
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2021

JOÃO MANUEL
ALVES DE
MESQUITA BACELO

Integração de Funções de Rede Virtualizadas e
Funções de Rede Físicas

Integration of Virtual Network Functions and
Physical Network Functions

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2021

JOÃO MANUEL
ALVES DE
MESQUITA BACELO

Integração de Funções de Rede Virtualizadas e
Funções de Rede Físicas

Integration of Virtual Network Functions and
Physical Network Functions

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia Eletrónica e Telecomu-
nicações, realizada sob a orientação científica do Doutor Daniel Corujo, Professor
auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Uni-
versidade de Aveiro, e do Doutor Óscar Pereira, Professor auxiliar do Departamento
de Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

Este trabalho é financiado pela
FCT/MEC através de fundos
nacionais no âmbito do projeto
PTDC/EEI-TEL/30685/2017

o júri / the jury
presidente / president Professora Doutora Susana Isabel Barreto de Miranda Sargento

Professora catedrática da Universidade de Aveiro

vogais / examiners committee Doutor Flávio Silva Meneses
System Developer na Skyline Communications

Professor Doutor Daniel Nunes Corujo
Professor auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

Agradeço ao Professor Doutor Daniel Corujo por toda a orientação e ajuda dadas no
decorrer do trabalho. Agradeço aos meus colegas do Instituto de Telecomunicações
pela paciência e auxílio, em particular ao Vítor Cunha pela sua disponibilidade. À
minha família e namorada pelo apoio incondicional que sempre me deram dedico
este trabalho. Esta dissertação foi feita com o apoio do Instituto de Telecomuni-
cações, e no âmbito do projeto 5GCONTACT PTDC/EEI-TEL/30685/2017.

Palavras Chave Funções de Rede Físicas, Funções de Rede Virtualizadas, Rede de testes, Virtual-
ização, Rede sem fios.

Resumo A Virtualização de Funções de Rede e as Redes Definidas por Software têm estado
no centro da evolução das redes, prometendo uma forma mais flexível e eficiente
de as gerenciar através da instanciação on-demand de Funções de Rede e da sua
reconfiguração conforme o necessário. No entanto, à medida que novos meca-
nismos são desenvolvidos, é também necessário a realização de testes sobre estas
tecnologias antes destas serem adotadas em implementações em contexto real.
É aqui que esta dissertação contribui, propondo e avaliando uma arquitetura de
sistema que integra um testbed físico sem fios, com um ambiente baseado em
nuvem. Isto permite que os nós sem fios físicos se tornem parte do ambiente de
nuvem, permitindo o seu uso e configuração como Funções de Rede Virtuais. Os
resultados demonstraram a viabilidade do sistema, dada a capacidade da testbed
em instanciar Funções de Rede virtuais e físicas quando requisitadas tanto nos nós
sem fios físicos quanto no servidor OpenStack.

Keywords Physical Network Function, Virtual Network Function, Testbed, Virtualization,
Wireless.

Abstract Network Functions Virtualization (NFV) and Software Defined Networking (SDN)
have been in the center of network evolution, promising a more flexible and effi-
cient way of managing networks through the on-demand instantiation of network
functions (NFs) and reconfigurability of the network as necessary. Nevertheless,
as new mechanisms are developed, such technologies require testing before their
adoption into real-world deployments. This is where this dissertation contributes,
by proposing and evaluating a system architecture that integrates a physical wire-
less testbed with a cloud-based environment. This allows physical wireless nodes to
become part of the cloud environment, enabling its use and configuration as virtual
NFs (VNFs). Results showcased the system feasibility, with the testbed being able
to instantiate on-demand virtual and physical NFs, in the physical wireless nodes
and in an OpenStack data-center.

Contents

Contents i

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Main Contributions . 3

1.4 Document Structure . 3

2 State of the Art and Enabling Technologies 5

2.1 Cloud Computing . 5

2.2 Software Defined Networks . 7

2.2.1 Software Defined Networks Architecture . 7

2.2.2 SDN Controller . 9

2.3 Network Function Virtualization . 9

2.3.1 Network Function Virtualization Architecture 10

2.3.1.1 Network Function Virtualization Infrastructure (NFVI) 10

2.3.1.2 Virtual Network Functions and Services (VNFs) 11

2.3.1.3 Network Function Virtualization Management and Orchestration

(NFV MANO) . 11

2.3.2 Virtual Network Functions . 12

2.3.3 Physical Network Functions . 12

2.4 OpenStack . 12

2.5 Metal As A Service (MAAS) . 14

2.5.1 Bare-metal server . 14

i

2.5.2 Supportive Cloud Tools . 15

2.5.2.1 Curtin . 15

2.5.2.2 Cloud-init . 16

2.5.2.3 Ephemeral image . 17

2.5.3 MAAS Architecture . 17

2.5.3.1 Region Controller (regiond) . 17

2.5.3.2 Rack Controller (rackd) . 17

2.5.3.3 Fabrics . 17

2.5.4 Node lifecycle . 18

2.5.5 MAAS VM Hosting . 19

2.5.6 High Availability in MAAS . 20

2.5.7 MAAS Communication . 20

2.5.7.1 Region and Rack controllers communication 20

2.5.7.2 Machines and Rack controller communication 22

2.6 Juju . 22

2.6.1 Juju Workflow . 22

2.7 Existing Test Infrastructures . 24

2.8 Summary . 29

3 Scenario Description and Proposed Architecture 31

3.1 Scenario . 31

3.2 Architecture . 31

3.2.1 OpenStack Cloud Environment . 32

3.2.1.1 PC-OpenStack specifications and configuration 33

3.2.2 MAAS Controller . 34

3.2.2.1 MAAS Networking . 35

3.2.3 High-level message sequence . 36

3.2.4 Juju-Controller . 38

3.2.5 Wireless Node . 42

3.3 Summary . 43

4 Evaluation 45

4.1 System evaluation and results . 45

4.1.1 Deployment of Operating System . 45

4.1.2 Rebooting from Operating System . 47

4.1.3 Juju charm deployment . 48

4.1.4 Deployment of OpenStack VM . 48

4.1.5 Firewall deployment . 49

ii

4.1.6 Wireless Access Point deployment . 51

4.2 Summary . 52

5 Conclusions 53

5.1 Conclusions . 53

5.2 Future Work . 54

References 55

A Bash Scripts 57

A.1 start-machines bash script . 57

A.2 firewall-pnf bash script . 58

A.3 pinger bash script . 58

A.4 access-point bash script . 59

A.5 access-device bash script . 61

A.6 iperf-test bash script . 62

iii

List of Figures

2.1 SDN architecture . 8

2.2 High Level NFV Framework . 10

2.3 The OpenStack Services Ecosystem . 13

2.4 Traditional and hypervisor bare-metal server comparison. 15

2.5 MAAS architecture overview (example) . 18

2.6 Node lifecycle . 19

2.7 MAAS Communication Diagram . 21

2.8 Juju Workflow Concept . 23

2.9 Juju OpenStack Model (Example) . 23

2.10 AMazING Testbed Overview . 25

2.11 Iris Testbed Overview . 26

2.12 CityLab Architecture Overview . 27

2.13 NITOS Facility Architecture . 28

3.1 System architecture overview. 32

3.2 OpenStack network graph . 33

3.3 Network bridging in OpenStack . 34

3.4 MAAS web UI first setup . 35

3.5 MAAS subnets . 35

3.6 MAAS Wireless Nodes Ready . 36

3.7 High-level message sequence for a MAAS node deployment. 37

3.8 Adding clouds in Juju . 39

3.9 Adding credentials in Juju . 39

3.10 01-juju-controller Tagging in MAAS . 40

3.11 Juju controller bootstrap on MAAS . 41

3.12 Juju controller bootstrap on MAAS (2) . 41

3.13 Enable Juju GUI . 42

3.14 Wireless Nodes used. 42

4.1 Average time by deployment stage. 47

v

4.2 Firewall (PNF) implementation overview. 50

4.3 Wireless Access Point (PNF) implementation overview. 51

A.1 Access Point Bash Script Flow Chart . 59

A.2 Access Device Bash Script Flow Chart . 61

vi

List of Tables

4.1 Average instantiation time by OS with APU firmware v4.10.0.1 (in minutes). 46

4.2 Average instantiation time by OS (in minutes). 46

4.3 Average reboot time by OS. (in seconds) . 48

4.4 Average time to deploy a Juju Charm. (in minutes) . 48

4.5 Average time to deploy a OpenStack VM. (in minutes) 49

4.6 Average time to deploy the firewall PNF (in minutes) . 50

4.7 Average time to deploy the Wireless Access Point. (in minutes) 52

4.8 Average throughput in iperf tests. (in Mbits/sec) . 52

vii

Glossary

AMazING Advanced Mobile wireless playGrouNd
API Application Programming Interface
APT Advanced Package Tool
BMC Baseboard Management Controller
BOOTP Bootstrap Protocol
CC Cloud Computing
CLI Command Line Interface
COTS Commercial off-the-shelf
CPU Central Process Unit
DHCP Dynamic Host Configuration Protocol
DOS Disk Operating System
DNS Domain Name System
ETSI European Telecommunications

Standards Institute
GPU Graphics Processing Unit
HA High Availability
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IoT Internet of Things
IP Internet Protocol
IPMI Intelligent Platform Management

Interface
iSCSI Internet Small Computer System

Interface
IT Information Technology
ITAV Instituto de Telecomunicações at the

University of Aveiro
M2M Machine-to-Machine
MAAS Metal As A Service
NAT Network Address Translation
NF Network Function
NFV MANO Network Function Virtualization

Management and Orchestration
NFV Network Function Virtualization

NFVI Network Function Virtualization
Infrastructure

NFVO Network Function Virtualization
Orchestrator

NUMA Non-Uniform Memory Access
NGI Next Generation Internet
NGN Next Generation Networking
NIC Network Interface Controller
NIST National Institute of Standards and

Technology
OS Operating System
PaaS Platform as a Service
PC Portable Computer
PCI Peripheral Component Interconnect
PNF Physical Network Function
PXE Preboot Execution Environment
RAM Random Access Memory
REST Representational State Transfer
RHEL Red Hat Enterprise Linux
RPC Remote Procedure Call
SaaS Software as a Service
SDN Software Defined Networking
SLA Service-level Agreement
SSID Service Set Identifier
TFTP Trivial File Transfer Protocol
UI User Interface
URL Uniform Resource Locator
VLAN Virtual Local Area Network
VIM Virtualized Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VNFM Virtual Network Function Manager
WN Wireless Node

ix

CHAPTER 1
Introduction

1.1 Motivation

In recent years, the typical usage of Internet resources has suffered several evolutions. From
the typical use of one Portable Computer (PC) or mobile phone per person performing simple
daily tasks, we reached to the point of millions of devices connected. Buzzwords such as the
Internet of Things (IoT), Machine-to-Machine (M2M), Cloud Computing (CC), Virtualization
among others have become part of the routine. The world is becoming more “remote” with
everything being automated and online. In fact, Cisco’s forecasts point to an increase of up
to 29.3 billion devices connected to the Internet, up to 66% of the world’s population will
have Internet access, and up to 14.7 billion in M2M connections by 2023 [1]. This outbreak
of new devices connecting to the network, and the associated massive new traffic, create an
unparalleled strain in both network and storage, demanding new infrastructure approaches.
Although traditional Internet Protocol (IP) networks are highly outspread, their configuration
and maintenance is complex and hard to manage, setting a huge setback when the demand
starts to increase. To cope with this problem Software Defined Networking (SDN) emerged as
one of the most promising approaches to overcome the limitations of IP networks [2].

In this line, SDN [3] revolutionized traditional networks by decoupling the control and data
planes. Traditional network equipment (e.g., switches, routers, and middlebox appliances)
become simple forwarding elements without embedded control or software to make autonomous
decisions. A logically-centralized control system became the “brain” of the networks. The
use of SDN enables greater automation and programmability in the network and is often
paired with Network Function Virtualization (NFV). The main idea of NFV is the decoupling
of physical network equipment from the functions that run in them [4]. Thus, network
functions Network Functions (NFs) (such as firewalls or load balancers) can be deployed in
Virtual Machines (VMs) in cloud environments as Virtual Network Functions (VNFs) and/or
in bare-metal devices as Physical Network Functions (PNFs). In this way, by leveraging
virtualization technology, NFV offered a new way to design, deploy and manage networking

1

services, by decomposing them into a set of PNFs and VNFs.
SDN and NFV have been contributing to the improvement of cloud computing technologies.

In this regard, cloud computing [5] is a model to access an on-demand network of shared
configurable computing sources such as networks, servers, applications and services. Also,
cloud computing offers compute, storage and networking as basic resources, while leveraging
virtualization (through the use of SDN and NFV to accomplish its promises. In this line, the
use of virtualization allows physical servers, storage and networking services to be partitioned
on-demand by using software.

As every action has a reaction, the increase of virtualization driven projects and technologies
will certainly have some impact whether in infrastructure, network, or society. The problem
is that it is very difficult to predict what these effects might be, evidencing the need for
platforms to simulate and/or experimentally evaluate the impact of these new technologies in
real-world conditions. As such, it becomes necessary the creation and development of testbed
platforms not only to accommodate the diversity of new applications, projects and upcoming
technologies, but also to allow the careful observation of new developments in a controlled
environment.

The Advanced Mobile wireless playGrouNd (AMazING) [6] testbed is an outdoor system
that was deployed on the rooftop of Instituto de Telecomunicações at the University of
Aveiro (ITAV). The testbed consists of 24 fixed wireless nodes forming a grid, in addition
to a mobile node. Moreover, the ITAV has a local OpenStack cloud already deployed and
running, which allows its exploration for the integration of the AMazING testbed in order
to provide virtualization capabilities to the physical wireless nodes. The OpenStack cloud
deployed in ITAV, like most clouds, only allows for VNFs to be instantiated in the hardware
(i.e., servers) that belongs to it.

