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resumo As doenças psiquiátricas constituem um leque de doenças com 
enormes incapacidades associadas que podem progredir com o 
atraso do diagnóstico e com a idade. Muitos são os estudos que 
procuram dar resposta à fisiopatologia destas doenças, não só 
com objetivo de compreender melhor estas e solidificar 
conhecimentos prévios mas também para que a descoberta de 
biomarcadores se torne alcançável.  
 
A Esquizofrenia é uma das doenças psiquiátricas para as quais o 
diagnóstico não se rege por deteção de biomarcadores mas sim 
um conjunto orientações padrão, sintomas e historial clínico, o 
que possibilita por si só o atraso no diagnóstico. Um diagnóstico 
correto e precoce é, por definição, sinónimo de melhor qualidade 
de vida para o paciente. Desta forma, torna-se imperativo a 
descoberta de biomarcadores que possam diagnosticar e 
monitorizar a doença.  
 
A espetrometria de massa é uma das técnicas mais aplicadas 
para pesquisa de biomarcadores. Particularmente, a análise 
proteómica faz uso dessa técnica para identificar e quantificar 
proteínas diferencialmente expressas a partir de diferentes 
amostras biológicas. Desta forma, o presente trabalho permite 
elucidar de que forma estes resultados podem ser obtidos e, ao 
mesmo tempo, avaliar se uma análise diferente da convencional, 
onde o foco reside nos péptidos, permite obter outras 
informações que auxiliem a estratificação dos indivíduos. Além 
disto, com objetivo de salientar potencias biomarcadores 
associados à Esquizofrenia, foi conduzido um trabalho de revisão 
sistemática que traduz os resultados dos últimos 10 anos de 
pesquisa neste âmbito.  
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abstract Psychiatric disorders are characterized as a range of diseases with 
associated disabilities that can progress with the delay of diagnosis 
and with age.  Many studies aim to improve the knowledge about the 
pathophysiology of these disorders, not only with the goal of a better 
understanding and to refine the previous knowledge but also with the 
hope that biomarkers discovery become reachable.  
 
Schizophrenia is one of psychiatric disorders for which the diagnosis 
is not defined through biomarkers detection but use, instead, a set of 
standard guidelines, symptoms and clinical history that enables the 
delay of diagnosis. The correct and early diagnosis is, by definition, 
a synonym of a better quality of life for the patient. Therefore, 
biomarkers discovery capable to diagnose and monitor the disease 
are becoming imperative.  
    
Mass Spectrometry is one of the most applied techniques in 
biomarkers discovery. Particularly, proteomic analysis uses that 
technique toward the identification and quantification of differentially 
expressed proteins from different biological samples. Thus, the 
present work aim to elucidate how these results can be achieved and, 
at the same time, it will evaluate if a non-conventional analysis, where 
peptides are the focus, is capable to provide other information that 
can be useful for patient stratification. Moreover, in an attempt to 
highlight potential biomarkers linked to Schizophrenia, a systematic 
review work was performed and the results will elucidate the last 10 
years of research in this scope.  
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1.Introduction 

1.1 Neuropsychiatric disorders 

 Neuropsychiatric disorders (ND) comprise a wide range of mental health disorders 

that can severely impact the well-being of those affected [1, 2]. These disorders can affect 

people of different ages and be a main cause of morbidity even in childhood and 

adolescence [3, 4]. For the current year, there is a mental disorder expected to be the 

second leading cause of disability worldwide by the World Health Organization (WHO), 

which is concerning since ND are also a main risk factor for suicide [1, 3]. The effects of 

these disorders on public health are profoundly negative, and for many reasons, the 

progress in understanding ND has been slow [1, 5]. 

 In 2010, it was estimated that 15% of the worlds' population, more than a billion 

people, lived with some type of disability, a 5% increase comparing with previous 

estimations by the WHO. In the same year, mental and substance use disorders were 

considered the leading cause of Years Lived with Disability (YLDs), being ND responsible for 

31% of YLDs and responsible for 12% of Disability Adjusted Life Years (DALYs) as well. 

Furthermore, the global burden was established at 10.4%, with mental disorders global 

direct and indirect cost estimated at US$2.5 trillion, expected to double in 10 years [1, 6-

8]. 

 Nowadays, it is estimated that more than 450 million people worldwide live with 

some form of mental illness, and only in the EU the number of those affected per year is 

around 165million people [7, 9]. Moreover, one-quarter of the world's population will be 

manifesting at least one mental disorder at some period of their life [7, 10]. 

 Some of these well represented disabling brain conditions, such as autism spectrum 

disorder, major depressive disorder, bipolar disorder, and schizophrenia, can affect a 

significant number of individuals and start early in life [11-13]. Schizophrenia (SCZ) and 

bipolar disorder (BD) are categorized as chronic and severe ND, and both comprise the top 

ten of these disabilities [1, 14, 15]. Additionally, individuals suffering from either SCZ or BD 

have a mortality rate higher than the general population, 2-3 times [14]. Besides these 
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values, health costs are also substantial. In the year of 2010, a study that included 19 major 

brain disorders concluded that the total cost of these disorders in Europe was 

approximately 800 billion EURO, with a cost of 93.3 billion EURO estimated for SCZ [16].   

 Despite the underpinnings that the field of neurosciences tries to elucidate, the 

biggest concern with ND is that a continuous lack of knowledge about these disorders 

makes impossible the establishment of clinical diagnostic tests. The diagnosis, which is 

based on behavioral markers thorough self-patient report of symptoms, history, and 

clinical observations, may not be well recognized and, for that reason, not treated properly 

and at the right time [11, 12, 17]. Thus, the search for biomarkers (BMK) seems to be the 

method of choice since it can reflect the main changes of the central nervous system (CNS) 

diseases, namely the dysregulation of molecular expression profiles, and it could hopefully 

improve the misdiagnosis of patients [3]. 

1.1.1 Schizophrenia (SCZ) 

1.1.1.1 Description and Diagnosis of SCZ 

 Schizophrenia (SCZ), a complex and severe psychiatric disorder, is characterized by 

being a highly heterogeneous disorder that affects about 1% of the world's population. The 

genetic component and environmental factors are usually referred to as two contributors 

of SCZ, a disorder that can affect people of all ages [3, 18, 19]. According to recent data of 

a systematic review study from Charlson et al. (2018), contrary to other studies, no sex 

differences were found when compared to gender prevalence [20]. People living with this 

disorder have an average life expectancy significantly reduced (~) approximately 20 years 

lower than the general population. Nonetheless, the mortality rates were high across all 

age groups [10, 20]. The establishment of an SCZ diagnosis can be separated by several 

years since the first symptoms of the disease and evidences have suggested that early 

detection can improve the quality of life of patients with psychotic illness [21]. 

 The diagnosis is based on standard guidelines and behavioral reports, clinical 

history, and observations of patients. The standard criteria are employed by systematic 

classifications, namely the Diagnostic and Statistical Manual of Mental Disorders, edition 5 
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(DSM-V), and the International Classification of Diseases, version 10 (ICD-10), published by 

the American Psychiatric Association and WHO, respectively [3, 22, 23]. SCZ is defined as a 

spectrum disorder. Hence, there is a wide variation in type, severity, and symptoms that 

people can experience, which does not make easier the clinicians' evaluations, and based 

on current diagnosis it can lead to misdiagnosis [22, 24]. 

1.1.1.2 Symptoms and treatment of SCZ 

 The symptoms, which arise during adolescence or early adulthood and help to 

identify the disease at earliest stages, are defined as: (i) positive, such as hallucinations, 

delusions and thought disorder; (ii) negative, as poverty of speech or alogia, lack of 

motivation and social withdrawal; (iii) and cognitive as attentional and learning deficits. 

While positive symptoms can stabilize over the course of the illness, negative symptoms 

tend to increase and become chronic along with cognitive impairments [25-27]. 

 Psychotic symptoms, which integrate positive symptoms, are a defining feature of 

SCZ spectrum disorders, and their onset defines the first episode of psychosis [11, 15]. 

Nevertheless, it also occurs in other psychiatric illnesses, such as mood disorders, and can 

be observed in other medical conditions [28]. Despite being considered a main feature for 

the onset and diagnosis of SCZ, psychotic disorders are characterized for an earlier stage, a 

prepsychotic stage termed as prodrome, which is usually missed by clinicians [29, 30]. 

 The treatment of patients is usually based on antipsychotic medication. After the 

first successfully employed drug, chlorpromazine, in the treatment of SCZ individuals' 

positive symptoms in 1952, more drugs were introduced in the following years. The drugs 

were updated through time and were divided into two categories: first-generation 

antipsychotics (FGAs), also known as typical, and second-generation antipsychotics (SGAs), 

formerly known as atypical antipsychotics [31, 32]. Apart from one atypical drug, they act 

as antagonists of D2 receptor (D2R), a mechanism that was found to be associated with SCZ 

in the '60s and turn out to be a general target of all antipsychotics (APs) since the first 

discovery [31, 33]. However, their activity is also directed to other brain receptors, namely 

other dopamine receptor subtypes and at serotonin, histamine, acetylcholine and 

norepinephrine receptors [34]. 



Introduction 
 
 

 

5 
 

 The dopaminergic dysfunction is a common pathway that seems to lead to 

psychosis in SCZ patients, and for that reason, the patients treated with the first AP 

medication only had improvement of positive symptoms. Additionally, these patients had 

severe side effects when the occupancy of D2 receptors was above approximately 80%, 

also called extrapyramidal side effects (EPS) [31, 33]. The atypical medication had its design 

based on clozapine profile, the first SGA that was characterized by lower D2 affinity and 

more ability to block the serotonin 5-HT2A receptor. Despite the low propensity or absence 

of EPS and the effectiveness to treat patients that do not respond to other treatments, 

approximately 30%, clozapine has adverse effects as agranulocytosis, and thus, it is not 

used as a first-line medication [31, 32]. SGA emerged not only with an associated 

improvement of EPS, but also an improvement in negative symptoms and cognitive 

impairments, both responsible for global functioning and outcome disturbs [35, 36]. 

However, the improvement of negative symptoms by SGA when compared to FGA remains 

controversial. While some studies have demonstrated that SGAs outperform FGAs in 

negative symptoms, others failed [31, 32]. 

 A recent follow-up study of Corigliano et. al. 2018, showed that the administration 

of long-acting-injectable antipsychotics in patients with SCZ that previously received a 

consistent dose of oral medication improved negative symptoms, especially in individuals 

recently diagnosis (5 years or less of illness), a period believed to be crucial for effective 

treatment [36]. Moreover, as reported in another study, it was found that long-acting 

injectable second-generation antipsychotics (LAI-SGA) can be an important strategy to 

prevent suicide, and more advantages are being described and highlighting this kind of 

treatment as a powerful strategy to increase patients benefits from treatment [36]. The 

administration of LAI allows close monitoring of the treatment, with the potential to reduce 

relapse, rehospitalization, nonadherence, and mortality linked to SCZ [37]. Yet, they remain 

underutilized and mainly applied in patients with chronic SCZ in order to maintain 

treatment adherence [38]. 

For clinical use, the antipsychotic medication should be approved by regulator entities as 

Food and Drug Administration (FDA), and thus, not all developed AP shown below on the 
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timeline (Figure 1) were accepted. Contrary to what occurred to FGA, SGA did not follow 

the same trend and end up with more success, with only the antipsychotic amisulpride not 

being recognized with FDA approval [39, 40].   

 Recently, following the mechanism of action of aripiprazol as a partial agonist of 

D2R, brexpiprazole and cariprazine were also approved by FDA. However, the affinity for 

D2R, as well as for serotonin receptors (5-HTRs), is different [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Timeline of antipsychotic drugs. Typical antipsychotic agents are placed on top of the timeline and 
atypical antipsychotic agents are shown below.  Adapted from Shin, J.K., et al. 2011 [42]. 

 

 

 The rates of comorbid illnesses associated with SCZ are high, being patients usually 

linked to an increase of metabolic syndrome (MetS) risk, fixed on 32.5% in SCZ patients in 

a study of Mitchell et al. 2013 [20]. Dysregulated glucose homeostasis and body mass index 

are common findings in SCZ patients, and despite being found on drug naïve patients, it is 
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also frequently associated with antipsychotic medication side effects, especially when 

three or more psychotropic medications are prescribed to a patient [43, 44]. Hence, the 

cost of treatment can be expensive since psychotropic medication selected for each patient 

will benefit from add-on pharmacologic prescription for these effects [3]. 

1.1.1.3 Pathophysiology of SCZ 

 Genetic risk factors seem to be shared between ND. Notwithstanding, despite being 

a highly heritable disease, in values between 60-80% as well as highly polygenic, the risk of 

genetic variants is rare [30]. It is generally accepted that the interaction between risk 

factors and neurodevelopment triggers the development of the illness, although the time 

of changes that happen in the brain is controversial. While some evidence of structural 

imaging, as magnetic resonance imaging (MRI), suggests that schizophrenia arises from 

changes in early neurodevelopment, other studies propose that dynamic brain changes 

happen during the onset of psychosis to the transition to active illness. The regions usually 

studied are the prefrontal cortex and hippocampus, as they are found consistently altered 

[18, 45]. However, other brain areas have been studied, such as the anterior cingulate 

cortex, the corpus callosum, and the mediodorsal thalamus [46]. 

 The majority of the studies were performed in brain tissue, mainly at the beginning 

of proteomics. Therefore, it has been reported that changes are notorious between SCZ 

and control brain areas [46, 47]. A decrease in brain volume is one of the findings, which is 

a consequence of the decrement of grey and white matter and can be seen during the time 

of diagnosis. After diagnosis, while white matter deficits can stabilize or even have 

improvements in the course of the illness, grey matter tends to get worse as a loss over 

time progresses. Thus, and supported by twin studies, the white matter may be linked to a 

genetic risk factor for the emergence of SCZ and not to the effects of the illness itself, which 

also supports the idea that an abnormal brain development must have arisen many years 

before the onset [47]. Other structural brain abnormalities reported are the enlarged 

lateral ventricles and the reduction of the prefrontal lobe and medial temporal volumes. 

The underlying pathological processes that could explain the progressive changes are still 
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unknown but may reflect an abnormal brain maturation, anomalies of synaptic plasticity, 

undesirable stress effects, or other environmental factors [45]. 

 Besides brain changes, distinct processes are described as being changed in SCZ 

patients, namely in the onset of the psychosis. This interaction with the anomalous 

neurodevelopment leads to some hypothesis-driven models. One of them is the 

hypothalamic-pituitary-adrenal (HPA) axis signaling dysregulation. Coupled with the 

sympathetic nervous system (SNS), the HPA axis mediates the response to stress exposure, 

which is considered an influencer of many bodily processes. Beyond dysregulation 

associated with the development of physical illness, the core symptoms of SCZ termed as 

"pseudostressors" make these patients exposed to a wide range of psychological stressors. 

Consequently, the secretion of multiple hormones like adrenocorticotropin hormone 

(ACTH), corticotrophin-releasing hormone (CRH), and cortisol can increase. A couple of 

evidences usually seen in these patients, as coronary disease, insulin resistance, and lipid 

abnormalities, have an increment of risk with the prolonged exposure to high levels of 

cortisol [45, 48, 49]. However, cortisol levels can also have an impact on the immune 

system, which is also named as a contributor to the development of SCZ [49]. 

 In SCZ patients, it is often observed an increase of pro-inflammatory cytokines with 

preclinical and clinical literature incidence in IL-6. In the referred context of a lasting stress 

environment, cortisol can switch its important role as an anti-inflammatory hormone to a 

responsible for a chronic inflammatory state, developing by turn the immune system 

glucocorticoid receptor resistant [26, 50, 51]. Nonetheless, the cytokine model of SCZ 

suggests that prenatal or early life period infection and regular inflammation in adulthood 

possibly explains the increase of inflammation in the brain of these individuals [51]. 

 The neurotransmitter signaling of dopamine (DA) and glutamate has also been 

reported as altered in SCZ patients and cytokine dysfunction seems to be linked with it, as 

well [51]. Comparisons between SCZ patients and neuropsychiatric health controls based 

on Positron emission tomography studies (PET) show that dopamine contents are different 

in distinct brain areas. In particular, it is possible to observe a difference in the 

hippocampus, where the dopamine system presents as overactive in SCZ patients [52]. This 
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hypothesis model, characterized as the most enduring, proposes that positive symptoms 

are a result of the increased release of dopamine or hyperactivity and consequently leads 

to an exacerbated activation of the D2 receptor. Additionally, the negative symptoms and 

cognitive impairments can be linked, at least in part, with the reduction of D1 receptor 

activation. The hyperactivity of dopamine is related to the mesolimbic pathway, and the 

hypoactive transmission of dopamine is associated with the mesocortical pathway (Figure 

2), although it is also observed in other brain areas [51, 52]. 

 

 

Figure 2. Four main dopaminergic pathways in the brain. The mesocortical pathway projects from the VTA to 

the cortical regions, especially to the frontal lobes (commonly referred as mesocorticolimbic system). The 
mesolimbic pathway (reward pathway) connects the VTA to the ventrostriatal areas as nucleus accumbens and 
is extended as well to amygdala and hippocampus. The nigrostriatal pathway originates from the SN to the 
dorsal striatum. The tuberoinfindibular pathway is projected from the mediobasal hypothalamus to the 
pituitary gland. Adapted from Shin, J.K., et al 2011 [42] and Sayin, H. 2019 [53]. 
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 In addition to the dopamine approach, the glutamate hypothesis also emerged after 

being observed that an abnormal function of the N-methyl-D-aspartate (NMDA) receptor, 

a major glutamate subtype receptor that consequently causes the dysfunction of 

glutamatergic neurotransmission, induced the typical symptoms of SCZ. NMDAr blockade 

by antagonists causes the reduction of glutamate transmission, which consequently 

induces GABA downregulation and DA hyperactivity in DA neurons and GABAergic cells [50, 

51, 54]. Together with the dopamine hypothesis, it represents the core mechanisms of SCZ. 

Both pathways can be altered by pro-inflammatory cytokines, namely by the facilitation of 

dopaminergic sensitization and by the activation of metabolic enzymes, which have an 

impact on glutamatergic transmission, e.g., via neuroactive metabolites (kynurenic acid) 

that act as endogenous antagonists of NMDA receptor [26, 51]. 

 There are other dysfunctions underlying the pathophysiology of SCZ as the energy 

metabolism (with glycolysis being the central pathway and proteome analysis reports 

reveals a differential expression of glycolytic enzymes), an imbalance that leads to the 

existence of oxidative stress events, and a differentially regulated calcium homeostasis and 

signaling in SCZ patients [18, 46]. 

1.1.1.4 Dopamine and the dopaminergic hypothesis - Dopaminergic neuronal 

systems and receptors 

 Several studies have linked the abnormalities in neurotransmitter systems to SCZ 

symptoms [55]. The hyperdopaminergic state conduct to the most influential hypothesis 

about SCZ, which was formulated after the discovery of chlorpromazine antipsychotic 

action (dopamine receptor blockade) and successive drugs studies. Dopamine is a 

neurotransmitter that is mainly produced in the substantia nigra (SN) and ventral 

tegmental area (VTA) of the brain, and it is divided into different pathways (like 

nigrostriatal, mesolimbic and mesocortical), which are projected from these brain areas 

[39, 52]. Despite the focus on D2 receptor in SCZ, dopamine receptors or G-protein coupled 

receptors are divided into two subfamilies, D1-family (D1 and D5) and D2-family (D2, D3, 

and D4) receptors. While D1-family is positively coupled to G protein subunit, D2-family 
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has an inhibitory effect on adenylyl cyclase (AC) by being coupled to the inhibitory G protein 

subunit [39].  

 As the glutamate hypothesis, the dopamine hypothesis was initially based on 

several indirect sources and evidence that confirmed DA's in similar symptoms to those 

seen in SCZ, namely in psychotic symptoms. Drug studies had confirmed that some 

compounds, named psychostimulants drugs (PS) and specifically amphetamines, can 

increase the levels of dopamine and, consequently, closely resembling the psychotic 

symptoms that characterize SCZ, while others drugs showed to reduce it by being able to 

deplete dopamine levels [34, 56]. It was only in the 1970s that the dopamine hypothesis 

was finally crystallized with observations that the clinical efficacy of AP drugs was directly 

linked to their affinity for dopamine receptors [34, 57]. In the following years, postmortem 

studies suggested that neurological changes in the disease were due to an increase of 

dopamine levels in the striatum and also to an increase in D2 receptor density [34]. Despite 

the anatomical detail and biochemical specificity that postmortem studies can provide, the 

confounding effects of AP medication cannot be controlled, which makes it plausible that 

some of the findings can be considered iatrogenic, as the majority of postmortem brain 

tissues observed come from patients that have been treated [34, 58]. The increase of D2 

receptors levels was then confirmed by studies of postmortem brain tissue and PET of drug 

naïve SCZ patients and later supported by the fact that all AP drugs have D2-blocking 

properties [39]. In vivo imaging evidence, such as PET and Single Photon Emission 

Computed Tomography (SPECT), have been clarifying the dopaminergic function in the 

brain and refined the dopaminergic hypothesis of SCZ [34]. Moreover, alterations in D2 

receptors are supported by genetics findings where notable associations of Dopamine D2 

receptor (DRD2) gene as being linked to the etiology and treatment of SCZ [59].  

 

1.1.2 Bipolar disorder (BD) 

1.1.2.1 Description and diagnosis of BD 

 Bipolar disorder (BD), as suggested by the name, is characterized by mood 

alterations, activity levels, and a broader experience between patients, being categorized 
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as a "spectrum" disorder. This disorder includes two types: BD-I and BD-II. The first 

characterized for full and recurrent manic episodes (mood elevation) while the other for 

the cyclical presence of hypo (a slight and less prolonged form of manic episodes, a milder 

form of mania)/manic and depressive episodes [60, 61]. The space between these states, 

depression or mania, is a period of neutral mood state and function, also called euthymia 

[61]. 

 Typically, BD emerges during adolescence, and the diagnosis relies on the evidence 

of both acute major depressive and manic episodes, which are distinct. More than a 

depressive mood, reduced concentration, loss of confidence and energy, diminished 

interest or pleasure, and frequent thoughts of death are symptoms that characterize the 

depression state, while extreme peaks of energy, increased self-esteem, and social activity 

and decreased need for sleep are generally the symptoms observed in manic episodes [61, 

62]. 

 This manic-depressive illness with a shift in the mood can affect daily activities 

performance and the duration of episodes in each mood change between patients, being 

more emphasized the depressive episodes that had its contribution to the morbidity of the 

illness [61, 63]. 

 BD has a worldwide prevalence between 1 and 3%, and evidences from different 

sources suggest that BD is a progressive disease with high morbidity and mortality 

associated [61, 63]. Even when compared with other serious mental illnesses, the 

significant risk of metabolic syndrome contributes to these rates [44]. Cognitive 

impairments are also a central feature in this disorder and can start before its onset, with 

cognitive functions being more accentuated in advanced stages. Additionally, with the 

increase of mood episodes, the intervals between them tend to be shorter, which also 

reflects the less response to the medication [61, 63]. Either way, these clinical outcomes 

are associated with BD progression [64].  
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1.1.2.2 Pathophysiology of BD 

 As for most psychiatric disorders, the etiology of BD is still unknown, but the main 

possibilities that can contribute to this disorder follow the same line that SCZ, although 

with slight differences. For example, chronic stressors are present in both phases of BD and, 

as previously referred, they contribute to the HPA axis dysregulation with a consequent 

increase of cortisol levels [65]. Also related to the HPA axis, heat shock proteins (HSP) have 

been studied and associated with its abnormal function since they are involved in cellular 

homeostasis under stress conditions (stress-responsive proteins). One of the HSP actions is 

to modulate the conformation of the glucocorticoid receptor and, thus, regulate its 

function. Alterations in these systems contribute to depression and mood change 

symptoms, which are extremely related to BD [66, 67]. 

 Changes in the immune system, namely in the release of molecules that contribute 

to the inflammatory status, are also found among studies with BD individuals. Altered levels 

of cytokines as IL-6 are reported in these studies, yet in a minor extent than in SCZ 

individuals [65, 68]. Additionally, a study of Kangguang et al. (2020) found that the 

symptomatic offspring of parents with BD have increased IL-6 levels when compared to the 

asymptomatic offspring [62]. 

 Studies of neuroimaging show the presence of changes in brain structures like in 

the prefrontal cortex, hippocampus, and amygdala, although there are no reliable results 

among them [63, 69]. Correlated with these studies, the most abundant neurotrophin in 

CNS, brain-derived neurotrophic factor (BNDF), is found with an increased expression on 

these brain areas that are associated with some of the mood symptoms changing in BD and 

also associated with its severity. BDNF is altered either in the manic and depression phase 

and is not the only neurotrophin altered [63, 68]. In both conditions, but with decreased 

levels, neurotrophin 3 (3-NT) is found elevated in BD patients. This family of neurotrophic 

factors that had its role in neurogenesis and in the function and survival of neurons also 

exhibit influence on synaptic plasticity, which is largely associated with neuropsychiatric 

disorders. Many processes described as altered in BD, as calcium signaling and oxidative 
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phosphorylation, are important in synaptic plasticity, and usually related proteins are found 

changed [63, 70]. 

