 

More recently, high throughput screening for functionality became the major focus 

of research,27,28 with developments such as the incorporation of artificial neural 

networks29,30 and advancements in bioinformatics and big data sciences.31,32 These 

allowed for the implementation of new and/or improved functions in the novel protein 

designs for the first time.33–35 



 

Protein design methods can be classified based on the targets of the experiment. 

On one hand, several studies have tackled the modelling of protein-protein interactions 

and have been extensively reviewed before.36,37 On the other hand, protein design for 

small molecule recognition intends to measure and/or capture low weight metabolites, 

such as drugs, toxins and environmental pollutants. Designed proteins are especially 

adequate for small-molecule recognition as they have shown extreme environmental 

resistance and have high specificity, often with femtomolar affinity.38 This highly active 

field of research has specific applications in various fields such as biotechnology and 

medicine, sensors, therapeutic drug delivery systems and enzymes.39 The design of 

proteins for small molecule interactions has, despite its successes, some hurdles to 

overcome, namely on the definition of protein-ligand free energy scoring functions with 

high accuracy (with correct electronic polarization effects, precise insertion of explicit 

water molecules in displacement effects and veracious binding site flexibility and 

dynamics during the docking process).40 

The basic strategy underlying protein design for small molecule targeting can be 

summarized in 3 steps or tasks, as illustrated in Figure 2: firstly, a binding pocket or 

active site can be theorized for the desired application; secondly, a scaffold structure 

can be proposed in order to place the necessary amino acids in the correct 3D space; 

and finally, a sequence can be sampled that, theoretically, folds into the desired 

conformation.41 This simplistic approach, despite incomplete, covers most of the efforts 

done in the past few years and described in this review. 

The focus of this review will be the enumeration and discussion of several state-of-

the-art approaches for each of the previously defined steps or tasks in computational 

protein design for interaction with small molecules, with focus on exemplary work from 

the last 6 years (2014-2020). 



 

2. Scoring functions 

Underlying all computational protein design efforts lies the ability to simulate the 

interactions between molecular species and to measure the fitness of a given protein 

conformation. In this context, fitness should be understood as the suitability of a given 

set of atom coordinates to a given goal. This goal can be anything from increasing the 

stability of a given conformation to augmenting the solubility of a peptide or even to 

stabilize the specific recognition of a target molecule. Therefore, scoring functions 

evaluate the current state of a system, allowing the comparison with other states, thus 

sampling the conformational space in search of the optimal solution. 

Several options have been proposed in the past, and were traditionally 

subdivided in physical and statistical functions.43 On one hand, physical functions 

evaluate the interaction between particles in the form of molecular-mechanics force 

fields. In this case, the scoring functions are often referred to as energy functions, since 

the calculated value reflects the energy contributions of various components, such as 

bond, angle, dihedral, Coulomb, Lennard-Jones, hydrogen bonding and van der Walls 

energies.44 On the other hand, statistical functions rely on existing cheminformatics 

data to access the likelihood of a structure/sequence being plausible, based on 

previous observations in nature, and have often been referred to as fitness functions. 

Component terms of these functions include Ramachandran backbone angle 

preferences, side-chain rotamer preferences, long-distance contact probabilities, 

secondary structure probabilities, sequence-homology, among others.45 

More recently, however, state-of-the-art energy functions incorporate both 

physical and statistical components in a hybrid approach, showing improved prediction 

power in software solutions such as the Rosetta software.26 The default energy 

function of Rosetta software has evolved alongside with the code itself: In 2015, 



 

O’Meara et al have presented the ElecHBv2 energy function (also known as 

Talaris2014), which encoded native distributions of hydrogen bonds and electrostatics 

interactions with relatively high precision,46 following the OptE optimization 

methodology.47 In 2016, Park et al released the Opt_Nov15 improvement of 

Talaris2014, optimizing the existing parameters in various benchmark tests such as 

decoy discrimination, homology modelling, molecular docking and sequence 

prediction.48 Such improvements were latter condensed into the Rosetta Energy 

Function 2015 (also known as REF15), containing Lennard-Jones attraction/repulsion, 

implicit solvation, electrostatic, hydrogen bonds, disulphide bonds, Ramachandran 

probability and side-chain rotamer probability energy components, among others. 

Furthermore, this energy function also makes explicit the local environment of the 

protein during the simulation, accounting for pH variations and membrane 

microenvironment energy components. REF15 is considered the default score function 

of the Rosetta software since July 2017.49 

Other contemporary energy functions make use of state-of-the-art machine 

learning strategies to assess the fitness of a proposed structure50 or binding free-

energies in protein-ligand systems.51 An example of a physical machine learning model 

is TorchANI, an artificial model trained on a large dataset of DFT calculation results.52 

Using this approach, TorchANI has shown DFT-level accuracy in the calculation of a 

system energy, with much lower computational costs. However, when it comes to 

scoring functions, most efforts in machine learning application have been centred in 

statistical approaches. Among these, the AlphaFold algorithm, developed by the 

DeepMind team from Google, has probably gained the most renown after achieving 

impressive accuracy in the latest CASP 13 experiment. AlphaFold is a machine 

learning model trained on a large database of known sequence-structure pairs in order 



