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Short-term water demand forecasting using machine

learning techniques

A. Antunes, A. Andrade-Campos, A. Sardinha-Lourenço and M. S. Oliveira
ABSTRACT
Nowadays, a large number of water utilities still manage their operation on the instant water demand of

the network, meaning that the use of the equipment is conditioned by the immediate water necessity.

The water reservoirs of the networks are filled using pumps that start working when the water level

reaches a specified minimum, stopping when it reaches a maximum level. Shifting the focus to water

management based on future demand allows use of the equipment when energy is cheaper, taking

advantage of the electricity tariff in action, thus bringing significant financial savings over time. Short-

term water demand forecasting is a crucial step to support decision making regarding the equipment

operation management. For this purpose, forecasting methodologies are analyzed and implemented.

Several machine learning methods, such as neural networks, random forests, support vector machines

and k-nearest neighbors, are evaluated using real data from two Portuguese water utilities. Moreover,

the influence of factors such as weather, seasonality, amount of data used in training and forecast

window is also analysed. A weighted parallel strategy that gathers the advantages of the different

machine learning techniques is suggested. The results are validated and comparedwith those achieved

by autoregressive integrated moving average (ARIMA) also using benchmarks.
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INTRODUCTION
The cost efficiency and operation of water supply systems

(WSS) can be improved by taking advantage of the electri-

city tariff, favoring its operation when the electricity is

cheaper and avoiding the more expensive periods. By pre-

dicting the water demand in the short-term (24–48 h) the

pumping schedule can be planned to operate at the cheapest

periods, always guaranteeing the availability of minimum

water in the tanks (Bunn & Reynolds ; Coelho ).

Water demand forecast depends on some phenomena,

such as the inertia of the system, seasonality, type and

number of clients, and the external factors that affect the

consumption. Short-term (daily) forecasting has significant

importance, allowing an efficient management of the water
existent in the storage tanks and of the equipment associated

with it. Long-term (annual) forecasting is essential in the

water network design phase. Mala-Jetmarova et al. ()

present an extensive literature review on the field of optim-

ization of water distribution systems.

Artificial intelligence is a field of knowledge dedicated

to developing ways to make machines and computers

mimic human intelligence and behavior. In machine

learning, three main types of problems arise: supervised

learning, unsupervised learning (Bishop ), and

reinforced learning (Mitchell ). The first deals with data-

sets composed of inputs and outputs. For any paired input–

output, the machine must determine how they relate to each
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another, allowing it to estimate the probable output for a

new untrained input. The second deals with problems in

which the datasets used in the training process are com-

posed only by inputs. The machine’s task is to find the

common features between examples and categorize them.

As for the latter, it consists of a group of problems with no

dataset. The computer generates its own dataset by running

examples and evaluating the results.

Several works, such as Cembrano et al. (), Salo-

mons et al. () and Kang et al. (), analyze the use

of water consumption forecasting to improve the operation

of WSSs. They concluded that demand forecasting and

deriving the operation schedule from the results can lead

to a cost reduction ranging between 18 and 55%. Although

a cost reduction higher than 18% is not always guaranteed,

these works show that a poor forecast is better than none at

all, provided the decision maker takes it into consideration.

Recent studies, such as Alvisi et al. (), Bakker et al.

(), Candelieri et al. (a) and Shabani et al. (),

made their forecasts using hybrid methods which are

decomposed in two steps: in the first, the data is analyzed

as a whole and the different patterns (clusters) are identified

– unsupervised learning. In the second, an algorithm is

applied to each identified cluster to produce reliable predic-

tions. Similarly, Candelieri et al. (b) use the same two-

step strategy to detect water leaks.

In their paper, Candelieri et al. (a) describe a

method to forecast water demand in the city of Milan,

Italy. Their method is also divided into two steps: (1) identi-

fying patterns in the water consumption data and (2)

predicting the water demand of the network for the next

24-t hours based on the first t hours of any given day. To

identify the patterns in the data, cosine similarity techniques

were used on all the time series calculated for each 24-hour

division of the data. They found six distinct clusters: three

relative to periods of year (‘Spring-Summer’, ‘Fall-Winter’

and ‘Summer-break’), combined with two day-type clusters

(‘working-days’ and ‘holidays-weekends’). The second step

deals with the forecasting of the water demand for any

given day, based on the consumption observed in the first

hours of that day. Comparing the measured consumption

of the first t hours of the day with the data contained in

the identified clusters, and using a series of support vector

regression (SVR) models previously trained, the output is
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the predicted water demand for the remaining hours of the

day. There is a different SVR for each combination of clus-

ter-hour of the day. A more recent study involving the two-

step approach (clusteringþ forecasting) used smart meters

at an individual level (Candelieri ). The use of these

meters proved its usefulness at the network’s operation

optimization through demand forecast as well as specific

and traceable anomaly detection such as fraud or smart

meter faults.

Parallel studies (Herrera et al. ; de Lima et al. ;

Ghiassi et al. ; Peña-Guzman et al. ; Tiwari et al.

) have been made with the purpose of testing different

forecasting methods and comparing their accuracy. Generic-

ally, it is shown that machine learning techniques (e.g. SVR

and artificial neural networks (ANN)) have higher accuracy

than non-machine-learning approaches (e.g. time-series).

Herrera et al. () tested a group of forecasting algorithms

on a dataset corresponding to a city in south-eastern Spain.

They concluded that the methods can be ranked considering

their accuracy as follows: heuristic model, ANN, random

forest, projection pursuit regression, multi-variate adaptive

regression splines, and SVR. Furthermore, comparison

tests have also been made with different configurations of

each method.

De Lima et al. () studied three forecasting methods:

exponential smoothing (ES), seasonal autoregressive inte-

grated moving average (SARIMA) and ANN. Additionally,

they applied those methods to data from 10 cities in

Paraná, Brazil. Then, 14 combinations of the results were

evaluated to assess the best. They concluded that more com-

plex methods do not mean better results, since ES was found

to be the best method in five cities, SARIMA in four cities

and ANN in just one city. The best model in each city

showed values of mean absolute percentage error (MAPE)

of less than 4%.

Tiwari et al. () compared six models, consisting of

two methods: extreme learning machine (ELM – a derivation

of neural networks where the weights of the hidden neurons

are randomly assigned or inherited from their predecessors)

and ANN with three different implementations: traditional,

wavelet analysis and bootstrap. These methods used three

years of water demand and climate registries of a network

in Calgary, Alberta, Canada. The ELM and ANN methods

achieved similar results and showed no significant



1345 A. Antunes et al. | Short-term water demand forecasting using machine learning techniques Journal of Hydroinformatics | 20.6 | 2018

Downloaded from http
by guest
on 20 April 2020
improvement when using the bootstrap method. However,

significant improvements were observed when the wavelet

analysis was applied to both ELM and ANN.

Peña-Guzman et al. () applied support vector

machines to a real network located in Bogotá, Colombia,

and used previously observed water consumption, number

of users and the value billed for monthly consumption

data in their forecasts. They analyzed six residential sub-net-

works, one commercial sub-network and one industrial sub-

network. Except for one residential sub-network, all the

others showed a root mean square error (RMSE) of <2%

and coefficient of determination R2> 0.9. Moreover, they

found that the least squares support vector machine used

achieved better performance than the feedforward neural

network backpropagation (FNN-BP) tested for comparison.

Ghiassi et al. () used three machine learning

methods (dynamic artificial neural network (DANN),

focused time-delay neural network and k-nearest neighbors

(KNN)) to forecast the urban water demand in Tehran,

Iran, for three time horizons: four weeks, six months and

two years, using respectively daily, weekly and monthly

time steps. Their methods used the daily water production

and monthly water consumption data between March

2003 and April 2009 provided by the Tehran Water and

Wastewater Company. They tested two methods for the

daily forecasts, where they studied the impact of partitioning

the weekdays into weekends and non-weekends. They found

that the best results were achieved when this partitioning

was not considered. They also tested the monthly forecast

taking into consideration seasonality (high and low seasons)

and observed a positive impact of this decision. Generically,

the three developed methods were considered to provide

good results in the three time scales, with a slightly better

performance by the DANN.

Brentan et al. () developed a hybrid method in

which they make a base prediction using SVR, followed by

the application of an adaptive Fourier series (AFS) to

improve the previous forecast. This method was validated

using the dataset of a water utility in Franca, Brazil. They

used previously observed consumption and weather data

(rain, temperature, humidity and wind velocity) in the pro-

cess. They also considered the yearly seasonality (on a

monthly basis) and the difference between weekends, non-

weekends and holidays. The comparison between the
s://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
developed hybrid method and the basic SVR method

proved that applying the AFS resulted in a much better fore-

cast: RMSE from 4.767 to 1.318 L/s, mean absolute error

(MAE) from 12.91 to 3.45% and coefficient of determination

R2 from 0.745 to 0.974.

Shabani et al. () used phase space reconstruction to

derive the proper lag time (found to be three months) to be

used in their genetic expression programming (GEP)

method, which is aimed at predicting the average water

demand for the entire next month. In the dataset considered,

they found a high correlation between the water demand,

the temperature and hotel occupancy, which seems to

reflect the seasonality in the case being studied. The popu-

lation of the city and the rainfall did not show a high

correlation with the water demand forecast. The GEP with

the best performance was then compared with SVR with

different kernel functions – radial, linear and polynomial –

and the polynomial was found to be the best, not only

among the SVM but also among all the methods evaluated.

The results were validated using data referent to the City of

Kelowna, British Columbia, Canada.

