

Natália Rigos Felix

FTIR – uma potencial metodologia para o rastreio de marcadores de envelhecimento no DNA.

Natália Rigos Felix

FTIR – uma potencial metodologia para o rastreio de marcadores de envelhecimento no DNA.

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biologia Molecular e Celular, realizada sob a orientação científica da Doutora Gabriela Moura e coorientação da Doutora Alexandra Nunes, professoras auxiliares do Departamento de Ciências Médicas da Universidade de Aveiro e investigadoras do Instituto de Biomedicina da Universidade de Aveiro (iBiMED).

Este trabalho foi suportado financeiramente pelo FEDER (Fundo Europeu de Desenvolvimento Regional) através de fundos do COMPETE 2020, financiado pela FCT, através do projeto Programa Operacional para a Competitividade e Internacionalização (POCI) e pela Fundação para a Ciência e a Tecnologia, no âmbito dos projetos: MEDPERSYST (SAICTPAC/0010/2015) e CANCYL (PTDC/BIA-MIC/31849/2017).

O trabalho decorreu com o apoio do Instituto de Biomedicina da Universidade de Aveiro (iBiMED), UIDP/04501/2020.

Dedico este trabalho aos meus pais pelo apoio, por me proporcionar e incentivar no caminho académico, e principalmente pelo companheirismo, sempre com paciência e amor incondicional.

"Em algum lugar, algo incrível está esperando para ser descoberto." Sharon Begley

o júri	
presidente	Professor Doutor Artur Jorge da Costa Peixoto Alves, Professor Auxiliar c/ Agregação, Universidade de Aveiro
Arguente	Doutora Sonya Carvalho Neto, Bolseira de Pós-Doutoramento, Universidade de Aveiro
Orientadora	Professora Doutora Gabriela Maria Ferreira Ribeiro de Moura, Professora Auxiliar, Universidade de Aveiro

agradecimentos

Agradeço imensamente a Dr.ª Gabriela Moura pela orientação sempre atenciosa, por confiar no meu trabalho, me auxiliar, debater ideias, pela elaboração deste projeto e por estar sempre disponível à dar ótimos conselhos

Agradeço imenso a Dr.^a Alexandra Nunes pela coorientação atenciosa, pela confiança, auxílio, tempo disponibilizado e pela elaboração deste projeto.

À excecional Dr.^a Sonya por me auxiliar em dúvidas, sugestões, auxílio e com quem pude debater ideias, sempre disposta a ajudar.

À atenciosa Idália Almeida, por me treinar no FTIR sempre disposta a ajudar. À Sandra Magalhães por me auxiliar na parte do software do FTIR e me sanar as dúvidas.

À toda a equipe do iBiMED que sempre estiveram dispostos a me auxiliar quando necessário, aos que possibilitaram este trabalho de ser realizado.

À toda a equipe do rastreio de COVID, por sempre perguntarem como estava minha dissertação e se preocuparem.

Ao Instituto de Investigação em Ciências da Vida e Saúde da Universidade do Minho, de onde vieram as amostras utilizadas para esta pesquisa.

À Universidade de Aveiro, em que tive a honra de realizar meu mestrado.

Um agradecimento infinito aos meus pais Marisa Rigos e Mauricio Felix, que me proporcionaram a possibilidade da realização deste Mestrado, pelo auxílio neste trabalho e por toda a minha formação acadêmica e educação, sempre com paciência, alegria e amor incondicional.

À minha irmã Luísa Rigos Felix por sua paciência de sempre me ouvir falar de ciência, sua companhia de sempre e ao seu marido Felipe Pessoto, sempre disponível e prestativo.

À minha prima Flávia Rigos um grande agradecimento pelo aprendizado científico, pela amizade e auxílio na ciência e no inglês neste projeto e sempre. Meu primo Betinho pelo auxílio em Portugal. As tias que também me ensinaram a gostar de aprender. Tios, primos, avôs e avós que sempre me apoiaram, a toda a minha enorme família que estimo.

Ao Dr. Michel Soane um grande agradecimento pela amizade de anos e também por me auxiliar, incentivar e acompanhar neste projeto, em todo o caminho científico e na vida.

Às minhas amigas Camila Batista e Ary Nicélia que leram meus trabalhos, acompanharam meus dias ruins, vibraram pelos dias bons com uma amizade incrível.

Ao Renan Lima Gabriel Souza e Karim Safiani por me incentivarem sempre e me darem apoio e me fazerem companhia nestes dois anos mesmo de longe. A minha amiga Amandha por eu saber que sempre está lá.

Aos que estudaram ao meu lado neste mestrado. Principalmente Joana Vedor, Letícia Vieira, Ana Martinho, assim como a todos os que tive a oportunidade de realizar trabalhos junto.

À todos os meus professores que tive até hoje, principalmente aos que me inspiraram.

À todas as meninas que conheci no Garotas Nerds, que constantemente me mostram como mulheres podem ser o que quiserem e serem excecionais em todas as áreas, incluindo a ciência.

À Deus pela vida, minha maior estima ao lado de minha família.

palavras-chave

FTIR, ELISA, 8-OHdG, danos ao DNA, envelhecimento, oxidação do DNA, stress oxidativo.

resumo

Com o aumento da esperança média de vida, estudar o envelhecimento saudável tem vindo a tornar-se mais relevante. Muitas das perdas funcionais relacionadas com a idade ocorrem através dos danos oxidativos e um dos biomarcadores mais utilizados para estudar estes danos, também usado como preditor da idade biológica, é a quantidade de 8-oxo-2´-deoxoguanosina (8-OHdG). Este composto corresponde à versão oxidada mais frequente das guaninas do DNA, e a sua disponibilidade e estabilidade a longo prazo é superior à de outros biomarcadores.

As técnicas utilizadas para a medição do stresse oxidativo no DNA, em sua maioria, apresentam diversas desvantagens, para além de degradarem a amostra, apresentam um custo elevado e envolvem procedimentos demorados ou necessitam de serem complementadas com outras técnicas.

Para tentar ultrapassar estas limitações este trabalho propõe o uso de espectroscopia de infravermelho com transformadas de Fourier (FTIR) para a medição de níveis de 8-OhdG em amostras humanas com DNA. Esta técnica foi utilizada devido à sua sensibilidade, ao reduzido tempo de análise, ao baixo risco de contaminação das amostras, ao facto de necessitar pouca amostra e ter baixo custo.

No presente estudo recorreu-se a ELISA como método de validação, que se comparou como FTIR, para a quantificação do analito 8-OhdG, em amostras de urina e de DNA extraído e purificado. Apesar de não ter sido possível obter uma boa correlação entre os resultados obtido por ambas as técnicas analíticas, foi possível tanto a deteção quanto a quantificação deste composto, por FTIR, em ambos os tipos de amostras. Com este trabalho foi possível definir as condições experimentais necessárias para a utilização do FTIR na quantificação de 8-OHdG tendo-se estabelecido um protocolo laboratorial, que deverá ser utilizado como ponto de partida em estudos futuros. Para além disso, os espectros provenientes do FTIR foram explorados para testar a sua utilidade na determinação de outros biomarcadores relevantes em simultâneo.

keywords

FTIR, ELISA, 8-OHdG, DNA damage, aging, DNA oxidation, oxidative stress.

abstract

With the increase in average life expectancy, studying healthy aging has become more relevant. Many of the age-related functional losses occur through oxidative damage and one of the most used biomarkers to study these damages, also used as a predictor of biological age, is the amount of 8-oxo-2´deoxoguanosine (8-OHdG). This compound corresponds to the most frequent oxidized version of DNA guanines, and its availability and long-term stability is superior to that of other biomarkers.

The techniques used to measure oxidative stress in DNA, for the most part, have several disadvantages, in addition to degrading the sample, presenting a high cost and involving lengthy procedures or need to be complemented with other techniques.

In order to try to overcome these limitations this work proposes the use of infrared spectroscopy with Fourier transform (FTIR) to measure 8-OhdG levels in human samples with DNA. This technique was used due to its sensitivity, the reduced analysis time, the low risk of contamination of the samples, together with the fact that it requires little sample and has a low cost.

In the present study, ELISA was used as a validation method, and results were compared to those from FTIR, for the quantification of the 8-OhdG analyte, in both urine and extracted DNA samples. Although it was not possible to obtain a good correlation between the results obtained by both analytical techniques, it was possible to detect and quantify this compound, by FTIR, in both types of samples. With this work it was possible to define the experimental conditions necessary for the use of FTIR in the quantification of 8-OHdG, and a laboratory protocol was established, which should be used as a starting point in future studies. In addition, the spectra from the FTIR were explored to test their usefulness in determining other relevant biomarkers at the same time.

Índice

1.	Intro	odução	8
1	1	Processo de envelhecimento	8
1	.2	Modificações moleculares associadas ao envelhecimento	9
	1.2.	1 Stress oxidativo, envelhecimento e 8-OHdG	11
	1.2.	2 Metilação do DNA	15
1	.3	Técnicas laboratoriais para o estudo de marcadores de envelhecimento no DNA	17
	1.3.	1 Técnicas laboratoriais para deteção e quantificação de danos oxidativos	17
	1.3.	2 ELISA - Ensaio de imunoabsorção enzimática	20
	1.3.	3 Espectroscopia de infravermelho	23
	1.3.	4 Técnicas laboratoriais para deteção e quantificação da Metilação do DNA	26
1	.4 Ur	ina como Matriz	27
2. R	Relevâ	ncia	27
	3. 0	bjetivos	29
4. N	Mater	ial e Métodos	30
4.1 Amostras utilizadas		30	
4.2 Ensaio de Imunoabsorção enzimática (ELISA) 32			32
4.2.1 Material e reagentes			32
	4.2.	2 Procedimento laboratorial	33
	4.2.	3 Procedimento experimental	34
	4.2.	4 Leitura da Placa	36
	4.2.	5 Curva-padrão e cálculos	36
4	.3	Espectroscopia de Infravermelho com Transformada de Fourier (FTIR)	37
	4.3.	1 Material e reagentes	37

4.3.2 Procedimento experimental
4.3.4 Aquisição de espectros
4.3.5 Tratamento de dados
5.1 ELISA
5.1.1 Curva padrão de 8-OHdG no ensaio ELISA40
5.1.2 Cálculo das concentrações de 8-OHdG nas amostras de Urina
5.2 FTIR
5.2.1 Curva de calibração para 8-OHdG48
5.2.2 Cálculo dos valores de concentração de 8-OHdG em amostras de urina
5.2.3 Espectros FTIR para 8-OHdG em amostras de DNA72
5.2.4 Interpretação espectral FTIR76
5.3 Comparação das técnicas – concentração de 8-OHdG em amostras de urina
5.4 Relevância biomédica
6. Discussão
6.1 Oxidação do DNA em amostras de urina
6.2 Relevância biomédica
6.30xidação em amostras de DNA purificado94
6.4 Interpretação espectral - Metilação no DNA
7. Conclusão, limitações do estudo e perspetivas futuras
Referências Bibliográficas
Anexo I109

FIGURA 1. A) PRODUTOS DA OXIDAÇÃO DA GUANINA NO DNA E RNA. GUANINA NO DNA OU RNA OXIDA PARA 8-OXOGUA. A 7-
hidro-8-hidroxiguanina, no DNA, forma a Fapy-Guanina e a 2'-deoxiguanosina oxida e forma a 8-oxodG. B) A
GUANOSINA, NO RNA, OXIDA E FORMA A 8-OXOGUO. ADAPTADA DE MALAYAPPAN,2007[31]14
FIGURA 2. FORMAÇÃO DA 8-OXOGUANINA COM FOCO NOS TAUTÓMEROS 8-OXOG E 8-OHDG, RETIRADA E ADAPTADA DE WELLS
et.al, 2009[33]
FIGURA 3. ESQUEMA DOS DIFERENTES TIPOS DE ELISA. FIGURA RETIRADA DA PÁGINA PENSABIO, 2017[56]22
FIGURA 4. ESQUEMA DO ELISA COMPETITIVO. FIGURA MODIFICADA, DO PROTOCOLO DNA DAMAGE COMPETITIVE ELISA KIT
(Invitrogem, Thermofisher Scientific, 2017[57])22
FIGURA 5. TIPOS DE VIBRAÇÕES MOLECULARES, DE ESTIRAMENTO E DOBRAMENTO. FIGURA RETIRADA DE PAIVA ET AL., 2016[61]. 24
FIGURA 6. REPRESENTAÇÃO ESQUEMÁTICA DE UM APARELHO DE FTIR (ADAPTADO DE PAIVA ET AL., 2016[61]25
Figura 7. Diluição seriada dos padrões 8-hidroxi-2´desoxguanosina. Figura retirada do protocolo DNA damage
COMPETITIVE ELISA, THERMOFISHER SCIENTIFIC, 2017[69]
FIGURA 8. CURVA PADRÃO DAS CONCENTRAÇÕES DAS DILUIÇÕES SERIADAS DE 8-OHDG. O EIXO X DO GRÁFICO REPRESENTA A
CONCENTRAÇÃO EM PG/ML E O EIXO Y AS DENSIDADES ÓTICAS
FIGURA 9. CONCENTRAÇÕES DE 8-OHDG EM NG/MG DE CREATININA NA URINA, PELO ENSAIO ELISA. O EIXO DOS X REPRESENTA A
CONCENTRAÇÃO E O EIXO DOS Y AS AMOSTRAS
FIGURA 10. ESPECTROS DAS DILUIÇÕES PADRÕES DE 8-OHDG, (DE STD1 A STD9 EM RÉPLICAS, ONDE O EIXO Y REPRESENTA A
ABSORVÂNCIA EM UNIDADES ARBITRÁRIAS E O EIXO X O COMPRIMENTO DE ONDA ENTRE 4000 A 600 CM ⁻¹
FIGURA 11. VALORES MÉDIOS DOS ESPECTROS, PARA CADA CONCENTRAÇÃO DE 8-OHDG (STD1 A STD9). O EIXO Y REPRESENTA A
absorvância (unidades arbitrárias) e o eixo x o comprimento de onda em cm ⁻¹ . A) Espectro total obtido; B)
Ampliação da região espectral entre 1800 e 900 cm ⁻¹
FIGURA 12. ESPECTROS 8-OHDG (DE STD1 A STD2 EM TRIPLICADO) APÓS APLICAÇÃO DA SEGUNDA DERIVADA. O EIXO DOS Y
REPRESENTA A ABSORVÂNCIA E O EIXO X O COMPRIMENTO DE ONDA EM CM ⁻¹ 51
FIGURA 13. CORRELAÇÃO ENTRE VALORES ESPERADOS E OBSERVADOS OBTIDOS ATRAVÉS DO MODELO DE CALIBRAÇÃO PLS. O EIXO Y
REPRESENTA A CONCENTRAÇÃO OBSERVADA PELO MODELO DE CALIBRAÇÃO EM PG/ML E O EIXO X REPRESENTA A CONCENTRAÇÃO
esperada em pg/ml. A equação para a reta está apresentada no gráfico53
FIGURA 14. COEFICIENTE B DO MODELO DE CALIBRAÇÃO DE 8-OHDG-O EIXO Y REPRESENTA A ABSORVÂNCIA EM UNIDADES
ARBITRÁRIAS E O EIXO X O COMPRIMENTO DE ONDA ENTRE 1800 E 900 CM ⁻¹ 54
FIGURA 15. ESPECTROS DE URINA PARA DUAS DILUIÇÕES. O EIXO DOS Y REPRESENTA A ABSORVÂNCIA E O EIXO DO X OS
COMPRIMENTOS DE ONDA ENTRE 4000 A 600 CM ⁻¹ 55
FIGURA 16. ESPECTROS DE URINA PARA DUAS DILUIÇÕES (1:1 E 1:7,33), TRÊS RÉPLICAS POR DILUIÇÃO, ONDE O EIXO DOS Y
REPRESENTA A ABSORVÂNCIA E O EIXO DO X OS COMPRIMENTOS DE ONDA ENTRE 4000 A 600 CM-1.A) MÉDIA DOS ESPECTROS
DAS RÉPLICAS DE CADA AMOSTRA DE URINA ONDE O O EIXO DOS Y REPRESENTA A ABSORVÂNCIA E O EIXO DO X OS
COMPRIMENTOS DE ONDA EM CM ⁻¹ . 16. B) SELEÇÃO DA REGIÃO ESPECTRAL DE INTERESSE, ENTRE 1800 E 900 CM ⁻¹

FIGURA 17. A) MÉDIA DOS ESPECTROS DAS RÉPLICAS DE CADA AMOSTRA DE URINA COM DILUIÇÃO 1:7,33 ONDE O EIXO DOS Y
REPRESENTA A ABSORVÂNCIA E O EIXO DO X OS COMPRIMENTOS DE ONDA ENTRE 4000 A 600 CM ⁻¹ . B) SELEÇÃO DO INTERVALO
DE COMPRIMENTO DE ONDA DE INTERESSE (1800 A 900 CM ⁻¹). A SETA ASSINALA A AMOSTRA U12
FIGURA 18. A) MÉDIA DOS ESPECTROS DAS RÉPLICAS DE CADA AMOSTRA DE URINA COM DILUIÇÃO 1:1 ONDE O EIXO DOS Y
REPRESENTA A ABSORVÂNCIA E O EIXO DO X OS COMPRIMENTOS DE ONDA EM CM-1. B) SELEÇÃO DO INTERVALO DE
COMPRIMENTO DE ONDA DE INTERESSE (1800 A 900 CM ⁻¹). A SETA ASSINALA A AMOSTRA U3258
FIGURA 19. ESPECTROS DAS AMOSTRAS DE URINA APÓS A SEGUNDA DERIVADA. O EIXO DOS Y REPRESENTA A ABSORVÂNCIA E O EIXO
do x os comprimentos de onda entre 1800 a 900 cm- ¹ . A seta laranja assinala diferenças na amostra U12 e seta
AZUL INDICA DIFERENÇAS NA AMOSTRA U32
FIGURA 20. VALOR MÉDIO DA CONCENTRAÇÃO DE 8-OHDG PG/MG DE CREATININA, POR AMOSTRA DE URINA (U1 A U40 EXCETO
AMOSTRA U12) E SEU RESPETIVO DESVIO PADRÃO, AMOSTRAS DILUÍDAS 1:7,33. O EIXO Y REPRESENTA A CONCENTRAÇÃO EM
NG/MG DE CREATININA E O EIXO Y AS AMOSTRAS. ONDE NAS AMOSTRAS COM VALORES NEGATIVOS, NÃO SE PODE OBTER
INFORMAÇÕES DA CONCENTRAÇÃO66
Figura 21. Valor médio da concentração de 8-OHdG ng/mg de creatinina por amostra de urina (U1 a U40) e seu
respetivo desvio padrão. Amostras diluídas 1:1. O eixo y representa a concentração em ng/mg e o eixo x as
AMOSTRAS
FIGURA 22. ESPECTROS PARA AMOSTRAS DE DNA PURIFICADO (D1 A D6 EM TRÊS RÉPLICAS). O EIXO Y REPRESENTA A ABSORVÂNCIA
EM UNIDADES ARBITRARIAS E O EIXO X O COMPRIMENTO DE ONDA ENTRE 4000 A 600 CM ⁻¹ 73
FIGURA 23. VALORES MÉDIOS DOS ESPECTROS, PARA CADA AMOSTRA DE DNA. O EIXO Y REPRESENTA A ABSORVÂNCIA (UNIDADES
arbitrárias) e o eixo do x o comprimento de onda em cm ⁻¹ .A) Espectro total obtido;B) Ampliação da região
ESPECTRAL ENTRE 1800 A 900 CM ⁻¹
FIGURA 24. ESPECTROS DE DNA APÓS APLICAÇÃO DA SEGUNDA DERIVADA. O EIXO DOS Y REPRESENTA A ABSORVÂNCIA (UNIDADES
ARBITRÁRIAS) E O EIXO DO X O COMPRIMENTO DE ONDA DE 1800 A 900 CM $^{-1}$ 75
FIGURA 25. VALOR MÉDIO DA CONCENTRAÇÃO DE 8-OHDG EM NG/ML DE DNA (D1 A D6) E SEU RESPETIVO DESVIO PADRÃO. O EIXO
dos y representa 8-OHdG e o eixo dos x as amostras
FIGURA 26. DIAGRAMA DE COORDENADAS FATORIAIS DAS AMOSTRAS DE DNA (D1 A D6), ONDE O EIXO DOS Y REPRESENTA A O PCA2
e o eixo do x representa o PCA1. PC1 e PC2 explicam 97% da variância total entre as amostras (14% para PC2 e
83% para PC1)
FIGURA 27. CONTRIBUIÇÕES FATORIAIS DAS AMOSTRAS DE DNA (D1 A D6), ONDE O EIXO DOS X REPRESENTA O COMPRIMENTO DE
onda em cm $^{-1}$, a linha azul o PCA1 a linha laranja o PCA178
FIGURA 28. DIAGRAMA DE COORDENADAS FATORIAIS DAS AMOSTRAS DE DNA (D1, D2, D4, D5 E D6), ONDE O EIXO DOS Y
REPRESENTA O PCA2 E O EIXO DO X REPRESENTA O PCA1. PC1 E PC2 EXPLICAM 99% DA VARIÂNCIA TOTAL ENTRE AS
AMOSTRAS (17% PARA PC2 E 82% PARA PC1)

