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Abstract: Smoke inhalation poses a serious health threat to firefighters (FFs), with potential effects
including respiratory and cardiac disorders. In this work, environmental and physiological data
were collected from FFs, during experimental fires performed in 2015 and 2019. Extending a previous
work, which allowed us to conclude that changes in heart rate (HR) were associated with alterations
in the inhalation of carbon monoxide (CO), we performed a HR analysis according to different levels
of CO exposure during firefighting based on data collected from three FFs. Based on HR collected and
on CO occupational exposure standards (OES), we propose a classifier to identify CO exposure levels
through the HR measured values. An ensemble of 100 bagged classification trees was used and the
classification of CO levels obtained an overall accuracy of 91.9%. The classification can be performed
in real-time and can be embedded in a decision fire-fighting support system. This classification of FF’
exposure to critical CO levels, through minimally-invasive monitored HR, opens the possibility to
identify hazardous situations, preventing and avoiding possible severe problems in FF’ health due to
inhaled pollutants. The obtained results also show the importance of future studies on the relevance
and influence of the exposure and inhalation of pollutants on the FF’ health, especially in what refers
to hazardous levels of toxic air pollutants.

Keywords: physiological data; heart rate; CO exposure; exposure classification; firefighters health

1. Introduction

Every year, firefighters (FFs) suppress thousands of wildfires that burn millions of
hectares. In Europe, an average of 65,000 fires occurs annually, corresponding to 500,000 ha
of wild land and forests being burnt, and more than 85% of the burnt area being located in
the Mediterranean region [1]. A decrease in the occurrence of forest fires is not expected in
the upcoming decades, and not only are fires occurring in new areas, previously almost
untouched in Europe, but they are also happening at an unprecedented frequency, intensity
and growth rate in areas where fires have occurred for millennia [2–4]. Forest fires seriously
contribute to environmental pollution at local and regional scales and pose a threat to
human health [5].

FFs are exposed to a high concentration of carbon monoxide (CO), particulate matter
(PM) and volatile organic compounds (VOC), among other pollutants. Several adverse
health effects have been reported in the literature, including lack of oxygenation to organs
and tissues (measured by the increase in exhaled CO after smoke exposure), impaired
respiratory function or increased risk of cancer [6–10].

According to an Australian study, exposure to CO concentrations of 200 ppm (parts
per million) for 2–3 h will lead to light headaches in a healthy person; exposure to 400 ppm
for 1–2 h may cause nausea, headache, and sickness; exposure to CO concentrations above
800 ppm may cause a confused state, asphyxia, convulsions or even coma [11].

Sensors 2021, 21, 1561. https://doi.org/10.3390/s21051561 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5717-1415
https://orcid.org/0000-0002-2656-8337
https://orcid.org/0000-0002-0681-9354
https://orcid.org/0000-0001-5807-5820
https://doi.org/10.3390/s21051561
https://doi.org/10.3390/s21051561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051561
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1561?type=check_update&version=2


Sensors 2021, 21, 1561 2 of 13

Besides smoke inhalation, FFs face other hazards including extreme fire behaviour,
heat, stress, fatigue, high temperatures, and reduced visibility [8]. Faint or disorienta-
tion episodes, due to smoke inhalation or impaired visibility conditions, are common
in firefighting operations [8,12,13]. Moreover, FFs perform heavily physical work [14],
and are exposed to long periods of stress during their fighting activities. Stress diagnosis is
extremely difficult, namely because defining stress itself is still a matter of debate and the
accepted process relies on a psychological evaluation. Notwithstanding the challenge of
trying to identify stress in real environments where such information can be useful, it was
demonstrated that there is an association between stress and coronary diseases [15–17].

The case of firefighting in forest fires, where FFs are exposed to stressful situations,
is particularly relevant. A study in the United States in 2007, revealed that 45% of the
deaths among FFs had a cardiovascular cause [18,19]. Results from [20] indicate that the
most stressful FF tasks might be differentiated by the morphological measures over the
electrocardiogram (ECG), namely the most stressful (e.g., car accidents, fires) and the least
stressful (administrative services). Taking into consideration that CO is considered one
of the air pollutants with a strong impact on the safety of the FF in the terrain [5,13], we
worked on estimating CO inhalation with derived respiration through ECG and with
the detection of changes in the heart rate (HR) of FFs related with alterations in CO
exposure [21,22].