 As reported in data bases, despite the established differences between SCZ and BD, 

they also share deficits at different levels, such as neurophysiology and brain anatomy, with 

common and unique genetic features linked to each disease [71]. 

 These serious mental illnesses, composing two of the most commons ND [71], 

continue to demand in-depth knowledge in order to improve patients' diagnosis and clinical 

outcomes. Despite the efforts to elucidate the mechanisms or etiology behind 

neuropsychiatric disorders, they remain elusive and not clarified yet. Thus, the need to 

search and find reliable biomarkers is becoming imperative.  

1.2 The search for biomarkers - omics approaches 

 To improve the knowledge about these complex disorders, "omics" approaches 

have risen to shed light on disease pathogenesis and to support a reliable way of prediction 

and diagnoses for ND [27, 72]. With the fields of "omics", as those who's comprise the 

central dogma of life, namely genomics, transcriptomics, and proteomics, but not only, the 

etiology of diseases can be predicted or well understood. The term omics was coined in the 

nineteen years and has become powerful in the last decades, with omics data about 

biological molecules revealing specific results and impacting biological progress. With a 

huge potential associated, high-throughput omics technology can be a solution to predict 

clinical endpoints, being the ultimate goal of improving patient care and outcome. 

However, the translation from research to a successful clinical omics-based test is far from 

the potential of these approaches [73, 74]. 

 The search for candidate biomarkers is the output of "omics" studies. According to 

the National Institute of Health (NIH), a biological marker, generally just termed as a 

biomarker, is a "characteristic that is objectively measured and evaluated as an indicator 

of normal biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention" [75]. The search for biomarkers in neuropsychiatric disorders 

started with brain tissue and CSF; nonetheless, the whole body concept emerged and was 
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established since the integration of the brain and a variety of physiological conditions are 

reflected in the contents of body fluids. Being one example the "fight-or-flight reflex" [15, 

76]. This link created between the brain and the periphery enhance the search for 

biomarkers in body fluids that could be easily available, like blood (see attached systematic 

review under submission) [3]. 

 The study about the brain and the associated disorders is complex since it presents 

a high degree of inter- and intra-cellular heterogeneity and a related proteome due to 

different cell types and cellular networks. The CNS proteome can change even with minimal 

alterations in the normal course of its development and/or function [77, 78]. It means that 

in order to understand the alterations and the mechanism related to a disorder, we should 

analyze qualitative and quantitative changes in the complete set of proteins that are 

encoded by an organism genome at different or specific points in time [15, 79]. 

 Proteomics can be a powerful tool since it can give a real-time evaluation of an 

individual state, health versus disease, and, in an ideal way, predict the susceptibility to 

develop a specific mental disorder [4, 77]. Hence, in order to improve the knowledge about 

the range of neuropsychiatric disorders, namely, to elucidate the underlying mechanism of 

disease, neuroproteomics is the scientific field that aims to study the proteome of CNS [77, 

79]. 

 There are some advantages to analyze proteins instead of genome and 

transcriptome. When compared to the genome, the dynamic and the possibility of not only 

identify but also quantify the proteins makes the proteomic approach more reliable to 

evaluate psychiatric diseases at different levels (diagnosis, prognosis, and treatment 

prediction). Moreover, proteins-based tests can offer the nearest view of the 

pathophysiological process behind the ND since their expression and function are the result 

of what happens during post-transcriptional (e.g., alternative mRNA splicing) and pos-

translational events (e.g., phosphorylation, glycosylation, oxidation) as well as the 

interactions between them [3, 4, 80].  
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1.2.1 The Quest for Biomarkers in Neuroscience 

 Psychiatric disorders are known for being multifactorial and heterogeneous in 

expression. Thus, no single molecular event would be enough to explain what happens and 

what is behind these disorders [26, 81]. Additionally to the high complexity and 

heterogeneity of those affected, there is a concern in biomarker identification within 

neuropsychiatric disorders since more than the overlap of symptoms, many candidate 

biomarkers for a specific ND can present similar patterns with other psychiatric diseases. 

The lack of knowledge about these disorders' etiology explains why the progress in 

understanding them has been slow [21, 82]. 

 The discovery of biomarkers in neuroscience is challenging but may help to reveal 

disease-related alterations and, consequently, improve clinical settings as predict 

diagnosis, even before the onset, patient stratification, and monitoring of disease 

progression and treatment [72]. Genomics studies have not answered these questions, and 

more than be able to find deoxyribose nucleic acid (DNA) variations and differences in gene 

expression, quantitative and qualitative comparison of proteomes is required to 

understand a complex disease as SCZ [46]. Proteomics analysis allows to unravel complex 

proteins networks and signal transduction pathways altered in the disease [46]. 

 Early and correct interventions will improve the outcome of the patients as the 

switch of medication and either disease diagnosis is common. Therefore, it would increase 

the quality of life of individuals and reduce the burden associated with psychiatric 

disorders, as from misdiagnosis, high rates of hospitalization, and treatment expenses, 

which have a huge impact on health costs [3, 83, 84]. 

 Replace the interview-based methodology and, in a better way, stratify patients into 

distinct subgroups, would improve the efficacy of the treatment, and also contribute to a 

decrease of side effects that are highly responsible for the burden [3, 85]. 

 Around half of the patients with psychiatric disorders do not respond to the 

medication prescribed, and this commonly "trial and error" or "hit-and-trial" 

procedure/method of treatment make the clinical efficiency weak [3]. Only in SCZ, 
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treatment is still ineffective to approximately 40% of individuals, and some of them end up 

quitting the treatment or having severe side effects [86]. The characterization of protein 

abnormalities by proteomic approach would, therefore, allow the identification of 

biomarkers that may direct to the use of personalized medicine in mental disorders [48]. 

Personalized medicine (Figure 3) “will address both health and disease and impact on 

predisposition, screening, diagnosis, prognosis, pharmacogenomics, and surveillance” [87]. 

Instead of selecting treatment based on phenotype, this emerging approach relies on 

interindividual biological variability that is predominant among these individuals, who 

share similar symptoms that can respond differently to the treatment. In order to optimize 

the therapeutic approach, an effectiveness-safety balance can be mainly achieved through 

the information of genomics and proteomics and deep knowledge of an individual’s own 

biology [88, 89]. 

 In 2015, 28% or 1 in 4 of the approved novel new drugs (NNDs) by FDA were 

personalized medicines, and this growing list is only the tip of the iceberg. Strikingly, two 

of the 13 newly approved personalized medicines include Aristada and Rexulti, used in the 

treatment of schizophrenia when patients' treatment is influenced by the CYP2D6 

biomarker status [90]. This gene, highly polymorphic, can explain why patients are poor 

metabolizers (PMs), extensive metabolizers (EMs), and ultrarapid metabolizers (UMs), 

which is explained by its involvement in the metabolism of many important drugs, as 

numerous psychotropic drugs.  Further, CYP2D6 may contribute to SCZ susceptibility, and 

it has been suggested that it is involved in the biotransformation of neurotransmitters 

usually linked to SCZ, as dopamine and serotonin [91].  

 If we look back, in 2005 only 5% of the new therapies accepted were personalized 

medicines. A big change began in 2014 and continue until the present since more than 20% 

of these drugs started to incorporate the approved NNDs [90]. 

 According to the WHO, there is one mental disorder expected to be the second 

leading cause of disability worldwide for the year 2020 [3]. Hence, the need to put into 

practice this new paradigm is becoming urgent. 
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Figure 3. Comparison of the old and new paradigm of medical care as distinguished by the use of 

biomarkers for improved patient care. In conventional medical practice, a diagnosis based on symptoms 
and neuropsychological testing will define the treatment of a patient. The selection of the wrong drug and 
its switch during the course of disease, contribute to the disease severity and life disability.  Though, 
biomarker-based approaches have the potential to change this old paradigm. The use of biomarkers can 
have an impact on the field of psychiatry by being used in specific and sensitive biochemical tests to follow 
the traditional questionnaires. The increase of biomarkers tests will allow a massive knowledge of 
biopatterns in patients that can explain the molecular differences between health and disease state.  This, 
in line with large-scale clinical trials by pharmaceutical companies to improve medical compounds, will help 
to stratify patients and select the correct treatment. Thus, it will place as quickly as possible the proper 
patients on the proper treatments trough a more efficient personalized medicine. Adapted from Guest, 
Guest and Martins-de-Souza. 2016 [3] 

 
 
 

1.2.2 Biological markers in neuropsychiatric disorders 

 Proteomic profiling of ND started with postmortem brain tissue; however, it can 

only be accessed during autopsies, not being useful for disease diagnosis as not able to be 

used in longitudinal studies. Additionally, some common variables and confounding factors 

as postmortem interval and pH range, which can impact the integrity of this tissue, namely, 
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will contribute to protein degradation, as well as medication and age, consist of the 

drawbacks that cannot be avoided [15, 92]. 

 Regardless of the disorder been generated in the brain, the composition of blood 

proteins as other bioactive molecules will reflect those changes since the brain is involved 

in physiological body functions. This increase concept is known as "fight or flight reflex", 

making the circulating blood and other biological fluids the sample of choice to analyze 

protein expression during illness and identify plausible biomarkers [46, 93]. The use of brain 

tissue is still an option, but the number of studies in body fluids starts to gain some field 

and to provide evidences that it can be a reliable choice in biomarkers research [27, 46]. 

 Biofluids are suitable samples that can drive to the use of user-friendly tests, being 

the majority of them of easy access [21, 93]. Based on it, they can be categorized as non-

invasive (saliva, sweat, urine, and tears), minimally invasive (blood), and invasive 

(cerebrospinal fluid). 

 Due to close proximity to the brain, cerebrospinal fluid (CSF) was considered 

relevant in the study of brain disorders. This body fluid is rich in molecular entities that can 

be either the product or the mediator of brain function. Despite the dynamic of CSF, the 

invasive procedure of sample acquisition by lumbar punction and the minimal amount of 

material collected limits CSF analyses [15, 72]. As longitudinal studies are essential to 

elucidate the development trajectories of psychiatric disorders and require different 

sample collection times, it is important to select more readily accessible and meaningful 

samples [15]. 

 The view of psychiatric disorders as whole-body diseases made the studies with 

plasma and serum samples increase over the last years [93]. Besides protein content being 

significantly richer than what is found in CSF, approximately 500 ml of CSF passes every day 

to circulating blood [94, 95]. Additionally, dynamic changes can be studied in this type of 

sample, which can be collected in reasonable amounts and by easy collection [72]. Despite 

the inherent complexity, a consequence of a high dynamic range, some strategies can be 

applied to circumventing them [72]. However, some studies also found differences in this 

highly represented protein content, which can be an advantage when analyzing them. In a 
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review of Chan et al. 2011, which included serum/plasma samples analyzed by liquid-

chromatography-mass spectrometry (LC-MS), they were able to differentiate individuals 

with SCZ from controls and suggested that the majority of potential biomarkers are related 

to the immune system [84]. Current data indicate that the AP treatment leads to a decrease 

of cytokines levels; however, if it is a consequence of antipsychotic medication or not, it 

needs to be elucidated since contradictory findings of an increase and decrease of 

inflammatory molecules after treatment have been reported [82]. When serum is used 

instead of plasma, it means that a coagulation process had occurred. This process of 

proteolytic events can lead to undesirable variability as an incorrect inference of protein 

content or concentration. Nevertheless, serum samples are not excluded from studies [95, 

96]. 

1.3 Mass Spectrometry 

 Since its discovery, mass spectrometry-based technologies have been improved 

and, in the last decades, became a well-suited method for biomarkers discovery, 

supporting the expansion of the proteomics field [94, 95]. The success of MS in proteomics 

relies on its specificity and sensitivity (due to advances in LC-MS/MS), giving answers to 

different proposes [97]. Proteomics tools make possible the qualitative and quantitative, 

either relative or absolute, analyzes of proteins in different and complex biological samples 

[96, 98]. 

 These large-scale approaches have the capability to reveal unprecedented insights 

into the composition, structure, and function of proteins, as well as being able to give 

information about protein-protein interactions (PPIs) and post-translational modifications 

(PTMs) modifications [97, 98]. The knowledge about protein expression and modifications, 

especially in biological processes, can make the bridge to a better understanding of the 

underlying mechanisms behind physiologic versus pathological cases [77].  
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1.3.1 Basic principles of MS 

 Proteomics analysis is a multistep process for which improvement of sample 

preparation, state-of-the-art mass spectrometry instrumentation, and bioinformatic 

handling data are required to treat the amount of data that can be revealed [98]. The huge 

majority of proteomics experiments use two essential types of data, provided for the mass 

spectrometer, to identify either proteins or peptides. 

 At first instance, a precursor ion is identified by its mass-to-charge ratio (m/z), which 

is informative to the molecular mass of the compound being analyzed [95, 99]. This involves 

three steps: i) molecules are converted to a charged state by the ionization source; ii) ion 

separation on the basis of their m/z values through the mass analyzer (via magnetic or 

electric fields); iii) detection of the separated ions as electric charge obtaining signals 

proportional to the abundance of each species [100, 101]. 

 Second, the use of tandem mass spectrometry (MS/MS) can be feasibly added to 

generate an MS spectrum. In this MS/MS mode, a precursor ion is selected in the first mass 

analyzer and subjected to collision-induced dissociation to generate, in the second-stage 

mass analyzer, a fragment ion pattern. The analysis of this fragmentation pattern can infer 

the amino acid sequence of the peptide ion but, most importantly, can be used to identify 

the peptide [95, 100, 102].  

1.3.2 The basic components of a mass spectrometer 

 Of the seven major components that represent the mass spectrometer, shown in 

Figure 4, three of them are considered the main features of this equipment: an ionization 

source, a mass analyzer, and a detector [77, 102]. Electrospray ionization (ESI) and matrix-

assisted laser desorption/ionization are the most common ionization sources. Then, the 

separation of ions according to their m/z in mass analyzer can happen through the use of 

quadrupoles or a time-of-flight (TOF) analyzers, among other [77]. When ions arrive at the 

detector, the kinetic energy is converted into a signal current, and results are displayed as 

spectra, recorded by the data system [77, 102, 103]. 
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Figure 4. A block diagram of Mass Spectrometer components. The ion source, mass analyzer, and the 

detector are maintained under vacuum. The instrument control system monitors and controls all parts of 
the instrument, and the produced data are recorded by the data system. Adapted from Kinter and Sherman. 
2005. [102] 

 

1.3.3 "Omics" approaches and mass spectrometry 

 The measurement of differences between physiological states is one of the most 

important tasks in proteomics [104]. In the beginning, successes in proteomics approaches 

were supported by two-dimensional electrophoresis (2-DE), with complex proteins 

mixtures being separated by its molecular charge (isoelectric point) and mass (molecular 

weight) in a first and second dimension, respectively, and proteins abundances based on 

stained protein spots intensities, followed by MS analysis for protein identification [15, 105, 

106]. Although improvements were made, other methodologies emerged to sustain some 

of the previous technicial drawbacks, namely to face the dynamic range limitations and the 

unsuitable separation and detection of some protein subtypes, as membrane proteins [15, 

98]. 

 Nowadays, bottom-up proteomics techniques are the most widespread proteomic 

workflows [97]. Considered as a robust, fast, large-scale, and high-throughput analysis of 

the proteome, this approach follows a peptide-protein inference logic, where the sample 

preparation begins with proteins being extracted and digested by a specific protease, such 

as (most commonly) trypsin, in opposition to the use of large intact proteins [97, 107]. The 

resulting peptides are then separated by reversed-phase liquid chromatography (RP-LC), 
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and before entering the mass spectrometer, peptides are ionized by electrospray ionization 

[107]. Following this and during the gas phase, peptides ions are fragmented (ex: collision-

induced dissociation, CID) to generate MS/MS spectra. Then, mass-spectrometry specific 

computational pipelines are used for the characterization of eluted peptides [97]. 

 Due to advances in LC-MS/MS techniques, quantitative proteomics can be classified 

into two major approaches: labeling and label-free techniques [104, 106, 108]. Labeled 

methods are based on light/heavy peptide intensities and involve different isotope 

labeling, including chemical, enzymatic, or metabolic, as the most widely used strategies 

[108]. However, they are expensive and cannot be easily applied to all types of samples 

[106]. Regarded as a reliable, versatile, and cost effective alternative approach (to labeled 

quantitation), label-free quantitative proteomics has gained significant interest in recent 

years [106, 108]. Face to one of its advantages, a high degree of reproducibility is important 

in this technique since the unlimited number of samples that can be compared are analyzed 

separately. Hence, it is important to minimize the differences across analysis, which can be 

achieved through the control of various sources, such as sample preparation process, 

analytical equipment performance, and low data quality [96]. The quantification is based 

on MS/MS spectra (spectral counting) or peak intensity measurement (area under the 

curve) if liquid chromatography is coupled with mass spectrometry [79, 108].  

1.3.4 Data Acquisition Methods: DDA and DIA 

 Distinct acquisition methods are employed for bottom-up approaches, which are 

dependent on the methodology of the study and the type of instrument available. If the 

aim is to discover and analyze the proteome within a sample, then it can be selected a data-

dependent or data-independent method. On the other hand, if the goal of the study is 

based on the type of hypothesis-driven, then it will require a targeted approach. The way 

of precursors are selected for fragmentation and how these ion signals are recorded make 

the distinction between them [81]. 

 One of the LC-MS/MS strategy's main aims for protein identification, also called 

shotgun, is based on a data-dependent acquisition mode (DDA, also known as information-

dependent acquisition- IDA). Regarding the DDA method (Figure 5), the mass spectra of all 



Introduction 
 
 

 

24 
 

precursor ions present in a sample at a specific time are recorded at the MS1 level, followed 

by the selection of the most intense ones to be fragmented, resulting in the MS/MS (MS2) 

spectra [79]. Thus, and as the name suggest, there is a previous selection of data before 

protein identification, with peptide quantification information being reached at MS1 level 

and peptide identification achieved at MS2 level. Within many instrument configurations, 

DDA proteomics is dominated by quadrupole-Orbitrap analyzers. However, time-of-flight 

instruments are also promising [97]. As a consequence of the stochastic nature of the 

approach, the DDA method also has its limitations. It tends to be biased, with low 

reproducibility between multiple samples, being significantly affected by sample 

complexity and dynamic range of analytes [81, 109].  

 

 

Figure 5.  In DDA mode, the first stage of a tandem MS is defined by the recording of all coeluting peptide 

ions (upper panel). Then, the most intense precursor ions will be fragmented and analyzed in the second 
stage of tandem MS (bottom panel). Adapted from [109] 

 

 To overcome some of the previous limitations, data-independent acquisition (DIA) 

methods were introduced and have gained some relevance since it can identify peptides 
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undetected in a typical DDA experiment [106, 109]. As opposed to DDA, DIA methods select 

the precursor mass range, which is then divided into determined m/z ranges. The 

information within an isolation window, for all detected precursor ions, will be represented 

by tandem MS Data. Peptides of interest within this data are then identified by tandem MS 

spectral libraries [81]. The DIA method can work either as a discovery or pseudo-targeted 

approach and is generally divided into two distinct groups: (i) those for which 

fragmentation spectra of the entire mass range are simultaneously acquired (full m/z 

range), and (ii) those that use sequentially isolated windows to scan the m/z range (selected 

m/z range) and thus, reducing the complexity of the fragmentation spectra [81, 106, 109]. 

Despite the fact that it surpasses the DDA method with some methods advantages, DIA 

also has some issues such as the limited dynamic range of 4 to 5 orders [97]. 

 SCZ biomarker literature shows that several DIA workflows have been used, and 

they can be distinguished by the way data is collected and analyzed [81]. Sequential 

Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) is one DIA emerging 

strategy that has also gained special attention [110].  

1.3.5 Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH) 

 The SWATH-MS approach was developed in 2012 and is a method that allies 

quantitative consistency and accuracy to a greater proteome coverage capability. 

Additionally, it is a well-suited method for projects that involve a large number of samples 

and to evaluate specific PTMs and PPIs, being a good choice for projects that, as biomarker 

studies, require this type of properties [109, 110]. 

 The particular innovation of this method is based on the proposed data extraction 

methodology. In a single sample injection, the acquisition of the fragmentation spectra of 

all precursor ions relies on a defined precursor retention time (RT) and m/z range, which 

generates complex fragment ion maps. A targeted data extraction strategy is applied to the 

resulting maps in order to obtain quantitative information of particular peptides, according 

to the peptide query parameters (PQPs) established previously in spectral libraries. The 

fragmentation spectra from all precursor ions are accomplished by small and sequential 

windows of defined size. The confidently identified peptides are the ones that will allow for 
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protein quantification, which will be determined through fragment ions intensities (MS2 

intensity), also named as peak groups, corresponding to each previously identified peptide. 

Both quadrupole and TOF mass analyzers perform this SWATH-MS data acquisition that 

typically works with 25Da and a set of 32 overlapping windows covering a total range 

between 400 m/z and 1200 m/z, with a total cycle time being achieved with approximately 

~3.3 s [109-111]. 

 Currently, the SWATH acquisition method can be adjusted for the specific set of 

samples in analysis through the possibility to select variable precursor isolation windows. 

It consequently improves the in-set characterization of densely populated mass ranges by 

reducing the number of selected precursor ions to be fragmented [109].  

 

 

 

Figure 6. SWATH data acquisition method for MS/MS spectra in a QqTOF system. After ionization, some 

precursors of a selected mass range are isolated in the first quadrupole (Q1), and then they will enter the 
collision chamber (q2). Sequential windows of defined size will cover the entire mass range and the 
confident peptides/proteins are quantified through the fragments ions intensities (MS2 intensity).  Adapted 
from [109] 

 

1.4 Big data 

 Medical and Science fields are well related to the generation of Big Data, and 

psychiatry is no exception [112]. Omics biotechnologies lead to the extraction of knowledge 

from high volume, varied and complex data, intrinsic to Data science, which is known as 

“big data” [113, 114]. New purposes, clinical and researches applications, have emerged in 

the proteomics field, in part due to high throughput technologies as MS [112]. Mass 

spectrometry provides many fine details as insights about protein abundance, expression 
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patterns, and PTMs that require the need to work with “big data” [115]. For traditional 

data-processing systems and algorithms, it can be difficult or impossible to process this 

type of data [116]. Nevertheless, the evolution of computational power, open-source tools, 

and scripting languages, such as R and Python, are key revolution developments [113]. In 

addition to univariate analysis, these programs are essential to work with complex 

datasets, which allow us to apply multivariate analysis (MVA) methods [117]. MVA can be 

applied for structural simplification or data reduction and grouping datasets by 

investigating patterns [117, 118]. Two examples of strategies that are used for this are 

principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) 

[117].  

 PCA is a simple MVA technique that allows the reduction of data. This unsupervised 

projection method uses orthogonal transformation and converts the interrelated variables 

of a data set into uncorrelated variables. Thus, based upon variances of the first-mentioned 

variables, a second set of variables is produced, and it can be seen as principal components 

(PCs) that are ranked in a single analysis [117, 118].  

 PLS DA, as opposed to PCA, is a supervised method and the goal of this technique is 

to get a linear regression model through the projection of a predictable variable, matrix Y, 

from a set of independent variables or predictors (matrix X). This is particularly helpful 

when matrix X is characterized by a large set of independent variables [117, 119]. The 

predictive power of this model is obtained through what is called latent variables, extracted 

from the predictors [119].
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2 Aims and objectives 

2.1 Aims 

Proteomics studies have been growing in psychiatry and show that the use of biological 

markers can help to improve the knowledge about this complex disease, schizophrenia, by 

setting the differences in molecular expression profiles between health and disease state. 

Additionally, it could help during the clinical practice, to establish of a correct diagnosis and 

patients’ stratification. Currently, the use of non-invasive samples (or minimally invasive) 

and more user-friendly tests support the urgency to put into practice this approach. 

However, despite the increment of studies, there is still a lack of articles in the literature 

able to reveal common findings between similar studies (same disease, equal or distinct 

samples). 

Consequently, this work aims to expand what is being recognized in the literature through 

a systematic review and meta-analysis by using three specific keywords: Schizophrenia, 

Proteomic*, and Mass Spectrometry. Moreover, since experimental laboratory work was 

not recommended during the COVID-19 lock-down and restriction measures, a data 

analysis was performed. From plasma blood mononuclear cells (PBMCs) of patients with 

schizophrenia and as a complement to previously analyzed data through MS technique, 

three approaches were studied: i) protein centered analysis; ii) peptide centered analysis 

and iii) protein vs peptide centered analysis. From this, the goal was to evaluate if specific 

peptides could improve patient stratification. With peptide centered analysis we confirm 

not only the trends observed through protein centered analysis but we can also analyze 

distinct peptides behavior that point to the presence of different proteoforms.   

2.2 Objectives 

2.2.1 Data analysis- Peptide-centered analysis 

The above aim was accomplished by completing the followings tasks: 

• Proteomics analysis of PBMCs samples from individuals with schizophrenia (First 

Episode Psychosis) compared with matched healthy controls 
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• Summary of peptides that pass the analysis of false discovery rate (FDR)and the 

relative standard deviation (RSD) threshold between groups – statistical analysis of 

the variables. 