FIGURA 29. CONTRIBUIÇÕES FATORIAIS DAS AMOSTRAS DE DNA (D1, D2, D4, D5 E D6), E A LINHA AZUL REPRESENTA O PC-1 E A	
LINHA LARANJA REPRESENTA O PC-2	
FIGURA 30. CONCENTRAÇÃO 8-OHDG POR AMOSTRA DE URINA - ELISA VERSUS FTIR. O EIXO DOS X REPRESENTA A AMOSTRA E O	
EIXO DOS Y A CONCENTRAÇÃO DE 8-OHDG EM NG/MG DE CREATININA DAS AMOSTRAS DE URINA. AS BARRAS ROXAS	
correspondem à concentração de 8-OHdG obtida por ELISA e as barras laranja correspondem à concentração	
DE 8-OHDG OBTIDAS PELO MODELO DE CALIBRAÇÃO CONSTRUÍDO POR FTIR.	
FIGURA 31. CORRELAÇÃO ENTRE AS TÉCNICAS, ONDE O EIXO X REPRESENTA AS CONCENTRAÇÕES DE 8-OHDG EM NG/MG PREVISTAS	
pelo ELISA para as amostras de Urina e o eixo y representa as concentrações de 8-OHdG em ng/mg previstas pelo	
FTIR, para as mesmas amostras	
FIGURA 32. CORRELAÇÃO ENTRE O ELISA VERSUS FTIR, CONSIDERANDO AS DILUIÇÕES SERIADAS DOS PADRÕES (STD1 A STD9) 85	
FIGURA 33. CORRELAÇÃO ENTRE IDADE DOS INDIVÍDUOS E A CONCENTRAÇÃO DE 8-OHDG NA URINA (PELO MÉTODO ELISA). O EIXO X	
REPRESENTA AS IDADES E O EIXO Y REPRESENTA AS CONCENTRAÇÕES DE 8-OHDG EM NG/MG CREATININA	
FIGURA 34. CORRELAÇÃO ENTRE A IDADE DOS INDIVÍDUOS E A CONCENTRAÇÃO DE 8-OHDG NA URINA (PELO MÉTODO FTIR). O EIXO X	
REPRESENTA A IDADE DOS INDIVÍDUOS E O EIXO Y AS CONCENTRAÇÕES EM NG/MG CREATININA	
FIGURA 35. CONCENTRAÇÃO DE 8-OHDG NAS AMOSTRAS DE URINA, EM NG/MG CREATININA, OBTIDA PELO MÉTODO ELISA, ONDE O	
EIXO X IDENTIFICA O SEXO DOS INDIVÍDUOS E O EIXO DOS Y CORRESPONDE À CONCENTRAÇÃO MÉDIA DE 8-OHDG. EM AZUL SEXO	
FEMININO, EM LARANJA SEXO MASCULINO	
FIGURA 36. CONCENTRAÇÃO DE 8-OHDG NAS AMOSTRAS DE URINA EM NG/MG CREATININA, OBTIDA PELO MÉTODO FTIR, ONDE O	
EIXO X REPRESENTA O SEXO DOS INDIVÍDUOS E O EIXO DOS Y CORRESPONDE À CONCENTRAÇÃO MÉDIA DE 8-OHDG . EM AZUL	
SEXO FEMININO, EM LARANJA SEXO MASCULINO	
FIGURA 37. CORRELAÇÃO ENTRE IDADE E CONCENTRAÇÃO DE 8-OHDG NAS AMOSTRAS DE DNA PURIFICADO A PARTIR DE SANGUE,	
MEDIDA ATRAVÉS DO MÉTODO FTIR, ONDE O EIXO X REPRESENTA A IDADE DOS INDIVÍDUOS E O EIXO Y AS CONCENTRAÇÕES DE 8-	
ОНDG ЕМ NG/ML	

TABELA 1. DESCRIÇÃO SUMÁRIA DOS METADADOS ASSOCIADOS ÀS AMOSTRAS (DE URINA E DE DNA PURIFICADO) UTILIZADAS NESTE		
ESTUDO		
TABELA 2. ESQUEMA DE PLACA. LEGENDA: - DO POÇO A1 AO C3 FORAM ADICIONADAS AS SOLUÇÕES PADRÃO CONFORME DESCRITO		
NOS PROCEDIMENTOS. NOS POÇOS C4, C5 E 6 FOI ADICIONADO 75 ML DO ASSAY BUFFER (1X) PURO. NOS DEMAIS POÇOS		
FORAM ADICIONADAS AMOSTRAS DE URINA		
TABELA 3. DIFERENÇA ENTRE A MEDIÇÃO E A MEDIÇÃO DO BRANCO, PARA A TOTALIDADE DA PLACA DE ELISA. 40		
TABELA 4. CONCENTRAÇÕES DE 8-OHDG PARA AS SOLUÇÕES PADRÃO DO ELISA, OBTIDOS ATRAVÉS DO MYASSAY, MYASSAY		
Ltd.[73]		
TABELA 5. RESULTADOS DE AJUSTE. A,B,C E D SÃO OS QUATRO PARÂMETROS UTILIZADOS PELO AJUSTE 4PL. MSE É O ERRO		
QUADRÁTICO MÉDIO (QUANTO MAIS PRÓXIMO DE 0, MELHOR O AJUSTE). O R ² É 1 SUBTRAÍDO PELO SSQUE E É A SOMA DOS		
QUADRADOS DOS RESÍDUOS (QUANTO MAIS PRÓXIMO DE O, MELHOR O AJUSTE). <mark>SS</mark> É A SOMA DOS QUADRADOS DOS		
resíduos(quanto mais próximo de O melhor o ajuste). SYX é o desvio padrão dos resíduos, (quanto mais próximo		
de 0 , melhor o ajuste		
TABELA 6. CÁLCULO DAS CONCENTRAÇÕES DE 8-OHDG NAS AMOSTRAS DE URINA ATRAVÉS DO ENSAIO ELISA. A TABELA APRESENTA		
os seguintes dados: A) nome das amostras; B) O fator de diluição aplicado; C) o raw, que são os valores brutos		
MENSURADOS ANTERIORMENTE PELO MICROLEITOR DE PLACAS; D) O VALOR CORRIGIDO PARA O BRANCO (MEDIÇÃO BRUTA		
subtraída pela média do grupo); E) a concentração calculada multiplicado pelo fator de diluição; F)		
Concentração Média, que é a média das concentrações por amostra; G) O coeficiente de variação percentual,		
QUE É A PERCENTAGEM DO DESVIO PADRÃO DAS RÉPLICAS DIVIDIDO PELA SUA MÉDIA (VALOR ESPERADO MENOR 15%, SE MAIOR		
QUE 15%, PODE INDICAR ERRO DE PREPARAÇÃO); H) DESVIO PADRÃO		
TABELA 7. AJUSTE DE CREATININA NAS CONCENTRAÇÕES DE 8-OHDG NAS AMOSTRAS DE URINA, MÉDIAS E DESVIO PADRÃO. 46		
Tabela 8.Concentrações de 8-OHdG esperada e observadausando o modelo de calibração		
TABELA 9. POSSÍVEIS ATRIBUIÇÕES DOS COMPRIMENTOS DE ONDA RESPONSÁVEIS PELA CARACTERIZAÇÃO DAS AMOSTRAS U12 E U32.		
Tabela 10. Possíveis atribuições dos comprimentos de onda responsáveis pela caracterização das amostras U12 e U32. 60		
TABELA 11. CONCENTRAÇÕES PREVISTAS DE 8-OHDG DAS AMOSTRAS DE URINA DILUÍDAS 1:7,33: 3 RÉPLICAS PARA CADA AMOSTRA,		
CORREÇÃO COM VALOR DE CREATININA, VALOR MÉDIO E RESPETIVO DESVIO PADRÃO		
Tabela 12. Concentrações de 8-OHDG nas amostras de urina diluidas 1:1: 3 réplicas para cada amostra, correções		
COM VALOR DE CREATININA, VALOR MÉDIO E RESPETIVO DESVIO PADRÃO66		
TABELA 13. CONCENTRAÇÕES DE 8-OHDG NAS AMOSTRAS DE DNA, VALOR MÉDIO DAS 3 RÉPLICAS E RESPETIVO DESVIO PADRÃO75		
TABELA 14. POSSÍVEIS ATRIBUIÇÕES PARA OS COMPRIMENTOS DE ONDA CARACTERÍSTICOS POR CADA AMOSTRA. 81		
TABELA 15. CONCENTRAÇÃO DE 8-OHDG NAS AMOSTRAS DE URINA ATRAVÉS DOS ENSAIOS ELISA E FTIR. VALORES NORMALIZADOS		
PELA CREATININA		

Lista de Abreviaturas

B-OHdGB-hidroxi-2'-desoxiguanosinaROSEspécies reativas de oxigénioHyO2Peróxido de hidrogénioO2'-Anião superóxido•OHRadical hidroxiloATPAdenosina trifosfatoRNAÁcido ribonucleicoGSHGlutationaGSSGglutationa dissuffeto8-Ont-Gu8-Oxo-2'-deoxyguanosine8-oxoGU-8-oxo-7,8-dihidroguanosina8-oxoGU-8-oxo-7,8-dihidroguanosina8-oxoGU-8-oxo-7,8-dihidroguanosina8-oxoGUCitosinaTTiminaAAdeninaCpGSequéncia de dinucleotideos de citosina seguida de guaninaHPLC-KDCromatografia líquida de alto desempenhoCPGSequéncia de dinucleotideos de citosina seguida de guaninaHPLC-KDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-KDCromatografia líquida de alto desempenho com deteção eletroquímicaMFTTifosfato de desoxiadenosinaESCODD <t< th=""><th>DNA</th><th>Ácido desoxirribonucleico</th></t<>	DNA	Ácido desoxirribonucleico
ROSEspécies reativas de oxigénioH ₂ O2Peróxido de hidrogénioO2*Anião superóxido•OHRadical hidroxilo•OHRadical hidroxiloATPAdenosina trifosfatoRNAÁcido ribonucleicoGSHGlutationaGSSGglutationa dissulfeto8-OH-Gua8-hidroxiguanina8-oxoG8-0xo-7.8-dihidroguanosina8-oxoG08-oxo-7.8-dihidroguanosina8-oxoG08-oxo-7.8-dihidroguanosina8-oxoG18-oxo-7.8-dihidroguanosina8-oxoG2Sequéncia de dinucleotídeos de citosina seguida de guaninaCCitosinaTTiminaAAdeninaCpGSequéncia de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-KSCromatografia líquida de alto desempenhoHPLC-MSCromatografia líquida de alto desempenho com deteção eletroquímicaHPLCMSKS / MSEspectrometria de massa em tandem por electrosprayUVUtra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de limunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)APLAnálise de co	8-OHdG	8-hidroxi-2'-desoxiguanosina
H2O2Peróxido de hidrogénioO2*Anião superóxidoOHRadical hidroxiloATPAdenosina trifosfatoRNAÁcido ribonucleicoGSHGlutationaGSSGglutationa dissulfeto8-OH-Gua8-hidroxiguanina8-oxadG8-Oxo-7,8-Dihidro-2'-Deoxiguanosina8-oxaGG8-oxo-7,8-Dihidro-2'-Deoxiguanosina8-oxaGGS-oxo-7,8-Dihidro-2'-Deoxiguanosina8-oxaGGS-oxo-7,8-Dihidro-2'-Deoxiguanosina6Guanina7TiminaAAdeninaCpGSequéncia de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadTPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de lmunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)PLAdaise de componentes principaisSEMErro padrão dos resíduosSVDesvio padrão do	ROS	Espécies reativas de oxigénio
O2*Anião superóxido•OHRadical hidroxiloATPAdenosina trifosfatoRNAÁcido ribonucleicoGSHGlutationaGSSGglutationa dissulfeto8-OH-Gua8-hidroxiguania8-oxoGU8-oxo-7,8-dihidroguanosina8-oxoGU8-oxo-7,8-Dihidro-2'-Deoxiguanosina8-oxoGU8-oxo-7,8-Dihidro-2'-DeoxiguanosinaGGuaninaCCitosinaTTiminaAAdeiniaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-KDSCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massiMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoTIMBTetrametibenzidaSTDTandard (padrão)PLAgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSom ados quadrados dos resíduosSVDesvio padrão dos resíduo	H ₂ O ₂	Peróxido de hidrogénio
•OHRadical hidroxiloATPAdenosina trífosfatoRNAÁcido ribonucleicoGSHGlutationaGSSGglutationa dissulfeto8-Oxd68-Oxo-2'-deoxyguanosine8-oxod68-Oxo-2'-deoxyguanosine8-oxod78-Oxo-2'-deoxyguanosina8-oxod68-Oxo-2'-deoxyguanosina8-oxod78-Oxo-7,8-Dihidro-2'-Deoxiguanosina8-oxod7GuaninaCCitosinaTTiminaAAdeninaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLC-WCCromatografia líquida de alto desempenhoHPLC-KDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MCCromatografia líquida de alto desempenho combinada a espectrometria de massaS/MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrífosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Inmonaborção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierFTIREspectroscopia de Infravermelhos com transformada de FourierBiMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)PLAAgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSE	02•-	Anião superóxido
ATPAdenosina trifosfatoRNAÁcido ribonucleicoGSHGlutationaGSSGglutationa dissulfeto8-OH-Gua8-hidroxiguanina8-oxoGU8-Oxo-2-deoxyguanosine8-oxoGUO8-oxo-7,8-Dihidro-2'-Deoxiguanosina8-oxoGU8-oxo-7,8-Dihidro-2'-Deoxiguanosina6Guanina7TiminaAAdeninaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-ECDCromatografia líquida de alto desempenhoHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Intravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)PLAAdalise de componentes principaisSEMErro padrão da médiaMSEErro padrão dos residuosSYXDesvio padrãoSYADesvio padrão dos residuosSYADesvio padrãoSYADesvio padrãoSYADesvio padrãoRMSECErro e calibraçãoRMSECVErro de calibraçãoRMSECVErro de calibraçãoRMSECV<	•OH	Radical hidroxilo
RNAÁcido ribonucleicoGSHGlutationaGSSGglutationa dissulfeto8-OH-Gua8-hidroxiguanina8-oxoG8-Oxo-2'-deoxyguanosine8-oxoG8-oxo-7,8-dihidroguanosina8-oxoG8-oxo-7,8-dihidroguanosina8-oxoG8-oxo-7,8-dihidro-2'-DeoxiguanosinaGGuaninaCCitosinaTTiminaAAdeninaCpGSequência de dinucleotideos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-CDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsalo de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierBiBMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)PLAAdaríão dos resíduosSQSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduos <th>ATP</th> <th>Adenosina trifosfato</th>	ATP	Adenosina trifosfato
GSHGlutationaGSSglutationa dissulfeto8-OH-Gua8-hidroxiguanina8-oxodG8-Oxo-2'-deoxyguanosine8-oxoGUO-8-oxo-7,8-dihidroguanosina8-oxoG8-Oxo-7,8-dihidroguanosina8-oxoGCuaninaCCitosinaTTiminaAAdeninaCpGSequència de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-ECDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho com deteção eletroquímicaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imnoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadráto de sresíduosSYDesvio padrão dos resíduosSYDesvio padrão dos resíduosSYDesvio padrão dos resíduosSYDesvio padrãoPGAAnálise dos resíduosS	RNA	Ácido ribonucleico
GSSGglutationa dissulfeto8-OH-Gua8-hidroxiguanina8-oxodG8-Oxo-2'-deoxyguanosine8-oxoGW-8-oxo-7,8-dhildroguanosina8-oxoG8-oxo-7,8-dhildroguanosina8-oxoG8-oxo-7,8-dhildroguanosinaCCitosinaTTiminaAAdeninaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-CDCromatografia líquida de alto desempenhoHPLC-MSCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de lmunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médiaMSEErro quadrático médiaSSSoma dos quadrados dos resíduosSYDesvio padrão dos resíduosSYDesvio padrão dos resíd	GSH	Glutationa
8-OH-Gua 8-hidroxiguanina 8-oxoGG 8-Oxo-2'-deoxyguanosine 8-oxoGUO -8-oxo-7,8-dihidroguanosina 8-oxoG 8-oxo-7,8-dihidro-2'-Deoxiguanosina G Guanina C Citosina T Timina A Adenina CpG Sequência de dinucleotídeos de citosina seguida de guanina HPLC Cromatografia líquida de alto desempenho com deteção eletroquímica HPLC-ED Cromatografia líquida de alto desempenho combinada a espectrometria de massa MS / MS Espectrometria de massa em tandem por electrospray UV Ultra violeta SMRT Reação de síntese em tempo real e numa única molécula dATP Trifosfato de desoxiadenosina ESCODD Comité de Padrões Europeus sobre Danos Oxidativos no DNA ELISA Ensaio de lmunoabsorção Enzimática IV Infravermelho FTIR Espectroscopia de Infravermelhos com transformada de Fourier IBIMED Instituto de Biomedicina TMB Tetrametilbenzida STD Tandard (padrão) 4PL Algoritmo de Quatro Parâmetros PLS Reg	GSSG	glutationa dissulfeto
8-oxodG 8-0xo-2'-deoxyguanosine 8-oxoGU0 -8-0xo-7,8-0ihidro-2'-Deoxiguanosina 8-oxoG 6-0xo-7,8-Dihidro-2'-Deoxiguanosina G Guanina C Citosina T Timina A Adenina CpG Sequéncia de dinucleotídeos de citosina seguida de guanina HPLC Cromatografia líquida de alto desempenho HPLC-ECD Cromatografia líquida de alto desempenho com deteção eletroquímica HPLC-MS Cromatografia líquida de alto desempenho com binada a espectrometria de massa MS / MS Espectrometria de massa em tandem por electrospray UV Ultra violeta SMRT Reação de síntese em tempo real e numa única molécula dATP Trifosfato de desoxiadenosina ESCODD Comité de Padrões Europeus sobre Danos Oxidativos no DNA ELISA Ensaio de Imunoabsorção Enzimática IV Infravermelho FTIR Espectroscopia de Infravermelhos com transformada de Fourier IBIMED Instituto de Biomedicina TMB Tetrametilbenzida STD Tandard (padrão) 4PL Algoritmo de Quatro Parâmetros <tr< th=""><th>8-OH-Gua</th><th>8-hidroxiguanina</th></tr<>	8-OH-Gua	8-hidroxiguanina
8-oxoGUO-8-oxo-7,8-dihidroguanosina8-oxoG8-oxo-7,8-Dihidro-2'-DeoxiguanosinaGGuaninaCCitosinaTTiminaAAdeninaCpGSequência de dinucleotídos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-EDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Innunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSom ados quadrados dos residuosSYXDesvio padrão das resíduosSYXDesvio padrãoPgPicogramamlMilliltrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVEr	8-oxodG	8-Oxo-2'-deoxyguanosine
8-oxoG8-oxo-7,8-Dihidro-2'-DeoxiguanosinaGGuaninaCCitosinaTTiminaAAdeninaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-ECDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLCMSCromatografia líquida de alto desempenho com binada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Inunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrãoPgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de alibraçãoCMSECVErro de alibração	8-oxoGUO	-8-oxo-7,8-dihidroguanosina
GGuaninaGGuaninaCCitosinaTTiminaAAdeninaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-ECDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médiaSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSYXDesvio padrão dos resíduosSYXDesvio padrãopgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de validaçãoConce.Concentração	8-oxoG	8-oxo-7.8-Dihidro-2´-Deoxiguanosina
CCitosinaTTiminaAAdeninaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-ECDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de lmunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4LAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrãopgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de validaçãoRMSECVErro de validação	G	Guanina
TTiminaAAdeninaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-ECDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-FCMSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSYXDesvio padrão dos resíduosSyDesvio padrãopgPicogramaml<Millitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de validaçãoConc.Concentração	C	Citosina
AAdeninaCpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-FCDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBiMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrãopgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de validaçãoConc.Concentração	т	Timina
CpGSequência de dinucleotídeos de citosina seguida de guaninaHPLCCromatografia líquida de alto desempenhoHPLC-ECDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-ECDCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSyXDesvio padrão per sínduosSDDesvio padrãoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	Α	Adenina
HPLCCromatografia líquida de alto desempenhoHPLC-ECDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBiMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrãopgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de calibraçãoRMSECVErro de calibraçãoConc.Concentração	CpG	Seguência de dinucleotídeos de citosina seguida de guanina
HPLC-ECDCromatografia líquida de alto desempenho com deteção eletroquímicaHPLC-MSCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBiMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrãopgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de calibraçãoRMSECVErro de calibraçãoConc.Concentração	HPLC	Cromatografia líquida de alto desempenho
Market CarlCromatografia líquida de alto desempenho combinada a espectrometria de massaMS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de lmunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBiMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSVXDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	HPLC-ECD	Cromatografia líquida de alto desempenho, com detecão eletroquímica
MS / MSEspectrometria de massa em tandem por electrosprayUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de validaçãoConc.Concentração	HPLC-MS	Cromatografia líquida de alto desempenho combinada a espectrometria de massa
No.Dipoleta Sintester and any person equipy, UVUVUltra violetaSMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBiMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de calibraçãoRMSECVErro de calibração	MS / MS	Espectrometria de massa em tandem por electrosprav
SMRTReação de síntese em tempo real e numa única moléculadATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de calibraçãoConc.Concentração	UV	Ultra violeta
dATPTrifosfato de desoxiadenosinaESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de validaçãoConc.Concentração	SMRT	Reação de síntese em tempo real e numa única molécula
ESCODDComité de Padrões Europeus sobre Danos Oxidativos no DNAELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	dATP	Trifosfato de desoxiadenosina
ELISAEnsaio de Imunoabsorção EnzimáticaIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de validaçãoConc.Concentração	ESCODD	Comité de Padrões Europeus sobre Danos Oxidativos no DNA
INInfravermelhoIVInfravermelhoFTIREspectroscopia de Infravermelhos com transformada de FourieriBiMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de validaçãoConc.Concentração	ELISA	Ensaio de Imunoabsorcão Enzimática
FTIREspectroscopia de Infravermelhos com transformada de FourierIBIMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	IV	Infravermelho
TimeEspecie oscipla de matricultos com transformada de rouneliBiMEDInstituto de BiomedicinaTMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECVErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	FTIR	Espectroscopia de Infravermelhos com transformada de Fourier
TMBTetrametilbenzidaSTDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	iBiMED	Instituto de Biomedicina
STDTandard (padrão)4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	тмв	Tetrametilbenzida
4PLAlgoritmo de Quatro ParâmetrosPLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	STD	Tandard (padrão)
PLSRegressão por mínimos quadradosPCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	4PL	Algoritmo de Quatro Parâmetros
PCAAnálise de componentes principaisSEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	PLS	Regressão por mínimos guadrados
SEMErro padrão da médiaMSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	PCA	Análise de componentes principais
MSEErro quadrático médioSSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	SEM	Erro padrão da média
SSSoma dos quadrados dos resíduosSYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMililitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	MSE	Erro quadrático médio
SYXDesvio padrão dos resíduosSDDesvio padrãopgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	SS	Soma dos quadrados dos resíduos
SDDesvio padrãopgPicogramamlMillitrocm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	SYX	, Desvio padrão dos resíduos
pg Picograma ml Mililitro cm ⁻¹ Centímetro recíproco PO2 Grupo Fosfato RMSEC Erro de calibração RMSECV Erro de validação Conc. Concentração	SD	, Desvio padrão
ml Mililitro cm ⁻¹ Centímetro recíproco PO2 Grupo Fosfato RMSEC Erro de calibração RMSECV Erro de validação Conc. Concentração	pg	Picograma
cm ⁻¹ Centímetro recíprocoPO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	ml	Mililitro
PO2Grupo FosfatoRMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	cm⁻¹	Centímetro recíproco
RMSECErro de calibraçãoRMSECVErro de validaçãoConc.Concentração	PO ₂	Grupo Fosfato
RMSECVErro de validaçãoConc.Concentração	RMSEC	Erro de calibração
Conc. Concentração	RMSECV	Erro de validação
•	Conc.	Concentração
C Carbono	С	Carbono
N Nitrogênio	N	Nitrogênio
H Hidrogênio	н	Hidrogênio
ng Nanograma	ng	Nanograma
PO4 ³⁻ lões de fosfato	PO4 ³⁻	lões de fosfato