The main goal of this work is to go further, characterizing the HR of FFs based on
occupational exposure standard (OES) values defined for the CO pollutant and classifying
different levels of CO exposure, from data obtained during firefighting. Classifying CO
exposure based solely on HR data has the advantage of reducing the complexity of models,
maintaining the ability of real-time classification. Moreover, as it relies only on one pre-
dictor, it avoids the need for data synchronization. Ultimately, a decision-support system
may be designed, classifying, in real-time, CO exposure based on HR data gathered with
minimally invasive equipment. Such a system would help to create the safer and more
successful management of FFs by preventing health potential effects, namely intoxication
and/or damage to respiratory function.

The remainder of this paper is organized as follows: Section 2 describes the experimen-
tal setup, the equipment, the methodology of data collection and physiological monitoring,
as well as the methods used for data analysis. In Section 3 the results are presented and
discussed. Final remarks and future prospects in this field of research are introduced in
Section 4.

2. Methodology

This section describes the experimental setup, the equipment, the procedures to gather
physiological and environmental data, and presents the methods applied for characterizing
HR data and for classifying CO exposure. The different methods used to analyse the data
were implemented in MATLAB R2019b [23].

2.1. Experimental Setup, Data Collection and Physiological Monitoring

The research team adopts the principles of the Helsinki Declaration, revised in October
2013, defining the Ethical Principles for Medical Research in Humans. In this context,
and under the approval of the Ethics Committee of the University of Porto (CEUP), Portugal,
the research team involved in this study had always considered FFs’ health as the first
concern. All the procedures were explained to the voluntary participants, as well as being
informed that there were no risks involved in participating and that they could decline
from participating in the study at any time.

The data used in this study were collected in 2015 and 2019, in the region of Gestosa,
central Portugal, during experimental fires. The slope and vegetation of the different burnt
fields presented the ideal conditions for this purpose [8,12,13,24]. A characterization of the
experimental fields can be found in [21,22].
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FFs were using the VR2 system [25]. This system consists of a GPS, a FREMU (First Re-
sponder External Measurement Unit), a smartphone and a VitalJacket® t-shirt [26]. FREMU
is a piece of equipment for environmental data monitoring (air temperature, atmospheric
pressure, and CO concentration). The CO sensors were measured in-continuum at a 60 s in-
tervals during the experiments. The sensor measures CO in air up to 500 ppm or 1000 ppm
with a resolution of 0.1 ppm or 1 ppm, and was calibrated before the fire experiments using
a 100 ppm CO calibration gas. The VitalJacket® t-shirt is a wearable monitoring system
able to gather body temperature, triaxial accelerometer and ECG data, with a frequency
of 500 samples per second, without compromising the FF activities. All the monitoring
equipment, for physiological and environmental data collection, were minimally invasive,
as can be observed in Figure 1. The equipment for environmental monitoring was placed
over the FF protective clothing, while the VitalJacket® t-shirt was worn underneath to allow
ECG collection (with wet gel Ambu BlueSensor electrodes, size L [27], since these have
the advantage of allowing monitoring for long-term periods.) In addition, for comparison
purposes (out of scope of this work), the CO concentration was also monitored using the
GasAlert Extreme CO sensor from BW technologies.

Figure 1. VR2 equipment: (1) VitalJacket® t-shirt; (2) GPS; (3) FREMU; (4) Smartphone; (5) GasAlert
Extreme CO; (6) GasAlertMicro 5 PID.