• Evaluation and comparison of Univariate Analysis and Multivariate Analysis  

• Summary of proteins based on peptide analysis 

• Differences in proteins and peptides behavior 

• Discussion of results 

 

2.2.2 Systematic review and meta-analysis (attached in annexes) 

The above aim will be accomplished by completing the followings tasks: 

• Literature review of mass spectrometry proteomics studies applied to human 

peripheral fluids in individuals with Schizophrenia 

• Use of PUBMED and Web of Science for the computer-based search  

• The publication of articles must be comprised between the year 2010-2020  

• Data compilation and analysis of the reports 

• Application of eligibility criteria 

• Selection and analysis of articles eligible for systematic review and meta-analysis 

• Summary of biomarker candidates and meta-analysis 

• Integration of information and article writing 
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3 Experimental section1 

3.1 PBMCs samples procedures  

3.1.1 Sample collection 

 A set of twelve blood samples was obtained from six first-episode patients (FEP) and 

six voluntary controls with informed consent and ethical approval of the Faculty of 

Medicine's ethical committee of the University of Coimbra (CE-122/2015). Peripheral blood 

mononuclear cells (PBMCs) were isolated from the blood collected into BD Vacutainer® 

CPT™ mononuclear cell preparation tubes with sodium citrate (BD Biosciences). After 

collection, the PBMC isolation was performed according to the manufacturer’s instruction 

in the Neurochemistry Laboratory of the Hospital of Coimbra under the supervision of 

Doctor Inês Baldeiras. After isolation and prior to processing the PBMC samples were kept 

at -80C. 

3.1.2 Sample preparation 

 All samples were thawed on ice and sonicated on a SONICS Vibracell 750 W (60% 

amplitude, 1 second on 1 second off cycles, for a total of 1 minute of sonication), followed 

by centrifugation at 4 C for 5 minutes at 5,000×g (Eppendorf®). The supernatants were 

collected into 1.5 mL LoBind Microcentrifuge tubes (Eppendorf®) and 50 μL of PBS were 

added to the pellets in each sample tube prior to a second sonication and centrifugation 

step with the same parameters. The new supernatant was combined with the previous. 

3.1.3 Protein Precipitation 

Protein precipitation was performed by the addition of methanol (MeOH LC grade, 4× the 

sample volume), followed by incubation at -80 C and centrifugation for 20 minutes at 

20,000×g at 4C. Supernatants corresponding to the metabolite fraction were collected 

evaporated to dryness in an Eppendorf® Concentrator Plus prior to storage at -80C. A 

volume of 50 µL of Laemmili Sample Buffer (2× concentrated) was added to the pellets and 

sonication at 40% amplitude with 1” on 1” off cycles was performed until total pellet 

dissolution [120]. 



 Experimental section 
 

 
33 

1 – All laboratory experiments were previously performed by Catia Santa or otherwise stated. 
 

 

3.1.4 Protein Quantification 

 Protein quantification was determined for all samples using the GEHealthcare® 2-D 

Quant Kit. The assay was performed according to the manufacturer protocol using bovine 

serum albumin (BSA) as a standard. The absorbance was read at 480 nm on a Microplate 

Spectrophotometer using BioTek® KCJunior Software. By plotting the standard curve (BSA 

standards), protein concentration was determined for each PBMC sample (Supplementary 

Table 1). 

3.1.5 Gel Electrophoresis 

 The volume equivalent to 50 μg of protein from each sample was pipetted into new 

tubes, and a pooled sample for SCZ or control was performed by pooling the volume 

corresponding to 10 µg of proteins of each biological replicate. The pooled samples are 

meant to generate the library of identified proteins (IDA acquisition), while the individual 

samples are meant for the SWATH (relative quantification) analysis. 

 A solution of 0.1 μg/μL of malE-GFP was prepared by diluting the MBP-GFP in 

Laemmili Sample Buffer (2× concentrated), and 10 μL (equivalent to 1 μg of MBP-GFP) were 

added to each sample and pool to be used as an internal standard [121]. Samples were 

denatured in a thermomixer (Eppendorf®) at 95 C for 5 minutes followed by the addition 

of 2 μL of acrylamide per 30 μL of sample for sample alkylation of cysteine residues [122]. 

3.1.6 Short-GeLC 

 In order to perform the short-GeLC technique [122], precast Bio-Rad Gels were 

equilibrated to room temperature, and the required solutions and equipment were 

prepared. The samples were loaded in a 4-20% Mini-PROTEAN® TGX™ Precast Gels (Bio-

Rad) and electrophoretically resolved at 110 V for 22 minutes (instead of the typical 15 

minutes) using a Mini-PROTEAN® Tetra Electrophoresis System (Bio-Rad). A volume of 20 

μL of Sample Buffer was loaded into empty lanes. 
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3.1.7 Gel Staining 

 Proteins were visualized with Colloidal Coomassie Blue G-250 (Thermo Scientific) 

staining [123]. Then, the gels were rinsed with double deionized water (ddH2O) and 

immersed in the staining solution [10% (v/v) of an 85% solution of orthophosphoric acid, 

10% (w/v) ammonium sulfate, 20% (v/v) methanol] to which Coomassie Blue (G-250) 

powder was added. The gels were then placed in a shaker for at least 1h, after which ddH2O 

was used to remove background staining. 

3.1.8 Gel band processing 

 After the gels' background was cleared, each lane was sliced using a scalpel blade 

into three equally sized sections that were then sliced into smaller pieces. Gel pieces were 

then transferred in a defined order into a 96-MW plate with all the necessary wells filled 

with 600 μL of ultra-pure LC grade water [124]. 

 The gel pieces were destained with a destaining solution [50 mM ammonium 

bicarbonate, 30% acetonitrile (ACN)] by shaking in a thermomixer (Comfort, Eppendorf®) 

at 1050 rpm, 25 C for 15 minutes followed by incubation in LC grade water for 10 minutes 

with the same shaking parameters. The process was repeated until no staining was visible 

in gel bands, followed by dehydration of the gel pieces in the Concentrator Plus (Eppendorf) 

at 60 C for 1 hour. 

 After this destaining procedure, 75 μL of porcine trypsin (Roche) solution (0.01 

mg/mL in 10 mM ammonium bicarbonate) were added to each well. The plates were then 

put for 15 minutes at 4 C, then 75 μL of 10 mM ammonium bicarbonate buffer was added 

to each well. The plates stayed at room temperature, in the dark and overnight (≈ 16 hours), 

so tryptic in-gel digestion could occur. After digestion, the tryptic solution was removed 

from each well and transferred to the correct 1.5 mL LoBind Eppendorf tube. The peptides 

were extracted from gel pieces by sequential addition of solutions with an increasing 

concentration of ACN (30%, 50%, and 98%) in 1% formic acid (FA). In between each solution 

addition, the plate was placed in the thermomixer at 1200 rpm, 25 C for 15 minutes, with 

the solutions collected into the same correct tubes on each step. 
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3.1.9 C18 peptide clean up 

 Peptide fractions for SWATH analysis were pooled together, while samples for IDA 

and library generation were kept in separate tubes. The peptide mixtures were 

concentrated on the Concentrator Plus at 60 C until dryness. 

 To perform C18 solid-phase extraction, the samples were resuspended to a final 

volume of 100 μL in a solution of 2% ACN and 1% FA and sonicated on a Sonicator with 

cuphorn (VibraCell 750 watt - Sonics®) at 20% for 2 minutes (1 second on 1 second off 

cycles). The extracted peptides mixtures were desalted using C18 OMIX tips. Firstly, the tip 

column was hydrated with 200 μL of 50% ACN and equilibrated with 300 μL of 2% ACN with 

1% FA. The peptides were loaded into the column five times, followed by a washing step 

with 100 μL of 2% ACN and 1% FA. Peptide elution was achieved with 400 μL of 70% ACN 

and 0.1% FA and the eluates were saved into new 0.5 mL LoBind Microcentrifuge tubes 

(Eppendorf®). The tubes were then concentrated using the Concentrator Plus (Eppendorf®) 

at 60 C until total dryness. All tubes were kept at 4 C until further use.  

 The peptide mixtures were resuspended to 30 μL in a solution of 2% ACN and 0.1% 

FA, and sonicated using the cup-horn at 20% amplitude for 2 minutes (1 second on 1 second 

off cycles). Centrifugation at 14,000×g for 5 minutes (Minispin, Eppendorf®) was 

performed, and supernatants were transferred into appropriate vials for posterior LC-

MS/MS analysis. 

3.2 LC-MS analysis 

3.2.1 LC-MS data acquisition 

 The tryptic peptides were analyzed on a TripleTOF 6600™ mass spectrometer 

(ABSciex®) in two different acquisition modes: IDA of the three peptide fractions of each 

pool (Control and SCZ) for library generation; and SWATH-MS, for each individual sample 

for protein quantification. 

 The peptide mixtures were separated by LC (nanoLC Ultra 2D, Eksigent® on a 

ChromXP™ C18CL reverse phase column (300 μm ID × 15 cm length, 3 μm particles, 120 Å 
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pore size, Eksigent®) at 5 μL/min with a linear gradient of 45 minutes starting at 5% to 30% 

ACN in 0.1% FA and 5% DMSO followed by a column wash and re-equilibration in a total 

run of 66 minutes. Peptides were eluted into the mass spectrometer using an ESI source 

(DuoSpary™ Source, AB Sciex®) with a 25 μm internal diameter (ID) electrode (Eksigent®) 

[122]. 

 For IDA experiments, the mass spectrometer was set to full scanning spectra (350-

1250 m/z) for 250 ms, followed by up to 80 MS/MS scans (100–1500 m/z from a dynamic 

accumulation time – minimum 40 ms for precursor above the intensity threshold of 1000 

counts per second (cps) – in order to maintain a cycle time of 3.5 s). Candidate ions with a 

charge state between +2 and +5 and counts above a minimum threshold of 10 counts per 

second were isolated for fragmentation, and one MS/MS spectrum was collected before 

adding those ions to the exclusion list for 25 seconds (mass spectrometer operated by 

Analyst® TF 1.7, ABSciex®). The rolling collision was used with a collision energy spread of 

5. 

 For the SWATH-MS based experiments, the mass spectrometer was operated in a 

looped product-ion mode, based in [111] with the same chromatographic conditions as 

used as in the IDA acquisition. A set of 168 windows of variable width (containing a m/z of 

1 for the window overlap) was constructed covering the precursor mass range of m/z 350-

1250. A 50 ms survey scan (350-1250 m/z) was acquired at the beginning of each cycle for 

instrument calibration, and SWATH-MS/MS spectra were collected from 100–1500 m/z for 

20 ms resulting in a cycle time of 3.5 s from the precursors ranging from 350 to 1250 m/z. 

The collision energy (CE) for each m/z window was determined considering the appropriate 

collision energy for 2+ ion centered upon this window collision energy spread (CES) was 

also adapted to each m/z window. 

3.3 Data Analysis 

 A specific library of precursor masses and fragment ions was created by combining 

all files from the IDA experiments, and used for subsequent SWATH processing. Peptide 

identification and library generation were performed with ProteinPilot software (v5.1, 
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ABSciex®), using the following parameters: i) search against a database composed by Homo 

Sapiens from SwissProt (release in April 2020) and malE-GFP ii) acrylamide alkylated 

cysteines as fixed modification; iii) trypsin as digestion type; iv) gel-based special focus and 

v) biological modifications. An independent False Discovery Rate (FDR) analysis, using the 

target-decoy approach provided by ProteinPilot™, was used to assess the quality of the 

identifications, and confident identifications were considered when identified proteins 

reached a 5% local FDR [125, 126]. 

 Data processing was performed using SWATH™ processing plug-in for PeakView™ 

(v2.0.01, ABSciex®). After retention time adjustment using the malE-GFP peptides, up to 

180 peptides, with up to 5 fragments each, were chosen per protein, and quantitation was 

attempted for all proteins in the library file that were identified from ProteinPilot™ 

searches. Peptides’ confidence threshold was determined based on an FDR analysis using 

the target-decoy approach, and those that met the 1 % FDR threshold in at least three 

biological replicates were retained, and the peak areas of the target fragment ions of those 

peptides were extracted across the experiments using an extracted-ion chromatogram 

(XIC) window of 5 minutes with 100 ppm XIC width. The proteins' levels were estimated by 

the summation of peptides area identified for the protein, considering those that pass 

through the criteria applied [127]. 

 

Note: Due to the presence of hemolysis, a control sample was excluded of the analysis since 

it displayed a profile completely different when compared with the other samples in 

analysis. In this condition, other blood components proteins will be interfering and masking 

the PBMCs proteins (see Supplementary Figure 1).  



 

38 
 

  

             CHAPTER 4- Results and discussion: 

proteomics data analysis  

  

 

 

 

 

 

 

 

 

 

 

 



 Results and discussion: proteomics data analysis  
 
 

39 
 

4  Statistical Analysis 

 
 By importing the protein and peptides library file, relative protein/peptide 

quantification using quantitation SWATH-MS data was performed in PeakView. Here it is 

obtained a spreadsheet with all the data.  

 Data was exported to spreadsheets where SWATH data is processed (FDR, 

normalization, RSD% threshold). Statistical analysis was applied to evaluate the differences 

between 2 conditions (univariate and multivariate analysis). Here, we used a user-friendly, 

free statistical tool of R program, which will be better explained. A protein and peptide 

centered analyses were performed to analyze and understand if i) there are proteins that 

can be used to address differences between the groups; ii) there are peptides that can be 

used to address differences between the groups, and iii) there are peptides with a distinct 

behavior of the represented protein and how different of the protein they can be. 

4.1 Procedure 

 The resultant spreadsheet (supplementary information file) that drives this work 

has information about proteins and all the peptides used in this identification. For each 

peptide, the values of False Discovery Rate (FDR) can be seen for all of the analyzed 

samples, i.e., for all six samples that represent the group of Schizophrenia and for each of 

the five samples that represent the group of control. This spreadsheet comprises 

information for more than twenty thousand peptides and it was our starting point. From 

here, the first thing to do was to analyze the FDR. The FDR, defined by Benjamini and 

Hochberg in 1995 as “the proportion of the rejected null hypotheses which are erroneously 

rejected” has been used as a criterion to control the proportion of false positives among 

the interesting or significant results [128]. For example, this FDR filtering reduces the 

number of false protein identifications caused by modified peptides. The recent study of 

Boris Bogdanow (2016), shows that it has a huge contribution to the false-positive rate and 

that false positives related to modified peptides have an impact on protein quantification 

and are responsible for incorrect protein expression profiles [129]. Hereupon, we applied 

the FDR cut-off at this point to identify the peptides that have an FDR below 1% in all 
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samples of each group. Only the peptides represented for an FDR<0.01 in at least three 

samples of one of the groups, CTL and SCZ, or both were considered for further analysis, 

which is a few more than six thousand peptides. 

 A new spreadsheet was created with this data, and the area of each peptide was 

calculated. With this aim, the data of ions area were summed for each peptide (see table 

1.), for the different samples in the analysis. The next step allowed the normalization of 

data, being used for this the total ions’ area. With normalization, we will be considering the 

bias and make samples more comparable [130]. To reach this, the area of all peptides was 

summed for each sample and then, the area previously calculated for each peptide (sum of 

ions area) was divided by this total of summed areas. After that, we were able to calculate 

the median, average and standard deviation in the excel spreadsheet for each peptide. 

With these values achieved, we could find the relative standard deviation (RSD), once again 

for each peptide.   
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Table 1. Data of ions area for the different peptides and proteins in the analysis. This table shows two 
peptides of the same protein. Each peptide has the value of m/z for the precursor ion, the number of 
precursor charge, the retention time (RT) and a column with one of the samples in the analysis (CTL45) where 
it is expressed the values used for the sum of areas of each peptide. 

 
Protein Peptide Precursor 

MZ 
Precursor 
charge 

RT CTL45 

      
sp|P35579|MYH9_HUMAN LQQELDDLLVDLDHQR 650.67 3 3.78 23300778 

sp|P35579|MYH9_HUMAN LQQELDDLLVDLDHQR 650.67 3 3.78 2104528 

sp|P35579|MYH9_HUMAN LQQELDDLLVDLDHQR 650.67 3 3.78 766149 

sp|P35579|MYH9_HUMAN LQQELDDLLVDLDHQR 650.67 3 3.78 176946 

sp|P35579|MYH9_HUMAN LQQELDDLLVDLDHQR 650.67 3 3.78 1047546 

sp|P35579|MYH9_HUMAN VISGVLQLGNIVFK 743.95 2 49.91 4406107 

sp|P35579|MYH9_HUMAN VISGVLQLGNIVFK 743.95 2 49.91 2533416 

sp|P35579|MYH9_HUMAN VISGVLQLGNIVFK 743.95 2 49.91 2291115 

sp|P35579|MYH9_HUMAN VISGVLQLGNIVFK 743.95 2 49.91 - 

sp|P35579|MYH9_HUMAN VISGVLQLGNIVFK 743.95 2 49.91 549619 

 

  

 The RSD is represented by the formula: s / |x̄| * 100, where “s” is the value of 

sample standard deviation and |x̄| the value in module of the sample mean, which is 

expressed as a percentage and thus, it is multiplied by 100. This variable, a type of 

coefficient of variation, let us know if the data are tightly grouped around the mean. When 

compared to the mean of the data in the analysis, the RSD will show us if the data are more 

spread out or close to each other. After the calculation of RSD, a threshold of RSD < 30% 

was applied for all the peptides in the analysis. We could notice that most of the peptides 

that did not pass through this criterion were the peptides that had not significance for one 

of the groups. Next, a spreadsheet with the peptides that pass through the previous criteria 

applied as FDR, normalization, and RSD was created. In this new spreadsheet, we calculated 

or determined the fold change (FC) value for each peptide (more than three hundred and 

fifty). The fold change will describe the ratio between the cohort group (SCZ) and the 

healthy ones (CTL). Thus, we will be able to see the difference in protein expression 
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between these two groups. To do so, we used the mean values of each group (which 

express the areas detected for each sample) to achieve the FC for each peptide. Below 

(table 2), an example is shown for a specific protein that reached this point of analysis, 

named Apolipoprotein B (APOB). There are only three peptides in the previous spreadsheet 

and thus, these three were considered for the FC of the protein. The peptides' area values 

are expressed at the column of each sample (SCZ group), and they are summed to achieve 

the area value of the protein for the different samples in the analysis (SCZ4, SCZ5, SCZ6, 

SCZ8, SCZ9, SCZ12). 

 

Table 2. The protein, Apolipoprotein B, is represented at this point of analysis by three peptides. Only the 

area values for the group of Schizophrenia is here represented. To reach the value of FC, the area values of 
each sample (SCZ4, SCZ5, SCZ6, SCZ8, SCZ9, SCZ12) are summed and compared with the same calculation 
obtained for the group of control. 

 
Protein Peptide      SCZ      SCZ5       SCZ6      SCZ8      SCZ9     SCZ12 

        
sp|P04114|APOB
_HUMAN 

IAIANIIDEIIEK 2.17E-05 1.20E-05 1.46E-05 2.01E-05 1.20E-05 1.77E-05 

sp|P04114|APOB
_HUMAN 

LSNDMMGSYAEMK 4.62E-06 2.28E-06 2.10E-06 3.39E-06 3.83E-06 2.97E-06 

sp|P04114|APOB
_HUMAN 

LSQLQTYMIQFDQYIK 1.23E-05 6.90E-06 1.33E-05 1.32E-05 1.50E-05 1.16E-05 

 

  

 After doing the same for the control group, it was possible to achieve the FC of each 

peptide by doing the ratio between the median of SCZ and the median of the control group. 

Then, we aimed to do the same to the proteins for which the peptides represent. A new 

spreadsheet was created and the FC was calculated. Once again, to achieve the FC of each 

protein at this point, we had to calculate the median of the area values for the group of 

Schizophrenia and for the control group, calculating later the ratio between them (see 

table 3).  
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Table 3. The protein here represented is Apolipoprotein B and the respective peptides. For each, the values 

of median, average, standard deviation (SD) and fold change are shown (FC). For the group of Schizophrenia 
(SCZ) and control (CTL), the values shown are the result of all samples that make up each group.   

 Median 
(SCZ) 

Average 
(SCZ) 

SD 
(SCZ) 

 Median 
(CTL) 

Average 
(CTL) 

     SD 
(CTL) 

FC 
(SCZ/CTL) 

Protein 
sp|P04114|APOB_HUMAN  

 
3.16E-05 

 
    3.16E-05 

 
6.11E-06 

 
3.67E-05 

 
4.91E-05 

 
3.64E-05 

 
    0.861 

 

Peptide        
IAIANIIDEIIEK  1.62E-05 1.64E-05 4.15E-06 1.70E-05 2.45E-05 2.12E-05 0.951 

LSNDMMGSYAEMK 3.18E-06 3.20E-06 9.56E-07 3.97E-06 6.32E-06 6.22E-06 0.801 

LSQLQTYMIQFDQYIK 1.27E-05 1.20E-05 2.77E-06 1.46E-05 1.82E-05 1.01E-05 0.872 

 

 

 In a new spreadsheet, one more criterion was applied to search for the peptides 

with modifications. Modifications of peptides are a common finding in proteomic samples 

and are responsible for a huge fraction of assigned spectra and/or can be erroneously 

assigned to incorrect amino acid sequences, which can result in false protein identifications 

[129]; thus, they are generally not considered in traditional proteomics workflows. Some 

modifications occur in vivo, while others are introduced in vitro when samples are prepared 

for proteomics analysis [129]. Acetylation, methionine oxidation, glycosylation, 

ubiquitination, formylation and phosphorylation are commonly seen and are naturally 

introduced [131]. Acetylation and methylation, for example, can be a result of both [129]. 

The traditional determination of protein fold change is based on peptides summation that 

excludes the modified peptides for each analyzed protein.  At this point, we searched for 

the peptides with modifications, and in a new spreadsheet, they were excluded. After this, 

we could calculate the new FC for each protein that now did not include the areas of the 

modified peptides and see the ratio between the FC of proteins that include all the peptides 

vs the fold change of proteins without modifications.   

 

 To keep going with this work and perform the statistical analysis, the R software 

was used to support the following analysis, specifically the R studio, which integrates the R 

software environment. The data contained within the table previously analyzed is 

extracted to a format that R studio is capable of importing and read.  First, normality tests 
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were applied to evaluate the distribution of data. As we had in analysis a small number of 

samples, it was not expected that data was well-modeled by a normal distribution. A 

Quantile-Quantile plot (Q-Q plot) was created for a visual assessment of normality (see 

Figure 7). It can work as a prior visual inspection for this inference. However, this data did 

not provide clear and useful information about sample distribution.   

 Due to the small number of samples analyzed, the statistical tests applied were non-

parametric.  

 

Figure 7. Quantile-quantile plot. On the x-axis of the graphic is plotted the theoretical quantiles, also known 

as the standard normal, while on the y-axis are the ordered values of our samples (SCZ cohort). The points, 
which represent the samples in analysis, are not aligned on the standard normal variate, above the straight 
line. However, this analysis is not enough to provide information about the distribution of data.  Generated 
using R-Studio.  
 

 Numerical measures of shape, as skewness and kurtosis, can be used to analyze and 

provide convincing evidence of data's normality. In this analysis, both coefficients are also 

suggestive of a nonnormal distribution. Moreover, more robust normality tests, like 

Shapiro-Wilk and Kolmogorov-Smirnov tests, were also applied. 

 The Wilcoxon signed-rank test, also known as a distribution-free test, was used as a 

non-parametric approach [132]. It was used for the comparison of both groups, disease 
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and control, as this test provides information about the median of samples in analysis and 

the respective p-values. The median values were previously calculated and used to obtain 

the FC of each protein. Thus, from the test results, we take each protein's p-value 

information to the excel spreadsheet.  

 After this, it was given attention to multivariate analysis (MVA). MVA has multiple 

advantages. One outcome can be achieved from multiple dependent analysis, which allows 

us to make a comprehensive analysis and realize how variables relate to each other.  For 

complex datasets, particularly, univariate analysis alone can be insufficient and 

unsatisfactory. Thus, we can use multivariate data analyses to improve statistical analysis 

and, in some cases, to contradict the results of univariate analysis [133]. Hereupon, we also 

aimed to look at the results from both analyses and formulate our own opinion.  