In their work, Moutadid & Adamowski () used com-

binations of water demand data (1999–2010), maximum

daily temperature and daily total precipitation referent to

the city of Montreal, Canada, and forecast the water

demand with one and three days of lead time. ANN, SVR,

ELM and the traditional multiple linear regression models

were evaluated, with the ELM presenting the best perform-

ance independent of the lead time. They also observed

that an increase in the lead time means a worse forecasting,

even though this diminishing in performance is considered

as not drastic by the authors.

Haque et al. () showed an innovative regression

method named independent component regression (ICR)

and applied it to medium-term (monthly) water demand

forecasting in Aquidauano, Brazil. For comparison, they

also calculated forecasts using multiple linear regression

and principal component regression. They used monthly his-

tory data of maximum temperature, relative humidity,

number of water customers and water consumption. The

results showed that even though the R2 of the ICR method

was lower, the other evaluation parameters proved its high

performance. An overestimation tendency of the ICR

method was observed.
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Rodríguez-Galiano & Villarín-Clavería () applied

regression trees as a water demand forecasting technique.

The model used socio-demographic data such as age of the

population, cadastral value and size of the buildings, and

derivatives of these. In total, 15 variables were used as

input vector in the training process. The domestic water con-

sumption history was used as the output target vector in the

training process. They evaluated the RMSE when using n

variables with more impact in the forecasts and observed

that when using only one variable (household size [inhab./

household]) the RMSE¼ 26.91 L/y, and using the 15 input

variables the RMSE¼ 18.89 L/y. As a consequence of

using the n most important input variables, they also

observed that the last input variables used had little

impact on the forecasts. The RMSE calculated when using

only the six most important variables was 18.96 L/y. Consid-

ering more variables results in an insignificant improvement

in the results, with a higher computational cost. The tests

were performed using data relative to a WSS in Sevilla,

Spain.

Mellios et al. () developed an artificial neural-fuzzy

inference system (ANFIS) to forecast the daily water

demand in the Greek touristic island of Skiathos. They

used daily water pumping history, daily mean and high

temperature, daily precipitation, daily wind speed and

monthly arrivals by air and sea for a two-year period

(2011–2012) for training and 2013 for testing. From the 32

networks evaluated, the best presented the following results:

R2¼ 0.916, RMSE¼ 192.99 m3 and MAPE¼ 8.1%.

In their work, Suh & Ham () used backpropagation

(BP)-ANN to forecast the water demand in buildings of four

cities in South Korea. Using climate, geographic, and mor-

phologic input variables and average monthly water

consumption as output in the training process, they could

predict the monthly water consumption with a MAPE of

19.6% and RMSE of 98.11 m3/y.

Seo et al. () used three wavelet decomposition

methods to assess their ability to predict the water level of

a dam. They used the ANN and ANFIS methods and their

decomposed variants WANN and WANFIS and validated

the results using real daily water level data for the Andong

Dam in South Korea. The results showed that the ANFIS

methods are generally better than the ANN. Furthermore,

the application of the wavelet decomposition resulted in
om https://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf

0

significantly better results, and the best method is identified

as WANFIS7-sym10 – input set 7 with Symmlet-10 wavelet

decomposition.

Adamowski & Karapataki () observed that for peak

urban water demand forecasting, and in the two datasets

used (networks in Nicosia, Cyprus), the accuracy of the

learning algorithms can be ranked as follows: multiple

linear regression, resilient BP-ANN, conjugate gradient

Powell-Beale ANN, Levenberg-Marquardt ANN.

Some studies have been made on the influence of the

weather as input data, such as Rodríguez-Galiano &

Villarín-Clavería () and Adamowski & Karapataki

(). They all concluded that the weather influences the

water demand, mainly on domestic and agricultural levels.

Nonetheless, opposing conclusions have been presented

concerning the impact on the forecast of either the quantity

of rain or the occurrence of rain (Adamowski & Karapataki

). Although the use of weather data as input was shown

as a performance enhancer of the methods used, it is also

well understood by the community that the difficulties of

implementation of such methods do not always pay off for

the additional effort. Bakker et al. () developed a

method that takes into consideration the weather effect,

even though they do not use any weather data input. In

this study, they also showed that a shorter time interval

helps to model critical times of the day (early morning),

but results in a smaller overall accuracy.

Machine learning techniques have also been used to pre-

dict malfunctions of the equipment and locate leakages.

Candelieri et al. (b) used spectral clustering and SVR

techniques with the aid of a simulated water supply net-

work. They achieved a reliability of 98% for pressure and

flow variables and leak locations. When applied to real

cases (Milan and Timisoara), this technique achieved a

reliability larger than 90%.
DEVELOPING A MACHINE LEARNING WATER
DEMAND FORECASTING MODEL

According to previous studies made in the field, no particu-

lar machine learning model is the most adequate for every

water demand forecasting problem. However, it is expected

that some methods will present better predictions than
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others for different datasets. Developing a flexible, transver-

sal and accurate algorithm involves studying a variety of

methods applied to multiple databases.
Choosing the input data features

The selection of the right input features for the training stage

is critical. In this context, each feature represents an input

variable that affects the outcome of the forecast. Some

examples are the water demand history, temperature or

rain occurrence. Note that the temperature observed at the

instant t and the temperature observed at the instant t-1

can be two features both referents to the same instant t.

The scientific community has made several studies concern-

ing the most adequate features for water demand forecast

and it can be generically concluded that, besides the historic

data, the weather and seasonality have the strongest impact

on the results.

In this context, seasonality must be considered at several

levels and is to some extent correlated with the weather

data. The sporadic seasonal events, such as Christmas,

Easter or even a major sports event, can also be considered.

The seasonality can be implemented in the algorithm in two

different ways:

1. The periodicity of the data directly affects the number

of machines (predictive models) used in the forecast

and, consequentially, the amount of data used in the

training of each machine. For example, considering a

periodicity of 24 hours means the algorithm will train

24 machines and make forecasts for a 24-hour interval.

The different periodicities to consider have different

applications and may have implications for the accu-

racy of the forecasts.

2. Identifying and separating different patterns in the data

and using each of them as independent datasets. This is

known as clustering and can be achieved using machine

learning algorithms. However, for the purpose of this

study, it was decided to use brute-force clustering,

where the algorithm is explicitly told how to separate

the different patterns. By using this approach (an

approach is the group of features applied to each

model; one approach might be using 70 water demand

features, and another approach might be using 14 water
s://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
demand and one temperature feature), it is assumed

that different periods have different typical behaviors

and therefore must be predicted based solely on those

of the same pattern. Additionally, sporadic events may

be considered as one of these clusters. In this paper,

the clusters considered are: (i) weekday, including the

days between Monday and Friday; and (ii) weekend,

including Saturdays, Sundays and the Portuguese official

holidays.

As for weather features, the works made on the subject

concluded that temperature, rain amount and rain occur-

rence have the largest impact on the training stage. For

this reason, when available, these registries are considered

as features for the forecast. Nonetheless, models (a model

is a well-defined forecasting method configured and trained)

with no weather features are also tested. Regarding this

matter, it is considered that the water demand forecast

depends on the previous water consumption observations

paired with the predicted weather conditions. For example,

the forecast for the hour t of tomorrow depends on the water

consumption observed at the hour t of today and the temp-

erature forecast for hour t of tomorrow. The weather

variables are not predicted, as they are usually available

from external sources, and are not the object of this work.

The last consideration is related to the amount of data

that is used in the process. In this work, the aim is to use

as much available data as possible. If two years of records

are available, it is not advised to use any less than those

two years of data. However, the water consumption

observed two years ago does not have a direct impact on

tomorrow’s demand. All the data must be used during the

training, but only a part of that has a direct influence on

each step of the process and, consequently, on the forecast-

ing. The amount of data used is updated in each training step

but maintains the same size (see Figure 2). This implies that

the water consumption for the day Dþ1 is predicted consid-

ering the features registered in the days D�n to D�1, and

each of those days is a sample. In this context, a sample rep-

resents a moment of observation, each consisting of the

features used by the machine (in training and predicting).

Each sample is a vector of the features’ values observed at

any given moment. Additionally, the number of weather fea-

tures considered must also be tested, and it is not mandatory
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that it equals the number of demand observations con-

sidered. In practice, tests are made considering only the

weather forecast for 1 day or weather forecasts for 14 days

(starting from the forecasted day, towards the previous

days).

Clustering

In unsupervised learning, a common problem is to identify

and correctly classify a certain number of identical classes

(clusters) present in the data (Bishop ). At first, the

number of clusters, k, is usually unknown. Finding it can

be achieved by running the clustering algorithm for differ-

ent values of k and evaluating the results for each value.

The optimal number of clusters is the one that optimizes

a determined criterion, such as the variance between

observations in the same cluster. If for kþ 1 clusters the

criterion used has no significant improvement, then k is

usually a good guess for the number of identical classes

in the data.

If k classes are thought to exist, the clustering algorithm

will randomly allocate k points as cluster centers. Then each

point of the data is compared with the existing cluster cen-

ters and is assigned to the one that is more similar to itself

(i.e. has smaller distance). For the next iteration, the new

cluster centers are re-calculated as the average of all the

points that were assigned to them. A variation of this algor-

ithm calculates the new cluster centers when each point is

assigned to any of them.

Similarity and distance are slightly different concepts,

although they both try to translate the correlation between

two vectors in a numerical way. Different formulations of

these concepts usually mean different results. Altogether,

the number of clusters and how they are found, the formu-

lation of the distance and the clustering algorithm

implementation itself are mutually affected, and different

combinations of them will produce different results.

Here, clustering analysis can be used to verify seasonal-

ity and other relations between input data.

Forecasting techniques

The water demand forecast can be seen as a regression

problem, and many machine learning methods have been
om https://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
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studied in the past. Based on these two statements, the

following methods arise as candidates for solving the

problem: ANN, random forest regression, KNN and SVR.