Therefore, this dissertation proposes, implements and evaluates a system architecture (for
an experimental testbed) capable of managing the on-demand instantiation of PNFs in the
wireless nodes and VNFs in OpenStack VMs. Thus adding the physical nodes as an extension
to the existing cloud.

1.2 Objectives

The work developed in this dissertation aims to update the former AMazING testbed by
building a system that takes advantage of the local cloud running in the Instituto de Teleco-
municações at the University of Aveiro and extends it by connecting the AMazING testbed
network to its infrastructure. To achieve this goal some tasks were performed and are
enumerated as follows:

1. Deploy a functional OpenStack framework.
2. Deploy a system framework able to manage the wireless nodes (AMazING testbed) as

NFs.
3. Aggregate both the cloud and wireless infrastructure in a single system framework

manager.

2

4. The system needs to instantiate PNF and/or VNF on-demand.

1.3 Main Contributions

The work done on this dissertation allowed to design and test an architecture for a new testbed,
and thus contributing to the process of modernization of the former AMazING testbed.

1.4 Document Structure

The document is structured as follows: Chapter 2 presents the background and the related
work of wireless testbeds and their integration with NFV mechanisms. The proposed system
architecture and its implementation is presented in Chapter 3. Chapter 4 assesses the proposed
system and discusses its results. Finally, the document concludes in Chapter 5.

3

CHAPTER 2
State of the Art and Enabling

Technologies

This chapter presents the main concepts that allow for a better understanding of this disserta-
tion as well as some tools recently developed by third parties that are within the scope of this
dissertation.

2.1 Cloud Computing

The National Institute of Standards and Technology (NIST) defined cloud computing as “a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources that can be rapidly provisioned and released with minimal
management effort or service provider interaction.” [5] In other words, the cloud enables anyone
with an Internet connection to access IT resources on-demand. This model is composed of
five essential characteristics, three service models, and four deployment models.

The five characteristics are:
• On-demand self-service: Computing capabilities can be unilaterally provisioned as

needed by a consumer without requiring human interaction.
• Broad network access: Capabilities need to be available through the network and

accessible through standard mechanisms.
• Resource pooling: The provider’s computing resources are pooled to serve multiple

consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand. There is a sense of
location independence in that the customer generally has no control or knowledge over
the exact location of the provided resources but may be able to specify a location at a
higher level of abstraction (e.g., country, state, or datacenter). Examples of resources
include storage, processing, memory, and network bandwidth.

• Rapid elasticity: Capabilities can be scaled (provisioned and released) at any time.

5

• Measure service: Resources must be metered so that cloud systems can automatically
control and optimize resource usage.

The service models determine the abstraction level that the shared resources are made
available. The three service models implemented in cloud computing are:

• Software as a Service (SaaS): The resources are presented to the consumer as an
end-application. The applications are accessible from various client devices through
either a thin client interface, such as a web browser (e.g., web-based email), or a program
interface. The consumer does not manage or control the underlying cloud infrastructure,
including network, servers, operating systems, storage, or even individual application
capabilities.

• Platform as a Service (PaaS): The consumer can deploy onto the cloud infrastructure
consumer-created or acquired applications but, as in SaaS service model, does not
manage or control the underlying infrastructure.

• Infrastructure as a Service (IaaS): The consumer is able to deploy and run arbitrary
software, which can include operating systems and applications. The consumer does not
manage or control the underlying cloud infrastructure but has control over operating
systems, storage, and deployed applications; and possibly limited control of select
networking components (e.g., host firewalls).

There are four different deployment models used in cloud computing and they are:
• Private cloud: The cloud infrastructure is provisioned for exclusive use by a single

organization and accessed by a private network connection, operating on servers managed
either internally or by a third-party provider.

• Community cloud: The cloud infrastructure is provisioned for exclusive use by a
specific community of consumers from organizations that have shared concerns (e.g.,
mission, security requirements, policy, and compliance considerations). It may be owned,
managed, and operated by one or more of the organizations in the community, a third
party, or some combination of them, and it may exist on or off premises.

• Public cloud: The public cloud refers to services provided by companies, which sell
server resources (rather than dedicated physical servers) accessed over a public network
such as the Internet.

• Hybrid cloud: This model is a composition of two or more distinct cloud infrastructures
(private, community, or public).

Cloud computing was a breath of fresh air to the IT world and consequently to the
enterprises by allowing massive developments in both infrastructure and economic spheres.
By enhancing application scalability, operational flexibility, resource efficiency, agility im-
provements, among others, it allowed enterprises to avoid the upfront cost and complexity of
owning and maintaining their own IT infrastructure.

The fundamental block of a cloud solution consists of virtualization, in which physical
servers are shared by multiple tenants using virtual machines. The access to these hardware
resources is managed according to the Service-level Agreement (SLA) [7].

6

Cloud computing applied to telecommunications requires dynamic computing and a high
degree of automation to address rapidly changing demands. To do so, it relies on technologies
such as SDN (section 2.2) and NFV (section 2.3).

2.2 Software Defined Networks

Traditional IP networks (non-virtualized networks), rely on the use of dedicated network
devices such as routers, switches, and middle-boxes (i.e., devices that manipulate traffic for
purposes other than packet forwarding, such as a firewall) to transmit data through the
network. These devices are typically composed of two tightly coupled planes: 1) the control
plane, which decides where the packets should be sent; 2) the data (or forwarding) plane,
which is responsible for performing what was determined in the control plane and route the
data packets to the destination. Thus, these devices use special algorithms, which are, in
general, a set of rules implemented in dedicated hardware components, to control and monitor
the data traffic in the network.

The network operators are responsible for configuring each network device individually
using low-level and often vendor-specific commands. As a result, legacy networks management
is quite challenging and thus error-prone. [3] To cope with these challenges, a new concept of
“programmable network” called Software Defined Networking (SDN) emerged [8].

SDN proposes the decoupling of the network’s data and control plane by moving it to
a centralized entity named controller. The network devices mentioned above became just
forwarding devices with no “decision” capabilities to execute actions. Therefore the use of a
centralized software-based controller which can be directly programmed and managed turned
the network into a programmable entity.

2.2.1 Software Defined Networks Architecture

As seen in section 2.2, SDN revolutionized the way of managing and configuring networks
by decoupling the data and control planes, allowing a centralized view of the network and
creating an abstraction between the network infrastructure and the applications. Thus,
resulting in more scalable and flexible networks that respond quickly to the needs of the
network administrator. Figure 2.1 summarizes the SDN architecture abstractions in form of a
detailed, high-level schematic. Starting from the upper part of the figure and moving towards
the bottom, the following planes are identified [9].

7

Application Plane

Control Plane Management Plane

Data Plane
Forwarding

Plane Operation Plane

Northbound interface

CP
Southbound Interface

MP
Southbound Interface

Figure 2.1: SDN architecture

• Application plane: Services and applications that define network behavior are located in
this plane.

• Control plane: Responsible for deciding how packets should be forwarded by one or more
network devices. The Control Plane’s main job is to fine-tune the forwarding tables
that reside in the Forwarding Plane, based on the network topology or external service
requests. The Control Plane receives information from services in the Application Plane
through the Northbound Interface (e.g., RESTful APIs).

• Management plane: Contrary to the Control Plane, the Management Plane focuses on
the operation plane. It is responsible for monitoring, configuring, and maintain network
devices.

• Operation plane: The Operational Plane is usually the end-point for managing services
and applications. Its purpose is to manage the operational state of the network devices
like the number of ports available, the status of each port, and the status of the device
(i.e., active or inactive). It receives information from the Management Plane Southbound
Interface and, the protocols used in this interface are vendor-specific;

• Forwarding plane: This plane is usually the end-point for control-plane services and
applications. It is responsible for handling packets in the data plane based on the
instructions provided by the control plane. Actions in this plane include forwarding,
dropping, and changing the packet’s headers. These actions are performed based on the
rules provisioned by the Control Plane Southbound Interface (e.g., OpenFlow).

8

2.2.2 SDN Controller

As stated before, the separation of data and control planes allowed centralized control over
the network as well as a new layer of abstraction between the network infrastructure and the
applications.

The control plane (see Figure 2.1) accommodates the SDN controller. With a complete
view over the network, the SDN controller manages flow control to the switches/routers “below”
(via southbound APIs) and the applications and business logic “above” (via northbound APIs)
to deploy intelligent networks. Two of the most well-known protocols used by SDN controllers
to communicate with the switches/routers are OpenFlow 1 and open virtual switch database
(OVSDB) 2.

There currently many SDN controller solutions such as OpenDaylight 3, ONOS 4, Flood-
light 5 among others. [10]

2.3 Network Function Virtualization

The Network Function Virtualization (NFV) concept is based in virtualized network functions
and migrating them from stand-alone boxes on dedicated hardware, to devices running on a
cloud system [4].

A network service can be broken down into a set of network functions, which are then
virtualized and executed on general-purpose servers or VMs. Thus, providing a higher degree
of flexibility because NFVs can be dynamically instantiated, relocated, or destroyed, without
the need to acquire and configure new and specific hardware [11].

NFV changed the way how network services are provisioned in comparison to traditional
methods. In summary, these differences are as follows [12]:

• Decoupling software from hardware: As the network element is no longer a collection
of integrated hardware and software entities, the evolution of both is independent of
each other. This enables the software to progress separately from the hardware, and
vice versa.

• Flexible network function deployment: The detachment of software from hardware helps
reassign and share the infrastructure resources, thus together, hardware and software,
can perform different functions at various times. The actual network function software
instantiation can become more automated. Such automation leverages the different
cloud and network technologies currently available. Also, this helps network operators
deploy new network services faster over the same physical platform.

• Dynamic scaling: The decoupling of the functionality of the network function into
instantiable software components provides greater flexibility to scale the actual VNF

1https://opennetworking.org/sdn-resources/customer-case-studies/openflow/
2https://www.openvswitch.org/
3https://www.opendaylight.org/
4https://opennetworking.org/onos/
5https://floodlight.atlassian.net/

9

performance in a more dynamic way and with finer granularity according to the actual
traffic which, for instance, the network operator needs to provision capacity.

Although the virtualization of resources is the primal approach in the process of decoupling
network functions from dedicated hardware, it is not the only one. Network operators could
still develop NFs and run them on physical machines, but they need to ensure that these NFs
can run on commodity servers. It is also possible to have hybrid scenarios where functions
running on virtual resources co-exist with those running on physical resources.

2.3.1 Network Function Virtualization Architecture

The European Telecommunications Standards Institute (ETSI)6 defined the NFV architectural
framework in three main elements, the Network Function Virtualization Infrastructure (NFVI),
the Virtual Network Function and Services and the Network Function Virtualization Manage-
ment and Orchestration (NFV MANO), as shown in Figure 2.2.

Figure 2.2: High Level NFV Framework

Source: [12]

2.3.1.1 Network Function Virtualization Infrastructure (NFVI)

The NFVI is a key element of the NFV architecture that describes the hardware and software
components that build up the environment on which VNFs are deployed, managed and
executed. The physical resources include computing, storage and network that provide
processing, storage and connectivity to the VNFs. Unlike the traditional purpose-built
hardware used to run NFs in legacy networks, the NFVI utilizes Commercial off-the-shelf
(COTS) computing hardware. The virtual resources result of the abstraction of the hardware
resources and the decoupling of the VNF software form the underlying hardware provided by
the virtualization layer. Thus, guaranteeing a hardware-independent lifecycle for the VNFs

6www.etsi.org

10

and, therefore, the software can be deployed on different physical hardware resources. In this
context, the OpenStack framework described in Section 2.4 acts as the NFVI of the proposed
solution.

2.3.1.2 Virtual Network Functions and Services (VNFs)

A Network Function (NF) is a functional block within a network infrastructure that has
well-defined external interfaces and well-defined functional behavior [13], such as firewalls,
load balancers, DHCP servers etc.

Thus, NFs can be deployed in VMs in cloud environments as Virtual Network Functions
(VNFs) and/or in bare-metal devices as Physical Network Functions (PNFs). The functional
behavior, external operational interfaces and state of the NF are expected to be the same for
PNFs and VNF.

A VNF can be deployed as a whole in a single VM or it can be composed of a set of
functions that can be deployed over multiple VMs, in which case each VM hosts a single
component of the VNF [12].

A service is, in general, implemented using one or multiple NFs combined. Nonetheless,
in the user perspective, the services should have the same or better performance, whether
running in PNFs or VNFs [14].

2.3.1.3 Network Function Virtualization Management and Orchestration
(NFV MANO)

The NFV MANO handles the management and orchestration of all resources within the NFV
framework, including compute, networking, storage, and VMs resources. The main focus of
NFV MANO is to allow flexible onboarding, preventing the chaos that can be associated with
the rapid spin-up of network components.

NFV MANO performs the orchestration and lifecycle management of the VNFs as well as
the resources (physical and virtual) that support the infrastructure.

The NFV MANO is composed of three blocks: the Network Function Virtualization
Orchestrator (NFVO), the Virtual Network Function Manager (VNFM) and the Virtualized
Infrastructure Manager (VIM).

• Network Function Virtualization Orchestrator: The NFVO is responsible for the orches-
tration and lifecycle management of the NFVI and physical and/or software resources.

• Virtual Network Function Manager: The VNFM manages the VNF instance lifecycle,
such as instantiation, update, query, scaling, termination, etc. A VNFM may be deployed
per VNF or may serve multiple VNFs.

• Virtualized Infrastructure Manager: The VIM handles the interaction between the
VNFs and the computing, storage and network resources. It is responsible for resource
management like an inventory of software, VMs and resource allocation.

11

In this context, MAAS (see Section 2.5 can be classified as the NFV-MANO within the
solution proposed. It manages and orchestrates the physical and virtual resources (made
available by OpenStack) as well as the VNF and/or PNF that are deployed.