 There is something that is highlighted as a result of multivariate analysis and that 

we are not able to recognize with the univariate analysis. Using the first mentioned, we can 

do a separation between the case/disease and the control group while, at the same time, 

we can analyze and recognize which proteins promote that separation and classify the 

dataset. Thus, distinct MVA methods are required for visualization and a type of 

interpretation that UVA, alone, is not capable of. With that aim, one of the methods 

employed was the partial least squares-discriminant analysis (PLS-DA). In this approach, as 

the name suggests, a PLS regression model is applied to our variables [134], which are the 

proteins (n= 1106, proteins without modifications) or peptides (n= 3534). Using PLS, our 

aim was to find components from the variables that best predict our groups. In Figure 8, a 

good and clear tendency of separation is observed between the two groups of samples in 

analysis, control and disease. To analyze this and work with the best predictive power, the 

model use orthogonal factors named latent variables extracted from the variables or 

predictors [119]. Some parameters as R2X, R2Y and Q2 are analyzed and give information 

about the quality of the model [135]. X represents our variables (proteins), while Y is a 

vector representative of the groups. Thus, looking at R2X and R2Y values, it is possible,  by 

assumption, to see how well the model fits the X and Y data [135]. Q2 represents the 

accuracy of the model prediction. When higher, a better predictive ability is achieved for 

the model [135]. This way, we can control and avoid overfitting by choosing the number of 
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latent variables or components we want to consider. With this in mind, two latent variables 

were used in this PLS-SA model. In summary, in Figure 8, it is shown a PLS-DA model with 

two latent variables enabling a clear separation between the two groups in study, control 

and disease. The PLS-DA model is characterized by R2X and R2Y values of 0.557 and 0.887 

which represents the fraction of the variation in the X and Y matrix, respectively, explained 

by the model. Q2Y, with a value of 0.401, is the fraction of variance of the Y variables 

predicted by the model. RMSEE indicate the Root Mean Squared Error of Estimation. 

 

 

Figure 8.  PLS-DA scores plot based on proteomic data.  The figure shows the analysis of all samples from 

both groups, established with the total of proteins identified. It is clear a good separation between control 
and disease group. 21% of the variance is explained by the component 1 (t1), while component 2 justify in 
a better way the clear separation between the groups, with 35% of variance explained (t2). R2X: the 
explained variation of X matrix, goodness of fit; R2Y: the explained variation of Y matrix; Q2Y: goodness of 
prediction; RMSEE:Root Mean Squared Error of Estimation; pre: predictive component. Data generated 
using R-studio. 

 

 The importance of each variable (proteins or peptides) to the distribution of the 

scores (groups separation) is expressed in the loadings weights matrix. In Figure 9, a 3D-

plot was created showing the loadings weights plot of the two latent variables (x- and y-
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axis) and the variable importance in projection (VIP) of each variable (z-axis). A color scale 

is used based on the VIP values for each variable, with the more relevant variables being 

shown in red. 

 With the VIP values, it is possible to notice each variable's weight (protein) in the 

projection of the PLS-DA model [136]. The VIP values are usually used for variable selection. 

The typical rule is to select the variables with scores greater than 1 [137]. Thus, when we 

take this into account, we are looking for the relevant proteins.  

 

 

 

 

Figure 9. PLS-DA loadings weights plot based on proteomic data. Each point of the plot represents the 
variable importance in projection (VIP) values for each protein. Relevant proteins are highlighted with dark 
red color. From VIP value 1, all proteins are considered relevant for the separation of disease and control 
group. Generated using R-studio. 

 
 

 The results of VIP values were imported into the excel spreadsheet. It was then 

possible to analyze if the proteins identified by the p-value in the univariate analysis were 

also considered relevant in the multivariate analysis. To see this, a Venn diagram was 
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designed, and we could see that all the proteins identified in UVA were also identified in 

MVA. There was no loss of information (see Figure 10).  

 Of a total of 1106 proteins, only 396 (Figure 10) were considered relevant for the 

model that aim to do the separation of the groups in analysis. The two analysis complement 

each other since VIP analysis make a selection of proteins that, even without statistical 

meaning, can be relevant for the groups separation. Thus, despite being less restrictive, VIP 

analysis allow the identification of variation trends.  

 

 

 
Figure 10. Proteins Univariate Analysis vs Multivariate Analysis.  In this Venn Diagram with a total of 396 
proteins, we can notice that the 118 proteins that pass through the p-value analysis in UVA, were also 
selected through VIP analysis from MVA in R-studio. Additionally, there are 278 proteins that were 
considered as important for the separation of groups only through VIP analysis. 

 

 

 To perform a biological analysis of these 118 proteins and analyze what kind of 

pathways could be enriched, it was used the Reactome Software. Many proteins were 

found enriched through this tool and different pathways were highlighted (Figure 11). The 

Supplementary Table 3 shows the statistically significant enriched pathways, with the total 
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of entities found and the respective p value and FDR value being shared.   

 Of the pathways considered as altered, they are linked to hemostasis functions with 

involvement in platelet (see also Supplementary Figure 2) and coagulation cascade 

functions. Thus, to have more than an overview, The Kyoto Encyclopedia of Genes and 

Genomes, KEGG, was used to promote a better perception of the proteins involved in the 

platelet activation and complement and coagulation cascade (Figure 12).  

 As it was previously reported, alterations in immune system, namely an increase of 

pro-inflammatory cytokines, is often observed [51]. Immune abnormalities have been 

recognized in SCZ patients in the periphery and CNS and it seems independent of AP 

medication [138, 139]. Moreover, a meta-analysis of studies performed in blood and CSF, 

with many studies analyzing PBMCs, identified some cytokines that could be used as state 

and trait markers [139].  

 Additionally, dysfunction in the coagulation and complement system in individuals 

with SCZ have been studied in the last years. A recent study involving individuals with SCZ 

reports that tissue plasminogen activator (tPA) activity can be affected by different 

conditions, with elevated cytokine levels being characterized as one. These patients 

presented low levels of tPA and chronic warfarin therapy was linked to long-term remission 

of psychotic symptoms [140]. Another recent published study found alterations in 

complement and coagulation cascade in 11 years old children, which preceded the 

development of psychotic disorder [141]. 

 This functional succinct analysis shows the ability to identify biological alterations 

that are specific for the disease. Moreover, with this approach we can reach altered 

proteins that are biological relevant.  
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Figure 11. Reactome Genome-wide overview of the 118 proteins reached through proteins analysis and 
with p-value <0.05 for CTL vs SCZ comparison. The color code indicates the pathways representation based 
on p-value. Only branches considered significantly enriched by these 118 proteins are depicted in yellow. 
The pathways that are not significantly over-represented appear with grey light. Image generated from 
Reactome Software.  
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Figure 12. Schematic view of the altered proteins represented in platelet activation (A) and complement 
and coagulation cascades (B). KEGG Search & Color pathways graphical visualization of platelet activation 
(A) and complement and coagulation cascades with the indication of the altered proteins where a color 
code was used to represent up- or down-regulation of the proteins. 

 

 For the peptides that reach this point of analysis, a PLS-DA model was also 

performed. Like protein results, when performing peptide-centered analysis of the data, 
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we can see through PLS-DA model a clear separation between the groups in the analysis 

(Figure 13A). For this model, the PLS-DA is characterized by R2X and R2Y values of 0.486 

and 0.926, respectively, while Q2Y (which characterize, when higher, a better model 

prediction) has a value of 0.514.  

 The percentage of variance explained by each latent variable has the same weight. 

Thus, both contribute equally to the separation of the groups. Additionally, through VIP 

analysis, we can see, once again, which variables have a huge contribution in this 

separation, as for the projection of the PLS-DA model (Figure 13B). Therefore, of a total of 

3534 peptides (1119 proteins), 1338 achieved VIP scores greater than 1, and these are 

considered the relevant peptides to the establishment of group separation. 

  

 

 

Figure 13  PLS-DA model based on peptide centered data of all samples from both groups, with the total of 

peptides identified. A) PLS-DA scores plot, showing a clear separation between control and disease group. 

Each component, component 1 (t1) and component 2 (t2), explain 24% of the variance. B) Loadings weights 

plot of the two latent variables calculated for the PLS-DA model, colored by the values of variable 

importance to projection (VIP). Relevant proteins peptides are highlighted with dark red color. From VIP 

value 1, all proteins and peptides are considered relevant for the separation of disease and control group. 

R2X: the explained variation of X matrix, goodness of fit; R2Y: the explained variation of Y matrix; Q2Y: 

goodness of prediction; RMSEE: Root Mean Squared Error of Estimation; pre: predictive component. Data 

generated using R-studio. Data generated using R-studio. 

 

 Within the total of peptides considered by PLS-DA (representing a total of 578 

proteins), 533 peptides (corresponding to 258 proteins) were found through p-value and 

A B 
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VIP analysis (Figure 14). Working as a complementary analysis, 805 peptides were also 

considered important through VIP analysis.  

 

 

 

 

Figure 14. Peptides Univariate Analysis vs Multivariate Analysis.  In this Venn Diagram we can notice that 
the 533 peptides that pass through the p-value analysis in UVA, were also achieved through VIP analysis 
from MVA in R-studio. Additionally, there are 805 peptides that were also considered as important for the 
separation of groups through VIP analysis.   

 
 

 Besides being essential to reach this work's aim, the procedures shown before    

illustrate how VIP analysis can be useful when we want to characterize the groups in 

analyzes through variables. Some of the peptides considered relevant for this separation 

and not considered through UVA have a value of p-value close to the statistical meaning.  

 As the biggest goal of this analysis was to focus on peptide centered analysis, this 

approach allowed the selection of important variables analyzed until this point. 
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5 Results and discussion 
 

 The present analysis used 11 PBMCs samples comprising 2 cohorts: 6 diagnosed SCZ 

patients and 5 healthy controls. This work started with 21332 peptides of a total of 1788 

proteins identified.    

 After the first analysis, where FDR, normalization and RSD were applied to the data, 

533 peptides with a significative p-value were selected and thus, the corresponding 258 

proteins were considered for this analysis.  It can be recognized that most of the significant 

peptides, the ones that pass through the analysis, had a similar variation as the respective 

protein, thus, following an identical behavior or trend. However, there are some peptides 

that reveal a different behavior, and some examples will be shown in this chapter. One of 

the advantages of a peptide centered analysis is that is possible to recognize and analyze 

these exceptions.  Thus, to achieve our goal and find what peptides can be relevant through 

this analysis and discovery which ones are characterized with a distinct behavior when 

compared to the protein and the other peptides, we apply a cut-off based on the following 

parameters: i) only peptides with a p-value below 0.05 could be selected, as previously 

referred; and ii) a value of the threshold, in module, of 50% for the fold change of each 

peptide vs protein fold change ratio needed to be achieved. Only the peptides and the 

respective proteins that pass through both parameters could be considered for the peptide 

centered analysis (see supplementary table 2).  

 After the variables applied and previously explained, namely FDR, normalization, 

RSD and the applied cut-off based on p-value and FC ratio, 37 proteins and the respective 

peptides, a total of 57 considered as relevant, were analyzed (see supplementary table 2).  

   

5.1 Steps of analysis  

 We know that many peptides carry biochemical modifications and some of them 

can be the result of false-positive identifications. Additionally, proteins can have 

differential expression and within each protein we can find peptides not only with 

modifications but also with different area levels. To reach this information, sequential steps 
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were taken. In Figure 15 can be seen the flow chart that made possible the findings shown 

in this chapter.  

 

 

 

Figure 15. Flow chart of the peptides analysis process. From Proteomics results and based on the 
filters applied, only 533 peptides (corresponding to 258 proteins) were analyzed. These peptides 
were considered as relevant.   

 

5.2  Protein vs peptides behavior 

 At this point, the aim was to look for the consistency of results of the proteins 

identified (those that pass through the univariate and multivariate analysis) and the 

respective peptides' behavior. Hence, the analyzes and search for differences between 

both were seen through a Plot result.  

 It could be observed that for most of the variables considered as statistically 

significant, there was a variation consistency of FC showed (476 peptides, which 
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correspond to 239 proteins). Yet, in some cases, proteins and peptides exhibited a distinct 

variation, which can be seen in this chapter (57 peptides, which correspond to 37 proteins).  

 

5.2.1  sp|Q3ZCW2|LEGL_HUMAN 

 The first plot present here, corresponding to Figure 16, is a representation of the 

Galectin-related protein. Despite being represented only for two peptides (the ones that 

passed the filters applied), this protein is a good representation of what we are capable of 

finding in this work through a peptide-centered analysis. Additionally, a boxplot created for 

this data (Figure 17) shows the statistical significant p-values between groups expressed by 

asterisks in Figure 17. This plot helps to clarify how proteins can be modulated and masked 

by peptides behavior and how this information is only clear when we carry out an analysis 

at peptide level.  

 

 

 Figure 16. Protein (Galectin-related protein) vs peptide behavior. The main vertical axis shows the area values 

of peptides and the secondary vertical axis shows the area value of the protein. Samples are indicated on the 
horizontal axis. The protein analyzed is represented here by the black dashed line, while peptides have lighter 
and different colors. Peptides show distinct behaviors, which can be seen through the analysis done. 
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Figure 17.  Boxplot of Protein (Galectin-related protein) vs peptide behavior. The vertical axis shows 

the area values for the peptides and the respective protein. The groups analyzed are indicated on the 
horizontal axis. On top of the plot is expressed the fold change (FC) values of peptides and protein. 
For a p-value ≤0.05, an asterisk symbol, “*”, is assigned. If p-value>0.05, it is designated as not 
significant (ns). The variables, peptides and protein, are indicated on the right side of the plot. Looking 
at the groups and the area values, we can see that both peptides have a distinct behavior. However, 
the protein boxplot does not reflect this. 

 

 

 We can notice, with the support of Figure 16 and Figure 17, that Galectin-related 

protein, as a protein, have both peptides with different behavior, especially the peptide 

represented by the lowest areas and orange line in the plot (Figure 16). The protein 

behavior is masked by these peptides that show to be really distinct when we compare 

both and look to the direction they assume.   

 With the support of Figure 17, it is even clearer that there is a distinct behavior 

between both peptides and within each peptide when we compare the two groups in 

analysis (disease and control). Analyzing both peptides, for one of them there is a 

statistically significant increase in the SCZ group, while the opposite occur in the other 

peptide, where the SCZ group have a statistically significant decrease. However, when we 

look at the protein, this is not evidenced. The protein does not reflect the variation trend 
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between the groups, which means that when we made the peptides summation, they end 

up annulling each other behavior.   

 

5.2.2  sp|P02671|FIBA_HUMAN 

 Differently from the previously showed protein, Fibrinogen alpha chain protein 

(Figure 18) has many peptides that reach this point of analysis, and four of them are 

characterized for a distinct behavior. For this protein, we can see that most peptides follow 

the same trend, but it is also clear that some of them have a distinct behavior, which is 

even clear when we look for the disease group. 

 A recent study by Na Zhou et al. 2013, where it was also compared individuals with 

FEP of SCZ and healthy controls, demonstrated that there is one peptide, fibrinopeptide A 

(FPA), that can be a potential biomarker in the diagnosis of SCZ using MS analysis. Among 

the 10 fragmented peptides that showed greater discriminatory performance, they were 

capable of identifying the m/z fragment that corresponds to FPA. From serum samples, 

they did a peptide extraction before MS analysis and found that the ion at m/z 1206.6 

characterized for the sequence EGDFLAEGGGVR was a fragment of fibrinopeptide A.  In 

2017, they used this information to analyze if the FGA gene variants that coded FPA could 

confer vulnerability to SCZ. However, without the expected results, their assumption was 

based on epigenetic regulation, which may impact the availability and function of FPA 

[142].  
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 These results show that some peptides have a considerable variation (more visible 

in Figure 19), and some of them can have different and notable area values between the 

samples in analysis, as we can see for 3 peptides with higher area in the control group, 

which can influence protein expression. Thus, some peptides can mask protein behavior, 

and if we only looked for the protein alone, it would never be perceptible.  Additionally, 

the peptide centered analysis can create new ideas to search for potential biomarkers 

 
 

Figure 18. Protein (fibrinogen alpha chain protein) vs peptide behavior. The main vertical axis (logarithmic 

scale) shows the area values of peptides and the secondary vertical axis show the area value of the protein. 

Samples are designated in the horizontal axis.  The protein analyzed is represented here by the black and 

dashed line, while peptides have lighter and different colors. 13 peptides were considered in this analysis 

and 4 of them was characterized as relevant. It is clear that most of peptides representation follows the 

protein line. There are 3 peptides with high area values.   
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and/or associations with susceptibility risks, as the study previously mentioned reported 

and aimed to investigate, respectively. 

 

Figure 19. Protein (fibrinogen alpha chain protein) vs peptide behavior. The main vertical axis (logarithmic 

scale) shows the area values of peptides and the secondary vertical axis show the area value of the protein. 
Samples are designated in the horizontal axis. The protein analyzed is represented here by the black and 
dashed line, while peptides have lighter and different colors. In this figure, only the relevant peptides, 4 in 
a total of 13, are shown.  

 

5.2.3  sp|P07437|TBB5_HUMAN 

 Another protein where we can see a distinct peptide behavior is the Tubulin beta 

chain. This protein, coded by the TUBB gene, has an isoform (Tubulin β-III) that is known as 

the most dynamic and is highly expressed in CNS [143]. In a study of Rodrigues-Amorim, D. 

et al. 2020, a comparative study between patients with SCZ (FEP and chronic) and healthy 

subjects was performed in order to evaluate the potential neuronal damage. Thus, they 

analyzed structural proteins, one of them Tubulin β-III. Different from our study, they used 

plasma samples and immunoblotting to analyze the protein levels. Significant differences 
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between patients and controls were found for this protein. Additionally, patients who did 

not respond to the first-line atypical Aps, presented higher levels of Tubulin β-III. Thus, they 

conclude that besides this protein may predict the neurodegenerative course of SCZ; it 

could be able to predict the progression of the disease. 

 In our results, one of the three peptides that characterize this protein shows a 

different behavior and has different area levels (Figure 20). Despite some differences in 

area levels, the other two peptides have similar behavior and explain the protein trend. 

Once more, some peptides can mask protein behavior, and only through this type of 

analysis it is possible to recognize that since proteomic analysis is focused on proteins total 

area. More detailed information can be achieved when this type of analysis is performed 

and, as shown in the study of Na Zhou et al. 2013, it can be the starting point for future 

research. 

 
 

 
 
Figure 20. Protein (tubulin beta chain) vs peptide behavior. The main vertical axis shows the area values of 

peptides and the secondary vertical axis shows the area value of the protein. Samples are indicated on the 
horizontal axis. The protein analyzed is represented here by the black and dashed line, while peptides have 
lighter and different colors. In this figure, there is only a relevant peptide, among three peptides, which is 
here represented by the yellow line. 
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 This analysis shows that different approaches can be taken into account when we analyze 

this type of data. When this analysis was started, it was first recognized that there are distinct 

proteins between both groups, disease and control. Usually, the focus is the proteins, but if we take 

a look at the peptide level, there is some information that can lead us to news studies. 

 Peptides with distinct behavior, as it was shown in some studies already mentioned here, 

create the need to explore and understand why these peptides stand out among the others and 

how the respective protein can be associated with the disease, exploring, for example, possible 

variants of the gene that coded that protein.  What we can reach through this analysis is that most 

of the peptides identified as relevant for group separation are in agreement with protein results, 

i.e., they follow the same direction as the respective protein. However, there is a specific group of 

peptides with distinct behavior, and these results can also explain how some modifications may be 

a product of PTMs. If, on the one hand, they can diversify protein functions, being essential for the 

cells, one the other hand, perturbations of PTMs in cells can be prejudicial for the maintenance of 

normal cellular states. Moreover, the development of disorders and human diseases have been 

linked to PTMs defects [144]. However, this can be a result of different proteoform types as 

alternative splicing of a pre-mRNA [145].  Thus, based on our results, two other approaches can be 

reported, and they are centered on peptides: i) an approach where peptides are different between 

the groups in analysis, and ii) an approach where some peptides have different behavior when 

compared to the protein. With the focus on the last, as it has been said, some protein isoforms can 

explain the behavior and some diseases. One well-known case is Alzheimer’s disease, a 

neurodegenerative disease where the protein Microtubule-associated protein Tau can undergo 

distinct post-translational modifications. The hyperphosphorylated tau protein is a biological 

marker that characterizes the disease and leads to protein aggregation in neurons through brain 

lesions as neurofibrillary tangles (NFTs) [146, 147]. This knowledge has supported and conducted 

extensive studies until now and shows how this kind of discovery and information can be useful for 

a better understanding of the pathophysiology of diseases and for biomarker discovery. Thus, a 

different peptide behavior can make us think in PTMs or another type of proteoform and can be 

the starting point for future studies, as to understand why some PTMs happen between both 

groups. Additionally, if we exclude these peptides and only consider the peptides with the same 

behavior of the respective protein, we can use those sequences to apply to monitoring techniques. 

Based on that selection, antibodies can be generated from specific peptides and being used in 

enzyme-linked immunosorbent assay (ELISA), for example, or an MS target approach can be 

selected to monitor those specific peptides.
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6 Conclusions 
 

 Biomarkers discovery can hopefully improve the diagnosis and the monitoring of diseases. 

Psychiatric disorders, namely Schizophrenia, lack diagnostic tests. It has been reported that the 

time from the beginning of the disease and the correct treatment is crucial for the prognostic of 

the disease. As a disease that occurs early in life and compromises the life of the individuals 

affected, it is imperative the need to find biomarkers that can contribute to patient’s health.  

 During this work, a proteomic analysis was performed, followed by a Multivariate Analysis. 

As a result, we could notice a clear separation between the groups in analysis, with this difference 

being explained by the identification of 396 proteins and 1338 peptides with VIP higher than one. 

Among these results, achieved through a PLS-DA model, 118 proteins and 533 peptides were 

characterized with a p-value <0.05. Considering the proteins with statistical meaning, Gene 

Ontology analysis provided information of the pathways altered and identified the enriched ones. 

The pathways characterized as altered are linked to hemostasis function with association to platelet 

function and coagulation cascade. The results, which are in concordance with other studies 

performed in individuals with SCZ, show that the approach applied allows identifying biological 

alterations related to the disease. 

 Additionally, it was presented a different and unusual strategy to evaluate and search for 

differences between a disease group (SCZ patients) and a group of control (healthy individuals). 

This type of analysis is capable of showing what in a conventional analysis is not noticeable, as a 

different peptide and protein behavior. Consequently, it can be the starting point for new studies, 

as promoting studies of specific PTMs or for a specific protein, or even, in a better way, lead us to 

make the selection of some of the peptides that can be further used in larger cohorts using targeted 

approaches (MRM or ELISA) to stratify individuals better. 

 Through the analysis performed, although most peptides show that they have the same 

trend as the protein, a considerable number of peptides have distinct behavior. In this analysis, we 

were able to recognize that 57 peptides have a different behavior compared to the respective 37 

proteins.  

  Since a protein-centered analysis is focused on total area and as some of these trends can 

only be recognized through a peptide-centered analysis, it could be interesting to do more research 

and explore these results in future studies. Moreover, it could help or even be a possible approach 

in the search for biomarkers. 
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 We know that proteomics approaches provides qualitative and quantitative information 

about proteins. However, these quantitation strategies presume that protein peptides will have an 

identical quantitative behavior. This assumption can be wrong and this analysis is demonstrating 

that even within the same group, we can have the presence of heterogeneous proteoforms, which 

is seen by different peptides behavior.  Through MS analysis, we can analyze those differences and 

this can be useful to the comprehensive understanding of biological system. Additionally, the 

knowledge of proteoforms and proteoform families, with the report of this kind of information into 

a specific database, will provide a fast and helpful identification of proteoforms in the future. 
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Supplementary data 

 

Supplementary Table 1. Proteomics data of PBMCs analysis.      

ST Dev: standard deviation; CV: coefficient of variation; µg: micrograms; Vol.: volume; [] mg/mL:  milligrams 

per milliliter.   

sample absorvances mean St Dev % CV µg Vol. 
applied 

[] 
mg/mL 

50ug 
(SWATH) 

10ug 
(IDA) 

SCZ_4 0.496 0.496 0.496 0.000 0.000 8.882 5.000 1.7763 28.148 5.630 

SCZ_5 0.458 0.473 0.466 0.011 2.279 15.254 5.000 3.0508 16.389 3.278 

SCZ_6 0.426 0.431 0.429 0.004 0.825 22.984 5.000 4.5969 10.877 2.175 

SCZ_8 0.418 0.424 0.421 0.004 1.008 24.551 5.000 4.9103 10.183 2.037 

SCZ_9 0.474 0.480 0.477 0.004 0.889 12.851 5.000 2.5703 19.453 3.891 

SCZ_12 0.415 0.409 0.412 0.004 1.030 26.432 5.000 5.2863 9.458 1.892 

CT_44 0.393 0.392 0.393 0.001 0.180 30.506 5.000 6.1012 8.195 1.639 

CT_45 0.504 0.500 0.502 0.003 0.563 7.628 5.000 1.5256 32.774 6.555 

CT_48 0.468 0.465 0.467 0.002 0.455 15.045 5.000 3.0090 16.617 3.323 

CT_49 0.512 0.512 0.512 0.000 0.000 5.539 5.000 1.1078 45.136 9.027 

CT_50 0.433 0.432 0.433 0.001 0.163 22.149 5.000 4.4297 11.287 2.257 

CT_51 0.491 0.488 0.490 0.002 0.433 10.240 5.000 2.0479 24.415 4.883 

ER 0.417 0.418 0.418 0.001 0.169 25.283 5.000 5.0565 9.888 1.978 
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Supplementary Table 2. Data analysis of of all 37 proteins that were considered in peptide centered analysis based on 57 relevant peptides.  

FC: fold change. VIP: variable importance projection. 