1. Introdução

1.1 Processo de envelhecimento

A expectativa de vida de nossa espécie, Homo sapiens, cresceu nas últimas décadas com os avanços médicos e tecnológicos. Devido a isto, o processo de envelhecimento tem sido cada vez mais estudado, tanto nos seus mecanismos fisiológicos quanto nos comprometimentos ou patologias associadas, que podem incluir as doenças neurodegenerativas, imunológicas ou neoplasias. Segundo Esteiro (2013)[1], os problemas ligados ao envelhecimento podem ocorrer no sistema nervoso central, no aparelho locomotor, nos sistemas, urinário, digestivo, hematológico, endócrino, sensorial e reprodutor. Este processo é um fenómeno natural que provoca uma série de alterações no organismo[1], como a desregulação da apoptose celular, alteração de padrões da expressão genética, inflamação, fibrose, crescimento de células neoplásicas. Em consequência, ocorre a redução na capacidade de manter a homeostase tecidual e a capacidade regenerativa é prejudicada[2] levando a um declínio progressivo das funções fisiológicas. O envelhecimento é, assim, um processo complexo, para o qual contribuem fatores ambientais ou fisiológicos[1] entre eles os hábitos de vida, fatores psicológicos, stresse oxidativo, deterioração das estruturas celulares, etc. Do ponto de vista do DNA, o envelhecimento está associado a diversas manifestações, mais ou menos relacionadas, como sejam a erosão dos telómeros, mudanças genéticas que alteram a eficiência de processos como regulação da expressão genética ou a reparação do DNA, acúmulo de mutações no DNA, e perturbações epigenéticas na organização da cromatina[3][4][5][6]. Todas estas modificações, somadas aos gerontogenes, termo que se refere aos genes que influenciam o envelhecimento e a longevidade ou o envelhecimento mais ou menos saudável^[7], geram fenótipos individuais de envelhecimento^[8].

Esta complexidade acarreta uma grande dificuldade em compreender todos os pormenores do processo de envelhecimento, além de uma falta de biomarcadores eficientes para quantificar o seu grau[4].

1.2 Modificações moleculares associadas ao envelhecimento

Diversas modificações, químicas e físicas, são ou foram estudadas em biomoléculas, com vista à sua validação como marcadores moleculares da idade biológica em humanos. Estas incluem alterações do grau de metilação das citosinas, nucleotídeos modificados for stresse oxidativo, splicings alternativos de RNAs, proteínas modificadas após tradução[6] e abrasão dos telómeros[9].

O telómero é uma região de sequências nucleotídicas repetitivas, localizado na extremidade dos cromossomas, que protege o genoma de deterioração, fusão e recombinação, pelo que o seu encurtamento, que ocorre a cada divisão celular, mas também pode ser influenciado por fatores externos como o stress oxidativo[10], pode favorecer o envelhecimento do tecido [11]. A telomerase é uma enzima ribonucleoproteica que sintetiza o DNA telomérico, sendo responsável por repor repetições nos telómeros combatendo assim seu encurtamento, sendo que os seus níveis e atividade, normalmente, são rigidamente controlados. Os telómeros vão diminuindo de comprimento, (uma célula perde entre 50 e 201 pares de bases de DNA do telómero por cada duplicação celular), por fenómenos relacionados com o mecanismo molecular de replicação e porque a maioria das células somáticas não sintetizam telomerase[8]. Por outro lado, existem evidências em Homo sapiens duma associação entre telómeros mais curtos e maior risco de doenças associadas à idade, como por exemplo, doenças degenerativas e início de atrofia tecidual [12]. Uma baixa quantidade de telomerase, causada em certas famílias por mutações específicas na linha germinativa, pode causar diversos distúrbios genéticos como a insuficiência da medula óssea, fibrose pulmonar idiopática, entre outras[13]. Contudo uma alta atividade da telomerase também será prejudicial, pois parece ser uma característica de cancros epiteliais. Nesse sentido, este encurtamento, a nível normal, funciona como um mecanismo supressor tumoral[14]. Para além disso, os telómeros parecem possuir uma taxa acelerada de deterioração sob stresse ambiental[15].

No decurso destas observações, os investigadores têm procurado formas de utilizar a telomerase para atrasar ou reverter o envelhecimento. Jaskelioff *et al,.* (2011)[12], em camundongos, através de um alelo knock-in, conseguiram reativar a telomerase eliminando fenótipos degenerativos em vários órgãos, revertendo a neurodegeneração e assim a perda de olfato destes. Já Bernardes de Jesus *et al.*, (2012)[16], através de terapia génica com telomerase em camundongos, conseguiram um aumento da expectativa de vida média de 24 e 13 %, sem aumentar a taxa de cancro, por comparação com o grupo controlo.

Genes e proteínas relacionados com tumores também possuem efeitos sobre a longevidade, como é o caso da proteína p53, importante para o controlo do ciclo celular como regulador de crescimento e diferenciação. A p53 bloqueia o ciclo celular para permitir a reparação do DNA e quando esta reparação falha, induz a apoptose[17]. Mutações no gene desta proteína podem estar associadas com o aumento da proliferação celular[8].

Outro exemplo é o fator de transcrição FOXO3, que regula a atividade transcricional de genes alvo em diversos tecidos, em resposta a diversos estímulos externos, modulando a apoptose, diferenciação ou resistência ao stresse oxidativo[18]. Os mecanismos descritos até aqui, contudo, são fenómenos pontuais, que podem sofrer regulação ou influência de mecanismos internos ou externos, que podem por sua vez mascarar o seu real interesse como marcador de envelhecimento. Por isso, diversos grupos de investigação têm virado a sua atenção para alterações químicas globais do genoma, que possam ser inferidas a partir de qualquer porção de DNA genómico, dando um sinal mais constante, em função do estado de envelhecimento de cada organismo. Neste sentido, algumas modificações químicas no genoma, como a metilação, ou subprodutos de reações como a oxidação têm sido estudadas, sabendo-se que estão associadas ao processo de envelhecimento a partir do DNA[5] e diversos distúrbios biológicos [19].

1.2.1 Stress oxidativo, envelhecimento e 8-OHdG

Para o presente estudo, são de particular importância as espécies reativas de oxigénio (ROS). Os ROS são radicais livres, ou seja, espécies químicas com eletrões desemparelhados[20]. Estes podem ser produzidos pela oxidação a nível molecular, como subprodutos da resposta inflamatória pelos macrófagos e também, principalmente, como produtos da mitocôndria durante a respiração celular [21]. Os ROS também podem ser produzidos pela exposição a fatores ambientais como a radiação ionizante (gama e X) e ultravioleta e carcinogénios químicos [22] [23].

Existem diversas espécies reativas de oxigénio nos sistemas biológicos como o peróxido de hidrogénio (H₂O₂), o anião superóxido (• O-2) e o radical hidroxilo (OH•) [22].

O radical OH é um dos mais bem estudados [24] e pode ser formado no organismo por reação de H₂O₂ com metais de transição, como ferro ou cobre, ou pela hidrólise da água em exposição a radiação. No DNA, o OH pode atacar as bases nitrogenadas e a desoxirribose [23].

Em concentrações fisiológicas, os compostos que podem produzir espécies reativas são essenciais para os organismos eucariotas, participando em mecanismos de defesa, produção de ATP, fertilização do óvulo [8] ou, no caso das espécies reativas de oxigénio (ROS), agindo como mensageiros secundários e na regulação da expressão genética em resposta a fatores de crescimento [21].

No entanto, quando estes compostos oxidantes estão em excesso, produzem danos oxidativos persistentes no organismo [25] através de modificações nas proteínas, lípidos, DNA ou RNA, gerando a perda de funções biológicas e um desequilíbrio homeostático nas células e tecidos [26]. Para manter os níveis destes compostos equilibrados, existem sistemas de defesa antioxidantes que podem ser não-enzimáticos [21] como proteínas ligantes de metal, albumina ou glutationa (GSH), ácido úrico, melatonina (MIROŃCZUK-CHODAKOWSKA; WITKOWSKA; ZUJKO, 2018) e outros; ou enzimáticos, como: a) catalase, que converte peróxido de hidrogénio em água e oxigénio molecular nas hemácias; b) glutatinona redutase, que reduz a glutationa dissulfeto (GSSG) em GSH; c) glutationa peroxidase, que catalisa a oxidação da glutationa (GSH)[28][21]; d) enzimas proteolíticas que reconhecem e degradam

polipeptídeos danificados pela oxidação e os removem das células, entre outras. Ademais, quando proteínas e lípidos oxidados escapam a estas enzimas, podem ser internalizados por células fagolíticas e, no caso do DNA, um complexo sistema de reconhecimento e reparação de seus danos será ativado[29].

A já referida proteína p53 é um dos exemplos de controlo celular do stresse oxidativo, já que tanto pode diminuir ou aumentar estes compostos através de alterações ao nível da transcrição, tradução e pelas modificações pós-traducionais de metilação, acetilação e fosforilação das proteínas[26].

Vários organelos e tecidos sofrem danos com o stresse oxidativo, incluindo as suas maiores geradoras, as mitocôndrias. As mitocôndrias produzem energia através da respiração aeróbia e, sendo assim, têm potencial para originar níveis altos de ROS, que, por sua vez, induzem a oxidação da glutationa, dando origem às consequentes modificações nas macromoléculas. Esta oxidação e peroxidação das macromoléculas vai danificar a própria membrana mitocondrial, aumentando ainda mais a produção de ROS e causando danos em cadeia à membrana. Em suma, ocorre um ciclo de danos através de processos oxidativos, que pode, inclusivamente, ativar recetores de morte mitocondriais, apoptose e danos neurodegenerativos[21]. Estima-se que, aproximadamente, entre 2% e 5% do oxigénio metabolizado pelas mitocôndrias é desviado para outras vias metabólicas e reduzido na forma de radicais livres[25].

Para medir o stresse oxidativo presente numa célula ou tecido os próprios radicais livres não são apropriados, pois têm meia-vida extremamente curta (segundos), o que obrigaria à sua medição *in vivo*. Em contrapartida, existem outros compostos que podem ser utilizados para esta medição de forma indireta, como os derivados destes radicais livres, ex. peróxido de hidrogénio ou hidroperóxidos lipídicos, que têm meia vida mais longa e são estáveis [30]. Outro modo possível é medir a concentração de antioxidantes gerados pelas enzimas antioxidantes citadas acima[21]. Já a oxidação dos ácidos nucleicos pode ser ponderada através da quantificação de aldeídos reativos, reduções de açúcar ou pelas espécies

oxidadas de guanina[30] sendo esta última duplamente informativa, sobre o nível de ROS presente e seus efeitos citogenéticos.

1.2.1.1 Oxidação da Guanina

O nucleotídeo mais propenso a sofrer danos oxidativos é a guanina, devido ao seu menor potencial de ionização [23].

No DNA, ou RNA, o radical OH pode ligar-se à guanina na posição C8, resultando na guanina oxidada 8-OH-Gua [24][31]. Na forma 7-hidro-8-oxiguanina o anel pode se abrir e formar a Fapy-Guanina. No DNA, a 2'-desoxiguanosina, quando oxidada, forma a 8-oxodG enquanto que no RNA a guanosina pode ser oxidada formando a 8-oxoGuo (Figura 1).

A 8-hidroxi-2'-desoxiguanosina (8-OHdG) forma-se quando ocorre um ataque do radical hidróxilo aos resíduos de desoxiguanosina[22]. Ea é um equivalente da 8-hidroxiguanina (8-OH-Gua), e ambos correspondem aos tipos de lesões oxidativas de DNA mais estudados[24]. A 8-Hidroxi-2'-Deoxiguanosina (8-OHdG) sofre um tautomerismo ceto-enólico e forma a 8-oxo-7,8-Dihidro-2'-Deoxiguanosina (8-oxodG). Em certos casos na literatura, ambos os nomes são utilizados para o mesmo composto[32] (Figura 2).

A 8-OHdG é considerada a lesão mais abundante no DNA[32] sendo um biomarcador de grande relevância na avaliação do dano oxidativo ao DNA [25].

Figura 1. A) Produtos da oxidação da guanina no DNA e RNA. Guanina no DNA ou RNA oxida para 8-oxoGua. A 7-hidro-8hidroxiguanina, no DNA, forma a Fapy-Guanina e a 2'-deoxiguanosina oxida e forma a 8-oxodG. B) A guanosina, no RNA, oxida e forma a 8-oxoGUO. Adaptada de Malayappan,2007[31].

Figura 2. Formação da 8-oxoguanina com foco nos tautómeros 8-oxoG e 8-OHdG, retirada e adaptada de Wells et.al, 2009[33].

A 8-OHdG, perde sua especificidade tornando-se capaz de emparelhar com a Adenina o que, se não corrigido, leva a uma alteração na sequência da cadeia complementar por transversão de GC para TA, tendo então potencial mutagénico[32].

Os radicais de guanina são de extrema importância para a estabilidade e conformação do DNA [23] podendo alterar a funcionalidade do DNA codificante, mas também os diversos tipos de RNA e DNA não codificante que, sofrendo oxidação, podem ter consequência para os mecanismos como a síntese de proteínas e a regulação dos genes[34][35]. E quando as vias de reparação, por excisão de bases ou excisão de nucleotídeos, não reparam estas modificações, podem ocorrer uma série de patologias incluindo doenças neurodegenerativas, cardiovasculares e autoimunes[35].

1.2.2 Metilação do DNA

A metilação é uma das marcas epigenéticas hereditárias que regulam a expressão de genes e processos de desenvolvimento em eucariotas [36]. Atua através da inativação direta de genes ou, menos frequentemente, promovendo a ativação destes ao bloquear a ligação de proteínas repressoras [26]. Ela ocorre normalmente na sequência de dinucleotídeos citosina

seguida de guanina (CpG), sendo esta reação catalisada por enzimas DNA metiltransferases, que adicionam um grupo metil, para sintetizar 5-metilcitosina [26]. Já a desmetilação ocorre por uma via que recruta a DNA glicoliase que substitui as modificações de base pela citosina não metilada. Estas alterações, sendo portanto reversíveis, têm potencial para alterar o grau de ativação de genes dependentes de padrões de metilação, nos diferentes tecidos. A metilação do DNA, em células normais, é alterada em função da idade, ocorrendo uma hipermetilação nos promotores com alta taxa de CpG (normalmente hipometilados) e uma perda de metilação de CpG em locais hipermetilados em idades mais jovens[37]. De forma global, com o envelhecimento, ocorre uma hipometilação no genoma, que pode estar relacionada com a perda de integridade da heterocromatina[36]. Pensa-se que este fenómeno ocorre porque os mecanismos responsáveis pela manutenção dos padrões normais de metilação do DNA se desregulam e vão perdendo eficiência gradualmente com a idade[37]. Apesar de as metilações ocorrerem aleatoriamente e na maior parte das vezes, em regiões ricas em repetições e não codificantes, nas regiões críticas para a regulação do genoma o controle epigenético é finamente controlado [5], pelo que a sua desregulação terá consequências fenotípicas.