 

to predict inter residue distances, who are then minimized by gradient descent to the 

basal energy state.53 This triggered a shift from binary distance prediction research 

(whether two residues were in contact – usually less than 8Å) to an actual distance 

value prediction between residues. RaptorX, developed by Xu et al, has further shown 

the usefulness of predicting contact distances between residues, achieving high 

accuracies even with few homolog structures in the training set (less than 60 

homologs).54 Given these advances, the PDNET package, developed by Adhikari et 

al, was released: a fully open-source framework for deep learning of protein inter 

residue distances with high accuracy.55 More recently, the Rosetta software team has 

built on top of these results, adding the ability to train deep convolution networks to 

predict inter residue orientations, in addition to distances.56 The resulting package, 

dubbed trRosetta, has already been instrumental in generating 3D models of SARS-

CoV-2 virus proteins with few or no homolog structures57–59 and even vaccine 

constructs against this same virus.60 

In terms of computational resources, some scoring functions can easily become 

too cumbersome, especially for bigger proteins, as the number of degrees of freedom 

increases. Therefore, although highly applicable in protein folding prediction problems, 

such models have yet to be extensively implemented in design efforts, where the need 

to thoroughly sample the conformation space is even more prominent. In such cases, 

coarse-grained models can be used to simplify intra-chain interactions to a few 

particles per residue, allowing simulations of bigger systems, longer time scales and 

much higher sampling of the conformational space, at the expense of reduced 

accuracy.61 A state-of-the-art example is the Upside model, that reduces protein 

complexity to 1 single directional bead, whose position and orientation is defined by a 

set of over 10,000 jointly optimized parameters trained on approximately 500,000 



 

residues. In this example, sidechains are considered as belief-propagated structures, 

where the precise positions of the atoms have little value and therefore do not follow 

typical rotamer discrimination. Despite this level of abstraction, Upside showed correct 

rotamer prediction values in over 90% of the test cases, with prediction times between 

16 to 300 times faster.62 

 

3. Designing a protein binding pocket 

Several approaches have been suggested for structure-based binding pocket 

design, namely by stabilization of pre-defined binding shells, blind docking-based 

pocket search63 and statistical methods.64 

 
3.1)  Stabilization of binding shells 

For stabilization of pre-defined binding shells, a ligand-surrounding potential frame 

is defined a priori, containing information regarding the ligand non-covalent 

interactions, such as electrostatics, dipole moments, π- π stacking and hydrophobic 

effects. The design of the binding pocket intends, therefore, to stabilize these 

interactions through the rational placement of complementary aminoacids in the 3D 

space surrounding the ligand. The definition of the binding shell surrounding the ligand 

can be obtained from inspecting naturally found binders to that target and identifying 

the coordinated residues.65 

One example for the implementation of this recipe is the digoxigenin (DIG) 

recognition by a protein designed in Tinberg et al work. In that project, the authors 

studied the binding shell from anti-DIG antibody 26-10 (PDB 1IGJ) and screened a set 

of 401 protein scaffolds for binding pockets that would mimic the identified hydrogen-

bonding network, van der Waals interactions and hydrophobic packing of the ligand. 

The resulting set of candidates were then submitted to rounds of optimization by 



 

mutation of specific residues both in the first and second shells of interaction, resulting 

in increased binding affinity and specificity towards DIG.39,66 

Another example of this approach is the work of de los Santos et al. In this example, 

the QacR protein from Staphylococcus aureus was the target for rational protein 

design. This protein regulates the transcription of QacA, a multidrug efflux pump, and 

is allosterically regulated by a multitude of environmental agents. The objective was to 

modify the QacR protein to respond to vanillin, a by-product of lignin degradation and 

a known phenolic growth inhibitor. The new binding shell specific for vanillin was 

idealized by comparison with proteins from PDB that bind to similar molecules. The 

energy function was then biased, giving more weight to interactions that seem to 

stabilize vanillin or similar molecules in other natural proteins, namely π-π stacking 

and hydrogen bonds. Conformational sampling of both the ligand and binding pocket 

rotamers was performed by Monte Carlo simulated annealing, and several residues 

were allowed to mutate in the process. The candidate sequence was expressed and 

characterized in vitro, showing high levels of interaction with the target ligand and even 

extended cell growth that was normally inhibited in the presence of vanillin.67 

In another strategy, the binding shell can be idealized a priori from physical 

characterization of the target molecule. As an example of this approach, Guffy et al 

have searched a large set of protein scaffolds using Fpocket (an open source protein 

cavity detection algorithm based on Voronoi tessellation)68 to identify possible binding 

sites for zinc ions. The coordinating residues were optimized by applying multiple 

plausible rotamers and measuring the scoring function that satisfied the pre-defined 

binding shell of zinc ions in terms of distances and angles. The refined set of 

candidates then suffered 10 rounds of further optimization by allowing changes in the 

backbone conformation and second shell sidechain rotamers. Using this approach, the 



 

authors were able to design protein sequences with binding affinities (KD) of 1.1 µM, 

whose structure was stabilized when bound to the target zinc ions.69 

 