 
 
 

Protein 

 
 

Peptide 

Fold 
Change 

peptides     

p-value FC 
peptides  

VIP1 VIP2 Fold 
Change 
proteins 

p-value 
FC 

protein  

(Pept/Prot) 
FC 

IF 
(Pept/Prot 

> |50|% 
and p-
value < 
0.05) 

sp|O00151|PDLI1_HUMAN VTPPEGYEVVTVFPK 0.678 0.0281 1.5827 1.6066 0.3721 0.0043 82.18 ✓  

sp|O00151|PDLI1_HUMAN SAMPFTASPASSTTAR 0.100 0.0043 1.9868 1.8845 0.3721 0.0043 -73.17 ✓  

sp|O00160|MYO1F_HUMAN YFEIQFSR 0.110 0.0087 1.8021 1.7096 0.6861 0.2468 -84.03 ✓  

sp|O15371|EIF3D_HUMAN NMLQFNLQILPK 0.259 0.0173 1.8179 1.7653 0.7832 0.2468 -66.93 ✓  

sp|P02671|FIBA_HUMAN NNKDSHSLTTNIMEILR 2.496 0.0043 1.8168 1.7225 1.1818 0.7922 111.23 ✓  

sp|P02671|FIBA_HUMAN GSESGIFTNTK 0.218 0.0043 2.0376 1.9350 1.1818 0.7922 -81.57 ✓  

sp|P02671|FIBA_HUMAN PGSTGTWNPGSSER 0.556 0.0043 1.6958 1.6101 1.1818 0.7922 -52.97 ✓  

sp|P02671|FIBA_HUMAN QFTSSTSYNR 0.218 0.0043 2.0188 1.9137 1.1818 0.7922 -81.59 ✓  

sp|P02675|FIBB_HUMAN VNDNEEGFFSAR 0.433 0.0087 1.7199 1.6308 1.1447 0.6623 -62.13 ✓  

sp|P04179|SODM_HUMAN LTAASVGVQGSGWGWLGFNK 1.656 0.0043 1.8499 1.7830 1.0444 0.4286 58.60 ✓  

sp|P04406|G3P_HUMAN VIHDNFGIVEGLM[Oxi]T[Pho]T[Dhy]VHAITATQK 2.834 0.0043 1.7816 1.6894 0.7788 0.1255 263.85 ✓  

sp|P05106|ITB3_HUMAN DAPEGGFDAIMQATVCDEK 2.053 0.0222 1.8363 1.7557 1.1851 0.3290 73.26 ✓  

sp|P07437|TBB5_HUMAN MAVTFIGNSTAIQELFKR 1.664 0.0173 1.8872 1.8408 0.7449 0.0519 123.40 ✓  

sp|P08514|ITA2B_HUMAN GEAQVWTQLLR 1.868 0.0303 1.5222 1.4535 1.1635 0.5368 60.52 ✓  

sp|P08567|PLEK_HUMAN SIRLPETIDLGALYLSMK 2.513 0.0043 2.0799 1.9759 1.5975 0.0303 57.29 ✓  

sp|P08567|PLEK_HUMAN SIRLPETIDLGALYLSM[Oxi]K 2.989 0.0043 2.0354 1.9411 1.5975 0.0303 87.11 ✓  

sp|P13639|EF2_HUMAN GLKEGIPALDNFLDKL 1.688 0.0080 1.7769 1.7539 0.7898 0.5368 113.74 ✓  

sp|P14618|KPYM_HUMAN KGVNLPGAAVDLPAVSEKDIQDLK 1.782 0.0087 1.7652 1.6781 1.1870 0.0519 50.12 ✓  

sp|P14618|KPYM_HUMAN FGVEQDVDM[Oxi]VFASFIR 2.022 0.0043 1.8781 1.7820 1.1870 0.0519 70.32 ✓  

sp|P23528|COF1_HUMAN EILVGDVGQTVDDPYATFVK 0.015 0.0173 1.6718 1.5945 1.2000 0.3290 -98.72 ✓  

sp|P35579|MYH9_HUMAN MQQ[Dea]N[Oxi]IQE[KXX]LEEQLEEEESAR 2.437 0.0043 1.8579 1.7815 1.4302 0.0087 70.42 ✓  
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sp|P35579|MYH9_HUMAN SM[Oxi]EAE[Cox]MIQ[Dea]LQ[Dea]EELAAAER 2.259 0.0043 2.0973 1.9897 1.4302 0.0087 57.92 ✓  

sp|P35579|MYH9_HUMAN HEAM[Oxi]ITDLEER 9.918 0.0043 2.1013 1.9983 1.4302 0.0087 593.51 ✓  

sp|P37802|TAGL2_HUMAN YGINTTDIFQTVDLWEGK 1.389 0.0043 1.9407 1.8426 0.8594 0.3290 61.66 ✓  

sp|P37802|TAGL2_HUMAN NVIGLQMGTNR 0.155 0.0173 1.8764 1.7802 0.8594 0.3290 -81.91 ✓  

sp|P37802|TAGL2_HUMAN GASQAGMTGYGMPR 0.106 0.0173 1.8722 1.7758 0.8594 0.3290 -87.71 ✓  

sp|P37802|TAGL2_HUMAN QM[Oxi]EQISQFLQAAER 1.698 0.0043 1.6047 1.5217 0.8594 0.3290 97.60 ✓  

sp|P37802|TAGL2_HUMAN NVIGLQM[Oxi]GTNR 0.158 0.0303 1.6241 1.5413 0.8594 0.3290 -81.58 ✓  

sp|P37802|TAGL2_HUMAN [PGQ]-QM[Oxi]EQISQFLQAAER 2.129 0.0087 1.7481 1.7060 0.8594 0.3290 147.74 ✓  

sp|P40197|GPV_HUMAN LM[Oxi]ISDSHISAVAPGTFSDLIK 2.188 0.0043 1.5086 1.4348 1.4321 0.0303 52.76 ✓  

sp|P49591|SYSC_HUMAN KEPVGDDESVPEN[Dea]VLSFDDLTADALANLK 1.469 0.0087 1.6602 1.6613 0.8073 0.4286 81.94 ✓  

sp|P84077|ARF1_HUMAN MLAEDELRDAVLLVFANK 2.071 0.0043 2.0390 1.9392 1.2735 0.0043 62.62 ✓  

sp|Q05682|CALD1_HUMAN LEQYTSAIEGTK 0.172 0.0173 1.8295 1.7350 0.4325 0.0087 -60.25 ✓  

sp|Q05682|CALD1_HUMAN [PGQ]-QKEFDPTITDASLSLPSR 0.763 0.0303 1.5222 1.4522 0.4325 0.0087 76.49 ✓  

sp|Q09666|AHNK_HUMAN ISMPDVGLNLK 0.156 0.0173 1.7380 1.6687 0.4603 0.0303 -66.08 ✓  

sp|Q09666|AHNK_HUMAN VDINAPDVEVQGK 0.165 0.0173 1.7671 1.7723 0.4603 0.0303 -64.19 ✓  

sp|Q09666|AHNK_HUMAN VDIETPNLEGTLTGPR 0.086 0.0043 2.0449 2.0182 0.4603 0.0303 -81.21 ✓  

sp|Q15149|PLEC_HUMAN MGIVGPEFK 1.770 0.0135 1.6689 1.5831 0.9468 0.7922 86.94 ✓  

sp|Q15691|MARE1_HUMAN [PGQ]-QGQETAVAPSLVAPALNKPK 0.439 0.0173 1.7094 1.6238 0.9417 0.7922 -53.33 ✓  

sp|Q15833|STXB2_HUMAN EIHLAFLPYEAQVF 2.604 0.0173 1.7885 1.6955 1.5814 0.0173 64.68 ✓  

sp|Q15942|ZYX_HUMAN FSPGAPGGSGSQPNQK 0.170 0.0087 1.9551 1.8552 0.3787 0.0043 -55.22 ✓  

sp|Q27J81|INF2_HUMAN SVQANLDQSQR 0.444 0.0303 1.6665 1.5879 1.9417 0.0173 -77.14 ✓  

sp|Q3ZCW2|LEGL_HUMAN LDDGHLNNSLSSPVQADVYFPR 0.250 0.0080 1.9529 1.8521 0.9589 0.9307 -73.96 ✓  

sp|Q71U36|TBA1A_HUMAN AVFVDLEPTVIDEVR 0.200 0.0043 2.1453 2.1146 0.6789 0.0087 -70.51 ✓  

sp|Q99733|NP1L4_HUMAN LTDQVMQNPR 0.242 0.0303 1.6653 1.5787 0.9607 0.9307 -74.76 ✓  

sp|Q9BR76|COR1B_HUMAN VTWDSTFCAVNPK 1.910 0.0087 1.7154 1.6264 1.1448 0.7922 66.84 ✓  

sp|Q9BSJ8|ESYT1_HUMAN LTPRPTAAELEEVLQVNSLIQTQK 2.071 0.0043 1.8399 1.7488 1.2793 0.1255 61.86 ✓  

sp|Q9BUL8|PDC10_HUMAN MAADDVEEYMIERPEPEFQDLNEK 1.936 0.0173 1.6341 1.5491 1.1407 0.4286 69.73 ✓  

sp|Q9NTK5|OLA1_HUMAN IPAFLNVVDIAGLVK 10.784 0.0043 1.8584 1.7803 1.5734 0.0173 585.39 ✓  
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sp|Q9NUQ9|FA49B_HUMAN DAEGILEDLQSYR 0.032 0.0173 1.6264 1.5623 0.6663 0.1775 -95.25 ✓  

sp|Q9UBW5|BIN2_HUMAN TSLEVSPNPEPPEKPVR 0.176 0.0173 1.8078 1.7147 0.8954 0.0519 -80.39 ✓  

sp|Q9UBW5|BIN2_HUMAN AGGAAGLFAK 0.099 0.0080 1.9780 1.8800 0.8954 0.0519 -88.92 ✓  

sp|Q9UBW5|BIN2_HUMAN ASLGTGTASPR 0.099 0.0087 1.9039 1.8050 0.8954 0.0519 -88.99 ✓  

sp|Q9Y490|TLN1_HUMAN SGASGPENFQVGSMPPAQQQITSGQMHR 0.014 0.0087 1.9852 1.8823 1.1833 0.1775 -98.83 ✓  

sp|Q9Y490|TLN1_HUMAN FGQDFSTFLEAGVEMAGQAPSQEDR 1.861 0.0043 1.9151 1.8181 1.1833 0.1775 57.27 ✓  

sp|Q9Y490|TLN1_HUMAN AQYFEPLTLAAVGAASK 2.077 0.0173 1.5779 1.5004 1.1833 0.1775 75.54 ✓  

sp|Q9Y5K5|UCHL5_HUMAN FNLMAIVSDR 0.369 0.0303 1.5047 1.5684 0.7866 0.1775 -53.13 ✓  
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Supplementary Table 3. Pathways found through Reactome Pathway Database. 

Pathway name Entities 
found 

Entities 
Total 

Entities 
ratio 

Entities 
p-value 

Entities 
FDR 

Reactions 
found 

Reactions 
total 

Reactions 
ratio 

Species name 

Platelet degranulation 20 128 0.011 1.11E-16 2.04E-14 6 11 0.001 Homo sapiens 

Response to elevated platelet cytosolic Ca2+ 21 133 0.012 1.11E-16 2.04E-14 7 14 0.001 Homo sapiens 

Platelet activation, signaling and aggregation 29 265 0.023 1.11E-16 2.04E-14 48 115 0.009 Homo sapiens 

Hemostasis 37 726 0.063 3.33E-16 4.60E-14 86 333 0.026 Homo sapiens 

Smooth Muscle Contraction 8 39 0.003 1.09E-08 1.20E-06 6 11 0.001 Homo sapiens 

Vesicle-mediated transport 24 761 0.067 1.14E-06 1.05E-04 78 252 0.02 Homo sapiens 

Membrane Trafficking 21 635 0.056 2.85E-06 2.25E-04 70 219 0.017 Homo sapiens 

RHO GTPases activate PAKs 5 21 0.002 3.34E-06 2.30E-04 6 15 0.001 Homo sapiens 

Formation of Fibrin Clot (Clotting Cascade) 6 39 0.003 4.12E-06 2.51E-04 17 61 0.005 Homo sapiens 

Platelet Aggregation (Plug Formation) 6 40 0.003 4.75E-06 2.61E-04 21 27 0.002 Homo sapiens 

RAB geranylgeranylation 7 65 0.006 6.50E-06 3.25E-04 2 5 0 Homo sapiens 

Integrin signaling 5 28 0.002 1.33E-05 5.57E-04 20 24 0.002 Homo sapiens 

Signal regulatory protein family interactions 4 16 0.001 2.76E-05 1.08E-03 3 10 0.001 Homo sapiens 

Common Pathway of Fibrin Clot Formation 4 22 0.002 9.41E-05 3.39E-03 10 29 0.002 Homo sapiens 

Intrinsic Pathway of Fibrin Clot Formation 4 23 0.002 1.12E-04 3.79E-03 7 24 0.002 Homo sapiens 

EPHA-mediated growth cone collapse 4 29 0.003 2.69E-04 8.58E-03 4 4 0 Homo sapiens 

RHO GTPase Effectors 11 295 0.026 2.95E-04 8.58E-03 20 113 0.009 Homo sapiens 

GP1b-IX-V activation signalling 3 12 0.001 2.96E-04 8.58E-03 6 7 0.001 Homo sapiens 
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Supplementary Figure 2. Visualization of Reactoms platelet pathways. Overrepresented pathways were 
platelet activation, signaling and aggregation. A color code indicates the associated pathway p-value. 
 
 
 

 

 

 

 

Supplementary Figure 1. Correlation plots between replicates of the same experimental group comparing 
all quantified proteins performed in InfernoRDN software [148]. Sample CTR6 was excluded from the rest 
of the analysis since it showed a completely different profile.  SCZ= Schizophrenia; CTR= control. 
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Systematic Review and Meta-analysis 

 

Systematic review and meta-analysis of mass spectrometry proteomics 

applied to human peripheral fluids to assess potential biomarkers of 

Schizophrenia 

Ana Martinho*, João Rodrigues*, Cátia Santa, Nuno Madeira, Manuel Coroa, Maria João Martins, 

Antonio Macedo§, Bruno Manadas§ 

 

* - equal contribution 

§ - equal senior contribution 

Background: Neuropsychiatric disorders still demand the discovery of reliable biomarkers 

capable of predicting and diagnosing these types of diseases. 

Mass spectrometry proteomics strategies applied to human peripheral fluids can be a 

powerful technique to identify those biomarkers.  

Aims: To analyze and define the proteomics results common to several studies based on the 

use of MS applied to human peripheral fluids in individuals with Schizophrenia. 

Methods: A systematic review was conducted to compile the reports of proteomics studies 

applied to human peripheral fluids making use of mass spectrometry strategies in the last 

10 years. The outcomes that had enough information available were selected for a meta-

analysis. 

Results: Our literature search found 19 articles that met the defined eligibility criteria 

where comparisons between Schizophrenia and controls are studied. Of these, five studies 

were eligible for a meta-analysis.  

 

Conclusions: Of the five studies that met the criteria to be included in a meta-analysis, six 

proteins were analyzed. Our results shows that Apolipoprotein C3 is decresased while 

ficolin-3 is increased in SCZ patients. 
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1.Introduction 

Neuropsychiatric disorders 

Psychiatric disorders (PD) comprise a wide range of mental health problems that can 

severely impact the well-being of those affected [1, 2]. This set of clinical conditions can 

affect people of different ages and be a main cause of morbidity even in childhood and 

adolescence [3, 4]. The effects of these disorders on public health are profoundly negative 

and hugely contribute to the world burden of the disease [1, 3]. About 10% of the world 

population is affected, with mental disorders making up 30% of the global burden of non-

fatal disease (WHO 2016) overcoming cancer and cardiovascular disease and about 1 

million people worldwide die annually from suicide [5]. Following the predictions of the 

World Health Organization (WHO) for the year 2020, depression will be the second leading 

cause of disability worldwide   

Thus, the global situation is bleak with  more than 450 million people worldwide living with 

some form of mental illness, and only in the EU, the number of individuals affected per year 

is around 165 million [6, 7]. Moreover, it is estimated that one-quarter of the world’s 

population will be manifesting at least one mental disorder at some period of their life [7, 

8]. Unfortunately, for several reasons, the progress in understanding PD has been slow [1, 

9] 

Schizophrenia 

The genetic architecture of schizophrenia is extremely complex and heterogeneous and is 

characterized by rare mutations that are very recent with a relatively high risk and common 

variants with individually small effects on schizophrenia [10]. Genes implicated by both 

common and rare alleles operate in pathways that are crucial in brain development, 

including histone modification, neuronal migration, transcriptional regulation, immune 

function, and synaptic plasticity [11]. 

 
People living with this disease have an average life expectancy significantly reduced, ~20 

years lower than the general population. Nonetheless, the mortality rates are high across all 

age groups [8, 12]. The current diagnosis of schizophrenia is mainly based on 

phenomenological observation and clinical descriptions using the standard operational 

criteria defined in systematic classifications, namely the Diagnostic and Statistical Manual 

of Mental Disorders, edition five (DSM-5), and International Classification of Diseases, 

version 11 (ICD-11), published by the American Psychiatric Association and WHO, 
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respectively [3, 13, 14]. The main problem is that these diagnostic definitions have a 

relatively good reliability, but no established validity.  

Epidemiologic studies show that it can take up to several years between symptom onset and 

diagnosis and the evidence suggests that the earlier the diagnosis, the better the prognosis, 

by decreasing the duration of untreated psychosis. 

The symptoms, which typically arise during adolescence or early adulthood are defined as: 

(i) positive, such as hallucinations, delusions, and thought disorder; (ii) negative as poverty 

of speech or alogia, lack of motivation and social withdrawal; and (iii) cognitive symptoms 

as attention and learning deficits. While positive symptoms can stabilize over the course of 

the illness, negative symptoms tend to increase and become chronic along with cognitive 

impairments [15-17]. 

Psychotic symptoms, which integrate positive symptoms, are a defining feature of SCZ 

spectrum disorders, and their onset defines the first episode of psychosis [18, 19]. Despite 

being considered the main feature for the onset and the diagnosis of SCZ, psychotic 

disorders are characterized by an earlier stage, a pre-psychotic stage termed as prodrome, 

which is usually missed by clinicians [20, 21]. 

The treatment of patients is usually based on antipsychotic (AP) medication. After the first 

successfully employed drug in 1952, chlorpromazine, in the treatment of positive symptoms 

of SCZ, more drugs were introduced and upgraded in the following years [22, 23]. However, 

they are still ineffective to around 40% of the patients, and some of them end up 

discontinuing the treatment or having severe side effects [3, 24]. The rates of comorbid 

illnesses associated with SCZ are high, with patients usually linked to an increased 

metabolic syndrome (MetS) risk, fixed on 32.5% in SCZ patients in a study by Mitchell et al. 

2013 [12]. 

The pathophysiology of SCZ remains unclear, lacking a comprehensive view of the 

underlying neurobiological mechanisms, although some aspects are beginning to be 

clarified. Dopaminergic dysfunction has been one of the pathophysiological hypotheses 

defended for decades, under various formulations and which is also supported by the most 

recent genetic findings.  

Hypo and hyperactivities of the dopaminergic system are seen in SCZ patients, and both are 

linked to the symptoms previously described [25, 26]. Additionally, other dysfunctions 

underlying the pathophysiology of SCZ, such as neurotransmitter signaling of glutamate, 

hypothalamic-pituitary-axonal (HPA) axis signaling, and immune system dysregulation, as 

well as synaptic plasticity anomalies, have been reported [16, 26, 27]. Changes in brain 
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structures, which have also been proposed as etiologically relevant, are correlated with 

some of these alterations [27]. 

Despite the efforts to elucidate the mechanisms or etiology behind neuropsychiatric 

disorders, they remain elusive and not yet clarified. As biomarkers can reflect changes upon 

CNS diseases, namely the dysregulation of molecular expression profiles, the need to search 

for reliable biomarkers is becoming imperative, hopefully improving the misdiagnosis of 

patients [3]. 

The search for biomarkers 

To improve the knowledge about these complex disorders, “omics” approaches have 

emerged to shed light on disease pathogenesis and support a trustworthy way of prediction 

and diagnosis for PD [17, 28]. With a huge potential associated, high-throughput omics 

technology can be a solution to predict clinical endpoints, being the improvement of patient 

care and outcome the ultimate goal. However, the translation from research to a successful 

clinical omics-based test is far from the great potential of these approaches [29, 30]. 

The search for candidate biomarkers is one of the outputs of “omic” studies. According to 

the National Institute of Health (NIH), a biological marker, generally just termed as a 

biomarker, is a “characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention” [31]. The study of the brain and the associated disorders is 

complex since it presents a high degree of inter- and intra-cellular heterogeneity and so, 

different locations may have a distinct proteome as a consequence of alterations in different 

cell types and cellular networks. The proteome of the Central Nervous System (CNS) can 

change even with minimal alterations in the normal course of its development and/or 

function [32, 33]. To understand the alterations and the mechanisms related to a disorder, 

we should analyze qualitative and quantitative changes in the complete set of proteins 

encoded by an organism genome at different or specific points in time [18, 34]. Proteomics 

can be a powerful tool since it can give a real-time evaluation of an individual state, health 

vs. disease, and, in an ideal scenario, predict the susceptibility to develop a specific mental 

disorder [4, 32]. The possibility of not only identifying but also quantifying the proteins 

makes the proteomic approach more reliable to evaluate psychiatric diseases at different 

levels. Moreover, protein-based tests can offer the nearest view of the pathophysiological 

process behind the PD since their expression and function are the result of what happens 

during post-transcriptional (e.g., alternative mRNA splicing) and post-translational events 
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(e.g., phosphorylation, glycosylation, oxidation), as well as the interactions between them 

[3, 4, 35]. 

The discovery of biomarkers in neuroscience is challenging but may help to reveal disease-

related alterations and consequently improve clinical settings, for instance, helping to 

predict diagnosis, even before the onset, patient stratification, and monitoring of disease 

progression and treatment [28]. Early and guided interventions will improve patients' 

outcome as they are usually prescribed with a medication that will not elicit a proper 

response or will be ineffective, and it will have to be altered until a desired response is 

achieved (trial-and-error testing). Moreover, a change in the disease diagnosis is also 

common. Therefore, it would increase the quality of life of individuals and reduce the 

burden associated with psychiatric disorders, namely from misdiagnosis, high rates of 

hospitalization, and treatment expenses, which have a huge impact on health costs [3, 36, 

37]. 

Biological markers in psychiatric disorders 

The search for biomarkers in psychiatric disorders began with post-mortem brain tissue 

and CSF. In contrast to body fluids, brain tissue can only be accessed during autopsies, not 

being useful for disease diagnosis or to be used in longitudinal studies. Additionally, some 

common variables and confounding factors, such as post-mortem interval and pH range, can 

impact this tissue's integrity. The contribution to protein degradation, as well as medication 

and age, also lead to drawbacks that cannot be avoided [18, 38]. More recently, the whole-

body concept emerged since the integration of the brain and a variety of physiological 

conditions are now known to be reflected in the contents of body fluids [18, 39]. This link 

created between the brain and the periphery enhanced the search for biomarkers in body 

fluids that could be easily accessible, like blood [3]. 

Mass spectrometry 

Since its development, mass spectrometry (MS)-based technologies have been improved 

and, in the last decades, became a well-suited method for biomarker discovery, supporting 

the expansion of the proteomics field [40, 41]. The success of MS in proteomics is due to its 

specificity and sensitivity, which are mainly attributable to advances in liquid 

chromatography in tandem MS (LC-MS/MS) approaches. This type of technology is capable 

of revealing proteome insights at the level of composition, structure, and function. 

Proteomics tools make possible the qualitative and quantitative (either relative or absolute) 

analyzes of proteins in complex biological samples [42, 43]. 
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In the beginning, successes in proteomics approaches were supported by two-dimensional 

electrophoresis (2-DE), with complex protein mixtures being separated by its molecular 

charge (isoelectric point) and mass (molecular weight) in the first and second dimension, 

respectively. In this approach, protein abundances were calculated based on stained protein 

spots’ intensities, followed by MS analysis for protein identification [18, 44, 45]. Although 

improvements were made, other methodologies emerged to circumvent some of the 

previous technical drawbacks, namely to face the dynamic range limitations and the 

unsuitable separation and detection of some protein subtypes, as membrane proteins [18, 

42]. Throughout the years, improvements in proteomics approaches were made, and a 

variety of more in-depth MS-based methods were quickly applied to compare protein 

profiles, usually between control versus disease states. Considering this, there are two main 

groups within quantitative proteomics methods: i) labeling techniques, which involve 

different isotopic labeling of samples, including chemical, enzymatic or metabolic labeling, 

followed by MS analysis; and ii) label-free techniques, where the sample is individually 

analyzed without the addition of any other chemical compound. The last quantitative 

approaches are regarded as a versatile and cost-effective alternative approach to labeled 

quantitation and have gained significant interest in recent years, mainly due to the 

development of more sensitive and reliable methods. Additionally, some methods capable 

of detecting either relative or absolute peptide levels can also provide a targeted MS 

approach and be used as a validation method [45-47]. 

This article provides a systematic review and meta-analysis on the use of MS-based methods 

in proteomic studies to assess biomarkers or a panel of biomarkers associated with 

Schizophrenia (SCZ) based only on the analysis of peripheral fluids in the last 10 years. 