Artificial neural networks

Inspired by the biological neural networks, these networks

process the information through a series of perceptrons

that, because of their interconnections, will give a certain

importance to different parts of the input information

(Mitchell ; Bishop ). From the simpler to the

more complex, they all are made of (i) similar smaller

units (perceptrons) that behave in the same way as the

others in the same network and (ii) connections (synapses)

that define how the perceptrons interact with each other.

Neural networks can have multiple inputs and outputs and

can be applied to either classification or regression

problems.

On the smaller scale (input-synapse-perceptron-output),

the synapses connect the inputs to the perceptron, multiply-

ing them by a weightwi
k, wherewk is the set of weights in the

layer k. The perceptron can be described as a small machine

that processes the information it is given. It takes the infor-

mation given by each synapse connected to it, xiwi, and

proceeds to their sum. To the result is applied an activation

function, introducing nonlinearity, and the result of this

operation is the output of the perceptron. In each layer of

the network, all inputs must be connected to all the percep-

trons. If a certain input is not relevant to the calculations,

the algorithm will find a small weight for that synapse.

Backpropagation is the most commonly used learning

algorithm, and it calculates each weight based on the differ-

ence between the output of each iteration and the target

value observed. Other learning algorithms are described in

Kingma & Ba () and Liu & Nocedal ().

The design of a neural network can be divided into two

steps. The first deals with the network’s morphology, i.e. the

number of layers and the number of neurons in each of

them, as well as the activation function applied at each

neuron. A collection of neural network architectures and

its description is presented by van Veen (). There, the

feed forward neural networks (FFNN) are described as

simple and practical and are used in this work for ease of

implementation. FFNN are trained neural networks in
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which the new information travels in from the input to the

output. Svozil et al. () discuss some advantages of this

method, namely its learning process being autonomous

from the user, its application in non-linear problems, the

resistance to noise and the fact that each input set generates

a trained model fully adapted and adequate to that same pro-

blem, preserving the idea that no two problems should have

the same solution. They reported the slow convergence and

unpredictability associated with difficult interpretation of

results associated with this method as the major

disadvantages.

Using a non-linear activation function means that the

output of a neuron cannot be expressed as a linear combi-

nation of its inputs. Without this step, every neuron would

output a combination of its inputs and, in the end, the sol-

ution would itself be a combination of the initial inputs. A

neural network without non-linear activation functions is a

neural network that can be simplified to a single layer. For

simple problems that can be described with a linear

model, the generic need for activation function is fulfilled

using the identity function f(x) ¼ x. The rectifier function is

defined by:

f(x) ¼ 0, x< 0
x, x � 0

�
(1)

and assures the non-linearity with low computational effort.

It assures that the output of the perceptron has a positive

infinite range. Somewhat similar to each other, the logistic

and the hyperbolic tangent functions, respectively:

f(x) ¼ 1
1þ e�x and f(x) ¼ tanh(x), (2)

assure that very large positive or negative numbers are

approximated to the same value (1 if x is a large positive

and 0 (logistic) or �1 (tanh) if x is a large negative). It also

ensures that around x¼ 0, f(x) is approximately a linear

function.

The second consideration relates to the training process

occurring in the neural network, embracing the learning

algorithm and learning rate. Gradient descent is an optimiz-

ation method often used in machine learning problems,

where it is used to find a minimum of the cost function
s://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
f(θ). Until convergence it iteratively calculates:

θi ¼ θi�1 � α ∇ f(θi�1) (3)

where θi are the model fitting parameters found at the ith

iteration, α is the learning rate and ∇ represents the gradient

operator. The use of a constant learning rate carries two

possible unwanted outcomes. Too small and it converges

unnecessarily slowly; too large and it may fail to converge.

Choosing the learning rate is frequently carried out by trial

and error. Alternatively, one can use an adaptive learning

rate as an attempt to avoid these issues. The adaptive

moment estimation (Adam) (Kingma & Ba ) method is

an adaptation to the gradient descent, as it recalculates the

learning rate at each iteration, applying exponentially decay-

ing average of previously observed gradients of first and

second order. Another possible way to bypass the disadvan-

tages of stochastic gradient descent (SGD) is to use a

second-order optimization method such as the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm described in

Liu & Nocedal (), where the vector θi is calculated

based on the hessian of f(θ). In each step, the learning rate

is updated such that its value assures that f(θiþ1)/f(θi) is smal-

ler than a stipulated value. The BFGS algorithm generically

guarantees that fewer iterations are required, but because of

the heavy calculations associated with the hessian matrix,

those take more computational time than SGD. Limited

memory BFGS (LBFGS) is an implementation of BFGS

designed to overcome this issue (Byrd et al. ).
Random forest regression

A regression tree is a method that was first developed to

solve classification problems. It was later adapted to

regression problems, although it does not provide a continu-

ous output space. When given a new sample, the model will

proceed to a series of comparisons starting from the root of

the tree and following the path that respects all comparisons

made. When it reaches a node with no splits, the process

finishes and the output is calculated according to that

node (Bishop ).

The method starts by mapping each sample into an

N-dimensional space, where N is the number of features
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thought to influence the phenomenon. Then, along each

direction, the data is split in a way that minimizes the

mean square error in each of the two newly generated

regions. This process stops if a certain error criterion is sat-

isfied or when the maximum depth of the tree is reached.

The deeper the tree, the better the fitting, thus opening the

possibility for overfitting. The tree is built in such a way

that by navigating through it, all training samples are cor-

rectly classified.

A random forest is a collection of random trees, the

output of the model being the average of the individual out-

puts of each tree. In this case, each individual tree takes a

portion of the data, resulting in slightly different trees. This

technique is used as a way to minimize noise-induced errors.

Instance-based learning and K-nearest neighbors

Unlike other methods, the instance-based methods are

based on storing training examples (Mitchell ). When

evaluating a new instance, these methods compare its infor-

mation with one of the examples stored in its memory,

outputting a value close to the most similar instances

studied. Because it does not have a global target function,

this type of algorithm needs to evaluate each new instance,

making it a slower solution if multiple instances are given at

short intervals. For the same reason, the algorithm needs no

initial training other than memorization, making it easier to

implement. Due to its implementation, the target function is

replaced by simpler local target functions. Instance-based

algorithms can have multiple forms, such as k-nearest neigh-

bor, locally weighted regression or radial basis function

networks, being applicable to classification and regression

problems.

The KNN algorithm makes a forecast by making a

weighted average of the k vectors most similar to the

input vector currently being assessed. Given the input

vector xi, the distance between it and each vector present

in memory is calculated (Bishop ). The Minkowski

distance (The SciPy Community ) can be used to cal-

culate the Manhattan distance and the Euclidean

distance. The distance function is important in this

method not only to find the nearest vectors, but also to

find the weights later assigned to them. The output of

the algorithm is a weighted average of the k vectors
om https://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf

0

found, where the weights are usually proportional to the

distance to the input vector. Alternatively, using uniform

weights means that each of the k vectors is assumed to

have an equal impact on the outcome. This method is

simple and has fast training, and for this reason it is

usually one of the first methods tested when studying a

machine learning problem. However, other methods

often surpass this method when accuracy is more

important than simplicity.
Support vector regression

Support vector machines (SVM) are classification algor-

ithms that apply a non-linear transformation to the input

(Bishop ). Therefore, the SVM transforms the space

where the two classes are only separable by a non-straight

line into a new space where it is now possible to separate

the classes using a straight line, also called a hyperplane

for higher-dimension problems. The desired transformation

function is called kernel, and it takes an n-dimensional

input and gives an (nþ 1)-dimensional output, where the

two classes will presumably be linearly separable. Several

types of kernel function can be used, such as circular,

spherical, linear, polynomial or hyperbolic, just to name

a few.

Multiple class SVM can be achieved by a list of adapted

methods, either by finding a new single objective function or

by running a binary classification SVM for each identified

class using the remaining classes as negative examples

(one-versus-the-rest) (Bishop ).

For regression problems, SVR can be used. The idea is

similar to that of SVM, using a kernel function to transform

a non-linear into a linear dataset, where the equivalent of a

maximum margin hyperplane is calculated. When a new

vector x is used as input, the output is calculated by comput-

ing f(x). Immediately a disadvantage over other machine

learning arises. While other methods can have multiple out-

puts, SVR only allows single outputs.

Given a dataset, it is possible that more than one hyper-

plane correctly classifies all data points, but the desired

solution is the hyperplane that is equally distant from both

classes, providing a better generalization, necessary for

new data. After the hyperplane f(x) is found, a classification
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problem is tackled by computing f(x) followed by:

x ∈ A, if f(x)>þ 1
x ∈ B, if f(x)<� 1

�
(4)

where A and B are the two classes. More generically, in a

regression problem, the output is simply given by f(x) for

each new instance x being evaluated.

Creating the model

Although the best model is generally thought to be the one

that presents smaller differences between the forecast and

the observation, that is not always the case. Often the

datasets used for the training of the algorithm contain

measurement errors, noise, or random unpredictable occur-

rences. On the WSS, leakages, sporadic events or urban fires

are some examples. Adjusting the model to fit these events

will result in forecast failure. The sample error of an overfit

model is smaller than that of a more general model, but the

true error tends to get smaller on a generic model. To avoid

this issue, known as overfitting, one can use strategies such

as early stopping of the learning process or using separate

sets of data for training and testing (Mitchell ).

The methods used to predict water consumption usually

consider a previous period of about two years. Holidays cer-

tainly have a high impact on the water demand of the

network, but a two-year registry designed to avoid overfitting

by simply eliminating outliers will fail to predict those

events. The experience and sensibility of the engineer are

crucial when designing the model.