2.3.2 Virtual Network Functions

Virtual Network Functions are virtualized network services previously provided by proprietary
and dedicated hardware. VNFs move individual network functions out of dedicated hardware
devices into software that runs on generic hardware. Common services such as firewalls, DNS,
caching, NAT, or virtualized routers, which can be deployed in virtual machines, are examples
of VNFs.

2.3.3 Physical Network Functions

Unlike VNFs, Physical Network Function refers to a purpose built hardware box that provides
specific networking function. Hardware routers, switches, firewalls, load balancers are examples
of PNFs.

2.4 OpenStack

OpenStack is an open-source framework for managing, defining and use cloud resources.
The official OpenStack website 7 defines it as: “a cloud operating system that controls large
pools of compute, storage, and networking resources throughout a datacenter, all managed
and provisioned through APIs with common authentication mechanisms. A dashboard is also
available, giving administrators control while empowering their users to provision resources
through a web interface.”

Typically to create a cloud computing environment, organizations resort to their existing
virtualized infrastructure, using a well-established hypervisor such as VMware vSphere 8,
Microsoft Hyper-V 9 or KVM 10. But cloud computing offers more than just virtualization.
Both public and private clouds also provide a high level of provisioning and lifecycle automation,
user self-service, cost reporting and billing, orchestration and other features.

OpenStack features a “modular” architecture composed of a collection of open-source
software modules that provide a framework to deploy and manage private and public cloud
infrastructures. So, it arises as a “cloud operating system” that provisions and manages large
pools of heterogeneous compute, storage and network resources.

The OpenStack enhanced the performing of these tasks, which usually required an IT
administrator to do it, allowing these to be done through management dashboards and the
OpenStack API.

7https://www.openstack.org/software/
8https://www.vmware.com/products/vsphere.html
9https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview

10https://www.linux-kvm.org/

12

As stated before, the OpenStack has a modular ecosystem broken up into services that
allow users to plug and play components depending on their needs. The map depicted in
Figure 2.3 gives an overview of the OpenStack ecosystem to see where those services fit and
how they can work together. Due to the large number of services that compose the OpenStack
framework, only those used in the course of this dissertation will be presented below.

OPENSTACK

Barbican Searchlight KarborKeystone GlancePlacement

SHARED SERVICESSHARED SERVICES

Horizon EC2API

WEB FRONTEND API PROXIES

COMPUTE

Nova

VIRTUAL MACHINES

Zun

CONTAINERS

Qinling

FUNCTIONS

STORAGE

Swift

OBJECT

Cinder

BLOCK

Manila

FILE

HARDWARE LIFECYCLE

Ironic

BARE METAL

Cyborg

ACCELERATORS

NETWORKING

Neutron

SDN

Octavia

LOAD BALANCING

Designate

DNS

OPERATIONS TOOLING

Ceilometer

Monasca Panko

Watcher Vitrage

Adjutant CloudKitty

BILLING / BUSINESS LOGIC

MONITORING SERVICES

Rally

Tempest Patrole

Python SDK

SDKs

OpenStackClient

CLIs

CLIENT TOOLS

INTEGRATION ENABLERS

CONTAINER SERVICES

Kuryr

NFV

Tacker

Kolla-Ansible OpenStack-Charms TripleO Bifrost Kayobe
OpenStack-Helm OpenStack-Ansible OpenStack-Chef

LIFECYCLE MANAGEMENT

DEPLOYMENT / LIFECYCLE TOOLS

RPM Puppet
Containers (LOCI, Kolla)

PACKAGING RECIPES FOR...

Murano Freezer

APPLICATION LIFECYCLE

Magnum Trove

Sahara

WORKLOAD PROVISIONING ORCHESTRATION

Heat Mistral Aodh

Senlin Zaqar BlazarMasakariSolum

Version 2020.07.01

RESOURCE OPTIMIZATION

TESTING / BENCHMARK

Figure 2.3: The OpenStack Services Ecosystem

Source: https://www.openstack.org/software/

• Keystone: The identity service, commonly known as Keystone, is responsible for man-
aging all users and internal micro-services that constitute OpenStack. Each entity is
assigned a username and password along with the information on who is allowed to do
what.

• Glance: The Image service or Glance manages the virtual machine images allowing
users to discover, register, and retrieve virtual machine images.

• Nova: Nova plays a vital role in the OpenStack architecture by interacting with the
majority of services it acts as the manager of the cloud computing system. It manages
the VMs lifecycle through drivers that communicate with the virtualization layer (i.e.,
with the hypervisor).

• Neutron: Neutron provides "networking as a service" between interface devices (e.g.,
vNICs) managed by other OpenStack services (e.g., nova). It allows users to create and
manage network objects, such as networks, subnets and ports, which other OpenStack
services can use through an API.

• Horizon: Horizon is a simple modular web interface, providing a user interface for
cloud infrastructure management, allowing administrators and users to access a graphic
interface easy to deploy.

13

• Ironic: Ironic is the bare-metal provisioning service in OpenStack. This service allows a
customer to use hardware directly, deploying the workload (image) onto a real physical
machine instead of a virtualized instance on a hypervisor. Ironic is triggered to launch
a bare metal node by the Nova virtualization driver. With this Ironic virt driver, users
can launch a bare metal server instance in the same way that they can currently launch
a virtual machine (VM) instance.

2.5 Metal As A Service (MAAS)

Metal As A Service (MAAS) [15] is an open-source software from Canonical Inc, used for
managing and monitoring bare-metal servers. Features like the automatic discovery of network
devices, and zero-touch deployment of major Operating Systems (OSs) such as Ubuntu,
CentOS, Windows, and Red Hat Enterprise Linux (RHEL) (Windows and RHEL require a
Ubuntu Advantage 11 subscription to work correctly), made MAAS a popular cloud-native
infrastructure management solution. MAAS supports several ways of interaction, from a
powerful web-based interface, a command-line client, and an API allowing it to connect to
external orchestration and modeling systems.

MAAS can be used to build the foundation on which cloud computing managing platforms
like OpenStack run. Unlike OpenStack, MAAS does not add new layers between the OS (i.e.,
applications) and the hardware they run on.

However, MAAS facilitates the deployment process of OSs on physical servers as OpenStack
does it with virtual machines.

2.5.1 Bare-metal server

A bare-metal server is a physical machine designed to run services without interruptions for
an extended period. In general, bare-metal servers are highly stable, durable, and reliable.

Unlike virtual machine servers that can be shared among multiple tenants through a
hypervisor, bare-metal servers are dedicated to a single customer, meaning that they aren’t
shared between tenants.

A significant benefit of using bare-metal servers is the capability of accessing directly to
the server and capitalize on all the underlying hardware. In other words, if someone provisions
a virtual machine, it will get a guest OS sitting on top of a hypervisor sitting on top of
physical hardware, as depicted in Figure 2.4b. Thus, it will only have access to the guest OS
and the management interface used to create the VM. This does not happen with bare-metal
servers because, as depicted in Figure 2.4a, the OS sits on top of the physical hardware giving
the user full access to the underlying architecture, which increases the available options when
creating a platform to host a service or application.

11https://ubuntu.com/advantage

14

HARDWARE

OS

App App App App App

(a) Traditional bare-metal server

HARDWARE

OS

App App App App App

HYPERVISOR

(b) Bare-metal server with hypervisor

Figure 2.4: Traditional and hypervisor bare-metal server comparison.

2.5.2 Supportive Cloud Tools

2.5.2.1 Curtin

Curtin 12 (short for Curt Installer) is a preseeding system developed by Canonical Inc., that
applies customization during operating system (OS) image installation. System parameters
such as the type of kernel, disk partitioning, network configuration, swap memory configura-
tion, among others, can be preconfigured in a preseed file that will automatically configure
images during the installation process. Thus, curtin allows for administrators to have their
deployments equally set up all the time.

MAAS’s internal deployment mechanism uses curtin to handle multiple operating system
installations. To do this, it copies an image file from the Region controller to the hard disk
and uses cloud-init for final configuration on the first boot. This image has to be in a specific
format because MAAS interprets templates in lexical order by their filename.

The files used by curtin are located in the MAAS Region controller and when it needs to
load a file, it chooses the one that is most specific to the machine and OS it is deploying. The
process is based on the following priority:

1. {prefix}_{osystem}_{node_arch}_{node_subarch}_{release}_{node_name}
2. {prefix}_{osystem}_{node_arch}_{node_subarch}_{release}
3. {prefix}_{osystem}_{node_arch}_{node_subarch}
4. {prefix}_{osystem}_{node_arch}
5. {prefix}_{osystem}
6. {prefix}
7. ’Generic’

All user-data files use the same prefix "curtin_userdata", followed by the other specifi-
cations such as the node architecture and sub-architecture, release, and node name. These
specifications follow the folder structure where MAAS stores images. Curtin will use the file

12https://curtin.readthedocs.io/en/latest/index.html

15

that suits the deployment starting from number 1 to the number 7 and applying a "Generic"
file if there is no custom file defined.

So, for example, for CentOS, the MAAS folder structure is the following:
/var/lib/maas/boot-resources/current/centos/amd64/generic/centos70/

Thus, if it is necessary to create a custom user-data that will apply to all CentOS 7 installs
on x86_64, it is required to create a file in etc/maas/preseeds called:

curtin_userdata_centos_amd64_generic_centos70
In the absence of a custom pressed file, MAAS uses a generic pressed file. This file simply
includes the machine specifications defined by the user when it requests a deployment (i.e.,
the kernel to be installed, network configurations, and disk partitioning).

2.5.2.2 Cloud-init

Cloud-init 13 is the industry standard for early-stage initialization method for cross-platform
cloud instances. It is used to specialize a generic operating system image at runtime by
provisioning a set of configurations. Formerly developed by Canonical Inc. for configuring
Ubuntu Linux running in Amazon EC2, it is now supported across all major public cloud
providers, provisioning systems for private cloud infrastructure, and bare-metal installations.

The cloud-init package is installed in the operating system images supplied by most clouds.
When started, cloud-init runs the commands in a sequence of modules to specialize the
operating system installation for the intended purpose. This configuration comes from two
sources:

1. Cloud provider-supplied metadata: This first configuration occurs before the beginning
of the operating system installation. Several configurations can be applied in this stage
and may involve setting up the network and storage devices to configuring SSH access
keys and many other aspects of a system.

2. User-supply configuration: This happens after the machine has booted into the installed
OS for the first time. The cloud-init will parse and process any optional user or vendor
data that was passed to the instance.

The user can perform late configurations with custom scripts using cloud-init. These
customizations are applied after the first boot when MAAS changes the machine’s status to
"Deployed".

Typically, the user-data custom files are written in YAML, but it is also possible to
deploy Bash and Python files. After the script is written, the user needs to convert it to a
base64 encoded file and then deploy it along with the machine over the API, as following:
maas <user> machine deploy <system_id> user_data<̄base64 encoded user-data>

Customizations are per-instance, meaning that user-supplied scripts must be re-specified
on redeployment. Thus, if a user needs its script to run on every machine boot, it needs to
specify that in the user-data file, otherwise, it will only run one time on the first boot after
the OS install.

Cloud-init customizations are the best way for MAAS users to customize their deployments.
13https://cloudinit.readthedocs.io/en/latest/index.html

16

2.5.2.3 Ephemeral image

MAAS uses an ephemeral image: a lightweight operating system, that allows for node
controlling during the node deployment process. An ephemeral image consists of a kernel,
a RAM disk, and a squashfs file-system that is booted over the network (i.e., PXE boot).
Ephemeral images, use cloud-init to discover the node’s hardware (e.g., number of CPUs,
RAM, disk, etc.) and send that information to the MAAS Region controller.

2.5.3 MAAS Architecture

MAAS has a layered architecture as depicted in Figure 2.5 which allows for easy infrastructure
coordination and integration. The two main elements in the MAAS architecture are the region
controller (regiond), and rack controller (rackd).

2.5.3.1 Region Controller (regiond)

Region controllers are responsible for a single region or a data center. As shown in Figure 2.5,
MAAS uses fabrics to accommodate subdivisions within a single region (e.g. multiple
departments in a company). With the responsibility of dealing with operator requests, five
components make the region controller: a REST API server and a web UI which provides
user connectivity to the system, a PostgreSQL database that holds all the data for the MAAS
environment (e.g., OS images, server details, and user credentials), DNS, and caching HTTP
proxy which provides a way for its managed machines to use a proxy server when they need
to access HTTP/HTTPS-based resources, such as the Ubuntu package archive.

2.5.3.2 Rack Controller (rackd)

The rack controller (rackd) provides local bare-metal with DHCP/BOOTP, TFTP, iSCSI,
and HTTP services, stores operating system OS images in its local disk, and acts as a PXE
server which is required for commissioning and deploying machines.

As defined in [16]: “Preboot Execution Environment(PXE) is a client-server interface
that allows computers in a network to be booted from the server before deploying the
obtained PC image in local and remote offices, for PXE enabled clients. PXE network boot is
performed using client-server protocols like DHCP(Dynamic Host Configuration Protocol)
and TFTP(Trivial File Transfer Protocol). PXE will be enabled by default on all computers.”

As seen in Figure 2.5 each fabric has a rack controller attached to it.

2.5.3.3 Fabrics

A fabric connects VLANs. The operating principle of a VLAN is based on only allowing
network connections between specific switch ports or specifically identified ports ("tagged"
ports), which makes it impossible for two VLANs to communicate with each other. Thus, the
use of fabrics allows these VLAN-to-VLAN connections, which are required in certain use

17

cases (e.g. allowing different departments within the same company to share data). MAAS
creates a default fabric (‘fabric-0 ’) for each detected subnet during installation.

Router

Region
controller

Fabrics

L3 Switches

Rack
controllers

L2 switches

VLANs

Subnets

Space

fabric-1 fabric-2

Figure 2.5: MAAS architecture overview (example)

Source: https://maas.io/docs/concepts-and-terms

2.5.4 Node lifecycle

When a new machine ("node") arrives at the MAAS network, it undergoes a series of events -
from its enlistment to the point a user can deploy it.