3.2) Pre-existing pocket search 

On the blind docking-based pocket search approach, the existing list of structures 

with curated binding pockets is blindly searched using docking protocols. The focus is 

therefore shifted from rationally stabilizing the binding shell surrounding the ligand in a 

small set of protein candidates to massively searching databases for compatible and 

pre-existing pockets, for the target ligand, even though further rounds of optimization 

by random mutation are usually employed. In 2018, Bhagavat et al released PocketDB, 

a massive online database with 249,096 curated binding pocket structures and their 

known/probable specific ligands, by screening the PDB with several different pocket 

identification algorithms. This database constitutes the most recent update to the 

known “pocketome”.70 A refined set of candidate binding pockets can therefore be 

identified and optimized by rotation/translation/mutation of the singled out aminoacids. 

Using this approach, Fujieda el at have searched the protein databank for non-

metalloenzymes that share three dimensional motifs with metalloenzymes, following 

the hypothesis that, given enzymatic promiscuity, current enzymes may have been 

ancient metalloenzymes that have since evolved through a different path. These 

reminiscent metal-binding pockets may still be slightly active or re-activated given 

simple mutations. One of the promising hits of this search campaign was the 6-

phosphogluconolactase (6-PGLac) which, when in presence of Cu2+ cations, showed 

catalytic activity for the oxidation o-dianisidine (Kcat 78 ± 4 x 103 s-1). By mutating the 

active site residues, single-point mutants were found with further increased catalytic 

activity (Kcat 490 ± 30 x103 s-1).71 



 

Despite its usefulness, binding pocket databases are still poorly catalogued. A more 

general approach tries to identify actives sites in a typical protein database and use 

the generated information as a starting point for binding pocket search or binding 

pocket stabilization. When the binding pocket of the protein is still undefined, statistical 

methods can be employed to find and characterize the residues of significance in an 

unknown active centre. Two statistical methods for active site identification and 

stabilization are explored. 

Firstly, Statistical Coupling Analysis (SCA) is a method of covariation analysis that 

tries to identify pairs of independent and highly conserved residue positions 

responsible for a given motif or phenotype in the proteins structure, such as a binding 

pocket.72–78 In this method, a given distribution of aminoacids at each position i is 

compared to the distributions in the same sites i in all sequences of a Multiple 

Sequence Alignment (MSA). An observed aminoacid distribution at site i that deviates 

from the average (i.e. only a single type of aminoacid is present at that position) 

illustrates a conserved site. Furthermore, if the deviation from the average on site i is 

accompanied by a deviation from average on site j, both residues are considered to be 

paired. These three-dimensional structures are often referred to as “sectors”,79 and 

generally can hint at the existence of an active site in the structure (binding pockets 

are usually highly conserved regions of a protein). The objective is then to mutate and 

optimize the nature and conformation of the found residues to introduce new binding 

pockets. As an example, Banda-Vázquez et al managed to identify the aminoacids 

involved in the second shell stabilization of the binding pocket of LAO periplasmic 

binding protein of Salmonella typhimurium (which naturally binds L-amino acids lysine, 

arginine, ornithine and histidine) and successfully mutate them in order to bind L-

Glutamine instead.80 



 

A second statistical method with promising applications in protein design is the 

Direct Coupling Analysis (DCA) method. In contrast with SCA, where the empirical 

correlations between paired sites may result from indirect couplings (as, for example, 

mediated by one or more intermediate residues), DCA intends to separate the different 

types of correlation signals, highlighting the direct correlations only (also known as 

contacts) between a pair of aminoacids.81–83 This method is, therefore, mostly 

employed in statistical energy function definitions, as a tool for structure prediction.84 

This application can, however, be expanded into protein design, as exemplified by the 

work of Peng et al., where the ketoisovalerate decarboxylase enzyme (Kivd) was 

optimized for thermostability. In this work, DCA was employed to suggest mutations 

that increase the number of contacts with high correlation in homologous structures, 

outside the binding site, resulting in an increase in T50 temperature of up to 3.9ºC.85 

 

4. Designing a protein scaffold 

In some of the previously discussed cases the end product is an array of restricted 

aminoacids positions and orientations that bind specifically to the desired ligand. In 

order to place the newly defined binding/active site in the correct 3D space, or just 

improve the stability of a mutated existing binding site, a rational scaffold might need 

to be idealized, allowing a pre-set fold. In the past years, several design approaches 

have been presented in order to efficiently tackle this task.86  

 

4.1) Repurpose of an existing structure 

Recycled motifs are frequently found in nature, as estimations place the number of 

distinct tertiary structures just over a thousand.87 This strategy aims to graft a newly 

defined active site in an existing stable structure. 