O efeito da idade no metiloma é tão evidente que diversas pesquisas identificaram *loci* e criaram modelos onde as taxas de envelhecimento humano, biológico e não cronológico, podem ser estimadas a partir do metiloma com grande precisão, e estão também correlacionadas com doenças relacionadas com a idade. Horvath (2013)[38], por exemplo, desenvolveu um algoritmo preditor da idade de tecidos que estima a metilação do DNA destes, formando assim um modelo de relógio biológico.

Técnicas para deteção e quantificação do nível de 5-metilcitosina e seus produtos de oxidação (5-hidroximetilcitosina, 5-formilcitosina, 5-carboxilcitosina) no DNA podem ajudar a entender o processo de metilação e desmetilação do DNA relacionado com doenças e dar-nos indicação precisa sobre o grau de envelhecimento biológico do seu dador. A metilação global do DNA pode ser avaliada por diversos métodos laboratoriais, a aplicada a todo o tipo de amostras humanas com DNA, desde DNA purificado a partir de sangue ou tecidos ou mesmo

DNA presente na urina ou outros fluídos biológicos. Contudo, existem dificuldades na quantificação da metilação global no DNA no geral, por seu nível ser relativamente baixo, além de as estruturas da 5-Metilcitosina e 5-Hidroximetilcitosina, uma outra forma de modificação das citosinas existente no DNA humano, terem semelhanças estruturais, e interferirem muitas vezes na quantificação uma da outra[39].

1.3 Técnicas laboratoriais para o estudo de marcadores de envelhecimento no DNA

1.3.1 Técnicas laboratoriais para deteção e quantificação de danos oxidativos

Diversas técnicas podem ser utilizadas para deteção ou quantificação de danos oxidativos no DNA, tais como as técnicas cromatográficas, que são muito utilizadas[31].

A cromatografia é uma técnica que permite a separação, identificação e determinação dos componentes químicos de uma amostra. Ela faz uso de uma fase estacionária, composta por uma coluna ou superfície plana, e uma fase móvel que pode ser um gás, líquido ou fluido, e que atravessa a fase estacionária por pressão, gravidade ou capilaridade. Para deteção ou confirmação da análise quantitativa, este sistema deve ser acoplado[40], por exemplo, a uma cromatografia de massa, que fornece as informações estruturais e a complementa[41].

A cromatografia líquida de alto desempenho (HPLC) usa como fase móvel um solvente líquido e consegue o alto desempenho devido ao diâmetro reduzido das partículas da fase móvel e à maior capacidade de pressão de bombeamento, em contraste com cromatografia líquida de coluna simples. É utilizada para separar e identificar diversos materiais orgânicos, inorgânicos e biológicos. Entre os detetores utilizados para a HPLC estão os detetores eletroquímicos e a espectrometria de massa[40].

Para haver deteção eletroquímica acoplada à cromatografia líquida, os componentes eletroquímicos eluem na coluna e sofrem oxidação ou redução quando aplicado um potencial elétrico sobre eles[42]. Esta técnica foi já utilizada para deteção de danos oxidativos no DNA, como por exemplo em H Kaur e B Halliwell, (1996)[43], que relatou que a HPLC com deteção

eletroquímica (HPLC-ECD) permite a deteção de algumas bases nitrogenadas oxidadas, como a 8-hidroxiguanina, e outras metiladas, de forma rápida e sensível. Porém, o tempo necessário para analisar grande número de amostras é considerável e existe o risco de interferência da matriz biológica [31].

A HPLC pode também ser combinada com a espectrometria de massa (HPLC- MS). Neste caso, o espectrómetro é composto por um sistema de entrada, fonte de ionização, analisador de massa, e detetor de iões. A fonte de ionização pode ser química (iões reagentes gasosos), por *eletrospray* (campo elétrico que produz aerossol) ou outra. Como vantagem, ela pode identificar as espécies químicas à medida que eluem na coluna cromatográfica fornecendo, para além do tempo de eluição, o composto químico alvo [40]. Para a deteção de danos oxidativos no DNA, MALAYAPPAN *et al.*, (2007)[31], desenvolveu um ensaio para medição de guaninas oxidadas, incluindo a 8-oxodG em urina, utilizando a cromatografia líquida de alta eficiência de fase reversa e a deteção por espectrometria de massa em tandem por *electrospray* (MS / MS). Este procedimento mostrou ser um método de sensibilidade elevada e quantificação confiável e precisa.

A desvantagem da HPLC para medição de danos oxidativos no DNA previamente extraído de amostras, é que a maioria dos protocolos já desenvolvidos para esse fim foi testado com DNA purificado e tratado com pró-oxidantes, além de que a técnica requer otimização, pois em cada laboratório há pequenas diferenças nos equipamentos utlizados e outros pormenores[44]. Já a desvantagem para o uso em amostras de urina, é a necessidade de uma purificação após a passagem pelas colunas, para que reste apenas o composto oxidado, como a 8-oxodG[45] e não todos os componentes desta mistura complexa.

Outros ensaios foram já descritos para a quantificação de danos oxidativos no DNA, como é o caso do ensaio cometa[46]. Este ensaio é baseado na eletroforese em gel e deteta quebras na cadeia de DNA, obtido a partir de células individuais numa lâmina de microscópio[46]. Uma vez embebidas em gel de agarose, as células são lisadas, formando nucleoides compostos por uma matriz nuclear, proteínas, RNA e DNA. Os nucleóides, com a adição de brometo de etídio, formam alças. Em eletroforese de alto pH, estas alças são

puxadas[47] e migram todas da mesma direção, formando como que a cauda de um cometa, que pode ser observada em microscopia de fluorescência, usando corantes para o DNA. A intensidade da cauda é indicadora da frequência de quebras nas cadeias de DNA, indicando se o DNA está mais ou menos danificado[46]. Como o stresse oxidativo é uma das principais causas dos danos no DNA, a quantidade de quebras é um bom estimador deste stresse[48]. As vantagens deste método são: ser simples, sensível [46] e ter baixo custo. Uma das desvantagens é a sua vulnerabilidade a fatores externos como a luz UV, que pode aumentar artificialmente as quebras de DNA[48].

Foram descritos protocolos que utilizam metodologias de sequenciação para medir danos no DNA[49]. Geralmente, uma molécula de DNA é sequenciada pela síntese de uma cadeia complementar à cadeia que se quer sequenciar. Na sequenciação de Sanger, por exemplo, a síntese é interrompida aleatoriamente através de quatro corantes fluorescentes associados cada um a uma das 4 bases nitrogenadas, mas duplamente desoxidadas, impossibilitando que a síntese prossiga. Fragmentos de comprimento variável são assim produzidos, cada um com um corante relativo à última base adicionada. Estes fragmentos são ordenados por comprimento por eletroforese, normalmente em capilares, e passam por um detetor laser que ativa a fluorescência do corante e, com ajuda de um filtro para comprimentos de onda, permite a deteção das cores [40].

CLARK *et al.*, 2011[49], utilizou um método semelhante, mas que realiza a reação de síntese em tempo real e numa única molécula (SMRT), para deteção de bases de DNA danificadas, oxidadas ou metiladas. O SMRT tem uma velocidade de sequenciação 20 mil vezes maior do que sequenciadores anteriores. O método rastreia em tempo real a DNA-polimerase durante o processo de síntese do DNA e regista a ordem pela qual os nucleotídeos, marcados com fluoróforos diferentes para cada base nitrogenada, são adicionados em cada posição, com o auxílio de um chip de filme de metal com perfurações que agem como pequenas câmaras de visualização[50]. Os autores relataram a fácil deteção de modificações nas bases, incluindo a 8-oxoguanina, através de ligeiras alterações da cinética de síntese, assim como observaram um aumento da frequência do dATP consumido durante a sequenciação das amostras mais

ricas nesta modificação, o que sugere pareamento incorreto da guanina modificada, com adenina[49].

A preparação da amostra de DNA para medição de danos oxidativos, por outro lado, pode também constituir um obstáculo, tanto que para minimizar este problema foi criado em 1997 o Comité de Padrões Europeus sobre Danos Oxidativos no DNA (ESCODD), para propor protocolos validados através de diversos métodos, para a preparação e análise de amostras em 28 laboratórios[51].

A generalidade destes métodos, (HPLC com deteção eletroquímica, HPLC com espectrometria de massa, ensaio cometa e sequenciação) necessita de muitos passos para a preparação e realização, tornando-os morosos, difíceis e de resultado muito variável, sendo necessário desenvolver métodos alternativos e validados para estimar este dano. As técnicas escolhidas para o presente trabalho são o "ensaio de imunoabsorção enzimática" que foi usado como forma de validação da "espectroscopia de infravermelhos com transformação de Fourier", e que são explicados a seguir, com mais detalhe.

1.3.2 ELISA - Ensaio de imunoabsorção enzimática

O ELISA (Ensaio de Imunoabsorção Enzimática), é um método cuja finalidade é medir a concentração de substratos como antigénios, anticorpos, proteínas, hormonas, entre outros. Este ensaio tem diversas aplicações clínicas e investigacionais, como por exemplo, o diagnóstico de doenças infeciosas, quantificação de autoanticorpos, marcadores tumorais, níveis hormonais, testes de gravidez ou tipagem sanguínea[52]. O termo "imuno" refere-se ao processo molecular utilizado na deteção específica do substrato a medir, que passa pelo uso de anticorpos. Nos vertebrados, os anticorpos são produzidos pelo sistema imunitário e detectam antigénios de fontes externas estranhas ao organismo por regiões ligantes específicas, induzindo assim uma cascata de eventos imunológicos que conduzem à proteção do indivíduo.

No ELISA, faz-se uso da conjugação entre antigénios e anticorpos para detetar o substrato pretendido com elevada especificidade. Para além disso, os antigénios ou os anticorpos são ligados a uma enzima, que permitirá a produção de um sinal[53] no caso de haver ligação com o substrato. As enzimas mais utilizadas são a fosfatase alcalina e a peroxidase, mas também podem ser utilizadas as beta-galactosidade, glicose-oxidase, anidrase carbónica, amilase e acetilcolinesterase[54]. A reação é levada a cabo em placas de poliestireno com poços revestidos e a técnica possui diversos tipos; direto, indireto, sanduiche e competitivo[52], exemplificados na figura 3. Em todas elas são realizadas lavagens da placa, utilizando tampão, entre alguns dos passos, e faz-se uma incubação com um substrato cromogénico[55] que, em contato com uma das enzimas mencionadas, gera um sinal visível modificando a coloração da solução em função da concentração inicial de substrato. Quando é utilizada a enzima peroxidase, por exemplo, o peróxido de hidrogénio pode ser utilizados a orto-fenilenodiamina e a tetrametilbenzidina[54].

No ELISA direto, as microplacas são revestidas com um antigénio, adiciona-se um anticorpo conjugado com uma enzima que se liga à proteína alvo, sendo depois adicionado um substrato que gera a coloração ao reagir com a enzima. No ELISA indireto são usados passos semelhantes ao direto, mas são utilizados dois anticorpos, um primário e um secundário, sendo este último conjugado com uma enzima. No ELISA sanduíche a placa é revestida com um anticorpo de captura, o antigénio da amostra é adicionado e liga-se a estes anticorpos, o anticorpo de deteção primário é adicionado e depois o secundário, conjugado com uma enzima. No fim, adiciona-se o substrato que produz a cor. Chama-se sanduíche pois os antigénios encontram-se entre as camadas de anticorpos[52](Figura 3).

Figura 3. Esquema dos diferentes tipos de ELISA. Figura retirada da página pensabio, 2017[56].

O ELISA competitivo (Figura 4), utiliza um processo de competição de ligação. A placa é revestida com um anticorpo de captura, junta-se à placa um buffer ou detergente para prevenir ligações não específicas, mistura-se a amostra com um antigénio conjugado a uma enzima. Os antigénios alvo da amostra de interesse irão então competir pelas ligações aos anticorpos conjugados no fundo da placa. Seguidamente a placa é lavada com um buffer para que só restem os anticorpos ligados ao fundo da placa e a substância cromogénica é adicionada e incubada com a amostra, o que irá modificar a coloração pelas enzimas conjugadas que estiverem ligadas ao fundo da placa, havendo depois a introdução de uma solução de paragem que vai mudar a cor novamente. Assim, quanto mais enzimas conjugadas estiverem ligadas ao fundo da placa, por esta ligação [57].

Figura 4. Esquema do ELISA Competitivo. Figura modificada, do protocolo DNA Damage Competitive ELISA kit (Invitrogem, Thermofisher Scientific, 2017[57]).

Os resultados desta técnica podem ser: a) qualitativos, quando se quer identificar se um composto está ou não presente numa amostra; b) semiquantitativo, quando se compara a intensidade dos sinais gerados pela técnica em diferentes amostras [52] ou; c) quantitativo, quando o sinal da amostra lida é comparado com uma curva padrão, de concentrações conhecidas para o mesmo substrato, chegando-se a uma concentração amostral[58].

Os benefícios do ELISA são, para além da sua elevada especificidade e sensibilidade, o facto de poder ser aplicado em diversas matrizes extracelulares. Por exemplo, no caso da urina, não é necessário um pré tratamento, e a análise tem alto rendimento[24][59].

Para o presente trabalho foi usado um Kit ELISA competitivo da ThermoFisher Scientific (Invitrogen) específico para danos no DNA, em amostras de DNA ou Urina (EIADNAD). Este kit deteta três espécies de guanina oxidada: 8-hidroxi-2'-desoxiguanosina, no DNA, 8hidroxiguanosina, no RNA e 8-hidroxiguanina, que resulta da digestão do DNA ou do RNA[57].

1.3.3 Espectroscopia de infravermelho

A espectroscopia é uma técnica que se baseia na interação entre algum tipo de radiação e a matéria para o estudo desta última, já que, pela quantidade de radiação produzida ou absorvida[40] permite obter informações sobre a composição de uma amostra[60].

Os espectrómetros podem utilizar diferentes espectros eletromagnéticos[40] sendo que, neste trabalho se utilizará a região de infravermelho médio, ou seja a radiação a ser usada será na região entre 400 a 4000 cm⁻¹[61].

A espectroscopia de infravermelho divide-se em 3 tipos, dependendo do comprimento de onda utilizado. Cada região deteta tipos de vibrações moleculares diferentes. Estas são normalmente classificadas conforme a sua proximidade à luz visível, em: IV próximo de 14.000 - 4000 cm⁻¹, o médio de 4000 - 400 cm⁻¹ e o distante de 400–10cm⁻¹[62].

Na espectroscopia de infravermelho utilizam-se as frequências das vibrações específicas que cada ligação química possui, correspondentes aos níveis vibracionais, e estes aos níveis de energia das moléculas[60]. As moléculas, ao absorver energia neste comprimento de onda, são excitadas, passando de um estado fundamental para um de maior energia[61]. Estas ligações contêm uma frequência específica de vibração que muda conforme o composto ou o ambiente, como por exemplo a geometria da molécula, a massa dos átomos ou a energia potencial[60] [61]. Estas vibrações podem ser de estiramento ou de deformação angular[61], conforme mostra a Figura 5.

Figura 5. Tipos de vibrações moleculares, de estiramento e dobramento. Figura retirada de PAIVA et al., 2016[61].

Cada tipo de molécula terá então o seu próprio padrão vibracional, o que abre um leque de utilidades, como saber se uma substância é idêntica a outra, se uma molécula está presente na amostra ou então descobrir a composição estrutural de uma molécula ou de uma amostra[61].

1.3.3.1 FTIR - Espectroscopia de Infravermelhos com transformada de Fourier

A espectroscopia de infravermelho com transformada de Fourier (FTIR), é uma técnica amplamente utilizada para fornecer informações sobre o conteúdo bioquímico de uma amostra. Devido ao avanço tecnológico na área da computação e processamento de dados, o seu uso expandiu-se a diversas áreas como, por exemplo, o controlo de qualidade e produção em setores como o da alimentação, farmacêutico, indústria têxtil e, petroquímica, investigação, entre outros[60]. Esta expansão deveu-se às suas vantagens em relação a outros métodos espectroscópicos. As principais vantagens, neste contexto, são a reduzida necessidade de preparação das amostras, geralmente com produtos não tóxicos nem cancerígenos, e o facto de não ser destrutiva, ter boa sensibilidade, fiabilidade, fácil manejo, capacidade de medir pequenas quantidades de amostra, analisar diferentes estados físicos da matéria (sólido, líquido ou gasoso) e ter baixo custo. Além disto, permite uma análise rápida (menos de um segundo), porque os comprimentos de onda são utilizados simultaneamente na mesma análise[60][62][40]. A sua principal desvantagem é necessitar que a amostra contenha ligações químicas que reajam aos infravermelhos[62] e a dificuldade de análise dos resultados para um leigo.

No FTIR, o infravermelho é direcionado para um interferómetro que tem um laser interno com uma frequência já conhecida para servir de padrão de calibração[60]. Este interferómetro, possui um divisor de feixes com um espelho num ângulo de 45°, onde o infravermelho se separa em dois feixes. Um feixe é desviado 90° para um espelho fixo, onde é refletido e retorna ao divisor e o outro segue para um espelho móvel sendo depois também refletido em direção ao divisor. Este processo origina diferentes comprimentos de onda na radiação que atravessa os padrões de interferência, que, ao se recombinarem, formam o interferograma. O interferograma, por sua vez, passa através da amostra onde determinados comprimentos de onda são absorvidos e, ao chegar ao detector, dará informações sobre a quantidade de energia que foi absorvida em cada comprimento de onda[61]. No computador, o software compara esse interferograma com o do laser de referência e depois efetua a transformada de Fourier, separando as frequências individuais de absorção, de forma a gerar um gráfico de absorvância *versus* comprimento de onda. O software retira automaticamente o espectro de fundo, que deve ser lido antes da amostra. [60][61], como exemplificado na Figura 6.

Figura 6. Representação esquemática de um aparelho de FTIR (adaptado de PAIVA et al., 2016[61].

Cada tipo de molécula pode então emitir diferentes frequências[62], que podem servir como uma assinatura molecular, permitindo assim sua identificação.

1.3.4 Técnicas laboratoriais para deteção e quantificação da Metilação do DNA

Existem diversos métodos que podem ser utilizados para medir a metilação global do DNA.

Uma delas é a cromatografia líquida de alto desempenho acoplada à espectrometria de massa em tandem por *electrospray*, (HPLC-ESI-MS/MS), já explicada no tópico 1.3.1, que se mostra um método estável e confiável também neste caso[63].

ELISA, técnica explicada no tópico 1.4, pode também ser utilizada para quantificação da metilação global do DNA, através de kits que utilizam anticorpos de captura e deteção para a 5-metilcitosina[64]. Os kits ELISA necessitam de equipamentos simples e geralmente já vêm prontos, porém são propensos a alta variabilidade[65].

Dot blotting, onde o DNA é colocado numa membrana, que é incubada em tampão de bloqueio, um anticorpo de interesse e um tampão de lavagem, e onde, através de quimioluminescência, a metilação pode ser estimada pela intensidade do sinal da amostra [65]. Este método também sofre grande variabilidade.

Ensaio à base de bissulfito, utilizado para distinguir citosinas metiladas e não metiladas, por um tratamento com bissulfito. Na presença deste composto, a citosina não metilada é facilmente desaminada (remoção de um grupo amino) em uracilo, enquanto que nas citosinas metiladas esta reação é mais lenta ou, em quantidades controladas de bissulfito, não chega a ocorrer, permitindo distinguir as duas formas de citosina, após PCR e sequenciação, ou por alguns dos métodos descritos anteriormente.

Sequenciação em tempo real de molécula única (SMRT), método explicado no tópico 1.3.1. Porém, esta técnica pode ser muito dispendiosa, ou carecer de melhorias na intensidade do sinal produzido pela 5-metilcitosina, para permitir maior precisão de análise.

1.4 Urina como Matriz

O stresse oxidativo pode ser medido na urina, tendo como vantagens, ser de fácil coleta, não requerer tratamento e processamento antes de armazenar, e poder ser utilizada em pequenos volumes. Contudo, a composição e o grau de diluição da urina é variável entre indivíduos o que pode interferir nos resultados. Na urina, a percentagem de 8-oxodG e 8-OHdG em relação ao número de guaninas total pode ser utilizada como biomarcador de stresse oxidativo, pois possui estabilidade a longo prazo, podendo ser utilizados diversos métodos para sua deteção[66]. A 8-OHdG encontrada na excreção urinária pode provir da oxidação da guanina no DNA através de seu reparo ou no pool de nucleotídeos resultantes da degradação do DNA[67][59].