Monitoring environmental and physiological data in similar firefighting conditions is
difficult to accomplish. For more than a half dozen of years, we had only the possibility
of monitoring data on 7 FFs during experimental field burns, 4 FFs in 2015 and 3 FFs
in 2019. Seven male FFs, healthy and physically active, were selected as participants.
To allow a combined analysis, the data collected were synchronized and were also verified
if the variables of interest had any acquisition problem (such as sensor faults or errors).
During this phase, and considering the purposes of the present study, only data from
FFs that had been directly exposed to smoke were selected, resulting on a dataset from
three FFs, with ages between 20 and 28 y.o. (FF3 from the experimental fires performed in
2015 and FF6 and FF7 from 2019). It must be pointed out that data synchronization was
needed for the purpose of model classification construction. Afterwards, for classifying
new data, synchronization is not needed since the classification model relies only on the
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HR data as the predictor. This allows us to provide real-time classification of CO exposure
of FFs when in firefighting scenarios.

Despite the reduced final number of FFs under study, ECG and exposure to CO data
were monitored for a period of 5 h (on average), resulting in a total of 92,945 samples.

2.2. CO Exposure Levels

To evaluate the CO exposure of FFs, we relied on the OES values, defined by the
American Conference of Governmental Industrial Hygienists (ACGHI), respecting the:
Threshold Limit Value–Time-Weighted Average (TLV–TWA) for 8 h, Threshold Limit
Value–Short-Term Exposure Limit (TLV–STEL) for 15 min and peak limit.

According to these OES values, the CO exposure (COexp) levels were divided into
4 levels (“L1”, “L2”, “L3” and “L4”):

• L1: 0 ppm ≤ COexp < 25 ppm;
• L2: 25 ppm ≤ COexp < 200 ppm;
• L3: 200 ppm ≤ COexp < 400 ppm;
• L4: COexp ≥ 400 ppm.

During the experimental fires, none of the three FFs under this study was exposed
to CO concentrations of level “L4” (above 400 ppm). Thus, in the further analysis, only
3 levels of CO exposure were considered.

2.3. ECG Data

The ECG data of each FF was recorded through the Vital Jacket® t-shirt, with a
sampling rate of 500 Hz, during the operational scenarios. The ECG signals are affected
by noise, such as skin–electrode interference (low frequency noise, which is amplified by
motion, movements and respiratory variation), power lines (with frequencies of 50 Hz) and
electronic devices (high frequency noise) interferences. To attenuate the effects of noise and
improve the quality of the signal, the raw ECG was low-pass filtered at a cut-off frequency
of 40 Hz, as the useful band of frequencies for these research purposes, without clinical
relevance, varies between 0.5 Hz and 40 Hz. The fundamental frequencies for the QRS
complex, which is composed by Q, R and S waves, are below 30 Hz, and for the P-wave and
T-wave components are below 20 and 10 Hz, respectively [28]. Afterwards, the baseline
wander was removed with a moving average filter.

Using the filtered ECG signal, we computed the number of beats per minute, the HR,
by first detecting the R peak locations and computing the distance between R peaks
locations Dist(R, R), and then dividing the number of samples within one minute by the
distance between R peaks, according to the following equation:

HR =
60 SampleRate

Dist(R, R)
(1)

Therefore, the HR is a time series representing the number of beats per minute,
as shown in Figures 2 and 3 (top). Figure 2 shows 4 min of the collected ECG and the
respective HR, for FF3. Measured HR values of the three FFs were, most of the times,
above 100 beats per minute. During intense activities, the HR should not exceed 70% of the
maximum HR, which depends on the age. Assuming an averaged maximum HR of 220,
we can state that FFs’ HR values were between the maximum limit for normal HR at rest
(100) [29] and the maximum limit for intense activities (154).
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Figure 2. The filtered ECG and the HR for FF3, from the fire experiments in 2015 (for four minutes).

Figure 3. The FF7’s HR according to the CO levels of exposure (top) and the measured CO concentration (bottom).

2.4. Classification Method for CO Levels of Exposure

When relating FFs’ exposure to CO and the physiological condition using HR is of
paramount importance to monitor synchronously and per each FF individual. Table 1
presents the number of HR data and the CO exposure duration according to the levels of CO
exposure, for the three FFs. It can be observed that the number of HR samples associated
with “L3” levels of CO exposure, as well as the exposure duration, are considerably smaller
than for the remaining levels. Level “L3” is the minority class, while level “L1” is the
majority class. Indeed, “L1” accounts for 82.3% of the data, “L2” for 14.1% of data and “L3”
only for 3.6% of the collected data.
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Table 1. Number of HR samples and exposure duration, per FF, as a function of CO exposure
(COexp) levels.