Figure 2.6 illustrates the major events in a node lifecycle:

1. New: New machines can be enlisted automatically using PXE-boot or add manually
by the administrator.

2. Commissioning: All relevant data such as RAM, CPUs disk, NICs, and accelerators
like GPUs are listed to be used as constraints for machine selection.

3. Ready: After successful commissioning, a machine is considered "Ready" for MAAS to
control it.

4. Allocated: At that point, nodes are Ready and can be allocated to users. Once
Allocated, a node steps out from the available nodes and can’t be deployed from a
different user.

5. Deploying: Users can request that MAAS to turn on a machine and install a complete
OS without manual intervention.

6. Releasing: When the purpose of the node is achieved the user can release it. MAAS
will wipe the disk and put it back on the available ("Ready") resource pool.

18

1

2

3

4

5

6

Figure 2.6: Node lifecycle

Source: https://maas.io/how-it-works

2.5.5 MAAS VM Hosting

MAAS allows for machines to be used as VM hosts. A VM host is a machine that can run
virtual machines by dividing its resources (CPU cores, RAM, storage) among the number
of VMs. Once MAAS has enlisted, commissioned, and acquired a newly-added machine, it
can be deployed as a VM host. MAAS currently supports VM hosts and VMs created via
libvirt 14. Future MAAS releases are expected to support LXD 15 VMs and VM hosts as a
beta feature.

Moreover, the MAAS release 2.7 introduced the Non-Uniform Memory Access (NUMA),
feature. NUMA is a useful way of achieving high-efficiency computing, by pairing a CPU core
with a very fast connection to RAM and PCI buses. A NUMA node is formed by a pair of a
CPU and its dedicated RAM, which reduces memory access times, so the core won’t spend
a lot of time waiting for access to data in memory. By default, machines are assigned to a
single NUMA node that contains all the machine’s resources.

14https://ubuntu.com/server/docs/virtualization-libvirt
15https://linuxcontainers.org/lxd/introduction/

19

2.5.6 High Availability in MAAS

MAAS is a service that provides infrastructure coordination upon which cloud infrastructures
depend so its availability is crucial.

High Availability (HA) in the region controller is achieved at the database level. The
region controller will automatically switch gateways to ensure high availability of services to
network segments in the event of a rack failure.

Enable HA in the rack controller level is a straightforward task. First, it is necessary to
install multiple rack controllers to achieve real high availability. Once new rack controllers
are installed, MAAS automatically identifies which rack controller is responsible for the
BMC control (node power cycling) and sets up communication between rack controllers. As
stated in Subsection 2.5.3.2, rack controllers are responsible for providing DHCP to the nodes.
Therefore, it is necessary to enable DHCP HA by allowing primary and secondary DHCP
instances to serve the same VLAN. This VLAN will afterward replicate all lease information
between rack controllers.

2.5.7 MAAS Communication

MAAS has a very well defined communication pattern, from the UI/API through the region
controller, to the rack controller, to the machines (and back). The addition of more controllers
does not change the flow of communication.

2.5.7.1 Region and Rack controllers communication

There are several different ways in which the MAAS region and rack controllers interact.
These may vary depending on the operation that the user requests. One of the usage examples
is a machine commissioning process that consists of collecting information on its available
resources (e.g., CPU, RAM, storage).

The example depicted in Figure 2.7, is a simple representative of the communication
between rack and region controllers during a machine commissioning process. The description
process was taken from [17]:

20

1. Operator request

2. API request

12. regiond stores machine resource
data in the local PostgreSQL database

7. rackd RPCs
boot package

3. regiond locates rackd w/BMC
acces to target machine

8. rackd sends PXE config “come get files”

10. Booted machine pulls cloud-init metadata
from regiond, proxied by rackd

11. cloud-init gathers resource info and
returns to regiond, proxied by rackd

9. Booting machine loads kernel, initrd;
boots with initrd; then loads the squashfs,
eventually reaching ephemeral Ubuntu

4. rackd powers on machine via IPMI
5. rackd assigns DHCP via DORA

6. rackd requests network boot

Figure 2.7: MAAS Communication Diagram

Source: https://maas.io/docs/snap/2.9/ui/maas-communication

1. An operator makes a request of MAAS, either via the Web UI or the API.
2. MAAS translates this to an API request to the region controller.
3. The region controller locates the rack controller that has BMC access to the machine in

question, that is, the rack controller that can power on that machine.
4. That same rack controller powers on the machine via IPMI request.
5. The rack controller tasked with providing DHCP handles assigning an IP address to

the machine via the DORA sequence (Discover, Offer, Request, Acknowledge). Note
that this rack controller doesn’t have to be the same one that powers on the machine.

6. The DHCP-managing rack controller inserts itself as the DHCP “next-server” and
requests a network boot.

7. (Still) the same rack controller RPCs the region controller to get what’s needed to
boot an ephemeral Ubuntu kernel, namely the kernel, any kernel parameters, an initrd
daemon, and a squashfs load.

8. That same rack controller transforms the RPC response from the region controller into
a valid PXE config and tells the machine to come get its files.

9. The booting machine loads the kernel and initrd, boots with that initrd, and then loads
the squashfs, eventually making its way up to an ephemeral Ubuntu instance.

21

10. The booted machine pulls cloud-init metadata from the region controller, proxying
through the rackd.

11. cloud-init uses this metadata to gather resource information about the machine and
pass it back to the region controller, again proxied by the rackd.

12. The region controller (regiond or “region daemon”) stores this machine information in a
postgres database that is accessible only to the regiond, making MAAS truly stateless
with respect to machines.

2.5.7.2 Machines and Rack controller communication

MAAS sets up an internal DNS domain, which is not manageable by the user, and a unique
DNS resource for each subnet that it manages. When a machine is booting, it uses the subnet
DNS resource to determine which rack controller is available for communication. In the
case of multiple rack controllers are available in the same subnet, MAAS uses a round-robin
algorithm to balance the load across the controllers, ensuring that machines always have a
rack controller. Thus, all communications between the machines and MAAS are proxied by
the rack controllers.

2.6 Juju

Juju [18] is an open-source software from Canonical Inc. that leverages the deployment,
configuration, management, maintenance, and scale of cloud applications on public clouds,
as well as on physical servers. In short, Juju is a software solution that provides service
orchestration.

Nowadays, current working environments are characterized by the use of multiple ap-
plications together. Even simple applications may require other applications to operate.
For example, to model a complex system like OpenStack (see Section 2.4) requires multiple
services/applications to be installed, configured, and connected to each other, which can be
an intricate process.

Thus, Juju’s modeling system leverages the ability to deploy and manage services quickly
and more easily. Applications can be encapsulated in service definitions files called "charms",
which can subsequently be instantiated to deploy a service in seconds. This process enables
to quickly scale services up or down without disruption for the cloud environment.

2.6.1 Juju Workflow

The typical approach when deploying applications with Juju is summarized in the four steps
illustrated in Figure 2.8. To describe the methodology it’s going to be used OpenStack as an
example.

22

Search Model Deploy Monitor

Figure 2.8: Juju Workflow Concept

OpenStack is composed of many services (e.g., Nova, Neutron, Horizon, Glance, etc.) that
run and interact with each other. Thus, the first step is to "Search" for the appropriate charms
that the project will need. A Juju charm, as mentioned before, contains all the instructions
necessary for deploying and configuring application units as stated in [19]. There are a variety
of charms for hundreds of popular cloud-oriented applications in the Juju charm store 16. For
example, there is a charm for each OpenStack service 17. However, if there isn’t a charm to
a particular application, it can be easily developed because charms can be written in any
language or configuration management scripting system. This allows for users that have
existing scripts (e.g., for Puppet, Chef, Bash, etc.) to use it as a starting point for a new
charm.

The next step is to build a "Model" of the service using the charms selected in the previous
step. A simple way to describe a Model is as a workspace that enables the users to maintain
an organized view of the service. After choosing the charms, users must create a Model for
the service they want to deploy and built the charms relations within it. Using the OpenStack
example, the Model [20] illustrated in Figure 2.9 contains all the needed charms as well as the
relations between them.

Figure 2.9: Juju OpenStack Model (Example)

16https://jaas.ai/store
17https://jaas.ai/u/openstack-charmers#charms

23

Once a model is built and functional, it becomes simple to export a model’s definition
as a bundle, then re-deploy that model in another host. A bundle is a feature that makes it
possible to combine multiple charms and save them to reuse in another model, which enables
the automation of a multi-charm solution.

When the service Model is configured and running, the next step is to deploy it. Juju
supports a wide variety of private and public clouds (e.g., Amazon AWS, Microsoft Azure,
Google GCE, MAAS, etc.), as well as common servers. A Juju controller must be bootstrapped
in a cloud before a model could be deployed. A Juju controller is the management node of a
Juju cloud environment, whose main goal is keeping the state of all the models, applications,
and machines in that environment.

The last step is to "Monitor" and maintain the services deployed. This can be done
through the web UI as well as the CLI available.

2.7 Existing Test Infrastructures

The constant growth of networks demanded new ways to test what was being developed. The
Advanced Mobile wireless playGrouNd (AMazING) 18 testbed is an outdoor system located
on the rooftop of Instituto de Telecomunicações at the University of Aveiro. The testbed
consists of 24 fixed nodes in addition to 1 mobile node as depicted in Figure 2.10. The nodes
are approximately 8m apart from each neighbor and distributed over 1200m2.

This testbed was deployed to support researches on next-generation networks NGN.
It provides users with full access to the node devices, which allows for a high degree of
controllability for the experimenter, as well as, high reproducibility of the tests. The testbed
has several support servers to provide processing power to analyze results and a redundant
storage device that serves all files at its core.

18http://amazing.atnog.av.it.pt/

24

Figure 2.10: AMazING Testbed Overview

Source: [6]

The following examples describe the most advanced testbeds that can be found in the
Fed4Fire+19 project. As defined in [21]: “Fed4FIRE+ is a project under the European Union’s
Programme Horizon 2020, offering the largest federation worldwide of Next Generation
Internet (NGI) testbeds, which provide open, accessible and reliable facilities supporting
a wide variety of different research and innovation communities and initiatives in Europe,
including the 5G PPP projects and initiatives.” There are currently 18 testbeds federated
with Fed4FIRE with different structures and implementations to attend different needs and
goals.

An example is the IRIS20 testbed which provides virtualized radio hardware, software
virtualization, Cloud-RAN, NFV, and SDN technologies to support the experimental investi-
gation of the interplay between future networks. The Figure 2.11 illustrates the Iris testbed
architecture.

19https://www.fed4fire.eu/testbeds/
20http://iristestbed.eu/

25

Figure 2.11: Iris Testbed Overview

Source: [22]

For instance, such a testbed as Iris proposes [23]:
“The physical layer, at the bottom, represent the tangible resources including
servers, switches, USRPs, and so forth, at the Iris testbed. The virtualisation and
control layers in the middle are supported by software virtualisation technologies
such as OpenStack to support cloud computing, OpenFlow to orchestrate and
manage the USRPs and physical network equipment. The vertical and NFVMANO
layers, are supported by the Open Source Network Function Virtualization (NFV)
Management and Orchestration (MANO) (OSM) software stack. These elements
interact with the physical and virtualisation layers to dynamically instantiate radio
Experimental Vertical Instances (EVIs) at the Iris testbed.”

Another example is the CityLab [24] testbed, which enables researchers to perform
experiments in areas such as: cross-technology heterogeneous network, bare-metal outdoor
networks, and smart city IoT networks. With currently 32 locations hosting the hardware,
CityLab offers a close-to-real environment testbed with nodes installed in the streets. An
interesting characteristic of this testbed is the use of PCEngines APU2C4 as the bare-metal
node. However, it lacks virtual capabilities, not allowing users to combine virtual machines

26

and bare-metal. Figure 2.12 illustrates the CityLab architecture overview. According to [25],
a data center of the University of Antwerp hosts an EmuLab-based experiment management
system [26] to control a set of gateways (i.e., testbed nodes) distributed in the city of Antwerp,
Belgium. Users use jFED 21 to access the experiment system.

Figure 2.12: CityLab Architecture Overview

Source: [25]

The last example is the Network Implementation Testbed using Open Source platforms
or NITOS 22 testbed. Currently running over 100 operational wireless nodes, this testbed
focuses on supporting experimentation-based research in the wired and wireless networks
area. The NITOS testbed is formed of an outdoor testbed that consists of powerful nodes
that feature multiple wireless interfaces and allow for experimentation with heterogeneous
(Wi-Fi, WiMAX, LTE) wireless technologies, and an indoor testbed that consists of 40 Icarus
nodes and is deployed in an RF isolated environment. Figure 2.13 illustrates the NITOS
architecture.

21https://jfed.ilabt.imec.be/
22https://nitlab.inf.uth.gr/NITlab/nitos

27

Figure 2.13: NITOS Facility Architecture

Source: [27]

According to [28] the main experimental components of NITOS are:
• A wireless experimentation testbed, which consists of 100 powerful nodes

(some of them mobile), that feature multiple wireless interfaces and allow
for experimentation with heterogeneous (Wi-Fi, WiMAX, LTE, Bluetooth)
wireless technologies.

• A Cloud infrastructure, which consists of 7 HP blade servers and 2 rack-
mounted ones providing 272 CPU cores, 800 Gb of Ram and 22TB of storage
capacity, in total. The network connectivity is established via the usage of
an HP 5400 series modular OpenFlow switch, which provides 10Gb Ethernet
connectivity amongst the cluster’s modules and 1Gb amongst the cluster and
GEANT.

• A wireless sensor network testbed, consisting of a controllable testbed deployed
in UTH’s offices, a city-scale sensor network deployed in Volos city and a city-
scale mobile sensing infrastructure that relies on bicycles of volunteer users.
All sensor platforms are custom, developed by UTH, supporting Arduino
firmware and exploit several wireless technologies for communication (ZigBee,
Wi-Fi, LTE, Bluetooth, IR).