Recomenda-se utilizar a urina de colheitas de 24 horas e, quando não for possível, ajustar os níveis de creatinina ou densidade, para normalização da diluição. Podem ser utilizadas, na urina, técnicas como a cromatografia com espectrometria de massa, a deteção eletroquímica ou o método de ELISA[66].

2. Relevância

Quantificar o grau de envelhecimento através dos perfis moleculares de amostras biológicas pode ter inúmeras aplicações, como a identificação da idade de indivíduos na investigação forense, em triagens médicas, na prevenção de riscos de doenças relacionadas com a idade[5], na escolha de tratamentos e também no estabelecimento de hábitos que favoreçam o prolongamento da vida saudável e na motirotização dos seus resultados[15].

Dentre as variáveis referidas nos pontos anteriores, o comprimento dos telómeros apresenta uma variação grande entre indivíduos e entre as suas diferentes células, sendo por isso um fraco preditor da idade biológica, apesar de poder ser considerado um potencial alvo terapêutico. Ou seja, tanto o comprimento dos telómeros como a atividade da telomerase refletem melhor a taxa de divisão de uma célula ou tecido do que a expectativa de vida do indivíduo como um todo. Em contrapartida, as diferenças no padrão de metilação de DNA estão fortemente associadas a distúrbios específicos da idade como por exemplo, as doenças neurodegenerativas. Por exemplo, a comparação entre cérebros de pessoas com doença de Alzheimer de início tardio e cérebros controlo saudáveis, mostrou que padrões epigenéticos específicos estão correlacionados com a idade[5]. Os danos causados pelo stresse oxidativo também estão correlacionados com inúmeras condições do envelhecimento que podem atingir a espécie humana, como é o caso das doenças cardiovasculares, neurodegenerativas e outras como a doença pulmonar obstrutiva crónica, doença renal crónica, cancro[68], diabetes mellitus tipo 2[26], etc.

Tanto a metilação como os biomarcadores do stresse oxidativo, estando alterados nos indivíduos mais envelhecidos, podem auxiliar a compreensão do envelhecimento, fornecer informações sobre possíveis alvos terapêuticos, ou sobre a eficácia e a seleção de tratamentos[68], etc. O conhecimento prévio deste grau de envelhecimento está, por sua vez, alinhado com o conceito de medicina personalizada, que sugere que a utilização da idade biológica do paciente[5], tecido ou órgão alvo, permitirá obter melhores resultados de qualquer procedimento clínico, em comparação com a medicina atual, já que a idade biológica é mais informativa sobre a interação de genes, tempo e ambiente, e sobre o estado geral do indivíduo, do quea idade cronológica.

A busca da melhor metodologia para quantificar o grau de envelhecimento biológico de um indivíduo tem sido uma preocupação constante na área[20], pelos motivos citados. Neste âmbito, a utilização do DNA como fonte de marcadores relevantes apresenta-se como muito promissora.

Para medir danos causados pelo envelhecimento no DNA a tecnica ELISA é muito utilizada, inclusive no iBiMED, laboratório onde este estudo foi realizado. Contudo a eficiência desta técnica depende da padronização prévia dos procedimentos e reagentes e dos técnicos ou pesquisadores seguirem os procedimentos detalhadamente[54]. Para além disso, este ensaio pode sofrer interferências com determinados compostos presentes nas amostras biológicas[66]. A maior complexidade dos reagentes e protocolos, o custo associado a este tipo de análise, a variabilidade entre laboratórios e aparelhos e maior carga de trabalho manual

desta técnica propiciam a busca por alternativas melhores. Em resposta a esta necessidade, esta tese pretendeu testar o uso do FTIR para a medição dos níveis de 8-OHdG, como marcador para o envelhecimento do DNA. Trata-se de uma técnica com boa sensibilidade, fiabilidade, que permite uma análise rápida[40], e fácil manejo, e que tem a capacidade de medir pequenas quantidades de amostra e diferentes estados físicos da matéria[60][62]. Para além disso, não degrada a amostra, pode-se estudar mais de um composto ao mesmo tempo (como quantificar simultaneamente o grau de oxidação e de metilação de uma amostra de DNA, por exemplo), o que é crucial para o estudo de amostras biológicas complexas. Apresenta ainda uma muito baixa probabilidade de contaminação ou erros por parte do pesquisador ou técnico, tendo ainda um valor irrisório, em comparação com o ELISA, ou outros métodos já referidos.

3. Objetivos

Diversos métodos foram já descritos e testados para a medição dos danos oxidativos no DNA. Contudo, estes acarretam os problemas ou dificuldades já citadas, sendo fundamental a identificação de um método alternativo. Desta forma, pretende-se com este trabalho contribuir para a escolha e validação de um método fácil, minimamente destrutivo e barato para uma avaliação prévia dos níveis totais de oxidação das guaninas, e observação da capacidade do método FTIR de detetar a metilação das citosinas, que possam ser indicativo do estado geral de envelhecimento dos indivíduos, e que permitam a sua respetiva estratificação, em estudos subsequentes a realizar no iBiMED. Os objetivos específicos deste trabalho foram os seguintes:

1. Proceder a um levantamento bibliográfico crítico sobre marcadores de envelhecimento no DNA e os métodos disponíveis para o seu estudo, ressaltando as suas vantagens e inconvenientes;

2. Realizar um estudo paralelo, utilizando ELISA e FTIR para a quantificação do nível de oxidação das guaninas; em amostras de urina humana;
3. Propor um protocolo para utilização do FTIR na análise de rotina de amostras de urina e DNA, como indicador no seu nível global de oxidação;

4. Explorar a possibilidade de obter informação sobre outros marcadores e tipos de amostras, úteis para o mesmo objetivo, partindo dos espectros de FTIR.

4. Material e Métodos

4.1 Amostras utilizadas

As matrizes utilizadas no presente trabalho foram amostras de urina e DNA (extraído e purificado a partir de células sanguíneas), provenientes da Universidade do Minho. Estas foram obtidas a partir de uma coorte da mesma instituição, obtida no contexto de vários estudos sobre envelhecimento saudável, e que contaram com o recrutamento a partir de três instituições diferentes: o Centro Hospitalar do Alto Ave, Agrupamento dos Centros de Saúde Guimarães/Vizela e o Instituto de Investigação em Ciências da Vida e Saúde da Universidade do Minho. Estas amostras foram processadas no laboratório central do Departamento de Patologia Clínica do Centro Hospitalar do Alto Ave, e foram congeladas no respetivo biobanco de amostras. As amostras sanguíneas (que posteriormente foram utilizadas para extração de DNA) e as amostras de urina, foram recolhidas entre junho 2010 e fevereiro 2012.

Posteriormente, estas amostras foram enviadas para o iBiMED (Universidade de Aveiro), onde foram armazenadas a -20°C, até ao momento das análises. O DNA fora previamente extraído no dia 07.11.2017, com o kit para extração *"AllPrep DNA/RNA Mini Kit"* da QIAGEN[69] e armazenado a -20°C no biobanco de amostras do iBiMED.

Os dadores das amostras utilizadas apresentavam, na data da colheita, idades entre 51 e 79 anos, sendo 14 indivíduos do sexo feminino e 15 indivíduos do sexo masculino, distribuídos equitativamente em função da idade. Nenhum dos indivíduos apresentava

30

insuficiência renal, e para todos fora anteriormente determinado o nível de creatinina. As análises do presente trabalho, foram realizadas entre 2019 e 2020.

Amostra de urina/DNA	Nomenclatura paciente	Idade	Sexo	Creatinina (mg/dl)	Proteínas	Hemoglobina	Leucócitos	Glicose
U1/D1	sw2154C_A	52	F	129,9	Negativo	Positivo +	Positivo ++++	Negativo
U2/D2	sw1055C_A	58	F	256,34	Positivo +	Positivo +++	Negativo	Negativo
U3/D3	sw3747C_A	54	F	139,8	Negativo	Positivo ++	Positivo ++	Negativo
U4/D4	sw1647C_A	69	F	77,3	Negativo	Negativo	Negativo	Negativo
U5/D5	sw0614C_A	73	М	116,47	Negativo	Negativo	Negativo	Negativo
U6/D6	sw0410C_A	57	М	171,82	Negativo	Negativo	Negativo	Negativo
U7	sw2544C_A	60	F	161,7	Negativo	Negativo	Negativo	Negativo
U8	sw3833C_A	52	М	99,7	Positivo +++	Traços	Negativo	Negativo
U9	sw0242C_A	77	М	127,6	Traços	Negativo	Negativo	Negativo
U10	sw1636C_A	66	F	132,7	Negativo	Negativo	Positivo ++++	Negativo
U11	sw0930C_A	70	F	50,46	Negativo	Negativo	Negativo	Negativo
U12	sw0879C_A	68	F	71,55	Negativo	Negativo	Positivo +	Negativo
U13	sw2957C_A	75	F	115,1	Negativo	Positivo ++	Positivo +	Negativo
U14	sw0544C_A	70	F	58,62	Negativo	Negativo	Positivo +	Negativo
U15	sw2581C_A	69	М	93,6	Negativo	Positivo +	Negativo	Negativo
U16	sw0397C_A	62	F	82,74	Traços	Negativo	Negativo	Negativo
U17	sw2906C_A	68	F	46,9	Negativo	Negativo	Negativo	Negativo
U18	sw0291C_A	58	F	92,71	Negativo	Negativo	Negativo	Negativo
U19	sw2503C_A	71	F	59,1	Negativo	Positivo +	Positivo ++++	Negativo
U20	sw0753C_A	72	М	125	Negativas	Negativa	Negativos	Normal
U21	sw2714C_A	76	М	155,4	Traços	Negativo	Negativo	Negativo
U22	sw2416C_A	58	М	156,4	Negativo	Negativo	Negativo	Negativo
U23	sw2750C_A	58	М	191	Negativo	Negativo	Negativo	Negativo
U24	sw0081C_A	53	М	76,96	Negativo	Negativo	Negativo	Negativo
U25	sw3075C_A	74	М	189,5	Traços	Negativo	Negativo	Negativo
U26	sw1938C_A	64	М	187,4	Negativo	Negativo	Negativo	Negativo
U27	sw1281C_A	80	М	88,3	Negativo	Negativo	Negativo	Negativo
U28	sw2888C_A	63	М	174	Negativo	Negativo	Negativo	Negativo
U29	sw0318C_A	68	F	159,93	Traços	Positivo +++	Positivo ++	Negativo

Tabela 1. Descrição sumária dos metadados associados às amostras (de urina e de DNA purificado) utilizadas neste estudo.

Amostra de urina/DNA	Nomenclatura paciente	Idade	Sexo	Creatinina (mg/dl)	Proteínas	Hemoglobina	Leucócitos	Glicose
U30	sw1133C_A	71	F	156,97	Negativo	Negativo	Negativo	Negativo
U31	sw1536C_A	63	F	78	Negativo	Positivo +	Negativo	Negativo
U32	sw0033C_A	60	М	197,82	Traços	Negativo	Negativo	Positivo ++++
U33	sw2832C_A	79	М	136,1	Traços	Negativo	Negativo	Negativo
U34	sw0295C_A	62	М	134,46	Negativo	Negativo	Negativo	Negativo
U35	sw2269C_A	57	F	70,8	Negativo	Traços	Negativo	Negativo
U36	sw3231C_A	57	М	197,6	Traços	Negativo	Negativo	Negativo
U37	sw0457C_A	68	М	115,1	Negativo	Negativo	Negativo	Negativo
U38	sw1470C_A	79	М	151,5	Negativo	Negativo	Negativo	Negativo
U39	sw1717C_A	69	F	95,8	Positivo ++	Positivo +++	Positivo ++++	Negativo
U40	sw2571C_A	74	М	122,3	Negativo	Negativo	Negativo	Negativo

4.2 Ensaio de Imunoabsorção enzimática (ELISA)

4.2.1 Material e reagentes

- Kit "DNA Damage Competitive ELISA" da Invitrogen, Thermofisher Scientific[70]
- Wash buffer (Buffer de lavagem) kit "ELISA DNA Damage" da ThermoFisher Scientific
- Assay Buffer (1x) kit "ELISA DNA Damage" da ThermoFisher Scientific
- Buffer de Eluição do kit "AllPrep DNA/RNA Mini Kit" da QIAGEN[69]
- Amostras de urina (40) e DNA (6) extraído e purificado (kit da Qiagen)
- Câmara de fluxo
- Agitador
- Leitor de Microplaca Infine[®] M200 da Tecan

4.2.2 Procedimento laboratorial

A) Preparação dos Reagentes

Para a preparação do *Wash Buffer* (1x) (tampão de lavagem), diluiu-se 15 ml de solução do *Wash Buffer* concentrado (20x) com 285 ml de água destilada. A solução obtida foi rotulada e guardada no frio (4°C). Nestas condições tem uma validade de 3 meses.

Para a preparação do *Assay Buffer (1x)*, diluiu-se 14 ml de Assay Buffer concentrado (5x) com 56 ml de água destilada. A solução foi rotulada e guardada no frio (4°C). Nestas condições, tem validade de 3 meses.

B) Preparação das amostras

A urina foi completamente descongelada à temperatura ambiente e centrifugada a 1.000 xg por 5 minutos. O sobrenadante foi aliquotado em microtubos de 1,5 μ l e congelado novamente a -20°C.

No dia do ensaio, as amostras de urina foram descongeladas à temperatura ambiente e foram re-suspensas. Depois diluíram-se todas as amostras em novo microtubo, contendo 6µl de urina e 44µl de *Assay Buffer* (para uma proporção de 1:7,33, fator de diluição de 8,33, de acordo com o protocolo da *Thermofisher*[57] para o kit que pedia uma diluição ≥1:4 para amostras de urina.

C) Preparação dos padrões

Para a preparação dos padrões este padrão foi retirado do frigorífico para atingir a temperatura ambiente. Oito microtubos foram marcados com os valores dos padrões de diluição 4.000, 2.000, 1,000, 500, 250, 125, 62,6, e 0 pg/ml 8-OHdG. Foram adicionados 25 μl de 8-Hidroxi2'-deoxiguanosina *Standard* (padrão) a um tubo contendo 475 μl de 1x *Assay*

Buffer e rotulado como 8.000 pg/ml 8-OHdG. Foram adicionados 250 ml de 1X *Assay Buffer* a cada um dos 8 tubos rotulados da seguinte forma: 4.000: 2.000; 1,000; 500; 250; 125; 62,6; e 0 pg/ml 8-hidroxi-2´deoxiguanosina. E foram realizadas diluições seriadas do padrão conforme o diagrama da figura 7. Todos os padrões assim obtidos foram misturados manualmente, por inversão, entre cada passo.

Figura 7. Diluição seriada dos padrões 8-hidroxi-2´desoxguanosina. Figura retirada do protocolo DNA damage competitive ELISA, THERMOFISHER SCIENTIFIC, 2017[69].

4.2.3 Procedimento experimental

- A) Ligação ao antigénio:
- Foram pipetados 50 µl dos padrões e das amostras para os poços apropriados como demonstrado no Esquema de Placa da Tabela 2.
- Adicionaram-se 75 μl do 1X Assay Buffer, para eliminar ligações não específicas. (NSBnon-specific binding).
- Foram adicionados 25 μl de 8-Hidroxi-2 deoxiguanosina conjugada em cada poço.
- Foram adicionados 25 μl de anticorpo anti-8-Hidroxi-2 deoxiguanosina em cada poço, exceto nos poços NSB.

- A placa foi misturada com toque na lateral, coberta com o selador de placa do kit e incubada por duas horas à temperatura ambiente e agitação.
- Aspirou-se a solução e os poços foram lavados com 300 µl de 1x Wash Buffer por 4 vezes.

B- Adição do cromogénio

- Foram adicionados 100 μl do substrato TMB (tetrametilbenzida) a cada poço, o que fez com que a solução cristalina se tornasse amarela.
- Incubou-se no escuro, por 30 minutos, e à temperatura ambiente, sem agitação, e a solução amarela tornou-se azul.

C- Adição da solução stop (solução de paragem da reação).

 Foram adicionados 50µl da solução stop em cada poço, e para misturar, foram dadas pancadas na lateral da placa. A solução mudou de cor, de azul para amarelo.

	1	2	3	4	5	6	7	8	9	10	11	12
A	STD1	STD1	STD1	STD2	STD2	STD2	STD3	STD3	STD3	STD4	* STD4	STD4
В	STD5	STD5	STD5	STD6	STD6	STD6	STD7	STD7	STD7	STD8	STD8	STD8
С	STD9	STD9	STD9	Branco	Branco	Branco	U7	U7	U10	U10	U11	U11
D	U16	U16	U13	U13	U18	U18	U19	U19	U29	U29	U30	U30
E	U31	U31	U1	U1	U2	U2	U3	U3	U4	U4	U26	U26
F	U33	U33	U34	U34	U27	U27	U24	U24	U5	U5	U23	U23
G	U21	U21	U6	U6	U28	U28	U20	U20	U32	U32	U25	U25
Н	U8	U8	U9	U9	-	-	-	-	-	-	-	-

Tabela 2. Esquema de Placa. Legenda: - Do poço A1 ao C3 foram adicionadas as soluções padrão conforme descrito nos procedimentos. Nos poços C4, C5 e 6 foi adicionado 75 μl do Assay Buffer (1X) puro. Nos demais poços foram adicionadas amostras de Urina.

*réplica da diluição padrão STD4 presente no poço A11 foi retirada da análise devido a erro de pipetagem.

4.2.4 Leitura da Placa

A placa foi lida 10 minutos depois da adição da solução stop, no leitor de Microplaca *Infine® M200* da *Tecan*[*71*], para uma absorção de comprimento de onda a 450 nm, largura de banda 9nm, comprimento de onda de referência 580 nm, com 25 flashes. A aplicação utilizada foi icontrol™Microplate Reader Software (infinite[®] serie) da Tecan[72].

4.2.5 Curva-padrão e cálculos

Para a realização da curva padrão foi utilizado o software MyAssay da MyAssays Ltd[73] com um algoritmo de Quatro Parâmetros (4PL), como sugerido no protocolo do ELISA utilizado[57], pois segundo este, a 4PL fornece o melhor ajuste de curva padrão, para este tipo de ensaio.

Primeiramente, foram inseridos no programa os nomes das amostras, os dados referentes ao ELISA realizado, e lidos no microleitor de placas, a posição das amostras/padrões/branco nos poços da placa, as concentrações especificadas para cada padrão, o fator de diluição das amostras. Em seguida, é realizado, pelo programa, um ajuste 4PL (regressão polinomial de grau 4) a partir do inverso da absorvância para a 8-OHdG, para a construção da curva padrão. Para tal, os pontos dos padrões inseridos no software são desenhados num gráfico de eixo semilogaritmíco, onde no eixo dos y ficam os valores medidos, no caso a absorvância, e no eixo dos x as concentrações específicas. A curva 4PL é ajustada através destes pontos, e usando a fórmula seguinte $y=d+\{(a-b)/[1+(x/c)^b]\}$, onde x é a variável independente, y a variável dependente e os quatro parâmetros são; - a que é o valor mínimo que pode ser obtido, - d o valor máximo que pode ser obtido, - c o ponto de inflexão e - b o declive da curva.

Para a correção do ruído de fundo, foi utilizada a média das 3 leituras do branco, que foi subtraída às medições de todos os dados brutos. As concentrações amostrais, obtidas a partir da curva gerada, foram multiplicadas para o fator de diluição 8,33. O coeficiente de variação percentual, desvio padrão e erro padrão também são calculados. O software fornece a curva padrão utilizada, uma tabela de ajuste dos resultados, uma tabela de calibração e uma tabela de resultados.

Posteriormente, no Excel, Microsoft Corporation[74] as concentrações de 8-OhdG previstas pelo Elisa *no* MyAssay da MyAssays Ltd[73] foram ajustadas para o valor de creatinina, como recomendado para normalizar amostras de urina[66][57], e foi realizada a média destas concentrações e respetivo desvio padrão.