 

 

METHOD  

As this study used systematic review and meta-analysis strategies, ethical approval for this 

study and informed consent statement is not required. We included all articles that met all 

the keywords that specified the objective of the study. 

Search strategy 

Articles included in the systematic review were identified through a computer-based search 

conducted from January 2010 to December 2020 in two independent databases: PUBMED 

and Web of Science. The search was conducted using the following keywords: 

SCHIZOPHRENIA AND PROTEOMIC* AND MASS SPECTROMETRY, (Figure 1). Searches 
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were restricted by language (English). Two distinct observers performed the literature 

search independently to identify articles that potentially met the inclusion criteria, and 

disagreements were discussed between authors and were resolved by group discussion. 

Extracted data were entered into a computerized spreadsheet for analyses. Then, the 

reference lists of the included studies were scrutinized, excluded studies, and previous 

reviews were searched. The study authors were contacted to request additional information 

when necessary. 

Eligibility criteria 

Studies were included if they met the following criteria: (a) the manuscripts had to be 

published in English, and only peer-reviewed published research papers could be 

incorporated; (b) the research design included the use of mass spectrometry techniques for 

proteome profiling and/or quantification; (c) studies performed in human peripheral fluids 

samples; (d) the research design included a control group comprising healthy volunteers or 

the study of the effects of medication in the same cohort of SCZ patients before and after 

treatment; (e) publication between 2010-2020, (f) for the meta-analysis the study statistics 

were convertible to effect size (e.g., means and standard deviation, F- or t-values or exact p-

value).  

Data extraction 

Two authors independently extracted the following data from the eligible studies, according 

to a pre-specified protocol of data extraction (Table I and Table II): (1) authors; (2) DOI; 

(3) year of publication; (4) participants characteristics (including diagnosis type, sample 

size and group comparison, mean age, mean illness duration, gender, medication status, 

type of peripheral samples, and clinical criteria applied); (5) analytical technique; (6) 

sample preparation (protein depletion or/and enrichment); (7) differences between 

protein levels of SCZ patients as measured against controls or other mental disorders; and 

(8) altered pathways.  

Any discrepancies between the extracted data were resolved in a group meeting.  

 

Statistical Analysis 

 

RESULTS 

Characteristics of included articles 

The selection of eligible studies included in our systematic review is shown in Figure 1. 

From the searches performed in WOS and PUBMED databases, a total of 286 potentially 
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relevant research manuscripts were identified in the initial screening. Additional studies 

are not included since articles that were identified as similar in both databases and accessed 

manually did not fit our research aim. Based on abstract review and exclusion of duplicates, 

133 were retrieved for more detailed evaluations. Of these research manuscripts, 36 were 

excluded after full-text reading (the abstract reading was not enough to exclude these 

articles immediately, and despite the match of keywords, the studies did not fit on the 

inclusion criteria), and 78 were identified as reviews or studies that used mice/rats, cell 

lines, and brain samples. In total, 19 papers met all eligibility criteria and were included in 

this systematic review. From these studies, some reached the criteria to be included in the 

meta-analysis. 

The study characteristics for each of the 19 studies are shown in Table I. As mentioned, only 

studies of human peripheral fluids were considered.  

 

 

Figure 1 Flow chart of the selection process of the studies included in this systematic review of 
peripheral fluids MS-based Proteomics in SCZ disorder. 
 

All articles included in this review were published from 2010 and onward, being the 

reflection of the most recent proteomic works in the context of biomarker findings in SCZ 

and biological pathways changes produced in the last ten years. Additionally, Table II shares 
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a list of more detailed information for each study as the techniques applied for the samples 

in the study and the respective findings. 

 

Number of samples 

The number of patients with SCZ included in the studies varied between 4 [48] to 80 [49]. 

When compared with the first years of the decade in analysis, the last years of publications 

show an increase in the number of patients per study (see Figure 2). Two of the studies 

with the higher cohort of individuals with SCZ were recently published, 2017 [50] and 2019 

[51], and both with n=60. In 2017, three out of four published studies have a cohort of SCZ 

composed of less than 30 individuals [52-54]. On the other hand, of the four studies 

published in 2019, three of them studied more than thirty individuals with SCZ [51, 55, 56]. 

Until 2012, all studies used a number of individuals with SCZ lower than thirty (n<30). Since 

2014, thirteen studies were published, and more than half studied more than 30 individuals 

with SCZ.  With this information, it is clearly noticeable that more recent studies privilege 

the use of larger cohorts, which is a good parameter to achieve a significant result.  

 

 

Figure 2- Publication frequency. The number of bars shown in the graphic reflects the number 
of articles published per year over the last ten years, and the height of each bar reflects the number 
of SCZ patients in the cohort of the study. The average number of SCZ patients in the cohorts per 
year are shown in the markers connected by the dashed line. 

Diagnostic criteria 

It stands out that DSM-IV was the most used diagnostic criteria (11 studies), and two of 

these studies also used ICD (see Table I) as the diagnostic criteria [57, 58]. ICD-10 was the 

second most used criteria (6 studies) and applied together with ICD-9 in one study [50]. 

DSM-V, the last DSM manual available, was only used in one study published in 2019 [56]. 

There is only one study that does not share this information [48]. 
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Age 

Throughout the studies, the reported average age of the studied individuals was comprised 

between 16.25 [59] and 51.9 [60] years, and only two studies reported an average age below 

25 years [49, 59]. The majority of the studies have an average age between 29 and 43 years 

(15 studies) for the SCZ group; however, one study has no information about the age of the 

individuals within the study [58]. In concordance with the information provided by the 

studies that usually try to make the comparison between age-matched groups, the average 

age was similar in the different groups in the studies. 

 

Gender 

Considering the gender information in the SCZ group (see Table I) provided for 18 of the 19 

studies in this analysis, only 3 studies (all published in 2012) used a proportional number 

of samples, with 2, 5, and 10 samples representing each gender [59-61]. Male gender 

patients are prevalent [48-52, 54, 56, 57, 62-65], sometimes 2-3 times higher than the 

samples of the female gender in the study. Only three studies had a larger number of 

samples for the female gender than the male gender [53, 55, 66], and two of them with a 

minimal difference. 

In the control group, the differences of the gender are not so exacerbated but follow the 

same trend, with samples of the male gender being more represented. Only two studies that 

used a control group did not provide gender information [58, 59]. Once more, three articles 

used the same number of samples representing each gender, but only two of them match 

the number of samples and gender used in the SCZ group [60, 61]. 

Considering the four studies with a group of other disorders (BD and depression), two 

studies had a higher number of males [52, 55] and two a higher number of females [62, 66]. 

Only two of them follow the same gender ratio in the SCZ and CTL groups [52, 66]. 

 

Illness duration 

Only a small number of studies refers to the illness duration (all in plasma and serum). Of 

the seven studies that contain this information, only one used individuals with SCZ within 

the first year of diagnosis (the same study intended to study individuals with first episode 

of psychosis) [49]. In the other studies, the illness duration is comprised between seven and 

twelve years [48, 52, 55, 56, 62, 65]. Considering all studies published in 2019, only one of 

them did not report this information [51], which contrasts with none of the studies 

published before 2014 containing this data. Although it is more common to see this 
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information reported in the studies published in the last 5 years, there is a clear need to 

standardize the type of data reported in these studies. 
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 Table I – Demographic information of all studies included in the systematic review of Schizophrenia and biomarkers discovery using 
MS-based method in human peripheral fluids. 

 

 
First 

authors 

 
Year 

 
Cohort 

 

Schizophrenia (SCZ) Controls Other diseases  
Ref. Clinical 

criteria 
Age 

(years) 
Illness duration 

(years) 
Gender 

M/F 
Age 

(years) 
Gender 

M/F 
Cohort Age 

(years) 
Gender 

Levin Y 2010 22 SCZ 

33 CTL 

DSM-IV 29.0 - 15;7 28 18;15 - - - [63] 

Martins-

De-Souza 

D 

2010 17 SCZ 

10 CTL 

DSM-IV 

and 

ICD10 

31.2 - 11;6 30.8 5;5 - - - [57] 

Herberth M 2011 19 SCZ 

19 CTL 

DSM-IV 29.7 - 14;5 34.5 12;7 - - - [64] 

Raiszadeh 

MM 

2012 23 SCZ; 

55 SCZ 

(only 4 of 

each 

group 

were 

used) 

DSM-IV 16.25 - 2;2 ±22 2;2 - - - [59] 

Jaros JA 2012 20 SCZ 

20 CTL 

ICD-10 31.4 - 10;10 32.1 10;10 - - - [61] 

Li Y 2012 10 SCZ; 

10 CTL 

DSM-IV 51.9 - 5;5 52.6 5;5 - - - [60] 

Iavarone F 2014 32 SCZ 

31 CTL 

(12 

smokers 

DSM-IV 

and ICD 

- - - - - 17 BD - - [58] 
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and 19 

non-

smokers) 

Song X 2014 80 SCZ DSM-IV 24 11 (months) 42;38 - - - - - [49] 

Al Awam 2015 26 SCZ 

26 CTL 

DSM-IV 31.7 12.12 20;6 37.04 20;6 - - - [65] 

Ding YH 2015 44 SCZ 

40 CTL 

ICD-10 33.1 - 20;24 34 18;22 26 DP 32.5 11;15 [66] 

Martins-

de-Souza 

D 

2015 58 SCZ - 36.81 6.15 35;23 - - - - - [48] 

Alekseeva 2017 10 SCZ 

10 CTL 

ICD-10 35 - 6;4 39 3;7 - - - [54] 

Knöchel C 2017 29 SCZ 

93 CTL 

DSM-IV 37.16 11.81 21;8 33.59 44;39 25 BD 37.39 19;6 [52] 

Huang TL 2017 20 SCZ 

20 CTL 

DSM-IV 38.15 - 9;11 38.5 7;13 - - - [53] 

Cooper JD 2017 60 SCZ 

77 CTL 

ICD-

9/ICD-10 

30.1 (M) 

31.8 (F) 

- 31;29 31.1 (M) 

32.7 (F) 

43;34 - - - [50] 

Walss-

Bass C 

2019 60 SCZ 

20 CTL 

DSM-IV 42.5 - 46;14 41.1 14;6  - - [51] 

Pessôa GS 2019 19 SCZ 

13 CTL 

ICD-10 37 7.6 13;6 38 3;10 19 BD 41 7;12 [62] 

Rodrigues-

Amorim D 

2019 45 SCZ 

43 CTL 

DSM-V 40.78 11.63 28;17 43.82 23;17 - - - [56] 

Smirnova L 2019 33 SCZ 

24 CTL 

ICD-10 34 ‡  7 ‡ 

 

11;22 28 ‡  6;18 23 BD 32 ‡  14;9 [55] 

SCZ= Schizophrenia; CTL= control; BD= Bipolar Disorder; DP= Depression; M= male; F= female; ‡ - median value 
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More detailed information of the studies is summarized in Table II with the indication of 

biological sample and type of sampling, cohort information, diagnostic criteria, treatment 

information (treated or drug naïve), type of MS-based method, other techniques applied, 

use of depletion and/or enrichment, differentially expressed regulated proteins identified, 

and altered pathways and major findings. 

 

Cohort information 

Seventeen studies focused on the search of diagnostic biomarkers since they make a 

comparison between a group of individuals with SCZ and a control group.  Within these, 

there is one interesting study that used a control group that distinguishes smokers and non-

smokers healthy individuals [58]. The two other studies included in this review do not have 

a control group but used; instead, two groups of individuals with Schizophrenia, treated and 

not treated (drug naïve), and aimed to study the difference between both [48, 49]. Thus, 

some studies also try to highlight the effects of psychotropic drugs on the therapeutics of 

SCZ. Additionally, despite the fact that most studies have analyzed a cohort of SCZ against a 

control group (healthy individuals), some of them also used a group of patients with order 

disorders, specifically, Bipolar Disorder [52, 55, 58] and Depression [66] (see Table I). For 

one of them, the cohort of SCZ was compared together with the cohort of BD against the 

control group [52], while in another study, the SCZ group was compared against the BD and 

CTL groups [55]. 

 

Frequency of the publications 

It can be observed that the publication of studies within this subject does not follow a 

pattern throughout the last ten years (Figure 2). More precisely, in 2013, 2016, and 2018, 

we could not find any articles that fit our research strategy. However, it is noticeable that 

there is an increase in the number of publications over the years. 

 

Type of sample and sampling 

Based on the studies encountered when searching the databases (Figure 1), we were able 

to notice that brain tissue is still being analyzed, but the number of studies in body fluids is 

increasing (see Figure 3), and it provides some evidence that it can be a reliable choice for 

biomarkers research [67]. Biofluids are suitable matrices that enable more user-friendly 

tests, as the majority of them are of easy access [68, 69]. Based on its accessibility, they can 

be categorized as non-invasive (saliva, sweat, urine, and tears), minimally invasive (blood), 

and invasive (cerebrospinal fluid). 
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Due to its proximity to the brain, cerebrospinal fluid (CSF) is considered relevant in the 

study of brain disorders. Despite being a dynamic fluid, CSF has to be collected through a 

lumbar puncture, which is an invasive procedure and leads to a minimal amount of fluid, 

limiting the possibility of this type of analysis in CSF [18, 28]. As it can be inferred from this 

review (see Table II), with these search parameters, only one study in CSF was retrieved 

[57]. This shows the importance of selecting more readily accessible samples [18]. Studies 

with plasma and serum samples have increased over the last years and looking at 

psychiatric disorders as whole-body diseases, somehow, contributed to this change [69]. 

Besides protein content being significantly more abundant than what is found in CSF, 

approximately 500ml of CSF are exchanged daily to circulating blood [40, 41]. Additionally, 

dynamic changes can also be studied in these samples, which can be collected in reasonable 

amounts and by straightforward and safe procedures [28]. 

Among these nineteen studies, the most prevalent sample type studied was serum (n=8), 

followed by plasma (n=6) (Figure 3). Since 2015, this prevalence was kept with serum and 

plasma, with only one study using another type of sample, which was PBMCs [53]. Two of 

the studies used PBMCs [53, 64], and only one study used CSF [57], sweat [59], or saliva 

samples [58] (2010, 2012, and 2014, respectively). As it can be observed (Table II and 

Figure 3), plasma and serum are the main samples used among the studies. These biofluids 

can be easily sampled and have been widely used in proteomics-based research and for 

disease diagnosis. However, the complexity and dynamic range that characterize the 

proteome of both samples are responsible for unsatisfactory outcomes in the search for 

disease biomarkers. As potential biomarkers are usually present in low concentrations and 

tend to be masked by high abundant proteins, some strategies have been applied to 

overcome this challenge. Depletion of high-abundance proteins and enrichment of low and 

medium abundance proteins are two methods used to circumvent this problem [70]. As we 

can observe in Table II, most of the studies where the sample in use was plasma or serum 

performed the depletion of high-abundance proteins. In fact, the studies that analyzed 

plasma (n=6) did not show a prevalence about making the depletion or not, while most of 

the studies based on serum samples (five in a total of eight) applied the depletion of high-

abundant proteins. In a total of six studies that used enrichment techniques (proteominer, 

aptamers, IMAC, IMAC30, C18 TiOtips, subcellular fractionation) only one was not analyzing 

serum or plasma but PBMCs, instead [64]. Among the 14 studies that analyzed plasma and 

serum, only 3 studies did not use depletion or enrichment techniques [50, 52, 62]. 

Only four studies worked with a pool of samples. Two of them were published in 2019 and 

analyzed plasma and serum [51, 62]. The other two analyzed CSF and sweat samples and 

were published in 2010 and 2012, respectively [57, 59].  
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 Figure 3– Sample type. The image shows the number of publications per year that fit the criteria 
of this review. Each color shows the type of samples used, and its height indicates the number of 
studies published. 

 

Drug naive 

Regarding being treated or not (drug naïve/minimally medicated), we noticed that there is 

not a prevalence of one over another among the studies and only one does not share this 

information. Additionally, two studies worked exclusively with a single cohort of individuals 

with SCZ, which were analyzed before and after treatment [48, 49]. 

 

MS-based methods 

Between 2010-2015, there is a prevalence of the use of LC-MS/MS methods in the studies 

(n=7), while the other studies applied MALDI TOF/TOF analysis [49, 57, 65, 66]. In the next 

years, an increase in studies that applied in-gel digestion is observed, as we can see from 

the articles published in 2019 (n=4), followed by LC-MS/MS analysis [51, 55, 56]. It is 

undeniable that LC-MS/MS analysis was the prevalent MS-based technique among the 19 

studies considered in this review. 

Additionally, one study applied ICP-MS-based methods to assess the interactions between 

metals and proteins [62]. 

 

Validation 

Immunoassay methods have been applied in the validation of specific proteins identified as 

differentially expressed. More than half of the studies used immunoassays methods for 

validation of protein’s expression pattern, being enzyme-linked immunosorbent assay 
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(ELISA) the most used approach [49, 51, 55, 60, 61, 63], followed by Western blot (WB) 

[48, 56, 57, 64] and MRM (Multiple Reaction Monitoring) [59].  

Before 2015, the immunoassay of choice for validation was ELISA. In the following years, 

neither ELISA nor WB were predominant over the other. Also, among the studies published 

in 2019, only one does not apply a validation technique [62].  
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Table II. Proteomic studies of schizophrenia biomarker discovery using MS-based method in human peripheral fluids. The proteins identified as 
altered are represented by their entry name as described in UniProt (the corresponding accession name and protein name are described in Table S1 
and Table S2). 
 

     
Year 

Cohort 
information 

Samples Sampling Treatment MS-based 
method 

Other 
techniques  

Depletion/ 
enrichment 

Quantification 
method 

No.proteins Altered proteins Altered 
pathways 

Ref. 

2010 22 SCZ 

33 CTL 

Serum Individual Treated LC-MS/MS ELISA Yes/No MS Total ID: 

1411; 

significantly 

different: 10 

CD5L↓; IGHM↓; F13B↓; 

TRFE↓; APOD↓; APOA1↓; 

FETUA↓; APOA4↓; 

APOA2↓; APOC1↓ 

Lipid 

metabolism; 

molecular 

transport; 

immune 

response 

[63] 

2010 17 SCZ 

10 CTL 

CSF Pooled Drug 

naive 

2DE MALDI-

TOF/TOF 

MS 

WB No/No 2DE Total ID: 6 APOE ↑; PTGDS↑; 

APOA1↑; TTHY↓; 

TGFR1↓; CCDC3↓; 

Lipid 

metabolism 

[57] 

2011 19 SCZ 

19 CTL 

PBMCs Individual Drug 

naïve/trea

ted 

LC-MS/MS WB No/Yes MS Total ID 

unstimulated: 

185; 

Stimulated: 

441; 

Significantly 

different: 19 

between drug 

naive SCZ and 

CTR 

Unstimulated PBMCs: CNDP2 ↑; 

Uncharacterized protein KIAA0423↑; 

LDHB↑; COTL1↓; GPI↓; HSP72↓;  

Stimulated PBMCs: ALDOC↑; GAPDH

↑; HNRPK↑; LDHB↑; MYH14↑; 

MYH15↑; NAMPT↑; PGK1↑; PPIA↑; 

TPIS↑; PKLR↑; PGAMA4↑; CH60↓; 

Glycolytic 

pathway, 

Immune 

response 

[64] 

2012 23 SCZ 

55 CTL 

For 

analysis: 4 

SCZ; 4 CTL 

(2nd pool) 

Sweat Pooled Treated LC-MS/MS 

and LC-

MS/MS-

MRM 

 No/No MS 1st set Total 

ID: 

150; 

2nd set 

Total ID: 185; 

MRM: 30 

ZA2G↑; ANXA5↑; ARG2↑; BLMH↑; 

CALL5↑; CASPE↑; CDSN↑; CSTA↑; 

DCD; Desmoglein↑; DJ-1↑;G3PDH↑; 

KLK11↑; KRT10; PRDX1↑; PEBP1↑; 

S100A7↑; THIO↑; PIP↓; 

Metabolic 

process 

[59] 
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2012 20 SCZ 

20 CTL 

Serum Individual Drug naïve LC-MS/MS ELISA Yes/Yes⁑ MS Detected: 694; 

Total ID: 312; 

Significantly 

different: 35; 

Phospho 

altered: 72 

K2C6B↑; FCN3↑; SRBS1↑; NUCB1↑; 

K1C9↑; NUDT6↑; ALS2↑; IBP3↑; 

MAST1↑; 

CFAB↑; C4BPA↑; FHR3↑; ITIH3↑; 

CO6↑; AGRE1↑; CAH1↓; RET4↓; 

LRRC7↓; 

FR1L6↓; KI21B↓; TETN↓; KIF27↓; 

APOA1↓; APOA2↓; 

MYOF↓; FIBA↓; CCD57↓; SMC1A↓; 

K1C14↓; PHLD↓; LIFR↓; XIRP1↓; 

WDR19↓; SMC4↓; SAGE1↓ 

Acute phase; 

Complement 

and 

coagulation 

system; 

Immune 

Response 

[61] 

2012 10 SCZ 

10 CTL 

Serum Individual Drug naïve LC-MS/MS ELISA Yes/No MS Total ID: 

1344; 

192 used for 

PLS-DA (27 

SCZ related) 

CO8B↑; CD5L↑; DOPO↑; IGHG4↑; 

IGHM↑; KNG1↑; PI16↑; PGRP2↑ 

ITIH4↑; PLTP↑; IPSP↑; IGK@ protein

↑; IGL@ protein ↑; AMPN↓; APOC2↓; 

APOF↓; C4BPB↓; APOL1↓; FA7↓; 

GGH↓; ICAM2↓; ALS↓; isoforms 2 of 

ITIH4↓; LBP↓; PROS↓; ZNF57↓ 

(SCZ related proteins) 

Complement 

cascade 

pathway 

[60] 

2014 32 SCZ 

17 BD 

31 CTL 

(smokers 

and non-

smokers) 

Saliva Individual - LC-MS/MS - No/No MS Total ID: 8 DEF1↑; DEF2↑; DEF3↑; DEF4↑; 

S10AC↑; CYTA↑; CYTB↑; CSTB↑; 

(Patients – SCZ and BD vs Control) 

Innate 

Immunity 

[58] 

2014 15/80 SCZ 

(proteomic 

analysis of 

15 randomly 

selected 

patients; all 

80 patients 

were used 

Plasma Individual Drug naïve 

vs. treated 

2DE MALDI-

TOF/TOF 

ELISA Yes/No 2DE Total ID and 

altered: 18 

APOA1↑; C4B↑; CFB↑; NEB↑; 

C8B↑; ZN185↑; PLMN↑; 

HEMO↑; HNMT↑; GBP1↑; 

FGG↑; TRFE↑; ALEX↓; RET4↓; 

K1C9↓; K2C1↓; VINC↓; GELS↓ 

Metabolism [49] 
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in ELISA 

analysis) 

2015 26 SCZ 

26 CTL 

Plasma Individual Treated MALDI-

TOF-MS 

 No/Yes  MS Total 

Detected: 

94; 

Significantly 

different: 

11 protein 

ions 

from TiO; and 

5 

from C8 

m/z 3177 suggested to be a fragment of 

Apolipoprotein A1 

- [65] 

2015 44 SCZ 

26 DP 

40 CTL 

Serum Individual Treated   SELDI-

TOF-MS 

and MALDI-

TOF MS 

 No/Yes MS Significantly 

different: 91 

protein peaks 

N-terminal fragment of fibrinogen ↓ - [66] 
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2015 58 SCZ Plasma Individual Drug 

naïve/free 

vs treated 

LC-MS/MS WB Yes/No MS Total ID: 985 

41 

differentially 

expressed 

proteins in 

responders 

(t6-R/t0-R); 

58 

differentially 

expressed 

proteins in 

non-

responders 

(t6-NR/t0-

NR) 

Responders: COR2A ↓; CCN1↓; EFCB6

↑; FARP2↑; PRKDC↑; SNX17↓; 

TGFI1↓; THS7A↓; CARL2↑; FA9↓;  

HS71L_HUMAN↓; ITIH3↑; RMO3↓; 

AACT; U2QL1↓; MLH3↓; MYCB2↑; 

MYCD↓; P73↓; ZN215↓; ABCB5↑; 

ABCAD; ALBU↓; APOA4↓; VDAC1↑; 

COPA1↓; ECM1↑; ELMO1↓; NEBU↓; 

TBG1↓; CD5L↑; CF157↓; CCD71↑; 

CC74A↑, CENPP↑; FDX2↑; YOOO3↓; 

LIX1↓; 5NT3L↑; PDZD2↑; TMCO2↑; 

Non-responders: CMGA↓; COR2A↑; 

CCN1↓; EFCB6↓; FARP2↑; MUC16↓; 

OR4KD↓; PRKX↑; RNF11↑; SEPT7↑; 

SNX17↑; TEX14↑; TGFI1↓; WEE1↓; 

THS7A↓; MLH3↓; PARP2↑; DDX46↑; 