• A Software Defined Radio (SDR) testbed that consists of Universal Software
Radio Peripheral (USRP) devices attached to the NITOS wireless nodes.
USRPs allow the researcher to program a number of physical layer features
(e.g. modulation), thereby enabling dedicated PHY layer or cross-layer
research.

28

• A Software Defined Networking (SDN) testbed that consists of multiple
OpenFlow technology enabled switches, connected to the NITOS nodes,
thus enabling experimentation with switching and routing networking pro-
tocols. Experimentation using the OpenFlow technology can be combined
with the wireless networking one, hence enabling the construction of more
heterogeneous experimental scenarios.

2.8 Summary

This chapter provided the state of the art for the remainder of the dissertation. Some concepts
and technologies that are important to the deployment of the described in Chapter 3 were
defined. The cloud environment where the proposed system will reside, required to define
Cloud Computing. As the work relies on the capacity to use network functions on the virtual
and physical plane it was needed to define NFV. For SDN and NFV, both their architectures
were described and detailed. OpenStack was also presented, as well as the most important
projects of this software. This framework was used to create the cloud with which the system
will work with. Then, both MAAS and Juju architectures were detailed as well as their key
features that were important to the dissertation. MAAS acts as the main component, which
is responsible for manage requests from clients and deploy either the VNFs or PNFs. Lastly,
were given some examples of current testbeds.

29

CHAPTER 3
Scenario Description and Proposed

Architecture

This chapter presents a description of the use-case scenario and the architecture design for
testing the overall performance of the testbed implemented using the OpenStack, MAAS, and
Juju technologies.

3.1 Scenario

The AMazING [6] testbed is an outdoor system that was deployed on the rooftop of ITAV.
The testbed consists of 24 fixed wireless nodes forming a grid, in addition to a mobile node. In
addition, the ITAV has a local OpenStack cloud already deployed and running, which allows
its exploration for the integration of the AMazING testbed in order to provide virtualization
capabilities to the physical wireless nodes.

Therefore, the system architecture proposal aims at the development of a testbed at
Instituto de Telecomunicações at the University of Aveiro (ITAV), to automate wireless
experiments while taking advantage of its local cloud infrastructure and enabling the physical
wireless testbed to cope with virtualization research trends (e.g., develop and evaluate use
cases where a PNF is dynamically instantiated for providing an alternative wireless access
technology for a certain end-device).

3.2 Architecture

In this context, the system architecture was designed to resemble the reality of the existing
system of ITAV, where a local OpenStack cloud is already deployed and running. As such, a
dedicated OpenStack instantiation was used in parallel to the production OpenStack, allowing
to minimize the allocation of resources and to avoid an invasive and destructive approach.
OpenStack has a service that handles bare-metal servers (i.e., Ironic), as stated in Section 2.4.

31

However, Ironic needs to be connected to the other OpenStack services meaning that it would
require stopping the cloud to set it up, which would be a very time-consuming process and
would fail the non-evasive objective that was set at first.

Thus, MAAS was chosen to handle the bare-metal as well as the OpenStack VMs. MAAS
was detailed in Section 2.5.

Figure 3.1 depicts the system architecture, where the PC-OpenStack acts as the cloud
environment, which deploys the MAAS-controller and Juju-controller. Network entities are
presented in the following subsections.

PC - Openstack

hub

INTERNET

juju-controller

Wireless Node-1 Wireless Node-10

...

maas-controller

Figure 3.1: System architecture overview.

3.2.1 OpenStack Cloud Environment

The PC-OpenStack operates as a VIM running OpenStack, and consequently, it is responsible
for managing the virtualized infrastructure of the of the system. The PC-OpenStack deploys
both the MAAS-controller and Juju-controller as VMs, and provides the MAAS-controller
with two physical network interfaces: one is connected to the Internet (green line in Figure 3.1),
providing connectivity to all the other elements; the second provides connection to the physical
wireless nodes (blue line in Figure 3.1).

32

3.2.1.1 PC-OpenStack specifications and configuration

The dedicated OpenStack Server deployment was installed and configured in a DELL XPS 13
(2016), with a Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz, 8GB of LPDDR3-SDRAM and
256GB of SSD storage. The machine is running Canonical Ubuntu 18.04 LTS desktop version.

As seen in Section 2.4, the OpenStack framework has a modular architecture composed
of several services. First, it was necessary to install the following services for a minimal
deployment of OpenStack Stein: Identity (keystone), Image (glance), Placement, Compute
(nova), Networking (neutron), and Dashboard (horizon).

Then, using neutron, two networks were configured: a provider network (green line on
Figure 3.1 - 192.168.1.0/24) to give Internet access to the instances; and a second, private
network (blue line on Figure 3.1 - 10.10.10.0/24), to work as MAAS internal network to deploy
and manage the wireless nodes as depicted in Figure 3.2.

Figure 3.2: OpenStack network graph

The enlisting of new machines in MAAS is typically done by the combination of DHCP,
TFTP, and PXE. If one machine connected to the MAAS network is configured to netboot,
MAAS will automatically enlist it. So to enable this enlist process, two changes had to be
done. First, OpenStack doesn’t have PXE boot configured for its instances to use. The
method described in OpenStack documents to allow PXE boot has two issues: (1) it is only
described to enable the feature with the Ironic (bare-metal service), and (2) it requires a
DHCP and/or TFTP servers to enable it. This does not fit the purpose of the project since it
is imperative that MAAS has full control of the PXE boot process. Therefore, a new image
was built using the method described in [29], which:

1) creates a small empty disk file and it DOS filesystem;
2) makes it bootable by syslinux;
3) install iPXE kernel;

33

4) make the iPXE kernel to load at bootup in the syslinux.cfg file.
The second change is related to the network. As stated before the machines (wireless

nodes) have to be in the same physical network as the MAAS controller to be able to PXE
boot. As such, the physical interface on PC-OpenStack (see hub on Figure 3.1) was bridged to
the private network created on OpenStack, allowing all machines to go through the enlisting
process. Figure 3.3 shows the bridge details: in orange the OpenStack private network
(maas-net) in yellow the physical interface from the PC OpenStack.

Figure 3.3: Network bridging in OpenStack

Finally, two VMs were deployed with the following specifications:

1. maas-controller
• 2GB of RAM
• 2 vCPU
• 40GB of storage
• OS: Ubuntu 18.04 LTS (server)
• Interfaces:

– ens3 (provider):
∗ IP: 192.168.1.250/24
∗ MAC: fa:16:3e:f2:7f:29

– ens4 (maas-net):
∗ IP: 10.10.10.199/24
∗ MAC: fa:16:3e:e9:d1:5e

2. 01-juju-controller

• 3.5GB of RAM

• 1 vCPU

• 10GB of storage

• OS: Custom PXE-boot image

• Interfaces:

– ens3 (maas-net):

∗ IP: 10.10.10.216/24

∗ MAC: fa:16:3e:62:93:dc

3.2.2 MAAS Controller

In this proposal, the MAAS region and rack controller (see Subsection 2.5) were installed in the
same machine. The machine used was a VM within the PC-Openstack named maas-controller
(see Sub-subsection 3.2.1.1).

The first step was to install and integrate MAAS (version: 2.7.3 (8290-g.ebe2b9884)) on
the VM using the Advanced Package Tool (APT) from Ubuntu. Once MAAS was installed,
an administrator was created along with the login credentials using the MAAS CLI. From
this point, a web UI was accessible to continue the configuration.

34

When the web UI is accessed for the first time, it prompts a different screens to the
administrator in order to set several system options, including connectivity (e.g., DNS
forwarder), image downloads, and authentication keys as depicted in Figure 3.4.

Figure 3.4: MAAS web UI first setup

3.2.2.1 MAAS Networking

As stated in Sub-subsection 3.2.1.1, the VM that runs the maas-controller is connected to the
provider and maas-net networks. MAAS is aware of the networks to which its controller is
connected and lists them in the "Subnets" tab on the web UI as shown in Figure 3.5.

Figure 3.5: MAAS subnets

Then, the DHCP was enabled in the private subnet 10.10.10.0/24. The proposed architec-
ture is not very complex when it comes to networks so, only the default fabric (fabric-0) was
used.

The last step was the Wireless Nodes enlistment process. All nodes were connected directly
to the MAAS controller as explained previously in Sub-subsection 3.2.1.1.

35

After the enlistment, the power management set up followed. MAAS provides an extensive
list of power management options (e.g., IPMI, OpenBMC, etc.). However, in this case, this
option was set up as Manual due to the lack of power management capabilities of the Wireless
Nodes along with no external devices to facilitate it.

At last, all Wireless Nodes undergo the commissioning process. This process allows
MAAS to collect relevant information about the Wireless Nodes such as the RAM, number
of CPU cores, ethernet interfaces, among other data. The commissioning process is detailed
in Figure 2.7. From this point, it was possible to command MAAS to acquire, test, deploy,
and release the Wireless Nodes. Figure 3.6 shows the 10 Wireless Nodes and one virtual
OpenStack VM who also went through the process described above.

Figure 3.6: MAAS Wireless Nodes Ready

3.2.3 High-level message sequence

Once a wireless node has been enlisted and commissioned by MAAS, the following logical
steps are required to deploy it. Depending on the end-use of the machines, the agent that
triggers the deployment may vary. It can be directly triggered by MAAS, if the need is to
install a base operating system and work with the machines manually. Alternatively, it can be
triggered by an external agent such as Juju, if the job requires running complex, inter-related
services, like a cloud. Either way, in both situations there is a “Client” that requests to the
“MAAS Server” the instantiation of a “Wireless Node”. Figure 3.7 depicts such procedure,
which is described as follows.

36

MAAS Node Deployment

Client MAAS Server Wireless Node

 (1) Request node deploy: GUI/REST API

(2) Switch on the chosen WN

DHCP/BOOTP_Offer

DHCP/BOOTP_Request

DHCP/BOOTP_Reply

DHCP/BOOTP_ACK

Machine boots.

(4) HTTP_GET (kernel and initrd)

(5) TFTP (kernel and initrd)

initrd mounts a Squashfs
image ephemerally over HTTP.

(6) HTTP_GET Squashfs)

(7) TFTP (Squashfs)

cloud-init triggers
deployment process

HTTP_GET (clouinit: pre-install config)

TFTP (cloudinit: pre-install config)

curtin installation script runs:
Configuring Storage;
Installing OS and Configuring OS

HTTP_GET (OS_install)

TFTP (install sources to disk)

HTTP_GET (OS_config)

TFTP (configuring installed system)

Installation complete: Node
disable netboot.
Machine reboots.

10 DHCP/BOOT Process

TFTP (init-network, instance-data, public-keys, etc)

HTTP_POST (cloudinit: applying_user_data)

(12) HTTP_POST (cloudinit: final-modules "SUCESS")

Machine deployed.

(13) Node Deployed: GUI/REST API

(9) Curtin: OS install and configure

(11) Cloudinit applies some customizations after the first reboot

(3) DHCP/BOOT process

(8) cloudinit: pre-install config

Figure 3.7: High-level message sequence for a MAAS node deployment.

The procedure starts with a request from the “Client” to the “MAAS Server” using a
REST API (Figure 3.7, message 1), which will power up a Wireless Node with the specified

37

constraints provided by the Client (Figure 3.7, message 2). The DHCP server (that can be
managed by MAAS or external) is contacted, and the Bootstrap Protocol (BOOTP) procedure
occurs (Figure 3.7, message 3). Then, a kernel and initrd are received by the Wireless Node
over TFTP (Figure 3.7, message 4 and 5), and it boots up. Initrd mounts a SquashFS image
ephemerally over HTTP (Figure 3.7, message 6 and 7). The cloud-init configuration file
is loaded to the wireless node (Figure 3.7, message 8), which triggers the OS installation
process. During the OS image installation, the curtin installation script starts and applies
customizations (Figure 3.7, message 9) at the image level, such as adding and updating
package repositories, configure network interfaces, re-order booting options which result in the
system will boot from the same device that it booted to run curtin, (for MAAS this will be a
network device). Curtin allows for administrators to customize their deployments to have
identical setups all the time. When the installation and configuration of the OS are complete,
the wireless node reboots, triggering the DHCP/BOOTP again, but this time the machine will
boot from its own hard disk (Figure 3.7, message 10). At this stage, the cloud-init script starts
running which is used by users to customize their deployment immediately after instantiation
(Figure 3.7, message 11). Finally, the Wireless Node acknowledges the MAAS server that the
cloud-init script ran successfully (Figure 3.7, message 12) and MAAS notifies the Client that
the wireless node is deployed and ready to be used (Figure 3.7, message 13).

3.2.4 Juju-Controller

It’s necessary to review two aspects in order to have a broader understanding of the given
explanation. The OpenStack VM named 01-juju-controller has a diskless image and has been
commissioned in MAAS. Therefore, it is going to be used during the Juju installation to
bootstrap a Juju controller in the MAAS environment.

First, the Juju software was installed in the OpenStack VM named maas-controller using
snap 1. With the software installed, it was necessary to configure a few prerequisites first,
such as Clouds, Credentials, and Controllers.

As stated before in Sub-section 2.8, Juju works on top of many different types of clouds
and has built-in support for MAAS. Thus, a new MAAS cloud named maas-01 was added to
the Juju environment as depicted in Figure 3.8. Along with the type and name of the cloud,
the MAAS API endpoint URL was also provided.

1https://snapcraft.io/

38

Figure 3.8: Adding clouds in Juju

As the output in Figure 3.8 refers, it is necessary to add the MAAS server credentials before
Juju can interact with the MAAS API. These credentials can be obtained using the MAAS
CLI or the MAAS web UI. Figure 3.9 shows the window prompted when a new credential is
being added. In this case, a new credential named maas-01-creds is being added to maas-01
cloud. By default the auth-type is "oauth1" but the user can choose other auth-type, such
as "access-key", "userpass", "jsonfile", and others. The maas-auth field refers to the MAAS
API key that is not displayed on the screen. To validate/list the added credentials the second
command was executed.