 

An example of this approach is the work of Zhou et al, where a triple α-helix protein 

of unknown function from Methanobacterium thermoautotrophicum was modified to 

selectively bind to uranyl (UO22+), by stabilizing the coordination-shell surrounding the 

ligand ion. In this example, the coordination shell of uranyl was obtained by comparison 

of structures naturally containing this ligand, and multiple scaffolds were tested for the 

stabilization of the defined potential by a scoring function that accounted for the effects 

of oxygen coordination and hydrogen bonding. A set of around 5 000 hits was further 

screened by identifying stability issues, steric clashes or inaccessibility to the binding 

site, reducing the population of promising scaffolds to only 4 structures. The selected 

structure (PDB 2PMR) showed binding affinity in the range of ~100 nM, which was 

further optimized by mutation of 3 aminoacids in the binding pocket (Leu13Asp, 

His64Glu, Leu67Thr), increasing the affinity of the super uranyl-binding protein to 7.4 

± 2.0 fM at pH 8.9. Such affinity values open the pathway for uranium recovery from 

sea water, which is estimated to contain 1 000 times more reserves than inland 

resources.88 

In a simplistic approach to this same strategy, Moroz et al have designed a catalyst 

for ester hydrolysis by inducing a single mutation in Calmodulin, a 74-residue 

nonenzymatic protein with high stability. After docking studies to the target molecule 

(p-nitrophenyl-(2-phenyl)-propanoate), the potential binding sites were identified and 

subjected to single-point mutations by introducing histidine residues. The new 

conformation stability and binding energy were evaluated as part of a scoring function 

and promising candidates were expressed in E. coli for further characterization and 

catalytic efficiency assessment. Overall, this strategy, despite simplistic, resulted in 

catalytic efficiencies of up to 6600 ± 600 M-1 min-1.89 



 

In another example, Taylor et al have redesigned LacL allosteric binding site to be 

regulated by different effectors (fucose, lactitol and sucralose) beyond its natural 

inducers (allolactose and IPTG). In this case, the strategy included blind docking to the 

known allosteric site in multiple ligand conformations and consequent rounds of 

mutagenesis and fitness evaluation, resulting in strong responses to the new inducers 

without disrupting allosteric mechanisms.90  

A final example is the work of Wijma et al. where the authors aimed at modifying the 

existing active site in limonene-1,2-epoxide hydrolase (PDB 1NWW) in order to be 

enantioselective to either S- or R-enantiomers of limonene-1,2-epoxide. To achieve 

this objective, the active site suffered mutagenesis rounds and the resulting structures 

were evaluated by molecular dynamics simulations. Snapshots of the ligand-containing 

binding site were collected at several points of the simulation and the near attack 

conformation (NAC) of the ligand was evaluated and classified as being in an S- or R- 

state, allowing the classification of the proposed active sites as stabilizers of either S- 

or R- enantiomers. The promising candidates from in silico screening were then 

expressed and the enantiomer selectivity was evaluated by GC. As a result, several 

designed sequences emerged from this work as enantioselective enzymes. Whereas 

the wild-type enzyme showed an enantiomeric excess of 23.5% towards the R-

enantiomer, the variants pro-RR-8 (with 5 mutations) and pro-SS-16 (with 8 mutations) 

showed enantiomeric excess of 85.8% towards R-enantiomers and 90.2% towards S-

enantiomers, respectively, showcasing the success of this study.91 

 

4.2) Fragment-based scaffold design 

Another approach is inspired by homologous recombination and exploits the 

secondary structure nature of proteins to recombine protein fragments in a modular 



 

fashion. In this approach, naturally occurring parts of one or multiple structures, such 

as secondary structures, are pooled and then combined to create new conformations. 

This allows for high design flexibility, as most of these modules are self-stabilizing to 

some extent.92 Traditionally, blind homologue recombination was explored 

experimentally. However, the newly designed proteins were often poorly expressed, 

with high tendency for aggregation or lacking functional activity. Applying 

computational methods to the fragment-based protein design approach allows a 

rational method to select fragments from a large pool and a method to optimize the 

novel protein sequence a priori, greatly augmenting the accuracy of this approach.93 

As an application example, Brunette et al explored various combinations of 

fragments to create -helix-loop-helix-loop- repeat proteins.94 Rational picking of the 

components allows for a fine tune of the conformation adopted by the full protein, 

resulting in models highly distinct from known natural folds, even with protein 

sequences having over 200 aminoacids. 

In another example, Eisenbeis et al have grafted fragments from two distinct 

repetitive proteins in a chimera-fold, and then optimized the interface region by 

mutation of selected residues to maintain the affinity levels to phosphorylated ligands.95 

Similarly to the methods described, Jacobs et al used a fragment-based approach, 

dubbed SEWING, to design and synthesize unnatural asymmetrical proteins, with high 

stability and high structural accuracy in comparison to the proposed computational 

models.96 

Correia et al have also employed a similar strategy for the combination of poorly 

immunogenic peptide epitopes in non-viral scaffolds in order to increase its in vivo 

efficiency.97 In one such experiment, possible scaffold fragments were obtained from 

multiple structures that showed promising complementary to the low-specificity epitope 



 

4E10 for HIV-1 gp41 glycoprotein, identified from human IgG Fab antibody. The two 

fragments were grafted, optimized, expressed and experimentally characterized in 

immunological evaluation essays, showing promising results by demonstrating 

vaccine-induced neutralizing activity.98 

To join two fragments, a loop section may need to be idealized that folds along the 

designed way. Lin et al have recently developed and summarized a set of rules for 

precise loop design.99 Similarly, Agah et al focused on rethreading only the loop 

regions of dihydrofolate reductase from E. coli, where the loops were removed and 

reconnected to different secondary structures on the same original structure, 

originating a novel fold, albeit devoid of functionality.100 

 

4.3) De-novo scaffold design 

Finally, a third alternative sees the complete redesign of the protein backbone from 

scratch into a new unnatural conformation, in a bottom-up approach, which is referred 

to as fragment-free approach. This method tends to limit the natural complexity in 

evolved proteins, while opening the doors to completely new and unexplored 

structures. 