COexp Levels
Time (min) (# HR Samples)

FF3 (2015) FF6 (2019) FF7 (2019) Total

L1: 0 ≤ ppm < 25 246.8 (26,411) 249.4 (25,912) 240.0 (24,344) 736.2 (76,667)

L2: 25 ≤ ppm < 200 15.4 (1646) 42.8 (4454) 67.9 (6887) 126.1 (12,987)

L3: 200 ≤ ppm < 400 1.3 (138) 12.1 (1258) 18.7 (1895) 32.1 (3291)

L4: ppm ≥ 400 0 0 0 0

Total 263.5 (28,195) 304.3 (31,624) 326.6 (33,126) 894.4 (92,945)

Figure 3 shows the HR of FF7, according to the CO levels of exposure (top) and the
CO measured concentration (bottom).

From a visual analysis, not all the differences in the CO concentrations seem to
be related to changes in the HR. However, in most cases, the FF changes in the CO
concentration exposures are associated with higher values of HR. The CO concentration
exposure appears to have more impact in the variance of the HR rather than on the
amplitude itself, inducing changes, some abrupt, in HR data.

To explore if the HR data differ according to the different CO exposures, we performed
a box plots analysis on the differences between the HR medians of the 3 CO levels, for all
FFs in the study.

To test the differences between exposure level groups, we first applied the Lilliefors
test to decide if data come from a normal distributed family. The HR data for the three FFs
failed to be normal distributed.

Therefore, to analyse the differences between the 3 CO levels for the three FFs under
study, we applied the Kruskal–Wallis (KW) Test, a nonparametric test, that allows to
decide if the samples from the 3 levels of CO are originated from the same distribution,
by comparing the mean ranks of the 3 CO levels groups. This test was performed with
3 different combinations of data, in order to ensure that samples from the 3 levels of CO
exposure were independent. Therefore, for each of the KW tests, each group of CO is
drawn from a different FF.

For each of those tests, in the case of differences between the 3 exposure level groups,
we further analyse those through multiple comparisons between the groups. For that,
we use the multicompare function from MATLAB, which, besides returning the pairwise
comparison results based on the statistics outputted from the KW test, also allows for
an interactive graphical multiple comparison of the groups, displaying the mean rank
estimates for each group and comparison intervals.

Afterwards, for classification purposes, to surpass the drawback of class imbalance
of the data, we produced Gaussian noisy replicates of the “L2” and “L3” classes, in order
to get the same number of samples for each CO level of exposure (data as also scaled
to be between the interval [0, 1] in order to allow inter-subject analysis). With this over-
sampling method, we had a total of 230,001 samples, with 76,667 samples from each CO
exposure level.

To decide on the best method for classifying CO levels through the HR collected,
we created an ensemble of learners for classification with data from the three FFs, using
bagging, adaptive boosting and random undersampling boosting algorithms. Then, using
the best method to fit the ensemble with the HR data to CO levels, we estimated the
misclassification rate and computed the confusion matrix using 10-fold cross-validation.
Finally, this ensemble was trained with 70% of the HR data, and the remaining 30% of the
data, held out for testing, was used on the model to make predictions.
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2.5. Evaluation Metrics

The accuracy of a model translates its performance by the relation between the number
of corrected classifications by the total number of data examples. To further evaluate the
performance of the classifier, the confusion matrix was calculated, allowing to compute
quality metrics as Precision and Recall. In a classification problem with more than 2 classes,
for a given class, we can describe the true positives (TP) as the number of correct predic-
tions, the false negatives (FN) as number of examples of that class that were predicted
as belonging to other classes, and the false positives (FP) as the number of false alarms,
i.e., the number of examples of the other classes that were predicted within that class.
Therefore, the Precision is defined as the ratio between the correct predictions (TP) and all
the predictions of a given class (TP+FP), while Recall is the ratio of correct predictions (TP)
and all the examples that actually belong to that class (TP+FN). In the case of both metrics
get high values, then the different classes are properly handled by the classifier. Combining
both, the F1 measure is defined as the harmonic mean of the afore mentioned metrics.