Selection and configuration of the models

As shown in the literature, different techniques are better

suited for different systems. For this reason, it is not

expected to find a solution that perfectly fits all datasets,

or to find the perfect solution for each methodology. How-

ever, it is expected to find which model configurations

being tested present the best results. The present strategy

contains a large set of models varying only one parameter

between them in order to evaluate the influence of each par-

ameter. Only the parameters that are expected to have the

largest impact on the definition of the model are considered.
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A neural network is essentially defined by the shape of

the network itself (number of neurons and number of

layers), activation function and learning algorithm. Nine

shapes of networks will be tested, being those combinations

of three numbers of layers (2, 5, 8) and three numbers of

neurons per layer (10, 25, 75). Three activation functions

will be studied: identity, logistic sigmoid and rectified

linear unit. The learning algorithms to be tested are SGD,

LBFGS and Adam.

The SVR machines are highly dependent on the kernel

they use. Radial based function (RBF), linear and poly-

nomial (second degree) are the kernels tested. Two values

of tolerance (0.01 and 0.001) for stopping each learning iter-

ation are also tested.

The KNN method is strongly defined by the number of

neighbors considered relevant to the calculations and by

how the weights are calculated. Tests with three numbers of

neighbors (2, 5, 8) and twoweight functions (uniform and dis-

tance) are considered. The uniform weight assigns the same

weight to the k neighbors considered, while the distance

weight function gives a weight proportionally inverse to the

Euclidean distance between each neighbor and the data.

The random forest method can be modeled by the

number of trees in the forest and the minimal number of

samples required at each split. With this in mind, six combi-

nations of three numbers of trees (2, 8, 15) and two numbers

of samples required to split (2, 8) are analyzed.

In total, 99 model configurations are tested, being 81

ANN, six SVR, six KNN and six random forest regressor

(RFR).

Implementing the models

The Scikit-learn 0.18.1 (Pedregosa et al. ) library for

Python 3 (Python Software Foundation (US) ) allows

the creation of machine learning models in a simple and effi-

cient way. Other libraries from the SciPy Community (2017)

environment ease the data manipulation (NumPy and

pandas) and the data visualization (Matplotlib). The overall

algorithm is schematically represented in Figure 1. It starts

by reading the data file. Then, it applies a filtering routine

that eliminates outliers, missing values and normalizes the

data, and rearranges the data in a three-dimensional

matrix. Although other shapes for this matrix would be



Figure 1 | Schematic representation of the machine-learning algorithm used: (a) training the model and (b) forecasting procedure.
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possible, this presents an easier visualization of the data

matrix. In the three-dimensional matrix represented in

Figure 2, each horizontal plane represents an hour of the

periodicity considered, where each line represents a

sample in the training data and each column represents a

feature. If the periodicity is of 24 h, a sample is 1 day; how-

ever, if the periodicity is of 168 h, a sample is a week.

In addition to the input data matrix, a target matrix is

created. This target matrix only has one column as features

– the observed consumption and weather data – when exist-

ent. The algorithm then divides the available data into
Figure 2 | Representation of the data matrix used in the machine learning models. Each

sample has N features. Adapted from Qian & Pan (2017).
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training and testing sets, reserving the last split for testing.

Cross-validation is not used because the data is time sensi-

tive and altering the order of the data would affect the

training and the results. A number of machines equal to

the height of the matrix (periodicity) is created and trained

using the two-dimensional matrix corresponding to the Tth

plane of the larger matrix as input data and its correspond-

ing target vector in the training set. This way, the Tth

machine predicts the Tth hour of the periodicity considered

and stores its value in the Tth element of a one-dimensional

‘Prediction’ vector. Finally, the program compares the fore-

cast result (for the period being studied) with the testing

data for the D days in the testing set.
Evaluating the performance of the models

Even though the main goal of machine learning algorithms

is similar in this work – to mimic a real system – there are

multiple performance criteria. While some methods are

better at finding the overall pattern, ignoring occasional

peaks, others can give a better understanding of sporadic

events. When measuring the performance of a statistical

experiment such as a demand forecast, there are two

major dimensions: (1) how it describes the general ten-

dency of the phenomenon and (2) how it behaves when

it encounters possible random outliers and noise. In

machine learning, the definition of the model and its par-

ameters/weights is dependent on the performance criteria
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chosen for the training stage. Different criteria result in

different model weights.

For the purpose of this paper, when fitting a model, the

RMSE between the observations and the estimations is mini-

mized. The RMSE values are affected by the normalization

of the data, being presented dimensionless.

The performance of the models was evaluated using the

standard statistical metrics RMSE and MAPE. However,

other metrics can be useful. The mean error (ME), also

called mean bias, can give an idea of whether the forecasts

are above or under the objective. The coefficient of determi-

nation R2 is a measure of how the difference between the

observations and the forecasts relates to the difference

between the observations and their average. It can be inter-

preted as the likelihood that new values are going to be

correctly predicted (The Pennsylvania State University ).

Ensemble of forecasting strategies

The advantages and disadvantages of each presented

forecasting technique were previously discussed. The

advantages of each technique can be combined through a

hybrid strategy of parallel methods, diluting the disadvan-

tages. In this work, a weighted parallel strategy is suggested.

Considering that some methods tend to overestimate

the demand and others tend to underestimate it, one can

improve the forecast by calculating a weighted average

of the various forecasts previously made (i.e. one for

each model tested). The weight of each model must reflect

the robustness of the forecast made. Attributing the

weights to the desired models is not just a matter of

evaluating the errors and assigning a higher weight to

those with smaller errors, but of combining over- and

under-estimations in a way that diminishes the error. A

thorough analysis must be carried out to understand the

models that over- and underestimate the forecast and its

magnitude.

The methodology hereby proposed includes several

steps. The first step includes the training and validation

made by the models from the previously discussed set. The

performance of each model is considered as the average of

the results found for each individual day in the validation

set. In the next step, nMEþ models with positive mean

error and nME� models with negative mean error are
s://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
chosen, and nME¼ nME� þ nMEþ. In each case, the chosen

models are those that present the best RMSE, MAPE%

and R2, respectively. This methodology presents a new fore-

cast, based solely on a combination of the forecasts

previously made. Each of the selected models has an associ-

ated weight proportionally inverse to the absolute value of

its ME and that balances the number of nMEþ and nME�
models. Therefore, the models with lower errors have a

higher impact on the forecast. For that, each weight wi is

the inverse of the ME given by its corresponding model.

The final forecast is given by:

F ¼
XnME

i¼1

(wiFi), (5)

where:

wi ¼ j1=MEij2aiPnME
i¼1 (j1=MEij2ai)

with
XnME

i¼1

wi¼ 1, (6)

and:

ai ¼
PnMEþ

i¼1 j1=MEijPnME�
i¼1 j1=MEij

if MEi < 0

1 if MEi � 0

8><
>: (7)

The advantage of this efficient weighted parallel fore-

casting strategy is its simplicity and low computational

cost. The computational effort of this strategy is very low

because it makes use of the already made calculations of

the training-validation of the individual models.
VALIDATION OF THE MACHINE LEARNING
ALGORITHMS DEVELOPED USING BENCHMARKS

To effectively use the developed algorithm for predicting

water consumption, one must make sure the algorithm

achieves its goal, and with advantages compared with

other algorithms. By comparing the results achieved by the

developed algorithm with those presented by other algor-

ithms, one can assess the viability, applicability and quality

of the forecasting program algorithm. The method



Figure 3 | Sinusoidal periodic function benchmark. Data generated for a water con-

sumption observed in the last 2 days. Forecasts given by the ARIMA and KNN

(N¼ 8 Euclidean) models.
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considered for comparison is the autoregressive integrated

moving average (ARIMA), recommended for time series

problems.

The analysis of the algorithms can also be made using

benchmarks (Hyndman ). Researchers and developers

frequently use the same benchmarks, for reasons such as

availability and ease of comparison of results.

The evaluation of the developed models is carried out in

two consecutive steps. First, each sample of the testing set

data is evaluated, and second, the average for each metric

is calculated considering the entire testing set. The metrics

evaluated are the ME, MAE, RMSE, MAPE% and R2, but

only the RMSE (used in the fitting process), MAPE% and

R2 are shown. To assess the performance of each method-

ology, the results for the best model in each family (RFR,

KNN, SVR and ANN) considering both metrics are com-

pared with those of the ARIMA methodology.
Sinusoidal periodic function

Consider a hypothetical network with a daily water demand

pattern that repeats itself infinitely. This pattern has a valley

during the night, a peak in the morning and another in the

evening. Moreover, random noise and weekly and monthly

seasonalities are added, changing the pattern for each day.

The noise was added to transform the analytical data into

more realistic observations and because the tests made

resulted in identical and very precise results. In fact, most

models achieved a perfect forecast, validating the implemen-

tation of the algorithms. The function used in this process is

defined as:

Q(t) ¼ 50þ
P5

i¼1 fi(t)
5

þGAUSSIAN(0, 2) (8)

where:

fi(t) ¼ αi sin βi þ
2 π

γi
t

� �
(9)

α ¼ {30, 30, 30, 20, 10}; β ¼ {3,� 3, 10,� 3, 0}; γ ¼ {12, 24,

24, 168, 744} and GAUSSIAN(0,2) represents a Gaussian

noise with mean 0 and standard deviation 2. The functions
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f1(t), f2(t) and f3(t) model a daily behavior, since they have

periods of 12, 24 and 24 h, respectively. The functions f4(t)

and f5(t) represent weekly and monthly tendencies, defined

by their periods of 168 and 744 h. One should note that the

data was generated once and then was used across all the

models tested. The dataset is the same in the different

tests. The hourly data observed in the last 2 days is shown

in Figure 3.