Figure 3.9: Adding credentials in Juju

After adding a cloud and its associated credentials, the following step was bootstrapping
the Juju controller. To ensure that Juju deploys the controller on the 01-juju-controller VM

39

that was added to MAAS, a "juju" Tag was attached to the machine that Juju can use as a
deployment constraint as depicted in the green rectangle in Figure 3.10.

Moreover, Figure 3.10 shows the 01-juju-controller machine details. The default tab,
"Machine summary", presents a series of blocks. The first block gives an overview of the
machine’s current status: Deployed and running 18.04 LTS Bionic Beaver. The following
block, details the CPU (1 core, amd64/generic), Memory (3.5GiB), Storage (10.7GB), and
Tag characteristics (virtual, juju) of the machine. Since the 01-juju-controller is an OpenStack
VM, the System block describes the Vendor as OpenStack Foundation, Product as OpenStack
Nova and give details on the Version and Serial. The Mainboard details the mainboard
information (Unknown since it’s a VM).

The 1 NUMA Node block, gives information on the NUMA node of the machine (see
Subsection 2.5.5). The Network block details the interfaces of the machine and how they are
connected.

Figure 3.10: 01-juju-controller Tagging in MAAS

To bootstrap the controller on MAAS the following command depicted in Figure 3.11 was
executed. This will bootstrap a controller named juju-01 to a machine with the tag juju on
the maas-01 cloud.

40

Figure 3.11: Juju controller bootstrap on MAAS

A few minutes later the terminal will return the deployment status as shown in Figure 3.12.
When a controller is bootstrapped two models are automatically added, controller and default.
The controller model is used for internal Juju management and is not intended for general
workloads. The default model can be used to deploy any supported software but is typically
used for experimentation purposes.

Figure 3.12: Juju controller bootstrap on MAAS (2)

Besides the API, the Juju controller has a web interface that facilitates experiments with
Juju’s modeling and automation capabilities. Once the controller bootstrapped, it enabled
access to the web UI as shown in Figure 3.13.

41

Figure 3.13: Enable Juju GUI

3.2.5 Wireless Node

In this proposal, a Wireless Node (WN) is a bare-metal programmable device that allows
the deployment of either VNFs or PNFs. These devices play an instrumental role in the
system architecture due to their wireless capabilities, which allows to expand the cloud-based
environment NFs (e.g., firewalls) to PNFs located at the edge of the network (e.g., wireless
access points), with the added benefit of being remotely controlled and instantiated on-demand.
In this line, the wireless nodes are connected to control and data networks (in Figure 3.1, green
and blue lines) for providing management actions and for handling the data experimentation,
respectively.

The wireless node grid is composed by a dedicated subset of the same nodes existing in
AMazING, namely ten PC Engines APU devices (two APU1C4 and eight APU2C4). The
APU1C4 (Figure 3.14a) are equipped with a 2 cores AMD G-T40E @ 1GHz CPU, 4GB
RAM, 16GB storage, three Realtek RTL8111E Gigabit Ethernet Controller, two Compex
WLE200NX wireless cards, and two Antsmadb antennas. Similarly, the APU2c4 (Figure 3.14b)
are equipped with a 4 cores AMD GX-412TC CPU @ 1.2GHz CPU, 4GB RAM, 16GB storage,
three Intel(R) Ethernet Controller I210-AT, two Compex WLE600VX wireless cards, and two
Antsmadb antennas.

(a) APU1C2 (b) APU2C4

Figure 3.14: Wireless Nodes used.

A firmware update was made since the one installed on the APUs was outdated. After that,

42

the APUs were configured for booting from PXE in order to allow MAAS to proceed with
the enlistment. The information on the manufacturing site was not sufficient to understand
what changed between versions. However, the update had a significant impact on results, as
described in Chapter 4.

3.3 Summary

This chapter addressed the designed framework, which can be attached to the existing
OpenStack cloud running in ITAV and act as a testbed. The proposed architecture was tested
in Chapter 4 to understand the feasibility to deploy PNFs in physical nodes (i.e., APUs)
as well as VNFs in OpenStack VMs on-demand. These tests were performed with requests
directly by the user on MAAS and/or by using the Juju framework.

43

CHAPTER 4
Evaluation

In order to assess the feasibility of the implementation presented in the previous section, as
well as its capability to be used as a wireless testbed for performing wireless experiments in
academic environments, several tests were performed. In this line, the implemented system
was evaluated in terms of instantiation, booting and deployment delays. Also, as presented
above, the proposed system envisions the integration of physical wireless nodes in cloud-based
environments, with the system enabling such nodes to be seen as PNFs which are flexible
enough to accommodate different network functions through the on-demand deployment of
VNFs.

The values were measured through the MAAS which tracks necessary events of each
machine, allowing to collect the times of the deployment phase of the APUs (i.e., wireless nodes),
notably from its starting, the APU “Performing PXE boot”, until the APU was “Deployed”.
The experiments were repeated 10 times, with this section presenting the measurements
average and a confidence interval of 95%.

4.1 System evaluation and results

4.1.1 Deployment of Operating System

The OS deployment measures the time since a user requested an APU deployment from the
MAAS server to deploy an OS, until the moment that this deployment is finished and the
APU is fully accessible. Four Linux distributions (all server editions) were deployed and
evaluated for comparison, namely: Ubuntu 18.04, Ubuntu 16.04, CentOS 7, and Ubuntu Core.

The following tables compare the results of the instantiation/deployment delay for the
evaluated OSs considering the different number of wireless nodes (i.e., APUs). In the first test,
no configuration or update was made to the APUs. At the time, the firmware was v4.10.0.1
(release date 10/09/2019). Table 4.1 summarizes the data obtained on this test.

In an attempt to improve the obtained results, a firmware update to v4.12.0.2 (release date
28/06/2020) was made as mentioned in Sub-section 3.2.5. The improvement, when compared

45

Table 4.1: Average instantiation time by OS with APU firmware v4.10.0.1 (in minutes).

Operating System
No. of Wireless
Nodes Deployed

Ubuntu 18.04 Ubuntu 16.04 CentOS 7

1 10.21 ± 0.03 9.58 ± 0.04 11.25 ± 0.04
5 10.18 ± 0.03 9.68 ± 0.04 11.33 ± 0.04
10 10.20 ± 0.04 9.68 ± 0.05 11.30 ± 0.05

to the results shown in Table 4.2, was clear, with an average decrease of approximately
19%, 11%, and 22% on the deployment time of Ubuntu 18.04, Ubuntu 16.04, and CentOS7,
respectively. Thus, the remaining tests were carried out with the new firmware version.

Table 4.2 details the average instantiation time by OS with the new firmware update.
The first point that stands up in the obtained results is that, as far as can be ascertained,
with the number of available nodes to simultaneously instantiate and the characteristics of
the infrastructure, the increase of the number of nodes had no significant impact on the
overall instantiation time. Regarding the time difference between operating systems, the
Ubuntu Core 1 was the fastest to instantiate, which was expected since it is defined as a very
lightweight OS target especially for IoT deployments.

Table 4.2: Average instantiation time by OS (in minutes).

Operating System
No. of Wireless
Nodes Deployed

Ubuntu 18.04 Ubuntu 16.04 CentOS 7 Ubuntu Core

1 8.34 ± 0.03 7.65 ± 0.04 8.78 ± 0.05 5.38 ± 0.04
5 8.36 ± 0.03 7.68 ± 0.02 8.81 ± 0.05 5.41 ± 0.04
10 8.37 ± 0.03 7.69 ± 0.02 8.82 ± 0.03 5.42 ± 0.03

Figure 4.1 displays in more detail the average time per deployment stage of a single
Wireless Node. This process was detailed in Sub-section 3.2.3.

It can be seen that the average time spent in the first two stages (i.e., “Performing PXE
Boot” and “Loading ephemeral”) by all of the OSs was similar. These results were expected
since these tasks are not related to a specific OS, and the hardware used has the same
characteristics. On the “Configuring storage” stage, the time for Ubuntu Core stands out
from remaining OSs. MAAS has a pressed configuration file for each OS, that curtin uses
to perform configurations. As the Ubuntu 18.04, Ubuntu 16.04, and CentOS 7 are storaged
natively in the MAAS server, their pressed files already existed. But Ubuntu Core was loaded
to the MAAS server as a custom image, and no pressed file was created to it. These led
to a higher storage configuration time because MAAS used the default pressed file for OS
that it is not aware of. On the “Installing OS” step, it can be seen that Ubuntu 18.04 is
the OS that took the longest time to install its OS on the node, and as expected Ubuntu
Core was the fastest due to be incredibly light. Given its characteristics, Ubuntu Core was,

1https://ubuntu.com/core

46

again, the fastest on the “Configuring OS” stage. Ubuntu 18.04 spent 11.46% and 22.85%
when compared to Ubuntu 16.04 and CentOS 7, to configure the OS. Finally, on the “Reboot”
stage, the CentOS 7 took the longest time to perform the first reboot, due to cloud-init
post-installation configuration that took longer than the other OS. Observing Figure 4.1 it is
clear that Ubuntu Core had the second slowest result, which happened because MAAS uses
cloud-init to customize node deployments after the first reboot (as stated in subsection 3.2.3).
Cloud-init uses apt or yum commands depending if it is Ubuntu 18.04/16.04 or CentOS 7.
But Ubuntu Core uses snap2 to install apps. So, as in the previous “Configure storage” stage,
MAAS uses a default cloud-init configuration file that is apt based, which introduces the delay
on the reboot.

Wireless Node Deployment Stages

Ti
m

e
(in

 m
in

ut
es

)

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Performing
PXE Boot

Loading
ephemeral

Configuring
storage

Installing OS Configuring
OS

Rebooting

Ubuntu 18.04 Ubuntu 16.04 CentOS 7 Ubuntu Core

Figure 4.1: Average time by deployment stage.

4.1.2 Rebooting from Operating System

The time that a single machine took to reboot was measured for the different OS, as shown
in Table 4.3. After the first reboot during the deployment stage, it was expected that the
reboot time of the machines should decrease because of all the main configurations were made.
Cloud-init will continue to perform some minor reboot customizations such as “reading and
applying user-data”, “configuring ssh-import”, among others, maintaining both MAAS server
and the Wireless Node aware of each other. As explained in subsection 4.1.1, Ubuntu Core
doesn’t work with this configuration method resulting in a higher reboot delay.

2https://snapcraft.io/

47

Table 4.3: Average reboot time by OS. (in seconds)

Operating System
No. of Wireless
Nodes Deployed

Ubuntu 18.04 Ubuntu 16.04 CentOS 7 Ubuntu Core

1 38.37 ± 0.01 32.37 ± 0.01 32.55 ± 0.02 68.26 ± 0.02

4.1.3 Juju charm deployment

As presented in sub-section 3.2.3, the instantiation request can be made by different clients,
notably the MAAS or Juju. In this context, the time since Juju requests an APU until it’s
fully deployed was measured. The charm used was magpie3 which verifies the ICMP, DNS,
MTU, and RX/TX speed between itself and any peer units deployed.

Three stages are shown in Table 4.4:
1. “OS Install”, which refers to the average time of an OS deployment;
2. “Juju Charm install”, which is defined as the average time to install the magpie charm

on an APU;
3. “Charm Fully Deploy”, which is the time until the charm return the information.

Results show that deploying a charm in a Wireless Node using Juju had significantly increased
the total instantiation time.

Drawing a parallel between Figure 4.1, and this scenario, Juju acts as the Client, which
will request a machine from MAAS. Here, the charm took approximately 6 minutes for an
instantiation request of 5 wireless nodes, which was the maximum amount that we were able to
simultaneously instantiate since the amount of RAM demanded by Juju-controller (Figure 3.1)
increases as the number of wireless nodes increases. For example, while the Juju-controller
consumed 80% of RAM for completing the request of 5 wireless nodes, for the request of
10 wireless nodes the Juju-controller was not able to complete the task due to the lack of
available RAM. Notwithstanding, the MAAS server behaved as expected and the average
results presented itself within the same range of the previous test.

Table 4.4: Average time to deploy a Juju Charm. (in minutes)

Deployment Phases
No. of Wireless
Nodes Deployed

OS Install
(Ubuntu 18.04)

Juju Charm Install
(magpie)

Charm
Fully Deployed

Total Time

5 8.31 ± 0.03 5.78 ± 0.05 13.83 ± 0.08 27.91 ± 0.12

4.1.4 Deployment of OpenStack VM

This test verifies the MAAS capability to handle OpenStack VMs as nodes and assess its
the deployment times. In this context, an OpenStack VM with 4 vCPU, 4GB RAM, and
16GB storage (similar characteristics as the bare-metal APU) was used to deploy all the
OS stated before. Results are presented in Table 4.5 and show that VMs have on average

3https://jaas.ai/u/admcleod/magpie/45

48

about 70% lower deployment times than the Wireless Nodes, which was expected due to
its architecture [30]. Also, we were not able to deploy the Ubuntu Core in the OpenStack
VM due to an endless freeze upon its reboot. Nevertheless, this experiment demonstrates
the capability of the implemented system to instantiate both physical and virtual network
functions (i.e., PNFs and VNFs) in the wireless nodes (i.e., APUs) and as OpenStack VMs,
respectively.