4.3 Espectroscopia de Infravermelho com Transformada de Fourier (FTIR)

4.3.1 Material e reagentes

• FTIR BUNKER, Alpha Platium-ATR (Refletância Total Atenuada)[75].

- Assay Buffer (1x) kit "ELISA DNA Damage" da ThermoFisher Scientific.
- Amostras de urina (n=40) e DNA (n=6) extraído e purificado (kit da Qiagen[69]).

4.3.2 Procedimento experimental

A) Preparação das amostras de urina

As amostras (armazenadas a -20ºC), foram completamente descongeladas e diluídas em microtubos. Foram feitas 2 diluições:

- 1:1 25 μl da amostra de urina em 25μlde Assay Buffer 1x.
- 1:7,33 6 µl da amostra de urina em 44µlde Assay Buffer 1x.

B) Preparação das amostras de DNA

As amostras de DNA extraído e purificado (armazenados em buffer de eluição do kit *"AllPrep DNA/RNA Mini Kit"* da QIAGEN[69] e a -20ºC) foram completamente descongeladas.

C) Preparação dos padrões

Os padrões foram realizados da mesma forma que para o ELISA, como descrito no tópico 4.2.2-C.

4.3.4 Aquisição de espectros

Para este ensaio foi utilizado um FTIR (ALPHA, PLATIUM-ATR BRUNKER[75]), com o programa OPUS da ©Brunker[76] com Resolução 8 cm⁻¹, 64 scans para aquisição de *Background* e de amostra e região espectral 4000 – 600 cm⁻¹.

No espectrometro de infravermelho, foi obtido o espectro da diluição seriada de padrões de 8-OhdG e das amostras diluídas a seco, uma vez que as vibrações moleculares da água são detectadas no IR médio[77]. As secagens demoraram de 6 a 30 minutos, dependendo da variação de humidade da sala. Com o auxílio de uma pipeta automática foram colocados na superfície do cristal de ATR do FTIR o volume de 5µl de cada solução padrão, 5µl para as quarenta amostras de urina e 10µl para as amostras de DNA. A temperatura da sala foi mantida a 24°C e a humidade variou entre 42% a 61%. As amostras foram adquiridas durante em 8 dias, entre 13/02/2020 e 01/10/2020.

No programa OPUS da ©Brunker[76] com as configurações descritas anteriormente, e antes da leitura de cada espectro, foi obtido um espectro com o cristal vazio e limpo – espectro do *background*. Para cada amostra e solução padrão foram sempre obtidos os espectros em três réplicas, antes e após cada leitura o cristal do FTIR foi limpo com etanol 70% com auxílio de um papel absorvente, seguido de outra limpeza com água destilada e secagem com papel absorvente.

4.3.5 Tratamento de dados

Os padrões preparados com a solução *stock* de 8-OHdG, as amostras de DNA purificadas e as amostras de urina geraram espectros que foram tratados no software Unscrambler da ©Camo Analytcs. Este software permite analisar dados de espectroscopia, permitindo importar as matrizes do OPUS da ©Brunker[76] diretamente para o software, e é amplamente utilizado para analisar data sets espectroscópicos por análise multivariada de [79].

Antes da análise multivariada, tanto para a seriação dos padrões como para as amostras de urina e de DNA purificado, foi realizada a correção da linha de base dos espectros (*baseline correction*), para eliminar as interferências ambientais do laboratório e do espectroscópio. Os espectros foram depois normalizados em relação à área com o intuito de corrigir a quantidade de cada amostra colocada no cristal.

Foi realizada uma curva de calibração para previsão dos valores do 8-OHdG nas amostras de urina e DNA, através da segunda derivada dos espectros correlacionada com a

39

regressão por mínimos quadrados (PLS), após a PLS as concentrações previstas foram, por fim, ajustadas utilizado o valor de creatinina (Tabela 1) que constava no banco de dados do iBiMED relativo as amostras utilizadas. O valor médio das concentrações ajustadas, foi calculado tendo-se obtido um valor de concentração prevista para cada amostra e o respetivo desvio padrão. Ademais, foi realizada uma interpretação espectral, através da Análise de componentes principais (PCA), com a finalidade de obter informações sobre a metilação das citosinas, e outros compontes das amostras.

5. Resultados

5.1 ELISA

Os resultados obtidos no leitor de microplacas para os padrões da solução stock de 8-OHdG, e que foram utilizados para construir a curva padrão, podem ser visualizados na Tabela 3.

	1	2	3	4	5	6	7	8	9	10	11	12
А	0,0109	0,0171	0,0218	0,0252	0,0163	0,0192	0,0437	0,0503	0,0486	0,1665	<u>*0,5432</u>	0,1169
В	0,2007	0,3006	0,2080	0,3595	0,2782	0,3176	0,4683	0,4484	0,4270	0,5158	0,4363	0,5947
С	0,5658	0,7030	0,5628	0,0048	0,0042	0,0049	0,1134	0,0994	0,0392	0,0946	0,0777	0,0964
D	0,0464	0,0543	0,1745	0,1872	0,0701	0,0699	0,1114	0,1211	0,1569	0,1443	0,1223	0,1310
Е	0,0668	0,0761	0,1136	0,1199	0,1203	0,1722	0,1133	0,1540	0,1317	0,1333	0,0979	0,0965
F	0,0806	0,1155	0,0944	0,0699	0,1469	0,1241	0,1015	0,1236	0,1792	0,1596	0,0786	0,0791
G	0,0893	0,0604	0,0391	0,0788	0,0972	0,0942	0,1267	0,0994	0,0846	0,0962	0,0596	0,0821
Н	0,1497	0,1680	0,1207	0,1806	0,7318	0,7690	1,1175	1,0849	0,8319	0,7156	0,9884	1,0393

Tabela 3. Diferença entre a medição e a medição do branco, para a totalidade da placa de ELISA.

*a réplica da diluição padrão STD4 presente no poço A11 foi retirada da análise devido a erro de pipetagem.

5.1.1 Curva padrão de 8-OHdG no ensaio ELISA

Para a curva padrão, foi usada a concentração real anteriormente relatada, a leitura da densidade ótica das soluções padrão, subtraídas pela absorvância média do branco (raw

corrigido), o erro padrão da média, o *backfit* (cálculo bruto da concentração) e a percentagem de recuperação (razão entre a concentração esperada e o *backfit*). Estes dados podem ser vistos na Tabela 4.

Através destes dados o software gerou a curva padrão (Figura 8), onde os pontos vermelhos são os dados individuais dos padrões, e a linha preta é a curva calculada a partir dos padrões pelo ajuste Logístico de Quatro Parâmetros (4PL). Podem-se vizualisar na Tabela 5, os resultados da estatística de ajuste.

Nome do	Concentração				
padrão	conhecida	Raw (corrigido)	SEM	Backfit	% de recuperação
	(pg/ml)				
STD1	8000	0,0063	0,00316	6512	81,4
		0,0125		5188	64,86
		0,0172		4492	56,15
STD2	4000	0,0206	0,00262	4092	102,3
		0,0117		5329	133,2
		0,0146		4853	121,3
STD3	2000	0,0391	0,00198	2737	136,9
		0,0457		2441	122
		0,044		2511	125,6
STD4	1000	0,162	0,0248	735,8	73,58
		0,112		1102	110,2
STD5	500	0,196	0,0322	579,2	115,8
		0,296		310,6	62,13
		0,203		551,8	110,4
STD6	250	0,355	0,0235	216,8	86,71
		0,274		355,6	142,2
		0,313		280,3	112,1
STD7	125	0,464	0,0119	99,97	79,97
		0,444		117,6	94,09
		0,422		138,1	110,5

Tabela 4. Concentrações de 8-OHdG para as soluções padrão do ELISA, obtidos através do MyAssay, MyAssay Ltd.[73]

Nome do padrão	Concentração conhecida (pg/ml)	Raw (corrigido)	SEM	Backfit	% de recuperação
STD8	62,5	0,511	0,0457	62,52	100
		0,432		129	206,4
		0,59		10,38	16,6
STD9	0,1	0,561	0,0462	28,47	28470
		0,698		> Curve	-
		0,558		30,4	30400

Figura 8. Curva padrão das concentrações das diluições seriadas de 8-OHdG. O eixo x do gráfico representa a concentração em pg/ml e o eixo y as densidades óticas.

Tabela 5. Resultados de ajuste. A,B,C e D são os quatro parâmetros utilizados pelo ajuste 4PL. MSE é o erro quadrático médio (quanto mais próximo de 0, melhor o ajuste). O R² é 1 subtraído pelo Ssque e é a soma dos quadrados dos resíduos (quanto mais próximo de 0, melhor o ajuste). SS é a soma dos quadrados dos resíduos(quanto mais próximo de 0 melhor o ajuste). SYX é o desvio padrão dos resíduos, (quanto mais próximo de 0, melhor o ajuste.

A	-0,01755
В	-1,064
С	313,7
D	0,6062
MSE	0,00155
R²	0,9673
SS	0,04031
SYX	0,04281

5.1.2 Cálculo das concentrações de 8-OHdG nas amostras de Urina

As concentrações de 8-OHdG para as amostras de urina, previstas pelo software MyAssay daMyAssay Ltd.[73] através da curva padrão estimada atrás (Figura 8) podem ser observadas na tabela 6.

Posteriormente, estas concetrações foram ajustadas para a concentração de creatinina, como normalização para o grau de diluição da urina (Tabela 7). A Figura 9 resume os dados finais de concentração normalizada de 8-OhdG, com valores médios e desvios padrão, por amostra.

Tabela 6. Cálculo das concentrações de 8-OHdG nas amostras de Urina através do ensaio ELISA. A tabela apresenta os seguintes dados: A) nome das amostras; B) O fator de diluição aplicado; C) o raw, que são os valores brutos mensurados anteriormente pelo microleitor de placas; D) o valor corrigido para o branco (medição bruta subtraída pela média do grupo); E) a concentração calculada multiplicado pelo fator de diluição; F) Concentração Média, que é a média das concentrações por amostra; G) O coeficiente de variação percentual, que é a percentagem do desvio padrão das réplicas dividido pela sua média (valor esperado menor 15%, se maior que 15%, pode indicar erro de preparação); H) desvio padrão.

Amostra	Diluição	Raw	Fundo	Conc.	Conc. (média)	%OV	SD
Amostra	Diluição	i ta w	(corrigido)	(pg/ml)	pg/ml	/8CV	50
U7	8,33	0,113	0,102	9479	10170	9,64	980
		0,0994		10870			
U10	8,33	0,0392	0,0623	24830	18130	52 <i>,</i> 3	9480
		0,0946		11420			
U11	8,33	0,0777	0,0824	13830	12520	14,8	1850
		0,0964		11210	_		
U16	8,33	0,0464	0,0457	21730	20390	9,23	1880
		0,0543		19060	_		
U13	8,33	0,175	0,176	5784	5536	6,32	350
		0,187		5289			
U18	8,33	0,0701	0,0654	15210	15230	0,185	28,2
		0,0699		15250			
U19	8,33	0,111	0,112	9659	9247	6,29	582
		0,121		8836	_		
U29	8,33	0,157	0,146	6586	6926	6,94	481
		0,144		7265			
U30	8,33	0,122	0,122	8742	8424	5,34	450
		0,131		8106			
U31	8,33	0,0668	0,0668	15890	15000	8,47	1270
		0,0761		14100			
U1	8,33	0,114	0,112	9462	9197	4,08	375
		0,12		8931			
U2	8,33	0,12	0,142	8899	7390	28,9	2130
		0,172		5880			
U3	8,33	0,113	0,129	9488	8111	24	1950
		0,154		6733			
U4	8,33	0,132	0,128	8058	8004	0,954	76,3

Amostra	Diluição	Raw	Fundo	Conc.	Conc. (média)	%CV	SD
Amostru	Dhaiçao	nuv	(corrigido)	(pg/ml)	pg/ml	<i>,</i>	30
		0,133		7950			
U26	8,33	0,0979	0,0926	11030	11120	1,03	114
		0,0965		11200			
U33	8,33	0,0806	0,0934	13350	11320	25,3	2870
		0,116		9296			
U34	8,33	0,0944	0,0775	11450	13350	20,2	2690
		0,0699		15250			
U27	8,33	0,147	0,131	7117	7860	13,4	1050
		0,124		8604			
U24	8,33	0,101	0,108	10640	9640	14,6	1410
		0,124		8642			
U5	8,33	0,179	0,165	5593	6023	10,1	608
		0,16		6452			
U23	8,33	0,0786	0,0742	13680	13630	0,425	57,9
		0,0791		13590			
U21	8,33	0,0893	0,0702	12090	14740	25,4	3740
		0,0604		17390			
U6	8,33	0,0391	0,0543	24880	19260	41,2	7940
		0,0788		13640			
U28	8,33	0,0972	0,0911	11110	11290	2,22	251
		0,0942		11470			
U20	8,33	0,127	0,108	8411	9638	18	1740
		0,0994		10870			
U32	8,33	0,0846	0,0858	12750	11990	8,94	1070
		0,0962		11230			
U25	8,33	0,0596	0,0662	17590	15360	20,6	3160
		0,0821		13120			
U8	8,33	0,15	0,154	6962	6512	9,76	636
		0,168		6062			
U9	8,33	0,121	0,146	8868	7203	32,7	2350
		0,181		5538	1		
NSB		0,0048	0	8682	8764	2,11	185
		0,0042		8976	1		
		0,0049		8635			

Creatinina mg/ml	Concentração Normalizada 8OHdG(pg)/crea tinina (mg)	Concentração 8OHdG(ng)/creati nina(mg)	Concentração Média ng/mg	Desvio padrão	Nome amostras
1,617	5862,090	5,862	6,292	0,608	U7
1,617	6722,325	6,722			
1,327	18711,379	18,711	13,659	7,146	U10
1,327	8605,878	8,606			
0,505	27407,848	27,408	24,812	3,671	U11
0,505	22215,616	22,216			
0,827	26262,993	26,263	24,650	2,282	U16
0,827	23036,016	23,036			
1,151	5025,195	5,025	4,810	0,304	U13
1,151	4595,135	4,595			
0,927	16405,997	16,406	16,428	0,031	U18
0,927	16449,142	16,449			
0,591	16343,486	16,343	15,647	0,985	U19
0,591	14950,931	14,951			
1,599	4118,052	4,118	4,330	0,300	U29
1,599	4542,612	4,543			
1,570	5569,217	5,569	5,367	0,287	U30
1,570	5164,044	5,164			
0,780	20371,795	20,372	19,224	1,623	U31
0,780	18076,923	18,077			
1,299	7284,065	7,284	7,080	0,289	U1
1,299	6875,289	6,875			
2,563	3471,561	3,472	2,883	0,833	U2
2,563	2293,829	2,294			
1,398	6786,838	6,787	5,802	1,393	U3
1,398	4816,166	4,816			
0,773	10424,321	10,424	10,354	0,099	U4
0,773	10284,605	10,285			
1,874	5885,806	5,886	5,931	0,064	U26
1,874	5976,521	5,977			
1,361	9808,964	9,809	8,320	2,106	U33
1,361	6830,272	6,830			
1,345	8515,544	8,516	9,929	1,998	U34
1,345	11341,663	11,342			
0,883	8060,023	8,060	8,902	1,191	U27

 Tabela 7. Ajuste de creatinina nas concentrações de 8-OHdG nas amostras de urina, médias e desvio padrão.

Creatinina mg/ml	Concentração Normalizada 8OHdG(pg)/crea tinina (mg)	Concentração 8OHdG(ng)/creati nina(mg)	Concentração Média ng/mg	Desvio padrão	Nome amostras
0,883	9744,054	9,744			
0,770	13825,364	13,825	12,527	1,836	U24
0,770	11229,210	11,229			
1,165	4802,095	4,802	5,171	0,522	U5
1,165	5539,624	5,540			
1,910	7162,304	7,162	7,139	0,033	U23
1,910	7115,183	7,115			
1,554	7779,923	7,780	9,485	2,412	U21
1,554	11190,476	11,190			
1,718	14480,270	14,480	11,209	4,626	U6
1,718	7938,540	7,939			
1,740	6385,057	6,385	6,489	0,146	U28
1,740	6591,954	6,592			
1,250	6728,800	6,729	7,712	1,391	U20
1,250	8696,000	8,696			
1,978	6445,253	6,445	6,061	0,543	U32
1,978	5676,878	5,677			
1,895	9282,322	9,282	8,103	1,668	U25
1,895	6923,483	6,923			
0,997	6982,949	6,983	6,532	0,638	U8
0,997	6080,241	6,080			
1,276	6949,843	6,950	5,645	1,845	U9
1,276	4340,125	4,340			

Figura 9. Concentrações de 8-OHdG em ng/mg de creatinina na urina, pelo ensaio ELISA. O eixo dos x representa a concentração e o eixo dos y as amostras.

O valor médio da concentração de 8-OHdG nas amostras de urina, previstas pelo ELISA foi de 7,712 ng/mg com desvio padrão de 5,674 ng/mg.

5.2 FTIR

Para todas as análises de dados espectroscópicos foi utilizado o *softwa*re Unscrambler da ©Camo Analytcs[76].

5.2.1 Curva de calibração para 8-OHdG

Os espectros dos padrões de 8-OHdG (médias de 3 réplicas) após a correção da *baseline* e normalização, estão representados na Figura10. Na Figura 11A, estão apresentadas as médias dos triplicados para cada concentração de 8-OHdG. Uma vez que para o estudo do DNA a região de interesse será a região entre 1800 a 900 cm⁻¹, com o objetivo de melhorar a visualização do espectro de cada concentração, foi também realizada uma ampliação dessa região espectral (Figura 11.B). Esta região foi escolhida pois os principais sinais espectroscópicos característicos dos ácidos nucleicos, em particular as bases nitrogenadas, o resíduo de ribose e o grupo PO₂-, estão localizados nessa região espectral[80].

Figura 10. Espectros das diluições padrões de 8-OHdG, (de STD1 a STD9 em réplicas, onde o eixo y representa a absorvância em unidades arbitrárias e o eixo x o comprimento de onda entre 4000 a 600 cm⁻¹.

Figura 11. Valores médios dos espectros, para cada concentração de 8-OHdG (STD1 a STD9). O eixo y representa a absorvância (unidades arbitrárias) e o eixo x o comprimento de onda em cm⁻¹. A) Espectro total obtido; B) Ampliação da região espectral entre 1800 e 900 cm⁻¹.

Os espectros das diluições seriadas de padrão 8-OHdG (com a designação de STD1 a STD9) apresentaram um aspeto semelhante, incluindo o espectro da amostra que não contém o composto 8-OHdG (espectro do solvente utilizado para a preparação das amostras padrão).

Uma vez que nos espectros de FTIR podem existir picos sobrepostos é útil a utilização da segunda derivada[77] dos espectros recorrendo ao algoritmo *Savitzky*-Golay (Figura 12). Com uma observação direta dos espectros pode identificar-se uma diferença na absorvância, principalmente em alguns picos como 1060 cm⁻¹, 1400 cm⁻¹ e 1500 cm⁻¹. Ao comparar com a literatura pode-se especular que o pico 1060cm⁻¹ pode representar alongamentos de desoxirribose [98], alongamentos C=O da ribose [99] ou alongamento simétrico de PO₂ na espinha dorsal do DNA [100]; o pico 1440 cm⁻¹ pode representar as bases de purina da guanina [101] ou vibrações de açucar-base do DNA [98]; e o pico 1500 cm⁻¹ pode representar a guanina, vibrações de açucar-base do DNA ou a vibraçõo do ligamento C-H [98][101].

Figura 12. Espectros 8-OHdG (de STD1 a STD2 em triplicado) após aplicação da segunda derivada. O eixo dos y representa a absorvância e o eixo x o comprimento de onda em cm⁻¹.