Using the sinusoidal periodic function data, the per-

formance of the 99 designed models was evaluated.

Between the periodicity thought to rule the phenomenon

and the past observations thought to influence the forecast,

the influence of these two parameters is analyzed, fixing

one of them and varying the other. Fixing the periodicity

at 24 h, tests were made considering 3, 14 and 70 past

observations. Defining the past observations at 14 samples,

tests were made considering periodicities of 12, 24, 48 and

168 hours. The tests made without considering noise show

perfect forecasts (RMSE¼MAPE¼ 0 and R2¼ 1) for the

RFR, KNN and SVR methods in every approach, except

when using clustering (where the best model, ANN(iden-

tity(2 × 10) sgd), obtained RMSE¼ 0.0241). For the case

when using Gaussian noise, the best models per approach

are presented in Table 1. It is noticeable that the different

approaches tested present similar results for all metrics

shown, with the exception of the coefficient of determi-

nation when using 12-hour periods in the forecasts. This



Table 1 | Forecasting errors of the best model found with each approach tested for the sinusoidal periodic function benchmark

Periodicity (h) Features Model RMSE (�) MAPE (%) R2

24 Demand (3) ANN(identity(2 × 25) lbfgs) 0.0392 4.7678 0.9086

24 Demand (14) KNN(N¼ 8 Euclidean) 0.0304 3.6355 0.9417

24 Demand (70) KNN(N¼ 8 Euclidean) 0.0284 3.4653 0.9476

12 Demand (14) KNN(N¼ 8 Euclidean) 0.0323 3.9408 0.6677

48 Demand (14) KNN (N¼ 8 uniform) 0.0315 3.8536 0.9411

168 Demand (14) KNN (N¼ 8 Euclidean) 0.0300 3.6170 0.9510

24 Demand, using clustering (14) ANN(identity(2 × 10) sgd) 0.0408 4.8732 0.8919
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behavior can be explained by comparing two consecutive

periods generated by the function. The consumption pat-

terns observed in the first 12 h and in the last 12 h of any

given day are obviously different. Using the data of the

first half of the day to predict the second half is not advised,

as often stated by the literature and reinforced by the

results hereby presented. The performance of the models

improves when the number of features increases. However,

the same cannot be said about the time scale of the fore-

casts. In fact, the lowest RMSE is found when using 70

water demand features with a 24 h periodicity. It is also

observable that the KNN models are usually the best

choice.

In Table 2, the overall best results of each family of

models (RFR, SVR, KNN and ANN) and for the ARIMA

are presented, along with the best three models, considering

the best approach found in Table 1. The results obtained by
Table 2 | Models that achieved the (i) best RMSE per family, (ii) the overall best three

RMSE, (iii) the overall worst RMSE, and (iv) the ARIMA results, applied to the

sinusoidal periodic function benchmark using 70 × 24 h demand samples

Model RMSE (� ) MAPE (%) R2

RFR (N¼ 8 n¼ 2) 0.0305 3.7452 0.9400

KNN(N¼ 8 Euclidean) 0.0284 3.4653 0.9476

SVR(linear t¼ 0.001) 0.0352 4.3049 0.9210

ANN(relu(5 × 25) lbfgs) 0.0306 3.7358 0.9392

KNN(N¼ 8 Euclidean) 0.0284 3.4653 0.9476

KNN(N¼ 8 uniform) 0.0285 3.4647 0.9475

KNN(N¼ 5 Euclidean) 0.0290 3.4713 0.9452

ANN(logistic(5 × 10) sgd) 0.1319 17.8044 �59.4768

ARIMA 0.0523 6.7217 0.8149
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the best machine learning models in any method are satis-

factory, with their RMSE at least 32% lower than the one

observed with the ARIMA. However, as proved by the

results obtained by the worst model (a neural network

using SGD as learning algorithm and the logistic activation

function), the use of machine learning does not guarantee

good results. Figure 3 presents the results obtained with

the ARIMA and KNN (N¼ 8 Euclidean) models.
Cars benchmark

This benchmark is based on a dataset used in three Artificial

Neural Network and Computational Intelligence Forecast-

ing Competitions, held between 2009 and 2010 by the

Lancaster University Management School. The database

consists of a collection of traffic data, including highways,

subways, flights, shipping imports, and railways. The entire

dataset is presented in four parts of 1,735 instances plus

five parts of 895 instances, but a quick analysis shows that

these do not represent a pure sequence of data. For this

reason, only one part with 1,735 is used. This means that

only 72 days are available to test the machine learning

models presented. The amount of data available brings an

extra difficulty, derived from the small number of iterations

during training.

The dataset used by this benchmark has the peculiarity

of having just three months of registries, which is not usually

advised due to issues related to incomplete or short training.

For the same reason, this dataset does not have sufficient

data to allow the study of clustering-based forecasts, or to

study the approaches involving weekly periodicity or 70

past observations.



Table 3 | Forecasting errors of the best model found with each approach tested for the cars benchmark

Periodicity (h) Features Model RMSE (�) MAPE (%) R2

24 Demand (3) KNN (N¼ 2 Euclidean) 0.1150 35.0550 0.5199

24 Demand (14) KNN (N¼ 2 Euclidean) 0.0922 36.4973 0.6185

12 Demand (14) KNN (N¼ 2 Euclidean) 0.0553 25.5196 0.8108

48 Demand (14) KNN (N¼ 2 Euclidean) 0.1475 59.9765 0.4100
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The results achieved by the best models for each

approach are presented in Table 3. The consistency of the

KNN methodology can be observed, in particular when it

is configured with two neighbors and the Euclidean distance

weight function, since this model is found to give the best

results in every approach. It is also shown that a 12 h time

window for training and forecasting offers the best perform-

ance considering any of the metrics presented.

In Figure 4 it can be observed that the data presents a

very atypical behavior. This represents a great difficulty

when training the models, as each new sample can poten-

tially bring more noise with no contribution to the

process, and for the prediction phase, as the new data has

a high probability of being something the models have not

previously been confronted with.

Table 4 also presents the results of the ARIMA method

for comparison purposes. Except for the SVR, every other

methodology presents at least one model that is better

than the ARIMA considering any metric. As for the SVR,
Figure 4 | Cars benchmark. Data observed in the last 2 days and the forecasts given by

the ARIMA and KNN (N¼ 2 Euclidean) models.
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it gets particularly bad results in this benchmark, with its

best model presenting errors about twice as bad as

the best models in the other methodologies. Overall, the

two best models are the KNN with Euclidean distance

weight function. Note that the difference between the best

and the second best models is much more accentuated

than that between the second and the third best models.

Even though the SVR methodology did not achieve the

expectations, one can conclude that using machine learning

techniques proves to outperform the ARIMA in this

benchmark.
Air quality benchmark

The air quality benchmark contains the data collected by

equipment that measured the quality of the air at regular

intervals of 1 hour in an Italian city. In total, 9,358 (389.91

days) measurements were registered. The data considered in

the calculations was, however, reduced to ensure that it has

a length divisible by the periodicity considered in each test

(9,336 registries used for the periodicity of 24 h). When
Table 4 | Models that achieved (i) the best RMSE per family, (ii) the overall best three

RMSE and (iii) the overall worst RMSE, and (iv) the ARIMA results, applied to

the cars benchmark, using 14 × 12 h demand samples

Model RMSE (� ) MAPE (%) R2

RFR(N¼ 8 n¼ 2) 0.0769 35.5161 0.6288

KNN(N¼ 2 Euclidean) 0.0553 25.5197 0.8108

SVR(linear t¼ 0.001) 0.1264 68.2466 0.0076

ANN(relu(2 × 75) lbfgs) 0.0637 29.3742 0.7841

KNN(N¼ 2 Euclidean) 0.0398 25.5197 0.8108

KNN(N¼ 5 Euclidean) 0.0637 29.0592 0.7623

ANN(relu(2 × 75) lbfgs) 0.0637 29.3742 0.7841

ANN(identity(5 × 75) adam) 0.3128 147.5146 �0.4758

ARIMA 0.1255 48.2089 0.2121



Table 6 | Models that achieved the (i) best RMSE per family, (ii) best three RMSE overall

and (iii) worst RMSE overall, and (iv) ARIMA results, applied to the air quality

benchmark, using 14 × 12 h demand features

Model RMSE (� ) MAPE (%) R2

RFR(N¼ 5 n¼ 8) 0.0800 47.4656 �0.2735

KNN(N¼ 8 Euclidean) 0.0772 45.8370 �0.0914

SVR(rbf t¼ 0.01) 0.0680 40.1903 �0.5240

ANN(identity(8 × 10) lbfgs) 0.0655 35.8837 �0.3904

ANN(identity(8 × 10) lbfgs) 0.0655 35.8837 �0.3904

ANN(identity(8 × 25) lbfgs) 0.0666 37.2693 �0.9076

ANN(identity(2 × 10) lbfgs) 0.0672 37.5903 �0.5068

ANN(logistic(8 × 75) adam) 0.1082 60.2676 �2.9964

ARIMA 0.0919 54.5420 �1.2770
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predicting water demand, the method proposed considers a

maximum of two types of features (past demand and a

meteorological variable). For this reason, for the benchmark

tests using the air quality dataset, only two out of the 14 types

of features available were selected: true hourly averaged NOx

concentration in ppb (reference analyzer) and temperature in
�C. The average NOx concentration feature was chosen

because its range is similar to that of a typical water

demand in cubic meters. The data presents some values of

�200, specifically used to avoid implementation errors

associated with missing values. However, knowing that

these are outliers, they are submitted to a filtering routine

described below under ‘Sources of data’. For availability

reasons, this is also the only benchmark that considers

meteorological features, bringing it closer to the real appli-

cations intended for the developed methodology and

program.