Some examples of this strategy use repetitive scaffolds where the functional active 

site is then introduced. In one such case, Thomson et al have developed a highly stable 

and mutable de novo heptameric α-helical barrel scaffold, by combining residues in 

heptad repeats. In these repetitive structures, of the form abcdefg, the a and d position 

are highly hydrophobic residues (usually leucine or isoleucine), projecting the 

sidechains to the interior cavity of the coiled-coil. In this example, by developing the 

aminoacid sequence from scratch, fine tune of the protein structure could be achieved 

(the diameter of the inner channel in the coiled-coil conformation was set to be 8Å). 



 

Overall, the proposed approach showed good performance with RMSD values 

between X-ray and computational model of 1.94 Å (1.17 Å when considering the Cα 

backbone atoms only).101 

This structure was further improved by Burton et al with the implementation of a 

functionally active centre, of the form Cys-His-Glu, targeting the catalytic hydrolysis of 

esters (p-nitrophenyl acetate, in this case). Although promising, the initial catalytic 

efficiency values achieved by this design (3.7 ± 0.6 M-1 s-1) are still ≈1000 times less 

efficient than the naturally occurring enzyme α-chymotrypsin.102 

Using a similar approach, Olson et al designed a de novo four-helix bundle protein 

with catalase function, albeit with significantly reduced kinetics and efficiency when 

compared to naturally found proteins.103 

In another example, MacDonald et al have recently developed specific beta-hairpin 

extensions to beta-solenoid repeat proteins that are expressed in vitro at the sub-

Ångstrom level of precision.104 

Several de-novo scaffold applications have also been reported following the 

maquette approach, where a simple topology is computationally optimized with specific 

aminoacids in order to host functionally active co-factors, such as porphyrins, chlorins, 

quinones and metal clusters, among others.105 In this approach, the functionality is 

given by the presence of the naturally found co-factor, and not a covalently linked 

active site. C45 has been presented by the Anderson group as a workhorse for 

functionality integration, showcasing catalytic activity without a specific active 

centre.106,107 

  



 

5. Designing a protein sequence 

In some cases, the formalization of a scaffold that allows the rational placement of 

selected amino acids in specific conformations is not definitive, meaning that the 

sequence that folds into the designed structure is still completely unknown or can be 

further optimized. This is known as the inverse protein folding problem: what aminoacid 

sequence folds to the single lowest free energy conformation?108 Regardless of the 

computational method employed, this problem persists as a bottleneck in synthetic 

protein development. This review will focus on strategies employed to find the best 

possible set of sequences for a pre-defined structure. Several sampling motors have 

been presented in past years and can be classified based on the plasticity of the target 

structure, that is, whether the backbone is mobile during sequence sampling. 

 

5.1) Fixed backbone approximations 

Fixed backbone approximations, also known as single-state design (SSD) or Global 

Minimum Energy Conformation (GMEC) based algorithms, are the traditional approach 

to sequence design and deal with a unique immobile structural backbone, where the 

identity/orientation of the aminoacids is exploited in order to decrease the overall 

energy of the system.109 The identity of the aminoacids at each position is traditionally 

explored by deterministic algorithms, such as the dead-end elimination approach, or 

by stochastic algorithms, such as Monte Carlo simulated annealing. However, in recent 

years, fixed backbone approximations have been revisited when employed in high-

throughput studies making use of machine-learning (ML) algorithms for fast screening 

of the universe of possibilities for the identity of each aminoacid in the designed 

protein.110 These ML algorithms, such as the Support Vector Machines (SVM), 

Random Forest (RF) or Deep Neural Networks (DNN) have been employed in 



 

computational pipelines for the quick identification of Mutation Sensitivity  (MuSe) 

maps,111 aiding in the design of proteins by identifying mutations that are supported by 

the current scaffold without major structural impact.112 Various software solutions for 

structural stability predictions after single and multiple mutation points are available, 

such as ELASPIC113 and ProMaya.114 The orientation of the sidechains is a sub-

problem of this approach, since the size of the exploitable conformational space is 

huge. This is usually simplified by the employment of rotamer libraries, where the 

possible angles for dihedrals in sidechains are restricted to a finite number of 

possibilities. Several state-of-the art software solutions have been presented in the 

past few years that efficiently tackle this problem, such as the SCWRL4115 and 

Proteus116 packages. 