DNMT1↓; MYCD↑; PCBP2↓; ZC3HD

↓; ZFHX4↑; ZN215↓; ABCAD↓; ALBU

↓; APOA4↓; APOB↑; GOGA4↑; S14L4

↑; SYN3↓; VDAC1↑; VOPP1↑; ECM1

↓; KIF17↓; KIF3A↓; MVP↑; MYPC1↓

; TBG1↓; SAMP↑; CLPX↑; FA9↑; 

PROS↑; U2QL1↑; CO2↑; UTY↑; 

TITIN↑; K1109↓; CI117↑; CCD71↓; 

ECT2L↓; FDX2↑; FIGL2↓; GDPD5↑; 

5NT3B↑; SPT2↓; TMCO2↑; WDR11↑; 

Cell 

communicatio

n and 

signaling; 

Protein 

metabolism; 

Regulation of 

nucleic acid 

metabolism; 

Transport; 

Cell growth 

and 

maintenance; 

Immune 

response; 

Energy 

metabolism 

[48] 

2017 10 SCZ; 

10 CTL 

Serum Individual Drug 

naive 

2DE MALDI-

TOF/TOF 

 Yes/No 2DE Total ID and 

altered: 15 

proteins 

↑APOA4; ↑HP; ↑ 

↓APOC3; ↓SAA1;  ↓CLU; ↓TTR; ↓

Albumin fragment (protein ID); ↓ 

alpha2-antitrypsin (protein ID); ↓

Haptoglobin hp2α (protein ID); 

- [54] 
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2017 29 SCZ 

25 BD 

93 CTL 

Plasma Individual Treated LC-MS/MS-

MRM 

- No/No MS 42 plasma 

proteins were 

quantified and 

analyzed 

(average) ApoC increase 

linked to 

cognitive 

decline and 

underlying 

morphological 

changes 

[52] 

2017 20 SCZ 

20 CTL 

PBMCs Individual Treated MALDI-TOF 

MS 

- No/No MS  Alpha defensins↑; Activation of 

immune 

pathway of 

PBMCs  

(suggestion) 

[53] 

2017 60 SCZ 

77 CTL 

Serum Individual Drug 

naive 

LC-MS/MS-

MRM 

- No/No MS 77 proteins 

(68 analyzed 

after QC) 

quantified of a 

total of 101 

selected 

proteins 

HPT↑; ICI↑; ANT3↑; CO4A↑; AACT↑

; ITIH4↑; CO9↑; FCN3↑; A2AP↑;  

APOH↑; APOA2↓; APOC3↓; APOA4↓; 

APOC1↓;  

 [50] 

2019 60 SCZ 

20 CTL 

Plasma Pooled Treated 1DE LC-

MS/MS 

ELISA Yes/Yes MS Total 

detected: 10; 

APOB↑; C4A↑; - [51] 

2019 19 SCZ 

19 BD 

13 CTL 

Serum Pooled Treated LC-MS/MS 

and LC/ICP-

MS 

- No/No MS Total ID: 11; IGKC↑; IGLC2↑; IGHG1↑; TRFE↑; 

KV320↑; J3QRN2↑; IGHG3↑; KVD28↑

; S4R460↑; LV325↑; IGHG2↑;  

- [62] 

2019 45 SCZ 

43 CTL 

Plasma Individual Treated 1DE-LC-

MS/MS 

WB No/yes MS 1302 proteins 

screened and 

34 selected 

(specific 

functions at 

CNS level); 5 

proteins 

analyzed 

BDNF↓; GMFB↓; RB3GAP1↓; (WB) Psychoneuroi

mmune 

signaling 

[56] 
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2019 33 SCZ 

23 BD 

24 CTL 

Serum Individual Drug naïve 1DE-LC 

MS/MS 

ELISA Yes/No MS 27 specific 

SCZ proteins 

↑A2ML1; ↑ZN189; ↑SMC2; ↑FA12; 

↑↑AACT; ↑APOE; ↑A2GL; ↑IPSP; ↑

DMD; ↑CPN2; ↑ABL2; ↑ACTB; ↑

ACTG; ↑PRKDC; ↑DCD; ↑RL19; ↑

LRP2; ↑LG3BP; ↑ITSN1;  

↑ECM1; ↑ARMX4; ↑ANR12; ↑

DHX29; ↑DYH5; ↑PINX1; ↑CNDP1; ↑

FETUB) 

↓TNRC18; ↓APOM; ↓CASB; ↓C1QA; 

↓RET4; ↓APOD; ↓TETN; ↓CO8G; ↓

CO6; ↓DESP; ↓VGFR1; ↓EST1; ↓

CADH5; ↓KI67; ↓MYT1; ↓HORN; ↓

MAGE1; ↓GULP1; 

(concentration of ANKRD12↑in SCZ-elisa) 

immune 

response, cell 

communicatio

n, cell growth 

and 

maintenance, 

protein 

metabolism 

and regulation 

of nucleic acid 

metabolism 

[55] 

SCZ: Schizophrenia; CTL: control; BD: Bipolar Disorder; DP: Depression; WB: Western Blot; ELISA: Enzyme-Linked Immunosorbent Assay; CNS: Central Nervous 

System; ⁑ Despite the enrichment method used, the flow-through was also analyzed. The total of proteins identified came from both LC-MS individual analysis. 

Altered proteins: entry name according to UniProt.  
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Main studies performed to compare SCZ vs. CTL: 

SCZ vs CTL (n=13), SCZ&BD vs CTL (n=1) and SCZ vs Ctl&BD (n=1) 

 

Considering the studies that perform the comparison between the SCZ cohort and, at least 

a group of CTL, it is noticed that a higher number of proteins identified as altered were found 

in studies that analyzed serum samples, also the most analyzed biological fluid. (see Figure 

4 and Figure 5). Fifteen studies aimed to explore the proteomic profile of the disorder and 

work on a potential identification of specific proteins that could help in the diagnosis (see 

Table S1). Considering this, 193 proteins were identified as differentially expressed 

between SCZ patients and clinical controls in blood-related samples (plasma, serum, and 

PBMCs), but none of the proteins are shared between these three blood matrices. Of the 15 

studies analyzed, we can observe that there are commonly identified proteins between 

serum, plasma, and CSF samples (Figure 4). Moreover, there are proteins identified in 

PBMCs that were found in sweat and saliva samples (Figure 5). The majority of proteins 

that are shared between two different blood-related matrices were identified in serum and 

plasma samples. Of the 14 shared proteins (entry name: APOC3, ANT3, APOC1, APOF, 

APOC2, A2AP, F13B, FCN3, CFAB, CO4A, RET4, APOA4, APOA2, APOD), 7 are 

apolipoproteins. Likewise, the proteins that were identified in serum, plasma, and CSF were 

two apolipoproteins (entry name: APOA1, APOE). Also, there is one protein in common 

between serum and CSF analysis (entry name: TTHI). In the other samples analyzed, two 

proteins were coincident between PBMCs and saliva (entry name: DEF1 and DEF3), and one 

protein was identified in both PBMCs and sweat samples (entry name: G3P).  

There are only 4 studies among the 19 that are not included in this comparison. Two of them 

do not have a CTL group and only intended to analyze the difference in plasma between 

patients treated and the same patients before AP therapy [48, 49]. The remaining two 

studies are not included since they do not share information about proteins ID [65, 66] 

   

Note: Incongruities in proteins identification were solved and this information is explicit in 

Table S1.  
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Figure 4- Venn diagram of proteins identified as altered in three biological fluids samples (serum, 
plasma, and CSF) in the target studies of SCZ vs. control. The proteins identified as altered in the: 
i) plasma vs. serum vs. CSF: 2 proteins; ii) serum vs. plasma: 14 proteins; and iii) serum vs. CSF: 1 
protein. See Table S1. 

 

 

 

Figure 5- Venn diagram of proteins identified as altered in three biological fluids samples (sweat, 
PBMCs, and saliva) in the target studies of SCZ vs. control. The proteins identified as altered in the: 
i) PBMCs vs. saliva: 2 proteins; and ii) PBMCs vs. sweat: 1 protein. See Table S1. 
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Main studies performed to compare SCZ drug naïve vs. SCZ treated 

There are 2 out of the 19 studies that aimed at comparing patients with SCZ before and after 

treatment (see Table S2). In one of these studies [49], the patients were treated for 8 weeks 

with the AP risperidone, and the analysis was performed before and at the end of this 

treatment. All patients included did not undergo prior AP treatment. This study aimed to 

evaluate the change in plasma protein expression levels and elucidate potential biomarkers 

related to metabolic side effects in consequence of risperidone treatment. Despite 18 

proteins being identified as up or down-regulated after the 8 weeks of treatment, there is 

one protein that we did not consider in this analysis since it represents a protein isoform 

that we were not able to identify properly, considering the information that is available. 

In another study where the comparison between a group of SCZ drug naïve/minimally 

medicated and the same group after treatment is performed [48], the patients were under 

different AP therapy: i) olanzapine (n=18); ii) quetiapine (n=14) and iii) risperidone (n=26). 

Patients were separated into responders (n=36) and non-responders (n=22), and the study 

aimed to unravel molecular pathways implicated in the efficient drug response (Figure 6 

and Table S2). Of the 17 proteins analyzed in the first study [49], there is only one protein 

that is shared with the second study and it is in common with the group of responders (entry 

name: NEBU). 

Within the same study, where a comparison between patients who respond or do not 

respond to treatment is made [48], 23 identified proteins were common between both 

groups. Of these proteins, 13 follow the same trend: 8 proteins were down-regulated (entry 

names: CCN1, TBG1, ALBU, TGFI1, MLH3, APOA4, THS7A, and ZN215) while 5 proteins were 

up-regulated (entry names: FDX2, 5NT3B, VDAC1, TMCO2, and FARP2) in both groups. 

Following distinct expression, 6 proteins were down-regulated in responders and up-

regulated in non-responders (entry name: U2QL1, CF157, FA9, SNX17, COR2A and MYCD), 

and 4 proteins were up-regulated in responders and down-regulated in non-responders 

(entry names: ABCAD, CCD71, ECM1, and EFCB6). 
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Figure 6- Venn diagram of proteins identified as altered in drug naïve patients/minimally 
medicated vs. treated in two studies. One circle (DN vs. T) represents one of the studies, while the 
two other circles (DN vs. T(responders) and DN vs. T (non-responders)) characterizes the other 
study. The proteins identified as altered in the: i): DN vs. T vs. DN vs. T (responders): 1 protein; 
and ii) DN vs. T (responders) vs. DN vs. T (non-responders): 23 proteins. See Table S2. 

 

 

Meta-analysis observations 

Of a total of 5 studies that included enough information for a meta-analysis (Figure 

7), it could be analyzed the trend of 6 proteins (Apolipoprotein A1, Apolipoprotein 

A2, Apolipoprotein A4, Apolipoprotein C1, Apolipoprotein C3 and Ficolin-3) among 

the studies.  

The meta-analysis shows a consistency of results for Apolipoprotein A1 and 

Apolipoprotein A2 in the 3 and 4 studies analyzed, respectively. The proteins are 

descreased in all studies. Nevertheless, although the uniformity showed in 

Apolipoprotein A1 variation, it is closed from zero (-0.29), while for Apolipoprotein 

A2 it is more pronounced (-0.44) . Similarly, when we analyze the effect of 

Apolipoprotein A4 (-0.14) and Apolipoprotein C1 (-0.23), it is also closed to the axis, 

with poor variation exhibited. Moreover, with an effect almost null, the studies 

results of Apolipoprotein A4 are not consistent, showing to be increased, decreased 

or close from the non-variation.  
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The Apolipoprotein C3 and Ficolin-3 showed the biggest effect (-0.89 and 0.78, 

respectively), although with different trends exhibited. Two in a total of three 

studies used to analyze the variation of each protein shows a consistency in results, 

which are decreased for Apolipoprotein C3 and increased for Ficolin-3 protein.  

 
Figure 7- Forest plot showing the log2 Fold Change between SCZ and control groups’ results expressed in the target 
studies. The overall random effects of fold change between SCZ and control groups is represented by a diamond 
whose width represents the 95% confidence interval (CI). I2= index of heterogeneity; X2 chi-squared heterogeneity 
statistic with degrees of freedom. 
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Conclusions 

The present systematic review and meta-analysis revealed six proteins from the 

studies that passed the selection criteria. It is important to state that the information 

available is not uniform, which increases the difficulty to compare the studies and, 

in some situations, resulted in the non-inclusion of the reports in the analysis. 

Apolipoprotein C3 and ficolin-3 showed the bigger effects, being decreased in SCZ 

patients in the first case, and increased in SCZ patients in the second case. More 

studies with more uniform information are required to evaluate the potential use of 

these circulating proteins as potential biomarkers to be used in a clinical context. 
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Table S1. Proteins identified as altered in the target studies and clustered by the study 

comparison (SCZ vs. control, SCZ vs. BD&control, and SCZ&BD vs. control). Proteins are 

described by name, Unitprot and ncbi entry name (when identified as unique proteins among 

the studies), gene name, accession number, and the type of sample (plasma, serum, PBMCs, CSF, 
sweat and saliva) 

 

Proteins identified as altered in SCZ vs. control studies 

Protein name Entry name Gene name Accsession 
number 

Sample 

Alpha-2-antiplasmin A2AP SERPINF2 P08697 Plasma 

Alpha-synuclein E7EPV7 SNCA E7EPV7 Plasma 

Amyloid-beta precursor protein H7C0V9 APP P05067 Plasma 

Antithrombin-III ANT3 SERPINC1 P01008 Plasma 

Apolipoprotein A1 APOA1 APOA1 P02647 Plasma 

Apolipoprotein A2 APOA2 APOA2 P02652 Plasma 

Apolipoprotein A4 APOA4 APOA4 P06727 Plasma 

Apolipoprotein B APOB APOB P04114 Plasma 

Apolipoprotein B-100 APOB APOB P04114 Plasma 

Apolipoprotein C1 APOC1 APOC1 P02654 Plasma 

Apolipoprotein C2 APOC2 APOC2 P02655 Plasma 

Apolipoprotein C3 APOC3 APOC3 P02656 Plasma 

Apolipoprotein C4 APOC4 APOC4 P55056 Plasma 

Apolipoprotein D APOD APOD P05090 Plasma 

Apolipoprotein E APOE APOE P02649 Plasma 

Apolipoprotein F APOF APOF Q13790 Plasma 

Apolipoprotein L1 APOL1 APOL1 O14791 Plasma 

Attractin ATRN ATRN O75882 Plasma 

Brain-derived neurotrophic factor BDNF BDNF P23560 Plasma 

cAMP-dependent protein kinase type 
II-beta regulatory subunit 

KAP3 PRKAR2B P31323 Plasma 

CDK5 regulatory subunit-associated 
protein 2 

A0A0A0MRG9 CDK5RAP2 A0A0A0MRG9 Plasma 

Clusterin CLUS Clu P10909 Plasma 

Coagulation factor XIII B chain F13B F13B P05160 Plasma 

Complement C1q subcomponent 
subunit C 

C1QC C1QC P02747 Plasma 

Complement C4-A CO4A C4A P0C0L4 Plasma 

Complement component C3 CO3 C3 P01024 Plasma 

Complement factor B CFAB CFB P00751 Plasma 

Dihydropyrimidinase-related protein 
2 

DPYL2 DPYSL2 Q16555 Plasma 

Drebrin D6RFI1 DBN1 D6RFI1 Plasma 

Dynamin-2 DYN2 DNM2 P50570 Plasma 

Eukaryotic translation initiation 
factor 4 gamma 1 

E7EX73 EIF4G1 E7EX73 Plasma 

F-box only protein 7 FBX7 FBXO7 Q9Y3I1 Plasma 
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Ficolin-3 FCN3 FCN3 O75636 Plasma 

Glia maturation factor beta GMFB GMFB P60983 Plasma 

Heat shock protein HSP 90-alpha HS90A HSP90AA1 P07900 Plasma 

Heat shock protein HSP 90-beta HSP90AB1 HS90B P08238 Plasma 

Heparin cofactor 2 HEP2 SERPIND1 P05546 Plasma 

Histidine-rich glycoprotein HRG HRG P04196 Plasma 

Hypoxanthine-guanine 
phosphoribosyltransferase 

HPRT HPRT1 P00492 Plasma 

Integral membrane protein 2B ITM2B ITM2B Q9Y287 Plasma 

Matrix metalloproteinase-9 MMP9 MMP9 P14780 Plasma 

Maturin MTURN MTURN Q8N3F0 Plasma 

Mitogen-activated protein kinase 1 MK01 MAPK1 P28482 Plasma 

Parkinson disease protein 7 PARK7 PARK7 Q99497 Plasma 

Phospholipase A-2-activating protein PLAP PLAA Q9Y263 Plasma 

Pigment epithelium-derived factor PEDF SERPINF1 P36955 Plasma 

Plasma kallikrein KLKB1 KLKB1 P03952 Plasma 

Prolow-density lipoprotein receptor-
related protein 1 

LRP1 LRP1 Q07954 Plasma 

Rab3 GTPase-activating protein 
catalytic subunit 

RB3GP RAB3GAP1 Q15042 Plasma 

Rab3 GTPase-activating protein non-
catalytic subunit 

RBGPR RAB3GAP2 Q9H2M9 Plasma 

Rap guanine nucleotide exchange 
factor 2 

RPGF2 RAPGEF2 Q9Y4G8 Plasma 

Ras-related protein Rab-11A H3BMH2 RAB11A H3BMH2 Plasma 

Retinol-binding protein 4 RET4 RBP4 P02753 Plasma 

Serine/threonine-protein kinase 
mTOR 

MTOR MTOR P42345 Plasma 

Serine/threonine-protein 
phosphatase 2A 56 kDa regulatory 
subunit beta isoform 

E9PQN5 PPP2R5B E9PQN5 Plasma 

Signal transducer and activator of 
transcription 

G8JLH9 STAT3 G8JLH9 Plasma 

Sortilin-related receptor SORL SORL1 Q92673 Plasma 

TBC1 domain family member 24 A0A0D9SFR5 TBC1D24 A0A0D9SFR5 Plasma 

Tubulin beta-2B chain TBB2B TUBB2B Q9BVA1 Plasma 

Vacuolar protein sorting-associated 
protein 35 

VPS35 VPS35 Q96QK1 Plasma 

Actin, cytoplasmic 1 ACTB ACTB P60709 Serum 

Actin, cytoplasmic 2 ACTG ACTG1 P63261 Serum 

Adhesion G protein-coupled receptor 
E1 

AGRE1 ADGRE1 Q14246 Serum 

Alpha-1-antichymotrypsin AACT SERPINA3 P01011 Serum 

Alpha-1-antichymotrypsin  AACT SERPINA3 P01011 Serum 

Alpha-2-antiplasmin A2AP SERPINF2 P08697 Serum 

Alpha-2-HS-glycoprotein FETUA AHSG P02765 Serum 

Alpha-2-macroglobulin-like protein 1 A2ML0 A2ML1 A8K2U0 Serum 

Alsin ALS2 Alsin Q96Q42 Serum 

Aminopeptidase N AMPN ANPEP P15144 Serum 

Ankyrin repeat domain-containing 
protein 12 

ANR12 ANKRD12 Q6UB98 Serum 
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Antigen KI-67 KI67 MKI67 P46013 Serum 

Antithrombin-III (ANT3) ANT3 SERPINC1 P01008 Serum 

Antithrombin-III (ANT3) ANT3 SERPINC1 P01008 Serum 

Apolipoprotein A1 APOA1 APOA1 P02647 Serum 

Apolipoprotein A2 APOA2 APOA2 P02652 Serum 

Apolipoprotein A4 APOA4 APOA4 P02652 Serum 

Apolipoprotein A4 APOA4 APOA4 P06727 Serum 

Apolipoprotein C1 APOC1 APOC1 P02654 Serum 

Apolipoprotein C2 precursor APOC2 APOC2 P02655 Serum 

Apolipoprotein C3 APOC3 APOC3 P02656 Serum 

Apolipoprotein D APOD APOD P05090 Serum 

Apolipoprotein E APOE APOE P02649 Serum 

Apolipoprotein F (precursor) APOF APOF Q13790 Serum 

Apolipoprotein M APOM APOM O95445 Serum 

Armadillo repeat-containing X-linked 
protein 4 

ARMX4 ARMCX4 Q5H9R4 Serum 

ATP-dependent RNA helicase  DHX29 DHX29 Q7Z478 Serum 

Beta-2-glycoprotein 1  APOH APOH P02749 Serum 

Beta-2-glycoprotein 1 (Fragment) J3QRN2 APOH P02749 Serum 

Beta-Ala-His dipeptidase CNDP1 CNDP1 Q96KN2 Serum 

Beta-casein CASB CSN2 P05814 Serum 

C4b-binding protein alpha chain C4BPA C4BPA P04003 Serum 

Cadherin-5 CADH5 CDH5 P33151 Serum 

Carbonic anhydrase 1 CAH1 CA1 P00915 Serum 

Carboxypeptidase N subunit 2 CPN2 CPN2 P22792 Serum 

CD5 antigen-like CD5L CD5L O43866 Serum 

Coagulation factor VII FA7 F7 P08709 Serum 

Coagulation factor XII FA12 F12 P00748 Serum 

Coagulation factor XIII B chain FI3B FI3B P05160 Serum 

Coiled-coil domain-containing 
protein 57 

CCD57 CCDC57 Q2TAC2 Serum 

Complement C1q subcomponent 
subunit A 

C1QA C1QA P02745 Serum 

Complement C4-A CO4A C4A P0C0L4 Serum 

Complement component C6 CO6 C6 P13671 Serum 

Complement component C8 beta 
chain precursor (C8 B protein) 

Q05CV3 C8B Q05CV3 Serum 

Complement component C9 CO9 C9 P02748 Serum 

Complement factor B CFAB CFB P00751 Serum 

Complement factor H-related protein 
3 

FHR3 CFHR3 Q02985 Serum 

Dermcidin DCD DCD P81605 Serum 

Desmoplakin DESP DSP P15924 Serum 

DNA-dependent protein kinase 
catalytic subunit 

PRKDC PRKDC P78527 Serum 

Dopamine beta-hydroxylase DOPO DBH P09172 Serum 

Dynein heavy chain 5, axonemal  DNAH5 DYH5 Q8TE73 Serum 

Dystrophin DMD DMD P11532 Serum 

https://www.uniprot.org/uniprot/P05814
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Extracellular matrix protein 1 ECM1 ECM1 Q16610 Serum 

Fer-1-like protein 6 FR1L6 FER1L6 Q2WGJ9 Serum 

Fetuin-B FETUB FETUB Q9UGM5 Serum 

Fibrinogen alpha chain FIBA FGA P02671 Serum 

Ficolin-3 FCN3 FCN3 O75636 Serum 

Galectin-3-binding protein LG3BP LGALS3BP Q08380 Serum 

Gamma-glutamyl hydrolase 
(precursor) 

GGH GGH Q92820 Serum 

Haptoglobin HPT HP P00738 Serum 

Hornerin HORN HRNR Q86YZ3 Serum 

Ig kappa chain C region 
(Immunoglobulin kappa constant) 

IGKC IGKC P01834 Serum 

Ig kappa chain V-III region GOL P01619 Serum 

Ig kappa chain V-III region SIE 
(Immunoglobulin kappa variable 3-
20) 

KV320 IGKV3-20 P01620 Serum 

Ig lambda chain V-IV region Hil 
(Immunoglobulin lambda variable 3-
25) 

LV325 IGLV3-25 P01717 Serum 

IGK@ protein Q6PJF2 IGK@ Q6PJF2 Serum 

IGL@ protein Q8N355 IGL@ Q8N355 Serum 

Immunoglobulin heavy constant 
gamma 1 

IGHG1 IGHG1 P01857 Serum 

Immunoglobulin heavy constant 
gamma 2 

IGHG2 IGHG2 P01859 Serum 

Immunoglobulin heavy constant 
gamma 3 

IGHG3 IGHG3 P01860 Serum 

Immunoglobulin heavy constant 
gamma 4 protein 

IGHG4 IGHG4 P01861 Serum 

Immunoglobulin heavy constant mu IGHM IGHM P01871 Serum 

Immunoglobulin lambda constant 2 IGLC2 IGLC2 P0DOY2 Serum 

Insulin-like growth fac.-bind. prot. 3  IBP3 IGFBP3 P17936 Serum 

Insulin-like growth factor-binding 
protein complex acid labile subunit 
(chain precursor) 

ALS IGFALS P35858 Serum 

Inter-alpha-trypsin inhibitor heavy 
chain H3 

ITIH3 ITIH3 Q06033 Serum 

Inter-alpha-trypsin inhibitor heavy 
chain H4 

ITIH4 ITIH4 Q14624 Serum 

Intercellular adhesion molecule 2 
(precursor) 

ICAM2 ICAM2 P13598 Serum 

Intersectin-1 ITSN1 ITSN1 Q15811 Serum 

Isoform 1 of C4b-binding protein 
beta chain precursor (C4b-binding 
protein beta chain) 

C4BPB C4BPB P20851 Serum 

Isoform 2 of Apolipoprotein L1 
precursor (Apolipoprotein L1) 