Precision = TP
TP+FP , Recall = TP

TP+FN and F1 = 2 Precision Recall
Precision+Recall

3. Results and Discussion

As described before, the workflow process for data analysis consisted of several steps
(as Figure 4 illustrates), from the collection of data until the evaluation of the results, includ-
ing the definition of CO levels of exposure, the preprocessing of ECG data, the computation
of HR, and the box plots of HR, the KW test, the multiple comparison tests to evaluate the
differences in FFs’ HR between the 3 levels of CO exposure and the classification of CO
levels through the HR of the three FFs under study.

Figure 4. Data analysis workflow.

The box plots, obtained with data from FF7 (as in Figure 3) are shown in Figure 5.
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Figure 5. Box plots of the HR of FF7, per exposure level.

The top figure provides the HR, according to CO levels of exposure (similar to the
top of Figure 3) and the bottom figure presents the box plots. Through the analysis of the
box plots we can observe that the HR associated with CO levels “L2” and “L3” present
higher median values, which are due to the sudden changes in the CO concentrations. This
is clearly illustrated for FF7 (see also Figure 3) by sharp burst in CO concentration coupled
to “L1” and higher levels. It can also be observed that the higher the CO level of exposure,
the less the variance in the HR, which can be justified by the smaller number of samples for
this class when compared with the other classes. For the remaining FFs the same behaviour
was verified.

The box plots in Figure 6 visually presents the summary statistics of the HR of the
three FFs for the levels of CO exposure, showing that the greater the CO level, the higher
the median number of beats per minute (the same conclusion is also verified when the
HR of the FFs is analysed individually, as shown in Figure 5). It can also be observed,
that, despite being the level with lesser data, the HR within the higher level of CO (“L3”)
presents several outliers.
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Figure 6. The box plots for HR data of the three FFs considered in this study, per CO exposure level.

Figure 6 also points out, with 95% confidence, that the true HR medians of the 3
CO levels are different. To further confirm this, we applied the KW test on 3 different
combinations of data, to ensure samples independence, as follows:

• Combination 1: HR data during “L1” level of exposure from FF1, HR data during “L2”
level of exposure from FF2 and HR data during “L3” level of exposure from FF3;

• Combination 2: HR data during “L1” level of exposure from FF2, HR data during “L2”
level of exposure from FF3 and HR data during “L3” level of exposure from FF1;

• Combination 3: HR data during “L1” level of exposure from FF3, HR data during “L2”
level of exposure from FF1 and HR data during “L3” level of exposure from FF2.

For each of the 3 KW tests, the returned p-values (<0.05) indicate that, at a significance
level of 5%, the null hypothesis that the HR from the three levels of CO exposure that
come from the same distribution is rejected. As the KW tests allowed us to conclude that
the median values of HR from the 3 levels of CO exposure are significantly different, we
performed multiple comparisons tests to reveal which from the 3 groups are significant
different from the others, for the three combinations of data.

Figure 7 presents the estimates of the mean rank orders of HR values, and 95%
confidence comparison intervals, for the different CO exposure groups in combination 1.
As the comparison intervals, for the three groups, do not overlap with each other’s, one
can conclude that the three groups of CO exposure have mean ranks significantly different
from each other’s. The same conclusion can be drawn from data within combination 2.
Moreover, and analysing the returned matrix of pairwised comparison results, one can
confirm these results (p-values < 0.05), indicating that median HR values for levels “L1”
and “L2”, for levels “L1” and “L3” and for levels “L2” and “L3”, are significantly different,
at a significance level of 5%, for both combinations 1 and 2.

With respect to data in combination 3, the groups from “L2” and “L3” of CO exposure
are not significantly different from each other (p-value = 0.8425 > 0.05), but both are
significantly different from “L1” group (p-values < 0.05)).
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Figure 7. Multicomparison graphics for the mean ranks of HR, for each level of CO exposure.