 

5.2) Multistate design 

Multistate design (MSD) approaches, on the other hand, acknowledge that the 

crystal structure of a protein is not fully representative of its natural active shape in 

solution, as backbone motion is known to be functionally important. Moreover, when 

trying to sample all aminoacid identities/conformations, steric clashes can happen, 

causing the rejection of sequences that could be more stable given slight adjustments 

in the structure. MSD therefore performs a sequence optimization (by classical SSD) 

on multiple similar structures in parallel (with RMSD below 1 Å), and evaluates the 

fitness of the entire ensemble as a weighted average of all individual members of the 

experiment (also known as microstates).117 Different strategies have been proposed in 

order to generate the target ensemble, such as backrub movements,118 molecular 

dynamics or the PertMin algorithm.119 



 

MSD can be further classified into two modes: positive and negative. In the positive 

mode, the reference structure for energy comparison is the initial crystal structure, with 

the objective being to maximize the stability of the sequence for the designed scaffold. 

However, it has been shown that this not always correlate with experimental stability, 

as the designed sequence also stabilizes off-target structures. In negative mode, this 

is taken into account by incorporating an additional layer of calculations, where off-

target ensembles are also sampled and the weighted average of the entire ensemble 

acts as a comparison point for the stability assessment. This allows the algorithm to 

reject sequences that stabilize both the desired structure and partially unfolded states. 

Off-target ensembles are characterized by: RMSD values from crystal structure greater 

than 1 Å; only 50-90% of the initial secondary structure intact and surface-area 

comparable to the crystal structure.120  

MSD approaches have also been further applied to stabilize transition states, 

essentially conferring motion to designed structures, in a design strategy dubbed meta-

MSD. In this approach, geometry-based analysis of the rotamer-optimized structures 

allows for the classification of the microstates in either major, minor or transition states. 

The sequence optimization is then performed seeking the stabilization of all three 

states simultaneously, thus producing dynamic proteins with a low transition energy 

barrier between the two minor and major states.121 

 

5.3) Flexible backbone approaches 

Flexible backbone approaches share similarities with MSD strategies. However, in 

this case, the backbone configurations are not limited to a finite set on structures in an 

ensemble and is finely tuned using a set of movements instead (such as backrub, 

fragment reinsertion, dihedral and crankshaft movements, among others) or by 



 

molecular dynamics, at the same time as different sequences are sampled. Although 

powerful, this approach is highly computationally expensive.122 Software solutions that 

perform sidechain optimization using continuous rotamer searches include the 

OSPREY123 and BKK*124 packages, among others. More recently, strategies such as 

the proposed FlexiBal-GP attempt to incorporate information from multiple protein 

structures in data-driven machine learning movements in order to create complex 

movements that more closely mimic natural protein global motion.125 

 

6. Synthesizing the designed protein 

The last step of a protein design study is the correct synthesis of the computationally 

defined sequences. Traditionally, using cell-based approaches, this involved the 

incorporation of the protein-coding gene into the DNA of a host organism, selection of 

recombinant organisms and later purification of the culture medium or cell lysate 126. 

This approach, however, has several setbacks, such as protein misfolding and 

aggregation due to cytoplasmatic homeostasis. Several studies have tackled this 

issued by rationally optimizing sequences to increase solubility and expression levels 

in cell-based synthesis models.127 Modern synthesis of designed proteins overcomes 

this problem by employing cell-free protein synthesis (CFPS) and solid-phase peptide 

synthesis (SPPS) techniques.  

The first approach of the CFPS methodology emerged in 1961, within the 

experiments carried out by Nirenberg and Matthaei.128 This approach to protein and 

peptide synthesis attempts to assemble a minimalistic cell model, in a reaction medium 

containing all the biological machinery necessary for protein synthesis (usually 

obtained from purified cell lysates).129 Besides that, an energy source (such as 

phosphoenol pyruvate), cofactors, buffers, salts, nucleotides and a supply of 



 

aminoacids must be added to the CFPS mixture, so that the in vitro system closely 

resembles the cytoplasmic environment.130 Once the DNA with the target genes is 

added, transcription and translation processes are simultaneously (coupled system) or 

sequentially performed (uncoupled/linked system) and the desired protein is 

produced.131 The selection of CFPS reaction system depends, among other factors, 

on the source of cellular extract. It has been observed that one-pot reactions may result 

in suboptimal yields for eukaryotic platforms. In uncoupled systems, since transcription 

and translation reactions are operated separately (the already purified mRNA is 

transferred to another physical system), different conditions can be settled to achieve 

optimal protein yields, regardless of platform.132 The type of translation reaction format 

also influences the protein yield. If a substrate-rich feeding buffer is continuously 

supplied to the mixture (continuous setting), the desired protein is filtered out at a 

constant rate and high protein concentrations are achieved;133 if the protein synthesis 

is performed within a single tube (batch format), lower yields are expected.132 In any 

case, since the CFPS methodology is performed in an open system format, active 

peptide yields can be maximized by selectively supplying the mixture with positive 

effectors, such as tRNA, chaperones and micelles. Analogously, negative effectors can 

be functionally inactivated.130 Overall, this approach has several advantages, such as 

faster turnover times, possibility of implementation of unnatural aminoacids, tighter 

control of the medium properties and higher productivity, due to the inexistence of 

concentration induced toxicity effects on living cells.134 

In 1963, Merrifield et al. developed the revolutionizing solid-phase peptide synthesis 