For this benchmark the available data allowed more

tests to be made, including tests using weather features,

which have not been evaluated previously. Therefore,

adding to the tests presented in the first benchmark, two

tests using temperature features were also made. Fourteen

temperature features were considered for one test and just

one temperature feature was considered for the other.

Both consider a periodicity of 24 h and 14 demand features.

Table 5 confirms that using a periodicity of 12 hours

brings the best results. It also shows that for this bench-

mark’s database, the best methods are neural networks.

The use of weather features did not bring an improvement

in the performance, and the increase of the periodicity

clearly improves the R2, but not the RMSE or the MAPE%.
Table 5 | Forecasting errors of the best model found with each approach tested for the air qu

Periodicity (h) Features Model

24 Demand (3) ANN(ident

24 Demand (14) ANN(ident

24 Demand (70) ANN(ident

12 Demand (14) ANN(ident

48 Demand (14) ANN(ident

168 Demand (14) ANN(relu(

24 Demand (14), Temperature (14) SVR(linear

24 Demand (14), Temperature (1) ANN(relu(

s://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
The best models in each method are shown in Table 6.

This table allows us to conclude that for this benchmark

the R2 achieved are particularly low. This suggests that train-

ing the models with the objective of maximizing R2 would

probably bring better overall results, supported by the fact

that some models produce forecasts with a much better R2

with little prejudice to the RMSE (third and fourth entries

in Table 5). However, the RMSE results are approximately

those observed previously. In this benchmark, it is notable

that the range between the best and the worst models’

results is less than 40% of the worst RMSE. As before,

machine learning methods proved to find better solutions

than the ARIMA. Figure 5 illustrates the best machine learn-

ing model (ANN identity(8 × 10) lbfgs) in comparison with

the ARIMA for the air quality benchmark. The ARIMA

model shows a tendency to overestimate the real demand.
ality dataset

RMSE (� ) MAPE (%) R2

ity(2 × 75) sgd) 0.0705 34.9673 �3.4301

ity(2 × 25) adam) 0.0723 35.4680 �0.0730

ity(8 × 10) lbfgs) 0.0664 44.9123 0.0571

ity(8 × 10) lbfgs) 0.0655 35.8837 �0.3904

ity(8 × 25) lbfgs) 0.0884 51.4168 0.1180

2 × 10) adam) 0.0770 30.4780 0.5630

t¼ 0.01) 0.1157 37.7114 0.0338

2 × 10) adam) 0.1134 36.0354 �0.3135



Figure 5 | Air quality benchmark. Data observed in the last 2 days and the forecasts given

by the ARIMA and ANN(identity(8 × 10) lbfgs) models.

Figure 6 | WD2 data of Water Utility 1. Normalized water consumption observed in the
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The benchmark tests allowed the conclusion that the

developed algorithms, specifically the machine learning strat-

egies, are capable of producing predictions based on the

previous observations and existing patterns in the data. In

most cases, the machine learning methods can produce

more accurate forecasts than ARIMA, which is a standard

method often used in forecasting. However, for different data-

sets, the best forecasts are often produced by different models.

For this reason, it is always important to test different

methods and models when a new database is being analyzed.
Figure 7 | WD4 data of Water Utility 1. Normalized water consumption observed in the

last 2 days. Forecasts given by the ARIMA and ANN(relu(8 × 25) lbfgs) models.

last 2 days. Forecasts given by the ARIMA and ANN(identity(8 × 10) lbfgs)

models.
APPLYING THE MACHINE LEARNING ALGORITHMS
TO WATER SUPPLY SYSTEMS

The models previously described are applied to three data-

bases provided by two Portuguese water utilities. Both

companies store their data in similar ways. The cumulative

amount of water that passes through any node of its network

is saved, meaning the water demand in a determined period

is the difference between the cumulative data observed at

the extremities of that interval. The data was provided in

raw, requiring a filtering step.

Sources of data

The first water utility – Water Utility 1 – is located in the

north part of Portugal and is responsible for the water
om https://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
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collection, treatment and distribution in an area of more

than 2,500 km2 serving more than 1.5 million people. This

company provided data concerning four points of its net-

work, but due to the errors found, only two are used in

this work – WD2 and WD4. Visual representations of the

WD2 and WD4 data (the last 48 hours) can be seen in

Figures 6 and 7, respectively. The WD2 and WD4 datasets

correspond to dates between 21/09/2012 @ 00:00 and

05/07/2013 @ 23:00 in an hourly frequency (total: 6,912
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observations). From those, 96.875% were used in training

(6,696 observations, 279 days) and 3.125% were used in test-

ing (216 observations, 9 days). After the filtering process, the

WD2 and WD4 datasets were normalized from the ranges

[0; 34,67] and [0; 97,71] to the interval [0, 1] (m3/h).

The second real data comes from a water utility located

in central Portugal –Water Utility 2 – responsible for supply-

ing water to over 20,000 customers. This company provided

data referent to its entire network but with an evident lack of

data in some points. In other points of the network, the

existent data shows excessive errors. For this reason, only

the data of one point of the network (consumption for the

Ançã region) will be considered to train the models. The

last 48 h of this dataset are represented in Figure 8. The col-

lected data, from 1 September 2015 to 18 December 2016,

was provided in flow rates measured in time intervals of 1

hour (total: 8,448 observations). All the 15 months were

used. The dataset was divided into 96.875% for training

and 3.125% for validation/testing, corresponding to 8,184

observations (341 days) for training and 264 (11 days) for

validation/testing. The Water Utility 2 dataset was normal-

ized from the range [0; 106] to the interval [0, 1] (m3/h).

The observation of the data given by both companies

allows a few problems to be identified regarding either the

presence of outliers or the absence of data. All the values

that did not fall in the range between the average and a

margin of 3× the standard deviation were considered as out-

liers. Therefore, all values that lay above or under the
Figure 8 | Water Utility 2 data. Normalized water consumption observed in the last 2

days. Forecasts given by the ARIMA and ANN(identity(2 × 10) lbfgs) models.

s://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
boundaries were assigned to the outliers. When no values

were found at any given instant, the algorithm assigned

the overall average to those instances. A second iteration

of this process is applied to reduce the impact of the

errors detected before the first iteration. After the correction

of all outliers and missing values, a normalization is applied,

having as reference the corresponding maximum value.

Therefore, each variable becomes dimensionless and conse-

quently has the same relative importance.

Results for Water Utility 1

The 99 designed models were evaluated according to 11

approaches, including one considering clustering, two con-

sidering temperature history and two considering rain

occurrence history.

The results obtained by the best model for each period-

icity and features approach are presented in Table 7. The

12 h periodicity gives the best RMSE (the objective function)

by a small margin but also presents the worst R2 and the

third worst MAPE%. However, because the fitting process

is performed using the RMSE, this metric must be

considered when comparing the models’ performance.

Therefore, the best model is the ANN(identity(8 × 10)

lbfgs) with a periodicity of 12 h and 14 demand features.

Increasing the periodicity or decreasing the number of fea-

tures in the forecasts worsens their RMSE results.

Although it is predictable that the number of features

increases the quality of the machine learning model, it was

expected that a periodicity of 24 h would produce a better

forecast than the 12 h. However, observing the data rep-

resented in Figure 6, it can be seen that this ANN model

can predict the water demands quite well, with a smaller

error than the ARIMA method. Concerning the weather fea-

tures, using temperature or rain occurrence features

presents the same results for the three error measures,

suggesting a high correlation between the temperature and

the occurrence of rain in any specific period. However,

using fewer weather features seems to bring benefits to the

forecasts when considering the RMSE. When considering

the MAPE error, the use of weather input is beneficial, the

models that consider one feature of weather being the

best. Consequently, in these results, it is not clear if it is advi-

sable or not to use weather features. The best models are



Table 7 | Forecasting errors of the best model found with each approach using the WD2 database of Water Utility 1

Periodicity (h) Features Model RMSE (� ) MAPE (%) R2

24 Demand (3) ANN(identity(8 × 10) lbfgs) 0.0669 11.1843 0.7582

24 Demand (14) ANN(relu(2 × 75) lbfgs) 0.0554 10.0918 0.8534

24 Demand (70) ANN(identity(8 × 25) lbfgs) 0.0561 9.7884 0.8609

12 Demand (14) ANN(identity(8 × 10) lbfgs) 0.0532 10.8467 0.7331

48 Demand (14) ANN(identity(8 × 10) lbfgs) 0.0605 10.7018 0.8322

168 Demand (14) ANN(relu(2 × 25) adam) 0.0590 12.0670 0.8700

24 Demand, using clustering (14) ANN(identity(5 × 10) lbfgs) 0.0624 11.2067 0.8040

24 Demand (14), Temperature (14) ANN(relu(5 × 10) lbfgs) 0.0684 10.2677 0.8564

24 Demand (14), Temperature (1) ANN(relu(5 × 10) lbfgs) 0.0678 9.5399 0.8567

24 Demand (14), Rain Occurrence (14) ANN(relu(5 × 10) lbfgs) 0.0684 10.2677 0.8564

24 Demand (14), Rain Occurrence (1) ANN(relu(5 × 10) lbfgs) 0.0678 9.5399 0.8567
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neural networks with the LBFGS learning algorithm with

identity or rectified linear unit activation functions.

In Table 8 the best results obtained by each method are

presented, considering no weather features and 14 registries

of past water demand with a 12 h periodicity. A deeper look

considering all metrics reveals that the KNN models’ per-

formance has a clear tendency toward improving with the

number of neighbors. The results show no significant differ-

ence between the weight functions tested, although the

results are slightly better when using the Euclidean distance.