5.2.1.2 Partial Least Squares (PLS) – modelo de calibração de 8-OHdG

Através da *Partial Leasts Squares*, (PLS) (regressão por mínimos quadrados parciais), conseguiu-se criar um modelo de regressão linear para o analito 8-OHdG, através da correlação entre a segunda derivada do espectro e a concentração dos padrões de 8-OHdG. Esta

ferramenta é muto utilizada quando se pretende criar um modelo de quantificação de um determinado analito[81]. No tratamento de dados espectroscópicos por PSL utiliza-se a informação da totalidade do espectro ou de regiões espectroscópicas específicas, para poder construir um modelo de regressão ou calibração, uma relação matemática entre os valores reais e os dados espectrais do analito de interesse, com o menor erro de previsão possível, e que permita a previsão da concentração do analito em questão em amostras de concentração desconhecida [82].

Sabendo que a matriz X contém as réplicas dos espectros de cada amostra, que são as variáveis independentes, e que o vetor Y contém a concentração de 8-OHdG em cada padrão (variáveis dependentes ou propriedades de interesse), o modelo de calibração foi construído para 2 variáveis latentes[81].

Obteve-se um modelo de calibração com 2 variáveis latentes, um erro de calibração (RMSEC) ±805.48, um erro de validação de (RMSECV) de ± 1104.43, e uma curva de calibração que relaciona os valores reais de 8-OHdG em pg/ml com os valores de concentração previstos (obtidos através do modelo de calibração obtido) (Tabela 8 e Figura 13).

Nome dos padrões	Esperada (pg/ml)	Observada (pg/ml)
STD1	8000	7716,868
STD1	8000	7589,12
STD1	8000	7160,77
STD2	4000	4115,947
STD2	4000	4134,225
STD2	4000	4360,166
STD3	2000	943,0461
STD3	2000	707,1624
STD3	2000	582,5548
STD4	1000	1441,764
STD4	1000	988,2366
STD4	1000	951,1815
STD5	500	260,5848
STD5	500	375,4912

Tabela 8. Concentrações de 8-OHdG esperada e observadausando o modelo de calibração.

Nome dos padrões	Esperada (pg/ml)	Observada (pg/ml)	
STD5	500	374,0795	
STD6	250	-853,6257	
STD6	250	-724,0537	
STD6	250	-960,0505	
STD7	125	992,9994	
STD7	125	1089,194	
STD7	125	903,8629	
STD8	62,6	1472,205	
STD8	62,6	960,8782	
STD8	62,6	960,8782	
STD9	0	978,0351	
STD9	0	585,351	
STD9	0	705,9272	

Figura 13. Correlação entre valores esperados e observados obtidos através do modelo de calibração PLS. O eixo y representa a concentração observada pelo modelo de calibração em pg/ml e o eixo x representa a concentração esperada em pg/ml. A equação para a reta está apresentada no gráfico.

Para a regressão PLS, obteve-se um comportamento linear com uma correlação de 0,8978 (R²), o que significa que o modelo obteve uma correlação de aproximadamente 90% entre ambas as concentrações, ou seja, que a curva padrão tem qualidade (Figura 13).

O Coeficiente b, outra componente do modelo de calibração, é utilizado para avaliar a associação entre variável e resposta, servindo para selecionar as variáveis mais relevantes do modelo de calibração[83]). O Coeficiente b está representado no gráfico 6, onde os picos positivos estão relacionados com as amostras com maior concentração de 8-OHdG enquanto que os negativos estão relacionados com a menor a concentração de 8-OHdG (Figura 14).

Figura 14. *Coeficiente b* do modelo de calibração de 8-OHdG-O eixo y representa a absorvância em unidades arbitrárias e o eixo x o comprimento de onda entre 1800 e 900 cm⁻¹.

Podemos ver no *Coeficiente B*, que os principais picos positivos que poderão estar relacionados com a presença do analito são: 1325 cm⁻¹; 1399 cm⁻¹; 1512 cm⁻¹ e 1540 cm⁻¹. E os principais picos negativos são: 1367 cm⁻¹; 1551 cm⁻¹; 1370 cm⁻¹ e 1427 cm⁻¹ que poderão estar mais relacionados com o solvente utilizado na preparação dos padrões (Figura 14).

Os picos responsáveis pela caracterização do analito, são: 1325 cm⁻¹, que pode estar associado à presença de bases de purina das guaninas [101]; 1399 cm⁻¹ que também podem representar bases de purina da guanina [98]; 1512 cm⁻¹ que pode representar os anéis de vibração C=N da guanina[98]; vibração entre base-açúcar ou associada a interações C com

H[101]. Finalmente, o pico 1540 cm⁻¹ pode representar o plano/base vibracional da guanina ou seus anéis de purina [98] [101].

5.2.2 Cálculo dos valores de concentração de 8-OHdG em amostras de urina

Para os espectros das amostras de Urina foram realizados ospré-tratamentos já descritos (Material e Métodos). Os espectros de urina podem ser observados na figura 15. Foi realizada a média dos espectros das três réplicas de cada amostra, que se pode observar na figura 16.A. Neste gráfico foi também ampliada a mesma região espectral de interesse, de 1800 cm⁻¹ a 900 cm⁻¹ (Figura 16.B).

Uma vez que se desconhecia a concentração de 8-OHdG nas amostras de urinas, estas foram submetidas a duas diluições 1:7.33 e 1:1, que se encontram misturados nas figuras supracitadas. Os espectros das Figuras 17 e 18 referem-se a cada uma das diluições, separadamente, com a ampliação da região espectral de 1800 cm⁻¹ a 900 cm⁻¹.

Figura 15. Espectros de urina para duas diluições. O eixo dos Y representa a absorvância e o eixo do x os comprimentos de onda entre 4000 a 600 cm⁻¹.

Figura 16. Espectros de urina para duas diluições (1:1 e 1:7,33), três réplicas por diluição, onde o eixo dos Y representa a absorvância e o eixo do x os comprimentos de onda entre 4000 a 600 cm-1.A) Média dos espectros das réplicas de cada amostra de urina onde o o eixo dos Y representa a absorvância e o eixo do x os comprimentos de onda em cm⁻¹. 16. B) Seleção da região espectral de interesse, entre 1800 e 900 cm⁻¹.

Figura 17. A) Média dos espectros das réplicas de cada amostra de urina com diluição 1:7,33 onde o eixo dos Y representa a absorvância e o eixo do x os comprimentos de onda entre 4000 a 600 cm⁻¹. B) Seleção do intervalo de comprimento de onda de interesse (1800 a 900 cm⁻¹). A seta assinala a amostra U12.

Figura 18. A) Média dos espectros das réplicas de cada amostra de urina com diluição 1:1 onde o eixo dos Y representa a absorvância e o eixo do x os comprimentos de onda em cm-1. B) Seleção do intervalo de comprimento de onda de interesse (1800 a 900 cm⁻¹). A seta assinala a amostra U32.

Para as médias dos espectros de urina, pode-se observar que os espectros com a diluição 1:7,33 a amostra de urina U12 apresenta um perfil diferente das demais, nas regiões de 1700 a 1600 cm⁻¹ e 1200 a 1000 cm⁻¹ (Figura 17), bem como um pico na região de 1452 cm⁻¹. Todos os espectros das amostras de urina preparadas com a diluição 1:1 apresentam aparentemente um perfil semelhante para os comprimentos de onda, contudo a amostra U32 apresentou um aspeto diferente das demais nos picos de comprimentos de onda: 1155 cm⁻¹, 1030 cm⁻¹ e 1070 cm⁻¹ (Figura 18). A tabela 9 resume as possíveis atribuições destes picos.

Fabela 9.	Possíveis atribuições dos	comprimentos de onda	responsáveis pela	caracterização das a	amostras U12 e U32.
-----------	---------------------------	----------------------	-------------------	----------------------	---------------------

Amostra	Comprimento de onda	Possíveis atribuições
U12	de 1700 a 1600 cm ⁻¹	creatinina [103]
		ureia [103]
		água residual [103]
	1452 cm ⁻¹ (pico agudo)	ureia (alongamento CN) [104]
		amida II (CH2) [105]
	de 1200 a 1000 cm ⁻¹	ions de sulfato [105]
		açucares [105]
		fosfatos [105]
U32	1155 cm ⁻¹ (pico agudo)	ion de fosfato [103]
		amida II [105]
	1030 cm ⁻¹ (pico agudo)	glicose [103]
	1070 cm ⁻¹ (pico agudo)	estiramento de grupos de fosfato [105]

Os espectros de urina, à semelhança dos espectros de amostras padrão, foram submetidos à segunda derivada com o algoritmo *Savitzky-Golay* com os resultados apresentados na Figura 19.

Figura 19. Espectros das amostras de urina após a segunda derivada. O eixo dos Y representa a absorvância e o eixo do x os comprimentos de onda entre 1800 a 900 cm-¹. A seta laranja assinala diferenças na amostra U12 e seta azul indica diferenças na amostra U32.

Após a segunda derivada, o espectro da amostra U12 continuou com um perfil diferente das restantes amostras, em particular nos picos nos comprimentos de onda de 1517 cm⁻¹, 1416 cm⁻¹, 1407 cm⁻¹, 1158 cm⁻¹. A amostra U32 também continua com perfil distinto das restantes, em particular nos picos de comprimento de onda de 1209 cm⁻¹, 1178 cm⁻¹, 1135 cm⁻ ¹, 1090 cm⁻¹, 1062 cm⁻¹, 996 cm¹ 971 cm⁻¹ (Figura 19). A Tabela 10 apresenta as respetivas atribuições.

Possíveis atribuici	Comprimento de	Amostra
1 05514215 utilbulçi	onda	Amostra
Amida II [1	1517 cm ⁻¹	U12
Banda tirosina [1		
Acido glutaminico (1426) [1416 cm ⁻¹	
ions de amónio [1	1407 cm ⁻¹	
ácido carboxílico [
ureia (vibrações de balanço NH [1	1158 cm ⁻¹	
deformação do NH2[1		
ions de fosfato [1		
RNA (anéis de ligação C-H) [1209 cm ⁻¹	U32
espinha dorsal do DNA ou RNA (Açúcar-fosfato) [1178 cm ⁻¹	
Glicose [1	1135 cm ⁻¹	
Creatinina [1	1090 cm ⁻¹	
Sulfato [1		
lons de fosfato (PO) [1	1062 cm ⁻¹	
Citosina (C-H, N2-C4, C5=C6) [1	996 cm ⁻¹	
CO e Cc ou ácido nucleico [1	971 cm ⁻¹	

Tabela 10. Possíveis atribuições dos comprimentos de onda responsáveis pela caracterização das amostras U12 e U32.

5.2.2.1 Partial Least Squares - Cálculo da concentração de 8-OHdG nas amostras de urina

As concentrações de 8-OhdG na urina foram calculadas, pelo método de FTIR, utilizando o modelo de calibração para este composto, descrito no ponto 5.2.1. As amostras de urina foram submetidas ao mesmo pré-tratamento das amostras padrão, que foram utilizadas na construção da curva de calibração.

Como forma de avaliar o impacto da diluição utilizada na quantificação de 8-OHdG através deste método e, consequentemente, a sensibilidade do próprio FTIR para este composto na urina humana, o cálculo das duas diluições preparadas foi realizado em separado. As diluições testadas foram 1:7,33 e 1:1.

Desta forma, os resultados referentes às concentrações previstas pelo modelo de calibração serão apresentados em 2 grupos, tendo sido o valor obtido multiplicado pelo valor das concentrações por 8,33 para a diluição era 1;7,33 e por 2 para a diluição 1:1 (Tabela 11 e

12). Os gráficos das Figuras 20 e 21 apresentam os valores de concentração obtidos por amostra. No gráfico da figura 20, foi retirada a amostra U12, devido ao perfil do espectro da amostra ser diferente das demais, para assim possibilitar melhor visualização das concentrações das demais amostras.

Tabela 11. Concentrações previstas de 8-OHdG das amostras de urina diluídas 1:7,33: 3 réplicas para cada amostra, correç	;ão
com valor de creatinina, valor médio e respetivo desvio padrão.	

Nome amostra	Conc. (pg/ml, Factor-2)	Correção diluição (x8,33)	Creatinina mg/ml	Conc. Normalizada 8OHdG(pg)/ creatinina	8OHdG(ng) /creatinina	Designação da amostra	Conc. Media ng/mg	Desvio
				(mg)	(mg)			padrão
U1 1p7 A	1787,926	14893	1,299	11464,973	11,465	U1	11,465	2,365
U1 1p7 B	1831,328	15255	1,299	11743,649	11,744			
U1 1p7 C	1172,039	9763	1,299	7515,781	7,516			
U2 1p7 A	4110,012	34236	2,5634	13355,699	13,356	U2	14,165	0,484
U2 1p7 B	4358,93	36310	2,5634	14164,781	14,165			
U2 1p7 C	4375,961	36452	2,5634	14220,176	14,220			
U3 1p7 A	*- 3827,27	-31881	1,398	-22804,721	-22,805	U3	-22,805	2,525
U3 1p7 B	*-3695,3	-30782	1,398	-22018,598	-22,019			
U3 1p7 C	*- 4486,34	-37371	1,398	-26731,760	-26,732			
U4 1p7 A	1482,18	12347	0,773	15972,833	15,973	U4	11,887	2,390
U4 1p7 B	1093,375	9108	0,773	11782,665	11,783			
U4 1p7 C	1103,063	9189	0,773	11887,451	11,887			
U5 1p7 A	2067,066	17219	1,1647	14784,065	14,784	U5	15,380	0,764
U5 1p7 B	2279,195	18986	1,1647	16301,193	16,301			
U5 1p7 C	2150,422	17913	1,1647	15379,926	15,380			
U6 1p7 A	2508,73	20898	1,7182	12162,728	12,163	U6	14,598	1,591
U6 1p7 B	3011,059	25082	1,7182	14597,835	14,598			
U6 1p7 C	3125,715	26037	1,7182	15153,649	15,154			
U7 1p7 A	*_ 1486,18	-12380	1,617	-7656,153	-7,656	U7	-8,806	1,289
U7 1p7 B	*_ 1985,66	-16541	1,617	-10229,437	-10,229			
U7 1p7 C	*_ 1709,44	-14240	1,617	-8806,432	-8,806			
U8 1p7 A	2381,184	19835	0,997	19894,684	19,895	U8	21,017	2,220
U8 1p7 B	2515,531	20954	0,997	21017,051	21,017			
U8 1p7 C	2893,469	24103	0,997	24175,527	24,176			
U9 1p7 A	1016,691	8469	1,276	6637,147	6,637	U9	4,081	1,706
U9 1p7 B	521,0273	4340	1,276	3401,254	3,401			

	Conc.	Correção	Creatinina mg/ml	Conc. Normalizada			Conc. Media	
Nome amostra	(pg/ml, Factor-2)	diluição	0,	8OHdG(pg)/	80HdG(ng)	Designação da amostra	0, 0	Desvio
	Factor-2)	(88,55)		(mg)	(mg)			padrão
U9 1p7 C	625,0313	5207	1,276	4080,721	4,081			
U10 1p7	*_				-1.509	_		
A	240,352	-2002	1,327	-1508,666	,	U10	-1,509	1,513
В	144,9609	1208	1,327	910,324	0,910			
U10 1p7	*_			· · ·	-1 873			
C	298,426	-2486	1,327	-1873,399	1,070			
A DIT 107	1583.36	-13189	0.5046	-26137.535	-26,138	U11	-26.138	1.569
U11 1p7	*_		-,		27.255		,	_,
В	1650,98	-13753	0,5046	-27255,252	-27,255			
U11 1p7	*- 1/63/12	-12190	0 5046	-2/157 7/19	-24,158			
U12 1p7	1403,42	12150	0,5040	24137,743	222.450			
A	27697,34	230719	0,7155	322458,421	322,458	U12	319,497	2,824
U12 1p7	27442-01	228600	0.7155	210406 855	319,497			
ы U12 1p7	27443,01	228000	0,7155	319490,855				
C	27212,35	226679	0,7155	316812,020	316,812			
U13 1p7					15.374			
A	2124,379	17696	1,151	15374,457	-,-	013	15,374	0,415
В	2211,895	18425	1,151	16007,819	16,008			
U13 1p7					15 227			
C	2103,957	17526	1,151	15226,759	13,227			
014 1p7 A	556.2539	4634	0.5862	7905.152	7,905	U14	5.798	5.645
U14 1p7	*_		-,		2 752	_	-,	-,
B	193,711	-1614	0,5862	-2753,327	-2,755			
U14 1p7	408 0039	3399	0 5862	5798 362	5,798			
U15 1p7	100,0000	5555	0,0002	5756,502	16 202			
Α	1830,75	15250	0,936	16292,735	10,293	U15	16,293	2,214
U15 1p7	10/2 /8	16181	0.036	17287 202	17,287			
U15 1p7	1942,40	10101	0,930	17207,395	10.050			
c	1466,75	12218	0,936	13053,419	13,053			
U16 1p7	2420 420	264.44	0.0074	24504 450	31,594	114.6	24 504	2 200
A 1116 1n7	3138,129	26141	0,8274	31594,150		016	31,594	2,308
В	2766,309	23043	0,8274	27849,891	27,850			
U16 1p7					32,059			
C	3184,352 *	26526	0,8274	32059,463	,000			
Α	1070,82	-8920	0,469	-19019,190	-19,019	U17	-20,908	1,202
U17 1p7	*_		,	-, -,	-20 008		,	, -
B	1177,25	-9806	0,469	-20908,316	-20,900			
C		-9967	0,469	-21251,599	-21,252			