Table 4.5: Average time to deploy a OpenStack VM. (in minutes)

Operating System
No. of OpenStack
VM Deployed

Ubuntu 18.04 Ubuntu 16.04 CentOS 7 Ubuntu Core

1 2.90 ± 0.01 2.40 ± 0.01 2.50 ± 0.01 -

It is necessary to note that there is a caveat to using the PXE-boot image [29] mentioned
in Subsection 3.2.1.1. This approach does not result in the mounting of the PXE-boot image
as an additional booting device. Instead, OpenStack writes the image contents directly to
the VM disk and then boots it. This behavior leads to a challenge when the MAAS user
releases a previously used VM. Because the first VM installation will overwrite the disk, there
is no longer a PXE-boot image available to reprovision that machine in MAAS, thus failing
to deploy the OS unless further action is taken upon releasing the VM. Unlike the bare-metal
hardware, where it is mandatory to have PXE boot capabilities to repurpose those resources,
the cloud paradigm usually solves this problem by terminating the VM and launching a new
one. However, that cloud approach is not ideal for this dissertation’s purposes. Adding a newly
launched VM to MAAS would require undergoing the enlistment and commissioning process,
which is time-consuming. The devised solution is to go to the OpenStack environment after
releasing the VM and re-building the disk with the PXE-boot image. This way, the VM will
now boot once again in PXE mode, and MAAS can then use it for the on-demand deployment.
However, it is important to clarify that it’s not mandatory to previously commission the
VMs in the MAAS server. They can be commissioned on-demand without the need to hold
resources with idle VMs.

4.1.5 Firewall deployment

This test aimed to simulate a simple firewall instantiation (i.e., PNF) on an APU and
understand the reaction time since a user starts the deployment until the firewall was up.
Three bash scripts were written for this test:

• The start-machines is a script (see Appendix A.1) to help the user deploy MAAS
machines with custom scripts.

• The firewall-pnf script (see Appendix A.2) uses iptables to drop packets coming from
APU-1 to the machine deployed.

• The pinger script (see Appendix A.3) receives the machine ID from the user, gets the
IP from that machine and waits until the APU-2 is deployed to start pinging the IP
until the firewall is up.

49

maas-controller

apu-1 apu-2

> ping

1

2

3

4 5

6

Figure 4.2: Firewall (PNF) implementation overview.

The test is illustrated in Figure 4.2:
1. Using the command line, the user runs the start-machine script to deploy a new machine

with the firewall-pnf script. User also starts the pinger script on APU-1 (already
deployed and running Ubuntu 18.04).

2. MAAS starts the deployment.
3. Machine boots up and start installing OS.
4. The pinger script starts.
5. With the OS installation concluded, the firewall-pnf script runs immediately.
6. The connection between APU-1 and APU-2 is lost. The ping stops. The firewall is up.

As shown in Table 4.6, the time since the user queries MAAS to deploy the machine and
the packets loss from the APU-1 was, on average, similar to that obtained in Table 4.2 on
the average deployment time for one node. In fact, the script runned so quickly making the
firewall up that the APU-1 didn’t show any successful ping.

Table 4.6: Average time to deploy the firewall PNF (in minutes)

No. of Wireless
Nodes Deployed

Ubuntu 18.04 + firewall script Ubuntu 18.04 + firewall script + 60sec delay

1 8.35 ± 0.03 9.36 ± 0.03

Therefore, a second test was performed, this time introducing a 60-second delay in
triggering the firewall script. This delay was introduced to:

1) understand if there was a viable connection between the two machines;
2) verify the success of the firewall blocking the packets.

50

The results on Table 4.6 shows an increase of 60-seconds, in average, of the time the ping
remained active. Therefore, it was proved that: 1) there was a connection between the two
machines, and 2) the firewall was able to block the packets coming from the APU-1.

4.1.6 Wireless Access Point deployment

The scope of this test was to test the wireless capabilities of the wireless nodes. The test
was divided into two parts. First, MAAS was used to instantiate an APU and deploy the
"access-point" script measuring the time it takes for an external device (i.e., laptop) to connect
to the network, and using iperf 4 to measure the bandwidth between the devices. Then, the
test was repeated with a manual install of the OS in the APU to assess if there’s any difference
in the bandwidth.

Three bash scripts were written for this test:
• The access-point script (see Appendix A.4) is used to configure the wireless access point.

It installs and configures a daemon software that enables a network interface card to act
as an access point (i.e., hostapd 5), and a DHCP server (i.e., isc-dhcp-server 6) services,
configures the wireless subnet and the wireless interface from the APU.

• The access-device script (see Appendix A.5) repeatedly tries to connect the laptop to
the SSID of the network that the wireless node will create. When it is successful, it
returns the time it took to do it.

• The iperf-test script (see Appendix A.6) runs an iperf command ten times and save the
result into a text document.

maas-controller

apu-1

1

2

3

4

5

6

Figure 4.3: Wireless Access Point (PNF) implementation overview.

Figure 4.3 illustrates the test:
4https://iperf.fr/
5http://w1.fi/hostapd/
6https://www.isc.org/dhcp/

51

1. Using the command line, the user runs the start-machine script to deploy a new machine
with the access-point script.

2. MAAS starts the deployment.
3. Machine boots up and start installing OS.
4. User starts access-device script on the external device.
5. With the OS installation concluded, the access-point script runs and the machine

becomes an wireless access point.
6. The external device connects to wireless access point. The user starts the iperf-test

script.

Table 4.7 shows the average time since the APU starts deploying until the external device
successfully connects to the wireless access point.

Table 4.7: Average time to deploy the Wireless Access Point. (in minutes)

Operating System
No. of Wireless
Nodes Deployed

Ubuntu 18.04 + access-point script

1 9.48 ± 0.04

Thus, the average deployment was 14% higher compared to the obtained in Table 4.2 for
the deployment of one node. These results were expected because the script needs to install
two packages (hostapd and isc-dhcp-server), configure them, and start up the access point.
On top of that, the external device needs to discover and connect to the wireless network
which depending on the device it can vary a little.

Regarding the iperf test, Table 4.8 shows the results of the average throughput in Mbit/sec
on both MAAS deployment and manual deployment. Therefore, the results demonstrate that
the use of MAAS to deploy the APUs does not cause loss of network performance.

Table 4.8: Average throughput in iperf tests. (in Mbits/sec)

APU deployed by MAAS APU deployed manually
Iperf Between Ubuntu 18.04 + access-point script Ubuntu 18.04 + access-point script
External device

(Laptop)
19.53 ± 0.12 19.52 ± 0.12

4.2 Summary

This chapter presents the results of the tests and results of the proposed testbed for metrics
such as instantiation times, network function suitability, and physical and virtual nodes
management. With these experiments, it was possible to understand if the presented
solution meets the objectives initially set, which will be discussed in the following chapter.

52

CHAPTER 5
Conclusions

5.1 Conclusions

This dissertation proposed a system architecture that aims the integration of an existing
physical wireless testbed (i.e., the AMazING testbed) with a cloud-based environment at the
Instituto de Telecomunicações at the University of Aveiro.

Achieving the primary outcomes of this dissertation did not come without some setbacks
during its execution. Initially, we used the existing OpenStack cloud to run the MAAS
controller VM. This choice proved to be a challenge due to the intricate security layers of the
production OpenStack, which did not allow the MAAS controller VM to reply to the APU PXE
requests. Deploying an OpenStack environment in the laptop proved to be a great challenge
on its own. Installing all the services and making them work correctly was a time-consuming,
challenging, yet very educational process. Nonetheless, a functional OpenStack framework
was successfully deployed, thus achieving the first proposed objective.

In this context, the proposed system architecture described in Chapter 3 proved capable
of connecting the wireless node grid (AMazING testbed) with the OpenStack framework and
managing the on-demand instantiation of both physical and virtual NFs in physical wireless
nodes and/or in OpenStack VMs, respectively. These functionalities fulfill the requirements
initially set as the main objectives.

The proposed system architecture was experimentally evaluated in Chapter 4, with results
demonstrating the feasibility of the proposal while avoiding an evasive approach to our in-house
cloud during the integration of the physical wireless nodes. Also, results showed the system
was able to instantiate on-demand PNFs and VNFs in the wireless nodes and in the VMs,
with the measurements evidencing a high instantiation delay on the wireless nodes compared
to the VMs. On the other hand, the results showed that the number of nodes being deployed
at the same time does not have a negative impact on the overall instantiation time on every
test.

When using Juju to deploy charms a significant and unworkable increase in the instantiation

53

time becomes evident. In this case, the increase in the number of wireless nodes being deployed
had a direct impact on the performance of the system.

The firewall and access point tests allowed to assess the feasibility of the proposal when a
more "real" use case was presented to it. It also proves that the use of the MAAS to instantiate
services on the wireless nodes does not decrease the processing and network performance.

5.2 Future Work

As future work, some improvements must be made in order to make the testbed more usable
in a real environment, such as:

• Add an external power management system to be able to power up the APU automati-
cally.

• Integration with an authentication service to add security.
• Development of a user interface to make the use of the testbed more user-friendly.
• Currently, a restructure of architecture is taking place in IT and the use of the testbed

proposal will be added at a later stage.

54

References

[1] Cisco, “Cisco Annual Internet Report (2018–2023)”, Cisco, pp. 1–41, 2020. [Online]. Available: http:
//grs.cisco.com/grsx/cust/grsCustomerSurvey.html?SurveyCode=4153%7B%5C&%7Dad%7B%5C_
%7Did=US-BN-SEC-M-CISCOASECURITYRPT-ENT%7B%5C&%7DKeyCode=000112137.

[2] N. Mckeown, How sdn will shape networking, [YouTube video], Accessed Jul. 15, 2020, Oct. 2011.
[Online]. Available: https://www.youtube.com/watch?v=c9-K5O_qYgA.

[3] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-
defined networking: A comprehensive survey”, Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015,
issn: 15582256. doi: 10.1109/JPROC.2014.2371999. arXiv: 1406.0440.

[4] M. B. Chiosi, D. Clarke, P. Willis, A. Reid CenturyLink, J. Feger, M. Bugenhagen, W. Khan, M.
Fargano, J. Benitez, U. Michel, H. Damker KDDI, K. Ogaki, T. Matsuzaki NTT, M. Fukui, K. Shimano,
D. Delisle, Q. Loudier, C. Kolias, I. Guardini, E. Demaria, R. Minerva, A. Manzalini, D. López, F.
Javier Ramón Salguero, F. Ruhl, and P. Sen, “Network Functions Virtualisation”, Tech. Rep. [Online].
Available: http://portal.etsi.org/NFV/NFV%7B%5C_%7DWhite%7B%5C_%7DPaper.pdf.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud Computing Recommendations of the National
Institute of Standards and Technology”, Tech. Rep. doi: 10.6028/NIST.SP.800-145.

[6] J. P. Barraca, D. Gomes, and R. L. Aguiar, “AMazING-Advance Mobile wireless playGrouNd”, Tech.
Rep.

[7] P. Patel, A. H. Ranabahu, A. P. Sheth, P. Patel, A. H. Ranabahu, A. P. Sheth, A. Ranabahu, and
A. Sheth, “Service Level Agreement in Cloud Computing”, Tech. Rep., 2009.

[8] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-defined
networking: Past, present, and future of programmable networks”, IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[9] S. Denazis, J. Hadi, S. Mojatatu, N. D. Meyer, and B. O. Koufopavlou, “RFC 7426 - Software-Defined
Networking . . . SDN—: Layers and Architecture Terminology”, 2015, issn: 2070-1721. [Online]. Available:
http://www.rfc-editor.org/info/rfc7426..

[10] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “Sdn controllers: A comparative study”, in 2016
18th Mediterranean Electrotechnical Conference (MELECON), 2016, pp. 1–6. doi: 10.1109/MELCON.
2016.7495430.

[11] M. Richart, J. Baliosian, J. Serrat, and J. Gorricho, “Resource slicing in virtual wireless networks: A
survey”, IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 462–476, 2016.

[12] “Network Functions Virtualisation (NFV); Architectural Framework Group Specification”, Tech. Rep.,
2013. [Online]. Available: http://portal.etsi.org/chaircor/ETSI%7B%5C_%7Dsupport.asp.

[13] “Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV Group Specification”,
Tech. Rep., 2013. [Online]. Available: http://portal.etsi.org/chaircor/ETSI%7B%5C_%7Dsupport.
asp.

[14] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Network function
virtualization: State-of-the-art and research challenges”, IEEE Communications Surveys and Tutorials,
vol. 18, no. 1, pp. 236–262, 2016, issn: 1553877X. doi: 10.1109/COMST.2015.2477041. arXiv: 1509.07675.

[15] MAAS | Metal as a Service. [Online]. Available: https://maas.io/ (visited on 09/15/2020).

55

http://grs.cisco.com/grsx/cust/grsCustomerSurvey.html?SurveyCode=4153%7B%5C&%7Dad%7B%5C_%7Did=US-BN-SEC-M-CISCOASECURITYRPT-ENT%7B%5C&%7DKeyCode=000112137
http://grs.cisco.com/grsx/cust/grsCustomerSurvey.html?SurveyCode=4153%7B%5C&%7Dad%7B%5C_%7Did=US-BN-SEC-M-CISCOASECURITYRPT-ENT%7B%5C&%7DKeyCode=000112137
http://grs.cisco.com/grsx/cust/grsCustomerSurvey.html?SurveyCode=4153%7B%5C&%7Dad%7B%5C_%7Did=US-BN-SEC-M-CISCOASECURITYRPT-ENT%7B%5C&%7DKeyCode=000112137
https://www.youtube.com/watch?v=c9-K5O_qYgA
https://doi.org/10.1109/JPROC.2014.2371999
https://arxiv.org/abs/1406.0440
http://portal.etsi.org/NFV/NFV%7B%5C_%7DWhite%7B%5C_%7DPaper.pdf
https://doi.org/10.6028/NIST.SP.800-145
http://www.rfc-editor.org/info/rfc7426.
https://doi.org/10.1109/MELCON.2016.7495430
https://doi.org/10.1109/MELCON.2016.7495430
http://portal.etsi.org/chaircor/ETSI%7B%5C_%7Dsupport.asp
http://portal.etsi.org/chaircor/ETSI%7B%5C_%7Dsupport.asp
http://portal.etsi.org/chaircor/ETSI%7B%5C_%7Dsupport.asp
https://doi.org/10.1109/COMST.2015.2477041
https://arxiv.org/abs/1509.07675
https://maas.io/

[16] What is PXE? | PXE Boot Server - ManageEngine OS Deployer. [Online]. Available: https://www.
manageengine.com/products/os-deployer/pxe-preboot-execution-environment.html (visited on
12/26/2020).