The SVR method is less dependent on the tolerance used,

since changing that parameter has an insignificant impact

on any metric, across all approaches. The selection of the

kernel appears to be specific to each approach, since no
Table 8 | Models that achieved the (i) best RMSE per family, (ii) best three RMSE overall

and (iii) worst RMSE overall, and (iv) ARIMA results, applied to the WD2 data-

base of Water Utility 1, using 14 × 12 h demand features

Model RMSE (� ) MAPE (%) R2

RFR(N¼ 8 n¼ 8) 0.0594 11.1305 0.6854

KNN(N¼ 8 uniform) 0.0556 10.8876 0.7150

SVR(linear t¼ 0.01) 0.0543 11.4832 0.6552

ANN(identity(8 × 10) lbfgs) 0.0532 10.8467 0.7331

ANN(identity(8 × 10) lbfgs) 0.0532 10.8467 0.7331

ANN(identity(2 × 25) lbfgs) 0.0533 10.9579 0.7194

ANN(identity(8 × 25) lbfgs) 0.0536 10.6897 0.7220

ANN(logistic(5 × 10) sgd) 0.1677 48.3851 �832.8060

ARIMA 0.0644 10.8487 0.8390

om https://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
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particular kernel is consistently the best solution. At the

same time, no particular kernel presents particularly bad

results. Nonetheless, the kernel has a larger importance in

the forecasts than the tolerance. Concerning the RFR

models, expanding the size of the forest (number of trees)

has a positive impact on the quality of the forecasts. The

same can be said about the number of required samples at

each split. RFR (N¼ 8 n¼ 8) is the best RFR in most

approaches. The worst 12 ANN models use SGD, and of

those, nine use the logistic activation function. The 12 best

ANN models use the LBFGS learning algorithm and none

of them uses the logistic activation function. Therefore, it

is advised not to use the SGD and logistic in comparison

to the LBFGS. The shape of the network has a smaller

importance in the outcome of the forecasts, but smaller net-

works seem to result in better performance. All methods

presented better forecasts than the ARIMA (considering

RMSE). Figure 6 presents the forecasts made by the

ARIMA and ANN(identity(8 × 10) lbfgs) models in this

dataset.

When forecasting the water demand in the second sub-

network (Table 9), the best results are found for a

periodicity of 24 h and 14 demand features. This result is

expected, although it is different from the result of the pre-

vious subnetwork, indicating a model dependence of the

case study. In this case, the use of 14 weather features

seems to be better than the case of using just one, but

worse than the case that does not use this feature when com-

paring using the RMSE. If the R2 criterion is taken into



Table 9 | Forecasting errors of the best model found with each approach using the WD4 database of Water Utility 1

Periodicity (h) Features Model RMSE (�) MAPE (%) R2

24 Demand (3) ANN(identity(5 × 25) sgd) 0.0762 12.7028 0.8226

24 Demand (14) ANN(relu(8 × 25) lbfgs) 0.0473 7.8511 0.9229

24 Demand (70) ANN(identity(2 × 25) lbfgs) 0.0546 8.9986 0.9080

12 Demand (14) ANN(identity(8 × 10) lbfgs) 0.0490 8.5004 0.8143

48 Demand (14) ANN(relu(5 × 25) lbfgs) 0.0575 9.5678 0.8995

168 Demand (14) ANN(identity(2 × 25) lbfgs) 0.0610 10.2320 0.8980

24 Demand, using clustering (14) ANN(identity(8 × 10) sgd) 0.0590 10.1124 0.8937

24 Demand (14), Temperature (14) ANN(identity(8 × 10) lbfgs) 0.0523 7.8589 0.9271

24 Demand (14), Temperature (1) ANN(relu(2 × 10) lbfgs) 0.0530 8.0717 0.9240

24 Demand (14), Rain Occurrence (14) ANN(identity(8 × 10) lbfgs) 0.0523 7.8589 0.9271

24 Demand (14), Rain Occurrence (1) ANN(relu(2 × 10) lbfgs) 0.0530 8.0717 0.9240
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account, the result using 14 weather features is the best.

This fact highlights the influence of the selected error

measures. The ANN models continue to present the best

performances.

Analyzing the individual models, one can confirm the

tendency previously observed. The best models found with

this dataset show slightly better results than those found

using WD2. By comparing Table 10 with Table 8, one can

also observe that the best models seem independent of the

dataset used. Namely, using the Euclidean weight function

in KNN models with eight neighbors, the rectifier or identity

activation functions combined with LBFGS learning algor-

ithm in ANN models and eight estimators with eight

samples in each split in RFR models consistently presents
Table 10 | Models that achieved the (i) best RMSE per family, (ii) best three RMSE overall

and (iii) worst RMSE overall, and (iv) ARIMA results, applied to the WD4 data-

base of Water Utility 1, using 14 × 24 h demand features

Model RMSE (� ) MAPE (%) R2

RFR(N¼ 5 n¼ 2) 0.0623 9.6819 0.8799

KNN(N¼ 8 Euclidean) 0.0681 10.4101 0.8548

SVR(rbf t¼ 0.001) 0.0574 9.2291 0.8814

ANN(relu(8 × 25) lbfgs) 0.0473 7.8511 0.9229

ANN(relu(8 × 25) lbfgs) 0.0473 7.8511 0.9229

ANN(relu(5 × 10) lbfgs) 0.0474 8.0949 0.9293

ANN(relu(5 × 25) lbfgs) 0.0483 8.4529 0.9101

ANN(relu(5 × 10) sgd) 0.2359 40.1780 �79.0492

ARIMA 0.0417 8.5338 0.8659

s://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
good forecasts. For this case, the ARIMA presents slightly

better RMSE than machine learning methods. However, the

best ANN presents a much better MAPE% and R2 with

little prejudice of the RMSE. Figure 7 shows the forecasts

made by ANN(relu(8 × 25) lbfgs) and the ARIMA models.
Results for Water Utility 2

A similar analysis can be made for the second dataset. Gen-

erically, the forecasting errors RMSE and MAPE% found for

this dataset are better than those found for Water Utility 1,

while the R2 drops, as seen in Table 11 in comparison to

Tables 7 and 9. The use of 14 samples of 24 h presents the

best RMSE and MAPE% results. The use of clusters in the

forecasts does not bring better forecasts, whichever the data-

set, but occasionally results in a better correlation between

the forecasts and the observations. The use of similar days

to train the models results in a more correctly identified pat-

tern, but also results in fewer examples available for training,

possibly resulting in fewer iterations and incomplete

training.

The best models of each family of methods are presented

in Table 12. Surprisingly, the SVR methods did not present

identical results to those obtained previously. However,

note that the results obtained by the different methods

have a smaller range than those observed using the previous

datasets. The best model and the ARIMA’s forecasts are rep-

resented in Figure 8.



Table 11 | Forecasting errors of the best model found with each approach using the Water Utility 2 database

Periodicity (h) Features Model RMSE (� ) MAPE (%) R2

24 Demand (3) KNN(N¼ 8 uniform) 0.0315 9.3134 0.7067

24 Demand (14) ANN(identity(2 × 10) lbfgs) 0.0228 7.0477 0.7532

24 Demand (70) ANN(identity(5 × 75) lbfgs) 0.0268 8.6002 0.6626

12 Demand (14) ANN(identity(2 × 25) lbfgs) 0.0242 7.8026 0.6314

48 Demand (14) ANN(relu(2 × 10) lbfgs) 0.0276 8.2274 0.7314

168 Demand (14) ANN(relu(2 × 10) lbfgs) 0.0340 10.117 0.6920

24 Demand, using clustering (14) ANN(identity(8 × 10) lbfgs) 0.0266 7.9235 0.7420

Table 12 | Models that achieved the (i) best RMSE per family, (ii) best three RMSE overall

and (iii) worst RMSE overall, and (iv) ARIMA results, applied to the Water Utility

2 database, using 14 × 24 h demand features

Model RMSE (� ) MAPE (%) R2

RFR(N¼ 8 n¼ 8) 0.0264 8.1820 0.6849

KNN(N¼ 8 Euclidean) 0.0273 8.2914 0.6450

SVR(linear t¼ 0.001) 0.0578 23.9645 �0.5905

ANN(identity(2 × 10) lbfgs) 0.0228 7.0477 0.7532

ANN(identity(2 × 10) lbfgs) 0.0228 7.0477 0.7532

ANN(identity(5 × 25) lbfgs) 0.0239 7.3169 0.7338

ANN(identity(5 × 10) lbfgs) 0.0242 7.4216 0.7385

ANN(logistic(5 × 75) adam) 0.0814 32.2616 �1.1143

ARIMA 0.0452 8.6048 0.5784
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Results for the weighted parallel forecasting (WPF)

strategy

Considering the results previously discussed and those found

in the literature, one can assess which model configurations

and forecasting techniques might present the best results.

Instead of designing a model presumed to accomplish good

results across different databases, it is possible to conceive a

pool of models and approaches, the combination of which out-

performs each individual model. The analysis made so far

shows that the bestmodels should respect the following criteria:

• 24 h forecast window;

• Use ∼2 weeks of previous water demand observations as

input;

• When configuring ANN:

○ LBFGS learning algorithm;

○ Rectifier or identity activation function;

○ Small networks;
om https://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
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• When configuring KNN:

○ Euclidean weight function;

○ Eight neighbors;

• When configuring RFR:

○ Eight trees per forest;

○ Eight or more samples at each split.

The new pool of models being tested is composed of four

RFR, three KNN, three SVR and 12 ANN. The RFR models

have five or eight trees per forest and two or eight minimum

samples per split. The KNN models use the Euclidean dis-

tance weight function for seven, eight or nine neighbors

(refining the previous numbers of neighbors tested). The

SVR uses the three kernels tested so far, with the tolerance

of 0.01. The ANN uses the LBFGS learning algorithm with

identity or rectifier activation functions, with the 10 or 25

neurons distributed by two, five or eight layers.