(SPPS) approach, later earning him the Nobel Prize in Chemistry.135 In this 

methodology, N-end capped aminoacids are initially covalently bound to a supporting 

framework, with the help of linkers: specific organic moieties, such as trityl and 



 

aminomethyl-based molecules. These linkers allow the reversible linkage between the 

peptide chain and the solid phase. Once the first aminoacid is attached, its carboxylic 

acid end is protected by the linker and side reactions are avoided. Therefore, unlike 

the natural protein synthesis, the solid phase peptide elongation is performed from the 

C- to the N-terminus, in rounds of chemical deprotection and aminoacid addition. The 

newly synthesized peptide is then detached from the solid support (uncoupled from the 

linker) and purified.136 Some aminoacids (e.g.: arginine, histidine, aspartic and glutamic 

acids) have potentially reactive sidechains, which must be capped by specific 

sidechain protecting groups.137 Since they generate carbocations and other reactive 

species when chemically deprotected during the cleavage treatment, water and other 

scavenger reagents are used to remove the undesired by-products. In sum, this 

approach shows high efficiency and throughput, allowing high protein yields and purity. 

However, SPPS is restricted to relatively short peptides owing to aggregation of longer 

chains.138 Non-natural aminoacids can be also added139 and exotic conformations 

(such as circular proteins) can be produced with relative ease.140 

Altogether, cell-free and solid-phase peptide synthesis are emerging platforms with 

a huge role in future biomanufacturing, making possible the physical assembly of 

rationally designed proteins. 

 

7. Conclusion and future perspectives 

Recent developments in protein design have paved the way to the next generation 

of synthetic biology studies. Given the technical advances in computational power and 

recent new high throughput methodologies, both in vitro and in silico, the design of 

proteins with new unnatural conformations and expanded functionality are now 

ordinary procedures in medical and biochemical labs.141 The design of tailored proteins 



 

and peptides may prove to be the solution to a variety of contemporary problems: 

peptides, for example, are promising compounds for both antibiotic and 

anticarcinogenic usage.142 Computational methods have shown incredible results as 

precise tools for screening and testing of new designs prior to experimental synthesis. 

Such contributions are only expected to increase in both quantity and quality with the 

implementation of modern computational tools such as new programming languages, 

neural networks and machine learning algorithms, especially considering the massive 

global effort in cataloguing and maintaining highly accurate and curated databases. 

Certain software packages, such as the Rosetta software, have forever changed the 

playing field in protein design, allowing access to powerful algorithms and 

methodologies to relatively inexperienced scientists. Long gone are the days of 

unreadable code in obscure languages. The undeniable success of Rosetta software 

and AlphaFold packages are, at least partially, due to the openness of the community 

in sharing resources in mediated forums, such as the CASP program, and therefore 

we foresee not only the increased participation of the scientific community in more 

open access sharing of software but also the emergence of modern and improved 

platforms specifically tailored for protein design. 
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FIGURE LEGENDS 

 

Figure 1. Growth of the protein design field of study, by number of publications. The 

data shown refers to the number of publications listed in ScienceDirect repository when 

querying for “Protein Design”, from 1998 until 2020. 

 

Figure 2. Schematic overview of the main improvements in the field of computational 

protein design. A – 1995 – Sung et al studied the secondary structure folding of simple 

alanine-based peptides. B – 1997 – Several improvements in forcefield definition and 

the implementation of more modern DEE and genetic algorithms allowed Dahiyat et al 

to design a de-novo sequence for a simple ββα-motif with relative accuracy (PDB 

1FSD). C – 2003 – The first applications of homology-based algorithms started to 

appear, such as the Rosetta software, allowing Kuhlman et al to design a previously 

inexistent fold dubbed Top7 (PDB 1QYS). D – 2008 - Röthlisberger et al designed an 

inexistent enzyme for the catalysis of the Kemp elimination reaction (PDB 2RKX). 

 

Figure 3. Simplistic approach to protein design. Using Rajagolapan et al work  as an 

example 42; A – Design of a novel binding site: the interaction site (in green) was 

rationally idealized in order to stabilize fluorphosphonate-alkalyne probes (in pink); B 

– Scaffold design or adaptation: The designed binding site was computationally grafted 

to a set of 800 pre-existing protein scaffolds using RosettaMatch algorithm, of which 

380 were accepted with relative confidence; C – Identification or mutation of an 

aminoacid sequence that folds into the desired conformation: Three rounds of 

sequence optimization were performed for each of the candidate structures, minimizing 



 

the energy of the system. From the initial set, 85 candidates showed relatively good 

stability and were chosen for experimental characterization. 

 

Figure 4. Schematic representation of the protein folding funnel according to different 

scoring function types. Data shown corresponds to the inverted topology map of Mt. 

Everest, for exemplification purposes. A- All-atom scoring functions take all atoms in 

the system into consideration, allowing for a greater accuracy level. B – Coarse-grain 

models reduce the degrees of freedom of the system by considering a smaller number 

of interacting particles, at the expense of reduced accuracy. 