APOL1 APOL1 O14791-2 Serum 

Isoform 2 of Inter-alpha-trypsin 
inhibitor heavy chain H4 precursor 

ITIH4 ITIH4 Q14624 Serum 

Keratin, type I cytoskeletal 14 K1C14 KRT14 P02533 Serum 

Keratin, type I cytoskeletal 9 K1C9 KRT9 P35527 Serum 

Keratin, type II cytoskeletal 6B K2C6B KRT6B P04259 Serum 

Kinesin-like protein KIF21B KI21B KIF21B O75037 Serum 

Kinesin-like protein KIF27 KIF27 KIF27 Q86VH2 Serum 

https://www.uniprot.org/uniprot/P00738
https://www.uniprot.org/uniprot/P35858
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Kininogen-1 (Isoform HMW of 
Kininogen-1 precursor) 

KNG1 KNG1 P01042 Serum 

Leucine-rich alpha-2-glycoprotein A2GL LRG1 P02750 Serum 

Leucine-rich repeat-containing 
protein 7 

LRRC7 LRRC7 Q96NW7 Serum 

Leukemia inhibitory factor receptor LIFR LIFR P42702 Serum 

Lipopolysaccharide-binding protein 
(precursor) 

LBP LBP P18428 Serum 

Liver carboxylesterase 1 EST1 CES1 P23141 Serum 

Low-density lipoprotein receptor-
related protein 2 

LRP2 LRP2 P98164 Serum 

Melanoma-associated antigen E1 MAGE1 MAGEE1 Q9HCI5 Serum 

Microtubule-associated 
serine/threonine-protein kinase 1 

MAST1 MAST1 Q9Y2H9 Serum 

Myelin transcription factor 1 MYT1 MYT1 Q01538 Serum 

Myoferlin MYOF MYOF Q9NZM1 Serum 

N-acetylmuramoyl-L-alanine 
amidase (Isoform 1 of N-
acetylmuramoyl-L-alanine amidase 
precursor) 

PGRP2 PGLYRP2 Q96PD5 Serum 

Nucleobindin-1 (CALNUC) NUCB1 NUCB1 Q02818 Serum 

Nucleoside diphos.-linked moiety X 
mot.6 

NUDT6 NUDT6 P53370 Serum 

Peptidase inhibitor 16 (Isoform 1 of 
Peptidase inhibitor 16 precursor) 

PI16 PI16 Q6UXB8 Serum 

Phosphatidylinositol-glycan-specific 
phospholipase D 

PHLD GPLD1 P80108 Serum 

Phospholipid transfer protein 
(Isoform 1 of Phospholipid transfer 
protein precursor) 

PLTP PLTP P55058 Serum 

PIN2/TERF1-interacting telomerase 
inhibitor 1 

PINX1 PINX1 Q96BK5 Serum 

Plasma protease C1 inhibitor IC1 SERPING1 P05155 Serum 

Plasma protease C1 inhibitor  IC1 SERPING1 P05155 Serum 

Plasma serine protease inhibitor IPSP SERPINA5 P05154 Serum 

Protein IGHV3OR16-9 S4R460 IGKV2D-28 S4R460 Serum 

Protein IGKV2D-28 (Immunoglobulin 
kappa variable 2D-28) 

KVD28   A0A0A0MTQ6 Serum 

PTB domain-containing engulfment 
adapter protein 1 

GULP1 GULP1 Q9UBP9 Serum 

Retinol-binding protein 4 RET4 RBP4 P02753 Serum 

Ribosomal protein L19 RL19 RPL19 P84098 Serum 

Sarcoma antigen 1 SAGE1 SAGE1 Q9NXZ1 Serum 

Serotransferrin TRFE TF P02787 Serum 

Serum amyloid A1 protein 
preproprotein 

SAA1 SAA1 gi|40316910 Serum 

Sorbin and SH3 domain-containing 
prot.1 

SRBS1 SORBS1 Q9BX66 Serum 

SP 40, 40, partial/clusterin CLUS CLU gi|338305 Serum 

Structural maintenance of 
chromosomes protein 1A 

SMC1A SMC1A Q14683 Serum 

Structural maintenance of 
chromosomes protein 2 

SMC2 SMC2 O95347 Serum 

Structural maintenance of 
chromosomes protein 4 

SMC4 SMC4 Q9NTJ3 Serum 
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Tetranectin TETN CLEC3B P05452 Serum 

Transthyretin (dimer) TTHI TTR gi|114318993 Serum 

Transthyretin precursor TTHI TTR P02766 Serum 

Trinucleotide repeat-containing gene 
18 protein 

TNC18 TNRC18 O15417 Serum 

Tyrosine-protein kinase ABL2 
(Abelson tyrosine-protein kinase 2) 

ABL2 ABL2 P42684 Serum 

Vascular endothelial growth factor 
receptor 1 

VGFR1 FLT1 P17948 Serum 

Vitamin K-dependent protein S 
(precursor) 

PROS PROS1 P07225 Serum 

WD repeat-containing protein 19 WDR19 WDR19 Q8NEZ3 Serum 

Xin actin-bind. repeat-containing 
protein 1 

XIRP1 XIRP1 Q702N8 Serum 

Zinc finger protein 189 ZNF189 ZNF189 O75820 Serum 

Zinc finger protein 57 ZNF57 ZNF57 Q68EA5 Serum 

60 kDa heat shock protein 
mitochondrial 

CH60 HSPD1 P10809 PBMCs 

alpha defensins 1 DEF1 DEFA1 P59665 PBMCs 

alpha defensins 3 DEF3 DEFA3 P59666 PBMCs 

Coactosin-like protein COTL1 COTL1 Q14019 PBMCs 

Cytosolic non-specific dipeptidase CNDP2 CNDP2 Q96KP4 PBMCs 

Fructose bisphosphate aldolase C ALDOC ALDOC P09972 PBMCs 

Glucose-6-phosphate isomerase G6PI GPI P06744 PBMCs 

Glyceraldehyde-3-phosphate 
dehydrogenase 

G3P GAPDH P04406 PBMCs 

Heat shock 70 kDa protein HSP72 HSOA2 P54652 PBMCs 

Heterogeneous nuclear 
ribonucleoprotein K 

HNRPK HNRNPK P61978 PBMCs 

L-lactate dehydrogenase B chain LDHB LDHB P07195 PBMCs 

Myosin 14 MYH14 MYH14 Q7Z406 PBMCs 

Myosin 15 MYH15 MYH15 Q9Y2K3 PBMCs 

Nicotinamide 
phosphoribosyltransferase 

NAMPT NAMPT P43490 PBMCs 

Peptidyl-prolyl cis-trans isomerase A 
(cyclophilin A) 

PPIA PPIA P62937 PBMCs 

Phosphoglycerate kinase 1 PGK1 PGK1 P00558 PBMCs 

Probable phosphoglycerate mutase 4 PGAM4 PGAM4 Q8N0Y7 PBMCs 

Pyruvate kinase PKLR KPYR PKLR P30613 PBMCs 

TOG array regulator of axonemal 
microtubules protein 1 

TGRM1 TOGARAM1 Q9Y4F4 PBMCs 

Triosephosphate isomerase TPIS TPI1 P60174 PBMCs 

Apolipoprotein A1 APOA1 APOA1 P02647 CSF 

Apolipoprotein E APOE APOE P02649 CSF 

Coiled-coil domain-containing 
protein 3 

CCDC3 CCDC3 Q9BQI4 CSF 

Prostaglandin-H2 D-isomerase PTGDS PTGDS P41222 CSF 

TGF-β receptor TGFR1 TGFBR1 P36897 CSF 

Transthyretin precursor TTHY TTR P02766 CSF 

annexin A5 ANXA5 ANXA5 gi|4502107 Sweat 

arginase-1 isoform 2 ARGI1 ARG1 gi|10947139 Sweat 

https://www.uniprot.org/uniprot/P02766
https://www.uniprot.org/uniprot/P07195
https://www.uniprot.org/uniprot/P02647
https://www.uniprot.org/uniprot/P02649
https://www.uniprot.org/uniprot/Q9BQI4
https://www.uniprot.org/uniprot/P41222
https://www.uniprot.org/uniprot/P36897
https://www.uniprot.org/uniprot/P02766
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bleomycin hydrolase BLMH BLMH gi|4557367 Sweat 

calmodulin-like skin protein CALL5 CALML5 gi|8393159 Sweat 

caspase 14 precursor  CASPE CASP14 gi|6912286 Sweat 

Corneodesmosin CDSN CDSN gi|67782356 Sweat 

Cystatin A CYTA CSTA gi|4885165| Sweat 

dermcidin isoform 1 preproprotein DCD DCD gi|16751921 Sweat 

desmoglein 1 preproprotein DSG1 DSG1 gi|4503401 Sweat 

glyceraldehyde-3-phosphate 
dehydrogenase 

G3P GAPDH P04406 Sweat 

kallikrein 11 isoform 1 precursor KLK11 KLK11 gi|5803199 Sweat 

keratin, type I cytoskeletal 10 K1C10 KRT10 gi|40354192 Sweat 

peroxiredoxin-1 PRDX1 PRDX1 gi|32455264 Sweat 

phosphatidylethanolamine-binding 
protein 1 

PEBP1 PEBP1 gi|4505621 Sweat 

prolactin-inducible protein 
precursor 

PIP PIP gi|4505821 Sweat 

protein S100-A7 S10A7 S100A7 gi|4506769 Sweat 

protein/nucleic acid deglycase DJ-1 PARK7 PARK7 gi|31543380 Sweat 

thioredoxin isoform 1 THIO TXN gi|50592994 Sweat 

zinc-alpha-2-glycoprotein precursor ZA2G AZGP1 gi|4502337 Sweat 

alpha defensins 1 DEF1 DEFA1 P59665 Saliva 

alpha defensins 3 DEF3 DEFA3 P59666 Saliva 

alpha defensins 4 DEF4 DEFA4 P12838 Saliva 

cystatin A CYTA CSTA P01040 Saliva 

Cystatin B S-cysteinyl CYTB CSTB P04080 Saliva 

S100A12 S10AC S100A12 P80511 Saliva 

 

 

 

Note: Of the proteins identified as altered in three biological fluids samples (serum, plasma, and 

CSF), 1 protein (alpha defensins 2) identified in saliva and PBMCs was not considered since it 

was not given information about protein ID and we were not able to find the corresponding 

accession number/identifier through UniProt database [53, 58]; Albumin fragment and alpha2-

antitrypsin were identified, each protein, in one serum study but the accession number does not 

correspond to the reported protein; In the same study, an Apolipoprotein C2 was wrongly 

matched with the entry name, gene and accession number and, for this reason, was also excluded 

from this comparison; Likewise, 3 identified Haptoglobin hp2α in this study were not considered 

for this analysis [54]; In another serum study, one protein had its accession number updated, 

taking into consideration UniProt data (from P04206 to P01619) [60];  

Of the proteins identified as altered in three biological fluids samples (sweat, PBMCs, and saliva), 

only a protein isoform from the study that analyzed individuals with SCZ after risperidone 

treatment was not considered. Without the accession number information, we could not identify 

this protein properly to take into consideration for this analysis [49].     
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Table S2. Proteins identified as altered in the target studies and clustered by the study 

comparison (SCZ vs. treated). Proteins are described by name, Unitprot and ncbi entry name 

(when identified as unique proteins among the studies), gene name, accession number, and the 

cohort used/group of study (DN vs T (risperidone) and DN vs T (responders and non-
responders)). 

Proteins identified as altered in SCZ vs. SCZ treated 

Protein name Entry name Gene name Accsession 
number 

Group of 
study 

(Interferon-induced) guanylate-
binding protein 1 

GBP1 GBP1 Q01514 DN vs T 
(risperidone) 

(Isoform1 of) zinc finger protein185 ZN185 ZNF185 O15231 DN vs T 
(risperidone) 

Apolipoprotein A1 APOA1 APOA1 P02647 DN vs T 
(risperidone) 

Complement component 4B 
preproprotein 

H9YW54 C4B H9YW54  DN vs T 
(risperidone) 

Complement component C8 beta 
chain 

CO8B C8B P07358 DN vs T 
(risperidone) 

Complement factor B CFAB CFB  P00751 DN vs T 
(risperidone) 

Gelsolin GELS GSN P06396 DN vs T 
(risperidone) 

Hemopexin HEMO HPX P02790 DN vs T 
(risperidone) 

Histamine N-methyltransferase HNMT HNMT P50135 DN vs T 
(risperidone) 

Isoform2 of vinculin VINC VCL P18206 DN vs T 
(risperidone) 

Keratin, type I cytoskeletal 9 K1C9 KRT9 P35527 DN vs T 
(risperidone) 

Keratin, type II cytoskeletal 1 K2C1 KRT1 P04264 DN vs T 
(risperidone) 

Nebulin NEBU NEB P20929 DN vs T 
(risperidone) 

Plasminogen PLMN PLG P00747 DN vs T 
(risperidone) 

Protein ALEX ALEX GNAS P84996 DN vs T 
(risperidone) 

retinol-binding protein4 RET4 RBP4 P02753 DN vs T 
(risperidone) 

Serotransferrin TRFE TF P02787 DN vs T 
(risperidone) 

39S ribosomal protein L3, 
mitochondrial 

RM03 MRPL3 P09001 DN vs T 
(responders) 

7-methylguanosine phosphate-
specific 
5'-nucleotidase 

5NT3B NT5C3B Q969T7 DN vs T 
(responders) 

Alpha-1-antichymotrypsin AACT SERPINA3 P01011 DN vs T 
(responders) 

Apolipoprotein A4 APOA4 APOA4 P06727 DN vs T 
(responders) 

ATP-binding cassette sub-family A 
member 13 

ABCAD ABCA13 Q86UQ4 DN vs T 
(responders) 

ATP-binding cassette sub-family B 
member 5 

ABCB5 ABCB5 Q2M3G0 DN vs T 
(responders) 

Capping protein, Arp2/3 and 
myosin-I linker protein 2 

CARL2 CARMIL2 Q6F5E8 DN vs T 
(responders) 

CCN family member 1 CCN1 CCN1 O00622 DN vs T 
(responders) 

https://www.uniprot.org/uniprot/Q01514
https://www.uniprot.org/uniprot/O15231
https://www.uniprot.org/uniprot/P02647
https://www.uniprot.org/uniprot/H9YW54
https://www.uniprot.org/uniprot/P07358
https://www.uniprot.org/uniprot/P00751
https://www.uniprot.org/uniprot/P06396
https://www.uniprot.org/uniprot/P02790
https://www.uniprot.org/uniprot/P50135
https://www.uniprot.org/uniprot/P18206
https://www.uniprot.org/uniprot/P35527
https://www.uniprot.org/uniprot/P04264
https://www.uniprot.org/uniprot/P20929
https://www.uniprot.org/uniprot/P00747
https://www.uniprot.org/uniprot/P84996
https://www.uniprot.org/uniprot/P02753
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CD5 antigen-like CD5L CD5L O43866 DN vs T 
(responders) 

Centromere protein P CENPP CENPP Q6IPU0 DN vs T 
(responders) 

Cilia- and flagella-associated protein 
157 

CF157 CFAP157 Q5JU67 DN vs T 
(responders) 

Coagulation factor IX FA9 F9 P00740 DN vs T 
(responders) 

Coiled-coil domain-containing 
protein 71 

CCD71 CCDC71 Q8IV32 DN vs T 
(responders) 

Coiled-coil domain-containing 
protein 74A 

CC74A CCDC74A Q96AQ1 DN vs T 
(responders) 

Collagen alpha-1(XXV) chain COPA1 COL25A1 Q9BXS0 DN vs T 
(responders) 

Coronin-2A COR2A CORO2A Q92828 DN vs T 
(responders) 

DNA mismatch repair protein Mlh3 MLH3 MLH3 Q9UHC1 DN vs T 
(responders) 

DNA-dependent protein kinase 
catalytic subunit 

PRKDC PRKDC P78527 DN vs T 
(responders) 

E3 ubiquitin-protein ligase MYCBP2 MYCB2 MYCBP2 O75592 DN vs T 
(responders) 

EF-hand calcium-binding 
domaincontaining protein 6 

EFCB6 EFCAB6 Q5THR3 DN vs T 
(responders) 

Engulfment and cell motility protein 
1 

ELMO1 ELMO1 Q92556 DN vs T 
(responders) 

Extracellular matrix protein 1 ECM1 ECM1 Q16610 DN vs T 
(responders) 

FERM, RhoGEF and pleckstrin 
domaincontaining 
protein 2 

FARP2 FARP2 O94887 DN vs T 
(responders) 

Ferredoxin-2, mitochondrial FDX2 FDX2 Q6P4F2 DN vs T 
(responders) 

Heat shock 70 kDa protein 1-like HS71L_HUMAN HSPA1L P34931 DN vs T 
(responders) 

Inter-alpha-trypsin inhibitor heavy 
chain H3 

ITIH3 ITIH3 Q06033 DN vs T 
(responders) 

Myocardin MYCD MYOCD Q8IZQ8 DN vs T 
(responders) 

Nebulin NEBU NEB P20929 DN vs T 
(responders) 

PDZ domain-containing protein 2 PDZD2 PDZD2 O15018 DN vs T 
(responders) 

Protein limb expression 1 homolog LIX1 LIX1 Q8N485 DN vs T 
(responders) 

Serum albumin ALBU ALB P02768 DN vs T 
(responders) 

Sorting nexin-17 SNX17 SNX17 Q15036 DN vs T 
(responders) 

Thrombospondin type-1 
domaincontaining 
protein 7A 

THS7A THSD7A Q9UPZ6 DN vs T 
(responders) 

Transforming growth factor beta-1- 
induced transcript 1 protein 

TGFI1 TGFB1I1 O43294 DN vs T 
(responders) 

Transmembrane and coiled-coil 
domain-containing protein 2 

TMCO2 TMCO2 Q7Z6W1 DN vs T 
(responders) 

Tubulin gamma-1 chain TBG1 TUBG1 P23258 DN vs T 
(responders) 

Tumor protein p73 P73 TP73 O15350 DN vs T 
(responders) 
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Ubiquitin-conjugating enzyme E2Q-
like protein 1 

U2QL1 UBE2QL1 A1L167 DN vs T 
(responders) 

Uncharacterized protein HSD47 YO003 HSD47? Q6ZVN6 DN vs T 
(responders) 

Voltage-dependent anion-selective 
channel protein 1 

VDAC1 VDAC1 P21796 DN vs T 
(responders) 

Zinc finger protein 215 ZN215 ZNF215 Q9UL58 DN vs T 
(responders) 

7-methylguanosine 
phosphatespecific 
5'-nucleotidase 

5NT3B NT5C3B Q969T7 DN vs T 
(non-
responders) 

Apolipoprotein A4 APOA4 APOA4 P06727 DN vs T 
(non-
responders) 

Apolipoprotein B-100 APOB APOB P04114 DN vs T 
(non-
responders) 

ATP-binding cassette sub-family A 
member 13 

ABCAD ABCA13 Q86UQ4 DN vs T 
(non-
responders) 

ATP-dependent Clp protease ATP-
binding subunit clpX-like, 
mitochondrial 

CLPX CLPX O76031 DN vs T 
(non-
responders) 

cAMP-dependent protein kinase 
catalytic subunit PRKX 

PRKX PRKX P51817 DN vs T 
(non-
responders) 

CCN family member 1 CCN1 CCN1 O00622 DN vs T 
(non-
responders) 

Chromogranin-A CMGA CHGA P10645 DN vs T 
(non-
responders) 

Cilia- and flagella-associated protein 
157 

CF157 CFAP157 Q5JU67 DN vs T 
(non-
responders) 

Coagulation factor IX  FA9 F9 P00740 DN vs T 
(non-
responders) 

Coiled-coil domain-containing 
protein 71 

CCD71 CCDC71 Q8IV32 DN vs T 
(non-
responders) 

Complement C2 CO2 C2 P06681 DN vs T 
(non-
responders) 

Coronin-2A COR2A CORO2A Q92828 DN vs T 
(non-
responders) 

DNA (cytosine-5)-
methyltransferase 1 

DNMT1 DNMT1 P26358 DN vs T 
(non-
responders) 

DNA mismatch repair protein Mlh3 MLH3 MLH3 Q9UHC1 DN vs T 
(non-
responders) 

E3 ubiquitin-protein ligase Arkadia RNF11 RNF11 Q6ZNA4 DN vs T 
(non-
responders) 

EF-hand calcium-binding 
domaincontaining protein 6 

EFCB6 EFCAB6 Q5THR3 DN vs T 
(non-
responders) 
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Epithelial cell-transforming 
sequence 2 oncogene-like 

ECT2L ECT2L Q008S8 DN vs T 
(non-
responders) 

Extracellular matrix protein 1 ECM1 ECM1 Q16610 DN vs T 
(non-
responders) 

FERM, RhoGEF and pleckstrin 
domain-containing protein 2 

FARP2 FARP2 O94887 DN vs T 
(non-
responders) 

Ferredoxin-2, mitochondrial FDX2 FDX2 Q6P4F2 DN vs T 
(non-
responders) 

Glycerophosphodiester 
phosphodiesterase 
domaincontaining 
protein 5 

GDPD5 GDPD5 Q8WTR4 DN vs T 
(non-
responders) 

Golgin sub-family A member 4 GOGA4 GOLGA4 Q13439 DN vs T 
(non-
responders) 

Histone demethylase UTY UTY UTY O14607 DN vs T 
(non-
responders) 

Inactive serine/threonine-protein 
kinase TEX14 

TEX14 TEX14 Q8IWB6 DN vs T 
(non-
responders) 

Kinesin-like protein KIF17 KIF17 KIF17 Q9P2E2 DN vs T 
(non-
responders) 

Kinesin-like protein KIF3A KIF3A KIF3A Q9Y496 DN vs T 
(non-
responders) 

Major vault protein MVP MVP Q14764 DN vs T 
(non-
responders) 

Mucin-16 MUC16 MUC16 Q8WXI7 DN vs T 
(non-
responders) 

Myocardin MYCD MYOCD Q8IZQ8 DN vs T 
(non-
responders) 

Myosin-binding protein C, slow-type MYPC1 MYBPC1 Q00872 DN vs T 
(non-
responders) 

Olfactory receptor 4K13 OR4KD OR4K13 Q8NH42 DN vs T 
(non-
responders) 

Poly [ADP-ribose] polymerase 2 PARP2 PARP2 Q9UGN5 DN vs T 
(non-
responders) 

Poly(rC)-binding protein 2 PCBP2 PCBP2 Q15366 DN vs T 
(non-
responders) 

Probable ATP-dependent RNA 
helicase DDX46 

DDX46 DDX46 Q7L014 DN vs T 
(non-
responders) 

Protein SPT2 homolog SPT2 SPTY2D1 Q68D10 DN vs T 
(non-
responders) 

Putative fidgetin-like protein 2 FIGL2 FIGNL2 A6NMB9 DN vs T 
(non-
responders) 
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SEC14-like protein 4 S14L4 SEC14L4 Q9UDX3 DN vs T 
(non-
responders) 

Septin-7 SEPT7 SEPT07 Q16181 DN vs T 
(non-
responders) 

Serum albumin ALBU ALB P02768 DN vs T 
(non-
responders) 

Serum amyloid P-component SAMP APCS P02743 DN vs T 
(non-
responders) 

Sorting nexin-17 SNX17 SNX17 Q15036 DN vs T 
(non-
responders) 

Synapsin-3 SYN3 SYN3 O14994 DN vs T 
(non-
responders) 

Thrombospondin type-1 
domaincontaining 
protein 7A 

THS7A THSD7A Q9UPZ6 DN vs T 
(non-
responders) 

Titin TITIN TTN Q8WZ42 DN vs T 
(non-
responders) 

Transforming growth factor beta-1- 
induced transcript 1 protein 

TGFI1 TGFB1I1 O43294 DN vs T 
(non-
responders) 

Transmembrane and coiled-coil 
domain-containing protein 2 

TMCO2 TMCO2 Q7Z6W1 DN vs T 
(non-
responders) 

Transmembrane protein KIAA1109 K1109 KIAA1109 Q2LD37 DN vs T 
(non-
responders) 

Tubulin gamma-1 chain TBG1 TUBG1 P23258 DN vs T 
(non-
responders) 

Ubiquitin-conjugating enzyme E2Q-
like protein 1 

U2QL1 UBE2QL1 A1L167 DN vs T 
(non-
responders) 

Vesicular, overexpressed in cancer, 
prosurvival protein 1 

VOPP1 VOPP1 Q96AW1 DN vs T 
(non-
responders) 

Vitamin K-dependent protein S PROS PROS1 P07225 DN vs T 
(non-
responders) 

Voltage-dependent anion-selective 
channel protein 1 

VDAC1 VDAC1 P21796 DN vs T 
(non-
responders) 

WD repeat-containing protein 11 WDR11 WDR11 Q9BZH6 DN vs T 
(non-
responders) 

Wee1-like protein kinase WEE1 WEE1 P30291 DN vs T 
(non-
responders) 

Zinc finger CCCH domain-containing 
protein 13 

ZC3HD ZC3H13 Q5T200 DN vs T 
(non-
responders) 

Zinc finger homeobox protein 4 ZFHX4 ZFHX4 Q86UP3 DN vs T 
(non-
responders) 
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Zinc finger protein 215 ZN215 ZNF215 Q9UL58 DN vs T 
(non-
responders) 
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