For the WPF strategy evaluation, the WD2 and WD4

datasets correspond to dates between 21/09/2012 @ 00:00

and 31/07/2013 @ 23:00 in an hourly frequency (total:

7,536 observations). From those, 95.541% were used in

training (7,200 observations, 300 days), 2.229% were used

in validating (168 observations, 7 days) and another

2.229% were used in testing (168 observations, 7 days).

The Water Utility 2 dataset (consumption in the Ançã

region) corresponds to dates between 01/01/2015 @ 00:00

and 31/12/2015 @ 23:00 in an hourly frequency (total:

8,760 observations). From those, 96.164% were used in

training (8,424 observations, 351 days), 1.912% were used

in validating (168 observations, 7 days) and another

1.912% were used in testing (168 observations, 7 days).

Table 13 lists the results obtained by the models whose

output is used as a part of the weighted average forecast in



Table 13 | Results obtained using the weighted parallel forecasting (WPF) methodology when applied to Water Utilities 1 (WD2 and WD4) and 2 (Ancã)

Water utility

Validation set

Verification

Test set

Methodology Weight ME (� ) RMSE (� ) MAPE (%) R2 Wi * ME ME (� ) RMSE (� ) MAPE (%) R2

1 (WD4) SVR(poly tol¼ 0.01) 0.2614 �0.0031 0.0566 8.1080 0.9189 �0.0008 0.0206 0.0936 20.8734 0.6241
SVR(poly tol¼ 0.01) 0.2614 �0.0031 0.0566 8.1080 0.9189 �0.0008 0.0206 0.0936 20.8734 0.6241
SVR(poly tol¼ 0.01) 0.2614 �0.0031 0.0566 8.1080 0.9189 �0.0008 0.0206 0.0936 20.8734 0.6241
ANN(identity(10, 10, 10, 10, 10) lbfgs) 0.0589 0.0127 0.0516 8.2754 0.9379 0.0007 �0.0113 0.0627 8.8844 0.8757
ANN(identity(10, 10, 10, 10, 10) lbfgs) 0.0589 0.0127 0.0516 8.2754 0.9379 0.0007 �0.0113 0.0627 8.8844 0.8757
ANN(identity(25, 25, 25, 25, 25) lbfgs) 0.0980 0.0099 0.0524 7.5083 0.9364 0.0010 0.004 0.0607 8.7404 0.8863
WPF 1.0000 0.0001 0.0534 7.7827 0.9279 0.0000 0.0153 0.0817 17.6447 0.7234

1 (WD2) ANN(relu(25, 25, 25, 25, 25) lbfgs) 0.0884 �0.0051 0.0649 10.9174 0.8864 �0.0005 0.011 0.0727 9.6134 0.8537
ANN(relu(25, 25, 25, 25, 25) lbfgs) 0.0884 �0.0051 0.0649 10.9174 0.8864 �0.0005 0.011 0.0727 9.6134 0.8537
ANN(relu(25, 25, 25, 25, 25) lbfgs) 0.0884 �0.0051 0.0649 10.9174 0.8864 �0.0005 0.011 0.0727 9.6134 0.8537
ANN(identity(25, 25) lbfgs) 0.2449 0.0019 0.0674 10.7613 0.8793 0.0005 �0.0099 0.0781 11.852 0.7586
ANN(identity(25, 25) lbfgs) 0.2449 0.0019 0.0674 10.7613 0.8793 0.0005 �0.0099 0.0781 11.852 0.7586
ANN(identity(25, 25) lbfgs) 0.2449 0.0019 0.0674 10.7613 0.8793 0.0005 �0.0099 0.0781 11.852 0.7586
WPF 1.0000 �0.0001 0.0657 10.5017 0.8839 0.0000 � 0.0044 0.0741 10.5901 0.8024

2 (ANCÃ) KNN(N¼ 7 weight¼ distance) 0.0577 �0.0060 0.0289 4.9720 0.9143 �0.0003 �0.0131 0.0649 10.1623 0.5099
KNN(N¼ 7 weight¼ distance) 0.0577 �0.0060 0.0289 4.9720 0.9143 �0.0003 �0.0131 0.0649 10.1623 0.5099
KNN(N¼ 7 weight¼ distance) 0.0577 �0.0060 0.0289 4.9720 0.9143 �0.0003 �0.0131 0.0649 10.1623 0.5099
ANN(identity(10, 10) lbfgs) 0.1850 0.0016 0.0301 5.3043 0.9093 0.0003 �0.0026 0.0526 8.4021 0.556
ANN(identity(10, 10) lbfgs) 0.1850 0.0016 0.0301 5.3043 0.9093 0.0003 �0.0026 0.0526 8.4021 0.556
RFR(N¼ 5 n¼ 2) 0.4569 0.0010 0.0319 5.1740 0.9086 0.0005 �0.004 0.0504 8.1469 0.553
WPF 1.0000 �0.0003 0.0274 4.6724 0.9260 0.0000 �0.0051 0.0523 8.2916 0.5777

The results obtained by the models used for the weighted average are also presented.
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the two datasets and their corresponding weights. The

weights are calculated during the validation of the models.

The forecasting errors listed in Table 13 were found in the

validation and testing phase. It should be noticed that the

testing set of Water Utility 2 is a difficult set to forecast

because it includes the Christmas season.

For the validation set, the proposed parallel method-

ology results in a significant improvement in ME for all

cases. However, this strategy presents a slight decrease in

MAPE% and R2 for the WD2. This fact is expected taking

into account that ME was the metric used for the calculation

of the weights. The parallel strategy also improved the fore-

casting results in the testing set for WD2 considering the ME

metric. However, for the other examples, the same was not

observed.

Although the WPF methodology is interesting and can

improve the forecast of a water time series, it has some
Figure 10 | WD4 database of Water Utility 1. Water consumption observed in the last 2 days.

Figure 9 | WD2 database of Water Utility 1. Water consumption observed in the last 2 days. F

om https://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
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limitations and drawbacks. For the case of WD4, only the

SVR(poly tol¼ 0.01) model, which obtained poor forecasts

for the testing set (MAPE¼∼20%), presented ME< 0.

Therefore, this model was automatically used, and the

results obtained with the WPF were affected by this poor

forecast. Generically, it is safe to use the presented parallel

methodology, assuming the models used in the parallel com-

putations satisfy a set of pre-requisites relative to their

expected performance.

Figure 9 represents a 24 h demand forecast made by the

WPF, ANN(relu(2 × 10) lbfgs) and RFR(N¼ 5 n¼ 2) models

for 2 days of the WD2 in Water Utility 1. Here, it can be

observed that the WPF forecast is always a weighted interp-

olation of the available techniques, being a balanced

solution.

Figure 10 represents the demand of the last days of the

testing set of the WD4 in Water Utility 1, and the respective
Forecasts given by the WPF, ANN(relu(5 × 25) lbfgs) and ANN(relu(2 × 25) lbfgs) models.

orecasts given by the WPF, ANN(relu(2 × 10) lbfgs) and RFR(N¼ 5 n¼ 2) models.
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forecasts using the WPF, ANN(relu(5 × 25) lbfgs) and

ANN(relu(2 × 25) lbfgs) models. The overestimated fore-

casted values of the ME< 0 selected model (the SVR) are

responsible for the bad forecast of the WPF method in the

0–5 h period of day 4. However, they are also responsible

for the good forecast for the 17–23 h period, where the

ME> 0 models behave worse. Therefore, the WPF method

(indicated as ‘Forecast’ in Figure 10) is a compromise

between the best models, being a balance between the

ME< 0 and ME> 0 best models.
CONCLUSIONS

Developing and applying forecasting algorithms may result in

a cost reduction of 18% or more (Cembrano et al. ;

Salomons et al. ; Kang et al. ). This work presents

machine learning water demand forecasting models capable

of producing accurate predictions when compared with tra-

ditional strategies. It was found to be reliable when applied

to water demand real data, provided there were no significant

anomalies of the data used during training. The error metrics

here discussed support the evidence that the forecasts made

are similar to the real observation, independently of the

time of day.

Nonetheless, some remarks on the use of the presented

algorithms arise. Although it was found that the same group

of models consistently gives the best results, it is not guaran-

teed that for new data those models will maintain their

performance. When applying the algorithm in different data-

sets, a large set of models must be trained in order to infer the

most appropriate models. If applied to real cases where new

data is constantly being acquired, it is important that the

models are retrained on a regular basis. Note that in the

latter case, the introduction of new data could mean that

the accuracy of the models that were previously found to be

the most adequate for that specific network is affected. Con-

sequently, the suggested periodic retraining must include the

larger set of models. Additionally, the proposed weighted par-

allel forecasting strategy proved its usefulness and can be a

good compromise when using several models.

It should also be noted that the evaluation of the fore-

casting techniques is highly dependent on the metric used.

The technique that shows the lowest RMSE is not
s://iwaponline.com/jh/article-pdf/20/6/1343/505687/jh0201343.pdf
necessarily the one that presents the lowest MAPE or the

R2 closest to 1. Consequently, the metric used for both train-

ing, testing and comparison of techniques should be wisely

chosen. In this work, the RMSE metric was selected. How-

ever, the results of MAPE and R2 were also discussed.

According to the tests made, machine learning methods

should be chosen over traditional time series analysis.

Although the ARIMA often provides results better than

those achieved by some machine learning models, most of

the time there is at least one machine learning model that

outperforms ARIMA (about 18% in RMSE and 8% in

MAPE%). Therefore, both strategies should be tested in

order to assess their real value in the case being studied.
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