Therefore, considering these results, the classification of the different levels of CO
measured during the firefighting experiments was performed on data after over-sampling.
At first, to decide on the best method for classifying CO exposure levels, it was constructed
a predictive classification ensemble using all the replicated predictor variables in HR data
(230,001 samples). After optimization, the results suggested that the best method was
bagging, with random predictor selections at each split (random forest).

Therefore, the misclassification rate and confusion matrix were estimated, using 10-
fold cross-validation, obtaining an estimate cross-validated classification error of 6.9%.
The obtained confusion matrix, presented in Table 2 shows, for all the 3 CO levels, high
values of true positives (correct predictions), displayed in the principal diagonal of the
matrix, and small values (when compared to those) of FP and FN. For each level, the number
of true negatives (TN), is also high: 152,179, 141,683 and 150,276, for “L1”, “L2” and “L3”
levels, respectively. It can also be observed that label “L1” presented a higher number
of FN. As shown in Figure 6, breathing in high levels of CO can induce increased HR;
however, physical exercise during firefighting also raises the HR, and the higher number
of FN in the lower CO level may be due to exercise.

Table 2. Confusion matrix of CO exposure level classification using HR from the three FFs under study.

Predicted CO Exposure Level

L1: 0 ≤ ppm < 25 L2: 25 ≤ ppm < 200 L3: 200 ≤ ppm < 400

L1: 0 ≤ ppm < 25 62,301 11,475 2891
COexp level L2: 25 ≤ ppm < 200 909 75,591 167

L3: 200 ≤ ppm < 400 246 176 76,245

Finally, an ensemble of 100 bagged classification trees was trained using 70% of
the replicated data (161,001 samples). The remaining 30% of data was used to test the
ensemble (69,000 samples). Both test and train sets were constructed preserving the original
class distribution.

For each CO level, the precision, recall and F1 are presented in Table 3. The average
obtained values are above 90%, which are acceptable results, showing the ability to classify
CO levels of exposure. It is worthwhile to notice that results for the “L3” are slightly higher
when compared to the remaining CO levels. This is due to the fact that “L1” is the minority
class, and therefore, had a higher number of replicates.
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The obtained accuracy of 91.9% is reinforced by the high values for the precision,
recall and F1 metrics, which indicate a good performance of the classifier, validating its
capability to classify CO levels of exposure scores using HR data.

Table 3. Precision, recall and F1 measure for classifying CO levels through HR.

CO Level Precision Recall F1 Score

L1: 0 ≤ ppm < 25 98.0 77.7 86.7
L2: 25 ≤ ppm < 200 84.6 98.5 91.0

L3: 200 ≤ ppm < 400 95.4 99.4 97.4
Average 92.7 91.9 91.7

4. Conclusions and Further Research

Changes in HR can be induced by various motives, such as exercise or physical
activities, a decrease in oxygen in breath, emotional stimulus or anxiety and stress states.
In a previous work, we found out that changes in HR were associated with the inhalation
of CO. Based on this, we proposed to characterize HR data according to different levels of
CO exposure. The obtained results sustain that distinct levels of CO exposure differently
affect HR, allowing the classification of CO levels of FFs’ exposure in relation to monitored
HR data.

The classifier, based on an ensemble of 100 bagged classification trees, presented
an overall accuracy of 91.9% and an average precision, recall and F1, for “L1”, “L2” and
“L3” levels, of 92.7%, 91.9% and 91.7%, respectively. These results show that is accept-
able to classify the CO levels of exposure of FFs through HR monitored with minimally-
invasive equipment.

Despite the limitations of the available data, the obtained results demonstrate the
feasibility of a classification system to allow for the identification of hazard circumstances.
The major advantage of such a system relies on the possibility to online access and analyse
ECG data and derived CO exposure levels, through a communication protocol, providing
real-time support on the health of FFs and allowing a better management of the teams
involved in a firefighting scenario. Since CO exposure is classified, based solely on HR data,
there is no need for data synchronization, which is a great advantage for real-time uses.

These results allow the identification of physiological correlates of CO exposure and
can be further integrated into a decision support system.

This work shows the importance of future studies on the relevance and influence
of the exposure and inhalation of pollutants on the FF’s health. The collection of more
data, as well as other methods to embrace imbalanced data, are future steps that need to
be accomplished.
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