Figure 5. Binding pocket design approaches. Proteins depicted (in green) serve as 

examples of caffeine (in red) binding pockets. A – Stabilization of a binding shell: 

potential non-covalent forces are identified in the ligand, and complementary 

aminoacids are rationally placed in a theoretical binding pocket as to stabilize these 

forces. a – hydrogen bonds; b – aromatic interaction (π-π stacking); c – electrostatic 

interactions. B – Blind pocket search: large databases of proteins/binding pockets are 

blindly searched for complementarity towards the target ligand. Promising hits can be 

further optimized. 

 
Figure 6. Protein scaffold design approaches. A – Repurpose of an existing structure. 

A protein of unknown function from Methanobacterium thermoautrophicum (PDB 

2PMR) was repurposed by mutating residues Leu13, His64 and Leu67 to Asp, Glu and 

Thr, respectively, augmenting the binding affinity of the designed protein towards 

uranyl ions. B – Fragment-based approach. A triple α-helix fragment from ribosome 

recycling factor (Vibrio parahaemolyticus, PDB 1IS1) was grafted to the 4E10 Peptide, 

an epitope for HIV-1 gp41 glycoprotein (PDB 3IXT), resulting in a designed non-viral 



 

protein capable of vaccine-inducing neutralizing activity. C – De novo design of protein 

scaffolds. An α-helix monomer was designed by rationally placing hydrophobic and 

hydrophilic residues in opposite sides of the theorical scaffold. The designed protein is 

stabilized in an heptameric coiled-coil. Further mutations in Ile18, Leu22 and Ile25 to 

Cys, His and Glu, respectively, induce catalytical hydrolysis efficiencies towards p-

nitrophenyl acetate. 

 
 
Figure 7. Protein sequence design approaches. Schematically organized from left to 

right with increasing computational cost and complexity. A – Fixed backbone approach: 

The identity/orientation of one or more aminoacids of the initial protein/desired scaffold 

crystal structure is mutated, and the new sequence energy is compared with the 

starting state (black dashed line). In this example, the sequence b (in green) shows 

lower energy/higher stability than sequence a (in red). B – Positive multistate design: 

Multiple microstates with on-target variations of the starting structure are evaluated 

simultaneously (thin lines), and the energy value used for comparison with the initial 

state is a weighted average of the whole ensemble (thick lines). In this example, even 

though some microstates of the sequence b ensemble show lower energy than some 

microstates of sequence a ensemble (similarly to the fixed backbone approach), 

overall sequence a shows greater stability. C – Negative multistate approach: 

Complementary to the positive multistate approach, a set of on-target microstates are 

evaluated simultaneously to determine the energy of the sampled sequence. However, 

in this case, the comparison point is not the initial crystal structure, but an ensemble of 

off-target structures (darker shades). In this example, even though sequence a seems 

to better stabilize the desired structure, it also lowers the energy on undesired off-target 

structures, while sequence b destabilizes them. This reflects in higher expression 



 

probability in experimental essays. D – Flexible backbone approaches continuously 

sample both the conformational and sequence space simultaneously. In this simplified 

example, during the produced trajectory, a sequence c was found that was more stable 

than both sequences a and b and that folds to an on-target structure. 
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Design approach

Main author Scaffold Binding site Sequence Expression Mutagenesis Ref.

Rajagolapan et al. (2014) SR BSS SSD Cell-based Yes 42

Tinberg et al. (2013) SR BSS FB Cell-based Yes 39

De Los Santos et al. (2016) SR BSS MSD Cell-free No 67

Guffy et al. (2016) SR BSS SSD Cell-based No 69

Zhou et al. (2014) SR BSS - Call-based Yes 88

Fujieda et al. (2015) SR PS SSD Cell-based Yes 71

Banda-Vásquez et al. (2018) SR PSa SSD Cell-based No 80

Moroz et al. (2015) SR Targeted SSD Cell-based Yes 89

Taylor et al. (2016) SR Targeted FB Cell-based Yes 90

Wijma et al. (2015) SR Targeted FB Cell-based No 91

Correia et al. (2014) FR Targeted FB Cell-based No 98

Eisenbeis et al. (2012) FR - SSD Cell-based No 95

Jacobs et al. (2016) FR - SSD Cell-based No 96

Brunette et al. (2015) FR - MSD Cell-based No 94

Agah et al. (2016) FR - - Cell-based No 100

Thomson et al. (2014) DND - SSD SPPS No 101

MacDonald et al. (2016) DND - SSD Cell-based No 104

Burton et al. (2016) DND BSS SSD SPPS No 102

Olson et al. (2017) DND BSS - Cell-based No 103

Watkins et al. (2017) DNDb - - Cell-based Yes 106

a – Pocket search was carried out with statistical coupling analysis (SCA)

b – De-novo design of a maquette scaffold for heme-group incorporation

Legend:

SR – Structure repurpose

FR – Fragment recombination

DND – De-novo design

BSS – Blind shell stabilization

PS – Pocket search

SSD – Single state design

MSD – Multiple state design
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FB – Flexible backbone

SPPS – Solid-phase peptide synthesis
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