[17] MAAS | MAAS communication (snap/2.9/UI). [Online]. Available: https://maas.io/docs/snap/2.9/
ui/maas-communication (visited on 12/17/2020).

[18] Juju - The simplest way to deploy and maintain applications in the cloud. [Online]. Available: https:
//juju.is/ (visited on 07/15/2020).

[19] JUJU | Concepts and terms. [Online]. Available: https://juju.is/docs/concepts-and-terms (visited
on 12/17/2020).

[20] openstack base | Juju. [Online]. Available: https://jaas.ai/openstack-base/bundle/70 (visited on
12/17/2020).

[21] About Fed4Fire+ - FED4FIRE+. [Online]. Available: https://www.fed4fire.eu/the-project/ (visited
on 12/17/2020).

[22] IRIS - FED4FIRE+. [Online]. Available: https : / / www . fed4fire . eu / testbeds / iris / %7B % 5C #
%7D1574352122286-039e2221-2315 (visited on 12/17/2020).

[23] Iris Testbed | Home. [Online]. Available: https://iris- testbed.connectcentre.ie/ (visited on
12/17/2020).

[24] J. Struye, B. Braem, S. Latré, and J. Marquez-Barja, “CityLab: A Flexible Large-scale Multi-technology
Wireless Smartcity Testbed”, Tech. Rep. [Online]. Available: https://doc.lab.cityofthings.eu.

[25] J. Struye, B. Braem, S. Latré, and J. Marquez-Barja, “The citylab testbed — large-scale multi-
technology wireless experimentation in a city environment: Neural network-based interference prediction
in a smart city”, in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2018, pp. 529–534. doi: 10.1109/INFCOMW.2018.8407018.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and A.
Joglekar, “An Integrated Experimental Environment for Distributed Systems and Networks”, Tech. Rep.
[Online]. Available: www.flux.utah.eduwww.netbed,org.

[27] IRIS - FED4FIRE+. [Online]. Available: https : / / www . fed4fire . eu / testbeds / iris / %7B % 5C #
%7D1574352122286-039e2221-2315 (visited on 12/17/2020).

[28] NITOS - NITlab - Network Implementation Testbed Laboratory. [Online]. Available: https://nitlab.
inf.uth.gr/NITlab/nitos (visited on 12/20/2020).

[29] Create PXE-Boot image for Openstack | Kimi Zhang. [Online]. Available: https://kimizhang.wordpress.
com/2013/08/26/create-pxe-boot-image-for-openstack/ (visited on 05/04/2020).

[30] C. G. Kominos, N. Seyvet, and K. Vandikas, “Bare-metal, virtual machines and containers in openstack”,
in 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), 2017, pp. 36–43.

56

https://www.manageengine.com/products/os-deployer/pxe-preboot-execution-environment.html
https://www.manageengine.com/products/os-deployer/pxe-preboot-execution-environment.html
https://maas.io/docs/snap/2.9/ui/maas-communication
https://maas.io/docs/snap/2.9/ui/maas-communication
https://juju.is/
https://juju.is/
https://juju.is/docs/concepts-and-terms
https://jaas.ai/openstack-base/bundle/70
https://www.fed4fire.eu/the-project/
https://www.fed4fire.eu/testbeds/iris/%7B%5C#%7D1574352122286-039e2221-2315
https://www.fed4fire.eu/testbeds/iris/%7B%5C#%7D1574352122286-039e2221-2315
https://iris-testbed.connectcentre.ie/
https://doc.lab.cityofthings.eu
https://doi.org/10.1109/INFCOMW.2018.8407018
www.flux.utah.eduwww.netbed,org
https://www.fed4fire.eu/testbeds/iris/%7B%5C#%7D1574352122286-039e2221-2315
https://www.fed4fire.eu/testbeds/iris/%7B%5C#%7D1574352122286-039e2221-2315
https://nitlab.inf.uth.gr/NITlab/nitos
https://nitlab.inf.uth.gr/NITlab/nitos
https://kimizhang.wordpress.com/2013/08/26/create-pxe-boot-image-for-openstack/
https://kimizhang.wordpress.com/2013/08/26/create-pxe-boot-image-for-openstack/

APPENDIX A
Bash Scripts

A.1 start-machines bash script

This script facilitates the deployment of new machines with custom cloud-init user-data scripts
through the MAAS CLI. First, it logs into the MAAS region controller using the Profile (i.e.,
username) and API key. Then, MAAS will display the Hostname, System ID, Status, and
Tags for all machines that are "Ready" to be used. The user chooses the machine by writing
the System ID and passes the name of the script to be deployed. Finally, MAAS converts the
script with a base64 encoded and deploys the machine.

#!/bin/bash
echo "Logging into MAAS"
PROFILE=admin
API_KEY_FILE=/home/ubuntu/admin_key
API_SERVER=192.168.1.250:5240
MAAS_URL=http://$API_SERVER/MAAS/api/2.0
maas login $PROFILE $MAAS_URL - < $API_KEY_FILE >/dev/null
echo "Log in success"
echo -en '\n'
echo "Listing Machines"
maas admin machines read | jq -r '(["HOSTNAME","SYSID","STATUS", "TAGS"] | (.,

map(length*"-"))), (.[] | (select(.status_name=="Ready") | [.hostname, .system_id,
.status_name, .tag_names[0]])) | @tsv' | column -t | (sed$

↪→

↪→

echo -en '\n'
echo "Choose machine ID to deploy"
read machine_id
echo -en '\n'
echo "Choose Script:"
read script
echo -en '\n'
echo "Deploying machine $machine_id with the script $script"
maas admin machine deploy $machine_id user_data=$(base64 -w0 ./$script) >/dev/null
echo "Deployment started"

57

A.2 firewall-pnf bash script

This script blocks incoming ICMP (i.e., ping) packets from a specific IP to mimic a firewall
behavior. In this case, the incoming ICMP packets from the device with the IP - 10.10.10.38
(i.e., APU-1) are blocked. The counter added at the beginning delays by 50 seconds the ICMP
blocking.

#!/bin/bash
#--#
valid=true # This is a forced delay
count=1 # to validate the existence
while [$valid] # of a connection between
do # the machine (receiver) and the
echo -ne "$count " # machine sending the pings
if [$count -eq 50];
then # The 50sec was an arbitrary
break # number. It could be any
fi # numeber.
sleep 1
((count++))
done
#--#

Iptables command to block incoming pings from the APU-1
sudo iptables -A INPUT -p icmp --icmp-type echo-request -s 10.10.10.38 -j REJECT

A.3 pinger bash script

This script queries the user on the System ID of the machine being deployed. Then, gets
the IP address of that machine and SSH into the APU-1 to start pinging the machine being
deployed.

#!/bin/bash
#Logging into MAAS
PROFILE=admin
API_KEY_FILE=/home/ubuntu/admin_key
API_SERVER=192.168.1.250:5240
MAAS_URL=http://$API_SERVER/MAAS/api/2.0
maas login $PROFILE $MAAS_URL - < $API_KEY_FILE >/dev/null

Query user for the MachineID
echo "Starting"
echo "Enter SystemID"
read SYSTEM_ID

Get the IP from the machine
ping_ip = $(maas $PROFILE interfaces read $SYSTEM_ID | jq -r '.[] | (.links[].ip_address)')

>/dev/null↪→

SSH to APU-1 and starts sending ping to the IP of the machine

58

ssh ubutu@10.10.10.38 PING_IP=$ping_ip 'bash -s' <<'ENDSSH'

count=1
echo "Starting Ping Requests"
start=`date +%s`
while ping -q -c 1 $PING_IP >/dev/null
do
echo -ne "$count "
((count++))
sleep 1
done
end=`date +%s`
echo "Ping Error"
echo Execution time was `expr $end - $start` seconds.

ENDSSH

A.4 access-point bash script

This script installs and configures a daemon software that enables a network interface card to
act as an access point. First install hostapd deamon software to enable the wlp1s0 network
interface card to act as an access point and authentication server. The flow chart in Figure A.1
summarizes the process:

Figure A.1: Access Point Bash Script Flow Chart

First, it installs and creates a configuration file for the hostapd daemon software to enable
the wlp1s0 network interface card to act as an access point and authentication server. Then,
it installs the isc-dhcp-server daemon, adds the wireless network interface (i.e., wlp1s0) to
the default isc-dhcp-server configuration file, comment unnecessary lines within the default
configuration file and configures the 10.10.0.0/24 subnet. Next, puts the wireless interface
wlp1s0 up, starts the isc-dhcp-server service, starts the hostapd service, and restart the
isc-dhcp-server service to update the hostapd.

59

#!/bin/bash
Install hostapd
sudo apt install hostapd -y

hostadp config file create
mkdir ~/conf
cd ~/conf
cat > hostapd.conf << EOF
interface=wlp1s0
driver=nl80211
ssid=apu_app
hw_mode=g
channel=1
macaddr_acl=0
auth_algs=1
ignore_broadcast_ssid=0
#wpa=3 # ignore wpa
#wpa_passphrase=12345678 # doesn't need password
#wpa_key_mgmt=WPA-PSK
#wpa_pairwise=TKIP
rsn_pairwise=CCMP
EOF
cd ~

install isc-dhcp-server
sudo apt install -y isc-dhcp-server
sudo service isc-dhcp-server stop

add wireless interface to default isc-dhcp-server config file
sudo sed -i 's/INTERFACESv4=""/INTERFACESv4="wlp1s0"/' /etc/default/isc-dhcp-server
sudo sed -i 's/INTERFACESv6=""/INTERFACESv6="wlp1s0"/' /etc/default/isc-dhcp-server

comment unnecessary lines on /etc/dhcp/dhcpd.conf
sudo sed -i '10,14 s/^/#/' /etc/dhcp/dhcpd.conf
sudo sed -i '20,21 s/^/#/' /etc/dhcp/dhcpd.conf

configure subnet
sudo tee -a /etc/dhcp/dhcpd.conf > /dev/null <<EOT
subnet 10.10.0.0 netmask 255.255.255.0 {

range 10.10.0.2 10.10.0.16;
option domain-name-servers 8.8.8.8, 8.8.4.4;
option routers 10.10.0.1;

}
EOT

configure wireless interface -> wlp1s0
sudo ip addr add 10.10.0.1/24 dev wlp1s0
sudo ip link set wlp1s0 up

start hostapd deamon && isc-dhcp-server

60

sudo service isc-dhcp-server start
sudo hostapd -B ~/conf/hostapd.conf
sudo service isc-dhcp-server restart

A.5 access-device bash script

This script tries to access the subnet with the "apu_app" SSID, and measures the time until
succeeds. As depicted in Figure A.2, the script starts by putting up the wireless interface of
the device and starting a time counter. Then, check if the interface is connected to a network:
1) if not, tries to access the network with "apu_app" SSID, 2) if yes, request an IP from the
DHCP server and stops to measure the time.

Figure A.2: Access Device Bash Script Flow Chart

#!/bin/bash
echo "Trying to access network"
sudo ip link set wlp3s0 up # Wireless device interface up
start=`date +%s` # Start measuring the time
var2="Not connected." >> /dev/null # Compare string

while true; do
status=$(sudo iw dev wlp3s0 link) >> /dev/null # Check the wireless interface status
sudo iw dev wlp3s0 connect -w apu_app >> /dev/null # Tries to connect to the SSID "apu_app"

if [["$status" != "$var2"]]; then # If success perform a DHCP request
sudo dhclient wlp3s0 # if not, check status and tries again
break
fi
done

end=`date +%s` #Stops measuring time
echo "Took `expr $end - $start` seconds to access the network."

61

A.6 iperf-test bash script

This script performs ten iperf3 measurements and saves each measure in a separate file. To test
the network connectivity the command iperf3 -i 10 -w 1M -t 60 -c 10.10.0.1, which instructs
iperf3 run the test for 60 seconds (-t), report the statistics every 10 seconds (-i), and use a
TCP window of 1M (-w).

#|/bin/bash

for i in {1..10}
do
echo "IPERF $i"
iperf3 -i 10 -w 1M -t 60 -c 10.10.0.1 | tee ~/iperf_tests/results/t3/tcp_client$i.txt
echo ""
echo "IPERF $i done"
echo ""
done

62

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Objectives
	Main Contributions
	Document Structure

	State of the Art and Enabling Technologies
	Cloud Computing
	Software Defined Networks
	Software Defined Networks Architecture
	SDN Controller

	Network Function Virtualization
	Network Function Virtualization Architecture
	Network Function Virtualization Infrastructure (NFVI)
	Virtual Network Functions and Services (VNFs)
	Network Function Virtualization Management and Orchestration (NFV MANO)

	Virtual Network Functions
	Physical Network Functions

	OpenStack
	Metal As A Service (MAAS)
	Bare-metal server
	Supportive Cloud Tools
	Curtin
	Cloud-init
	Ephemeral image

	MAAS Architecture
	Region Controller (regiond)
	Rack Controller (rackd)
	Fabrics

	Node lifecycle
	MAAS VM Hosting
	High Availability in MAAS
	MAAS Communication
	Region and Rack controllers communication
	Machines and Rack controller communication

	Juju
	Juju Workflow

	Existing Test Infrastructures
	Summary

	Scenario Description and Proposed Architecture
	Scenario
	Architecture
	OpenStack Cloud Environment
	PC-OpenStack specifications and configuration

	MAAS Controller
	MAAS Networking

	High-level message sequence
	Juju-Controller
	Wireless Node

	Summary

	Evaluation
	System evaluation and results
	Deployment of Operating System
	Rebooting from Operating System
	Juju charm deployment
	Deployment of OpenStack VM
	Firewall deployment
	Wireless Access Point deployment

	Summary

	Conclusions
	Conclusions
	Future Work

	References
	Bash Scripts
	start-machines bash script
	firewall-pnf bash script
	pinger bash script
	access-point bash script
	access-device bash script
	iperf-test bash script