Norme amostra amostra amostra brokence standard resetting <br< th=""><th>Nome</th><th>Conc.</th><th>Correção</th><th>Creatinina mg/ml</th><th>Conc. Normalizada</th><th></th><th>Designação</th><th>Conc. Media ng/mg</th><th></th></br<>	Nome	Conc.	Correção	Creatinina mg/ml	Conc. Normalizada		Designação	Conc. Media ng/mg	
$ \begin{array}{ c c c c c c } \hline 1 \\ h & 1 \\ 2807,32 \\ 2807,32 \\ 23085 \\ 2807,32 \\ 23085 \\ 2820,69 \\ 23396 \\ 23496 \\ 0,9271 \\ 0,9271 \\ 2533,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2233,56 \\ 2333,4 \\ 1,25 \\ 2976,800 \\ 2,977 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 1216,78 \\ 1056,70 \\ 12216,78 \\ 2353,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 19607 \\ 1,554 \\ 1235,777 \\ 190,887 \\ 197 \\ 1067,77 \\ 8 \\ 197 \\ 1067,77 \\ 8 \\ 1067,77 \\ 8 \\ 1067,77 \\ 8 \\ 1067,77 \\ 8 \\ 1067,77 \\ 8 \\ 1067,77 \\ 8 \\ 1067,77 \\ 106,29 \\ 1067,77 \\ 8 \\ 1067,77 \\ 106$	amostra	(pg/ml, Factor-2)	diluição (x8,33)		8OHdG(pg)/ creatinina (mg)	8OHdG(ng) /creatinina (mg)	da amostra		Desvio
A.A. 2807,32 -23385 0,9271 -2522,3816 -7.5,224 U18 -25,344 0,426 U18 107 *. -23069 -23496 0,9271 -25343,544 -26,014 -26,014 U18 107 *. -2895,36 -24118 0,9271 -26014,454 -26,014	U18 1p7	*_			(ing)	(ing)			paurao
U18 107 B *- 280,69 -23496 0,9271 -25343,544 -25,344 U18 107 C *- 2885,56 -24118 0,9271 -26014,54 -26,014 - U19 107 C *- 1387,46 -11558 0,99271 -26014,54 -10,567 U19 1387,46 -11558 0,991 -15062,666 -15,063 U19 - <td< td=""><td>A</td><td>2807,32</td><td>-23385</td><td>0,9271</td><td>-25223,816</td><td>-25,224</td><td>U18</td><td>-25,344</td><td>0,426</td></td<>	A	2807,32	-23385	0,9271	-25223,816	-25,224	U18	-25,344	0,426
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	U18 1p7 B	*- 2820.69	-23496	0.9271	-25343.544	-25,344			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U18 1p7	*_	20.00	0,0272		26.014			
U19197 A1387,46 1387,46-13558 15580,591-19556,684-19,557P19 15,063P17,151P2,249 2,0134U19197 C** 1216,78-01360,591-15062,600-15,063-17,150 <td< td=""><td>C</td><td>2895,36</td><td>-24118</td><td>0,9271</td><td>-26014,454</td><td>-26,014</td><td></td><td></td><td></td></td<>	C	2895,36	-24118	0,9271	-26014,454	-26,014			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U19 1p7	*_				-19,557			
$ \begin{array}{c c c c c c c c } & 1.503 & 1.6802 & 0.591 & -15062.606 & -15.063 \\ \hline 1019 1477 & 1.216.78 & -10136 & 0.591 & -17150.592 & -17.151 \\ \hline 1216 78 & -246.43 & -2053 & 1.2.5 & 1.642.400 & -1.642 \\ 120 147 & 1.2617 & 1.25 & 2976.800 & 2.977 \\ \hline 120 147 & 1.268.336 & 23893 & 1.554 & 15375.161 & 15.375 \\ \hline 120 147 & 1.268.336 & 23893 & 1.554 & 15375.161 & 15.375 \\ \hline 121 147 & 1.268.336 & 23893 & 1.554 & 12617.117 & 12.617 \\ \hline 121 147 & 1.263 & 1.1999 & 1.554 & 12354.569 & 12.355 \\ \hline 121 147 & 1.263 & 1.1999 & 1.554 & 12354.569 & 12.355 \\ \hline 121 147 & 1.263 & 1.1999 & 1.554 & 12354.569 & 12.355 \\ \hline 121 147 & 1.263 & 1.1999 & 1.554 & 12354.569 & 12.355 \\ \hline 122 147 & 1.263 & 1.1999 & 1.554 & 12354.569 & 12.355 \\ \hline 122 147 & 1.263 & 1.1999 & 1.554 & 5683.504 & 5.684 \\ \hline 122 147 & 1.263 & 1.1050 & 1.564 & 5683.504 & 5.684 \\ \hline 122 147 & 1.263 & 1.1050 & 1.564 & 5683.504 & 5.684 \\ \hline 122 147 & 1.263 & 1.1050 & 1.564 & 7065.217 & 7.065 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 7065.217 & 7.065 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 7065.217 & 7.065 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 7065.217 & 7.065 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 7065.217 & 7.065 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 7065.217 & 7.065 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 7065.217 & 7.065 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 7065.217 & 7.065 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 1.057 & 1.057 \\ \hline 123 147 & 1.263 & 1.1050 & 1.564 & 1.057 & 1.057 \\ \hline 123 147 & 1.263 & 1.107 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 124 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 124 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 124 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 124 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 124 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 124 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 124 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 124 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 125 147 & 1.27 & 1.278 & 0.7696 & -1.5693.867 & 1.5694 \\ \hline 125 147 & 1.27 &$	A	1387,46	-11558	0,591	-19556,684		019	-17,151	2,249
$ \begin{array}{ c c c c c c } \hline 1216,78 & -10136 & 0.591 & -17150,592 & -17,151 \\ \hline C & 1216,78 & -10136 & 0.591 & -17150,592 & -17,151 \\ \hline 1216,78 & -2053 & 1.25 & -1642,400 & -1,642 \\ \hline 120107 & & & & & & & & & & & & & & & & & & &$	В	1068.72	-8902	0.591	-15062.606	-15,063			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U19 1p7	*_		-,		17 151			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	1216,78	-10136	0,591	-17150,592	-17,151			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U20 1p7 A	*-246,43	-2053	1,25	-1642,400	-1,642	U20	2,667	2,582
B 446,7305 3721 1,25 2976,800 $21,171$ $21,171$ $21,171$ $21,171$ $21,171$ $21,171$ $21,667$ $21,667$ $21,667$ $21,667$ $21,171$ $21,667$ $21,2617$ $21,617$ $12,617$	U20 1p7					2 977			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	В	446,7305	3721	1,25	2976,800	2,577			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U20 1p7	400 207	2224	1 25	2667 200	2,667			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U21 1p7	400,207	5554	1,25	2007,200				
$ \begin{array}{ c c c c c c c } \hline U21 1p7 \\ B \\ 2353,777 & 19607 & 1,554 & 12617,117 & 12,617 \\ \hline U21 1p7 \\ C \\ 2304,746 & 19199 & 1,554 & 12354,569 & 12,355 \\ \hline U22 1p7 \\ A \\ 191,4453 & 7592 & 1,564 & 4854,220 & 4,854 \\ \hline U22 1p7 \\ B \\ 1067,07 & 8889 & 1,564 & 5683,504 & 5,684 \\ \hline U22 1p7 \\ C \\ 1326,563 & 11050 & 1,564 & 7065,217 & 7,065 \\ \hline U23 1p7 \\ A \\ 155,332 & 1294 & 1,91 & 1905,236 & 1,905 \\ \hline U23 1p7 \\ C \\ 190,8867 & 1590 & 1,91 & 677,487 & 0,677 \\ \hline U23 1p7 \\ C \\ 190,8867 & 1590 & 1,91 & 832,461 & 0,832 \\ \hline U24 1p7 \\ C \\ 190,8867 & 1590 & 1,91 & 832,461 & 0,832 \\ \hline U24 1p7 \\ C \\ 197,22 & -16429 & 0,7696 & -15693,867 & -15,694 \\ \hline U24 1p7 \\ C \\ 197,23 & -16429 & 0,7696 & -11476,091 & -11,476 \\ \hline U24 1p7 \\ C \\ 1060,29 & -8832 & 0,7696 & -11476,091 & -11,476 \\ \hline U25 1p7 \\ A \\ 146,2617 & 3842 & 1,895 & 2027,41 & 2,027 \\ \hline U25 1p7 \\ B \\ (17,2) \\ C \\ 1025 1p7 \\ B \\ (17,2) \\ C \\ 72,6553 & -605 & 1,895 & -319,261 & -0,319 \\ \hline \end{array}$	A	2868,336	23893	1,554	15375,161	15,375	U21	12,617	1,673
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	U21 1p7	2252 777	10607	1 554	12617 117	12,617			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U21 1p7	2333,777	19007	1,554	12017,117				
$ \begin{array}{ c c c c c c } \hline U22 1p7 \\ A \\ 911,4453 \\ 7592 \\ 106,707 \\ 8 \\ 106,707 \\ 8 \\ 106,707 \\ 8 \\ 106,707 \\ 8 \\ 106,707 \\ 106,707 \\ 106,707 \\ 1022 1p7 \\ C \\ 1022 1p7 \\ A \\ 1326,563 \\ 11050 \\ 1$	C	2304,746	19199	1,554	12354,569	12,355			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U22 1p7	014 4450	7500	1 5 6 4	4054 220	4,854		5 604	4 4 4 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A 1122 1n7	911,4453	/592	1,564	4854,220		022	5,684	1,117
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B	1067,07	8889	1,564	5683,504	5,684			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U22 1p7	,		,	ŕ	7.065			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	1326,563	11050	1,564	7065,217	7,065			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U23 1p7	426 0477	2620	1.01	1005 336	1,905	1122	0.022	0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A 1123 1n7	436,8477	3639	1,91	1905,236		023	0,832	0,669
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B	155,332	1294	1,91	677,487	0,677			
C190,886715901,91832,461 $0,032$ $0,032$ 100	U23 1p7					0 832			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	190,8867	1590	1,91	832,461	0,832			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U24 1p7	*- 1440.02	12079	0 7696	15602 867	-15,694	1124	15 604	1 052
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A U24 1n7	*_	-12078	0,7696	-13093,807		024	-15,094	4,955
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	1972,32	-16429	0,7696	-21347,453	-21,347			
C1060,29-88320,7696-11476,09111,47011,47011,470 $U25 1p7$ A461,261738421,8952027,4412,027U252,0271,703 $U25 1p7$ B680,597756691,8952991,5572,992U252,9921,703 $U25 1p7$ C*- 72,6563-6051,895-319,261-0,319-0,319-0,319-0,319 $U26 1p7$ *6051,895-319,261-0,213-0,213-0,213-0,213	U24 1p7	*_				-11 476			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C	1060,29	-8832	0,7696	-11476,091	11,470			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U25 1p7	161 2617	2842	1 205	2027 441	2,027	1125	2 0 2 7	1 702
B 680,5977 5669 1,895 2991,557 2,992 U25 1p7 *- - - -0,319 C 72,6563 -605 1,895 -319,261 -0,319 U26 1p7 *- - - -20,213 -	U25 1p7	401,2017	J04Z	550'ד	2027,441		025	2,027	1,705
U25 1p7 *- C 72,6563 -605 1,895 -319,261 -0,319	В	680,5977	5669	1,895	2991,557	2,992			
C 72,6563 -605 1,895 -319,261 U26 1p7 *-	U25 1p7	*_				-0 219			
U26 1p7 *	C	72,6563	-605	1,895	-319,261	0,515			
A 4547.32 -37879 1.874 -20212.914 ^{20,213} 1126 -19.462 0.490	026 1p7 A		-37879	1.874	-20212 914	-20,213	U26	-19,462	0.490

	Conc	Correção	Creatinina	Conc. Normalizada			Conc. Media	
Nome	(pg/ml,	diluição	ing/ini	80HdG(pg)/	8OHdG(ng)	Designação da amostra	iig/iiig	
anostra	Factor-2)	(x8,33)		creatinina (mg)	/creatinina (mg)	ua antostra		Desvio padrão
U26 1p7	*_			(118/	10 202			puuluo
В	4340,13	-36153	1,874	-19291,889	-19,292			
U26 1p7 C	*- 4378,23	-36471	1,874	-19461,580	-19,462			
U27 1p7	,		,	,	8 616			
A	913,3594	7608	0,883	8616,082	8,010	U27	8,390	1,339
U27 1p7	880 203	7/08	0 883	8380 581	8,390			
U27 1p7	889,295	7408	0,885	0303,301				
c	656,4766	5468	0,883	6192,525	6,193			
U28 1p7					6,255			
A	1306,629	10884	1,74	6255,172	,	U28	6,255	0,779
B	1124,82	9370	1,74	5385,057	5,385			
U28 1p7					6 939			
С	1449,285	12073	1,74	6938,506	0,939			
U29 1p7	*- 20/15 91	25272	1 5002	15964 441	-15,864	1120	15 964	0 171
U29 1p7	*-	-23372	1,5555	-13804,441		025	-13,804	0,171
В	3101,18	-25833	1,5993	-16152,692	-16,153			
U29 1p7	*_				-15.851			
C	3043,16 *	-25350	1,5993	-15850,685	-,			
A	310,934	-2590	1,5697	-1649,997	-1,650	U30	-3,361	1,466
U30 1p7	*_				4 567		,	
В	860,625	-7169	1,5697	-4567,115	-4,307			
U30 1p7	*_622.25	-5275	1 5607	-3360 515	-3,361			
U31 1p7	*_	5275	1,5057	5500,515				
A	517,012	-4307	0,78	-5521,795	-5,522	U31	-9,029	2,854
U31 1p7	*_		0 = 0		-9,029			
B	845,535 *-	-7043	0,78	-9029,487				
C	1046,37	-8716	0,78	-11174,359	-11,174			
U32 1p7					11.351			
A	2695,707	22455	1,9782	11351,228	,	032	10,796	0,394
B	2514,996	20950	1,9782	10590,436	10,590			
U32 1p7					10 796			
С	2563,746	21356	1,9782	10795,673	10,750			
U33 1p7	*- 1033 17	-8606	1 361	-6323 202	-6,323	1133	-6 373	1 5 7 2
U33 1p7	*-	-8000	1,501	-0323,292		033	-0,525	1,525
В	955,359	-7958	1,361	-5847,171	-5,847			
U33 1p7	*_		1.00	0000	-8,691			
C	1419,94	-11828	1,361	-8690,669				
A	2144,176	17861	1,3446	13283,504	13,284	U34	13,284	0,196
U34 1p7	, -			-,	13 376		, -	,
В	2159,238	17986	1,3446	13376,469	13,370	J		

	Conc	Correção	Creatinina	Conc. Normalizada			Conc. Media	
Nome	(pg/ml,	diluição	ing/ini	80HdG(pg)/	8OHdG(ng)	Designação	iig/iiig	
amostra	Factor-2)	(x8,33)		creatinina	/creatinina	da amostra		Desvio
				(mg)	(mg)			padrão
U34 1p7					13,001			
C	2098,504	1/481	1,3446	13000,892				
035 1p7	101 4504	4270	0 700	1005 000	1,935	1125	2 002	4 5 3 5
A	164,4531	1370	0,708	1935,028	-	035	3,982	1,535
035 1p7	410 0000	2400	0.700	4040 670	4,941			
B	419,9023	3498	0,708	4940,678				
035 1p7	220 4521	2010	0 709	2021 622	3,982			
LI26 1n7	556,4551	2019	0,708	5961,056				
Δ	*-1556.2	-12963	1 976	-6560 223	-6,560	1136	-7 861	1 3 2 1
 136.1n7	*_	12505	1,570	0300,223		0.50	7,001	1,521
B	2182 94	-18184	1 976	-9202 429	-9,202			
1136 1n7	2102,51	10101	1,570	5202,125				
C	*-1864.7	-15533	1.976	-7860.830	-7,861			
U37 1p7	*_							-
A	1549,73	-12909	1,151	-11215,465	-11,215	U37	-11,215	2,114
U37 1p7	*_			· · ·	7.000		,	,
B	1086,09	-9047	1,151	-7860,122	-7,860			
U37 1p7	*_				11 766			
С	1625,82	-13543	1,151	-11766,290	-11,700			
U38 1p7					4 457			
А	*-810,52	-6752	1,515	-4456,766	-4,437	U38	-5,190	0,439
U38 1p7	*_				-5 190			
В	943,934	-7863	1,515	-5190,099	5,150			
U38 1p7					-5.240			
C	*-953,02	-7939	1,515	-5240,264	-,			
U39 1p7	*-		0.050	4674 400	-4,671		4 674	4 004
A	537,176	-4475	0,958	-4671,190		039	-4,671	1,991
039 Ip7	*- 021.901	7760	0.059	8102 206	-8,102			
B 1120 1p7	931,801	-7762	0,958	-8102,296				
022 Th	*-233 25	-4442	0 958	-4636 743	-4,637			
	*_	-4442	0,900	4030,743				
	769 043	-6406	1,223	-5237 939	-5,238	U40	-5,238	0.896
U40 1n7	*_	0 100	1,225	5257,555		0.10	3,230	0,000
B	709.797	-5913	1.223	-4834.832	-4,835			
U40 1p7	*_		_,					
C	961,496	-8009	1,223	-6548,651	-6,549			

*valores negativos para a concentração predita no FTIR, significam valores abaixo da capacidade de previsão do modelo de

calibração, podendo estar relacionadas também com o limite de deteção do método.

Figura 20. Valor médio da concentração de 8-OHdG pg/mg de creatinina, por amostra de urina (U1 a U40 exceto amostra U12) e seu respetivo desvio padrão, amostras diluídas 1:7,33. O eixo y representa a concentração em ng/mg de creatinina e o eixo y as amostras. Onde nas amostras com valores negativos, não se pode obter informações da concentração

Nome amostr a	Conc. (pg/ml, Factor-2)	Correção de diluição (x2)	Creatinina mg/ml	Conc. Normalizad a 8OHdG(pg) /creatinina (mg)	Conc. 8- OHdG(ng) /creatinina(mg)	Designaçã o da amostra	Conc. Média ng/mg	Desvio padrão
U1 1p1 A	14967,14	29934,28	1,299	23044,095	23,044	U1	23,023	0,230
U1 1p1 B	14701,88	29403,76	1,299	22635,689	22,636			
U1 1p1 C	14953,32	29906,64	1,299	23022,818	23,023			
U2 1p1 A	10641,61	21283,22	2,563	8302,731	8,303	U2	7,705	0,398
U2 1p1 B	9875,262	19750,524	2,563	7704,815	7,705			
U2 1p1 A	9675,777	19351,554	2,563	7549,175	7,549			
U3 1p1 A	1307,859	2615,718	1,398	1871,043	1,871	U3	1,871	0,253
U3 1p1 B	1373,344	2746,688	1,398	1964,727	1,965			
U3 1p1 C	1039,379	2078,758	1,398	1486,951	1,487			

 Tabela 12. Concentrações de 8-OHdG nas amostras de urina diluidas 1:1: 3 réplicas para cada amostra, correções com valor de creatinina, valor médio e respetivo desvio padrão.

Nome amostr a	Conc. (pg/ml, Factor-2)	Correção de diluição (x2)	Creatinina mg/ml	Conc. Normalizad a 8OHdG(pg) /creatinina (mg)	Conc. 8- OHdG(ng) /creatinina(mg)	Designaçã o da amostra	Conc. Média ng/mg	Desvio padrão
U4 1p1		*-671.3282			-0.868			
A	*-335,6641	*_	0,773	-868,471		U4	-1,175	0,345
B	*-601,8672	1203,7344	0,773	-1557,224	-1,557			
U4 1p1 C	*-454,2969	*-908,5938	0,773	-1175,412	-1,175			
U5 1p1 A	9980,363	19960,726	1,165	17138,084	17,138	U5	16,032	0,711
U5 1p1 B	9336,461	18672,922	1,165	16032,388	16,032			
U5 1p1 C	9207,523	18415,046	1,165	15810,978	15,811			
U6 1p1 A	11833,98	23667,96	1,718	13774,857	13,775	U6	13,610	0,119
U6 1p1 B	11692,77	23385,54	1,718	13610,488	13,610			
U6 1p1 C	11636,07	23272,14	1,718	13544,488	13,544			
U7 1p1 A	2605,508	5211,016	1,617	3222,644	3,223	U7	3,223	0,292
U7 1p1 B	2444,648	4889,296	1,617	3023,683	3,024			
U7 1p1 C	2909,418	5818,836	1,617	3598,538	3,599			
U8 1p1 A	9045,969	18091,938	0,997	18146,377	18,146	U8	19,863	0,991
U8 1p1 B	9901,578	19803,156	0,997	19862,744	19,863			
U8 1p1 C	9901,578	19803,156	0,997	19862,744	19,863			
U9 1p1 A	7121,031	14242,062	1,276	11161,491	11,161	U9	11,276	0,113
U9 1p1 B	7265,141	14530,282	1,276	11387,368	11,387			
U9 1p1 B	7194,008	14388,016	1,276	11275,875	11,276			
U10 1p1 A	14217,47	28434,94	1,327	21427,988	21,428	U10	22,122	0,896
U10 1p1 B	14678,23	29356,46	1,33	22122,427	22,122			
U10 1p1 C	15396,7	30793,4	1,33	23205,275	23,205			
U11 1p1 A	6219,793	12439,586	0,50	24652,370	24,652	U11	26,388	2,005
U11 1p1 B	7228,367	14456,734	0,50	28649,889	28,650			
U11 1p1 C	6657,609	13315,218	0,50	26387,669	26,388			

Nome amostr a	Conc. (pg/ml, Factor-2)	Correção de diluição	Creatinina mg/ml	Conc. Normalizad a 8OHdG(pg) /creatinina (mg)	Conc. 8- OHdG(ng) /creatinina(mg	Designaçã o da amostra	Conc. Média ng/mg	Desvio
1112		(x2)		(ing))			paurao
1p1 A	3501,926	7003,852	0,72	9788,752	9,789	U12	7,892	1,186
U12		5646 546			7 802			
1p1 B	2823,273	5040,540	0,72	7891,748	7,892			
U12	2724 4 6 4	5442,328	0.70	7000 000	7,606			
1p1 C	2721,164		0,72	7606,328				
1p1 A	1748,25	3496,5	1,15	3037,793	3,038	U13	2,340	0,849
U13		4552.000	, -		1.240		,	-,
1p1 B	776,043	1552,086	1,15	1348,467	1,348			
U13		2692.922			2.340			
1p1 C	1346,461	,-	1,15	2339,637	,			
014 1n1 A	16563.26	33126,52	0 59	56510 611	56,511	1114	57 657	0.662
U14	10000,20		0,00	50510,011		011	57,057	0,002
1p1 B	16899,28	33798,56	0,59	57657,045	57,657			
U14		33798.56			57.657			
1p1 C	16899,28		0,59	57657,045				
015 1n1 Δ	3055 492	6110,984	0.94	6528 829	6,529	1115	5 210	0 820
U15	5055,452		0,54	0520,025	-	015	5,210	0,020
1p1 B	2351,934	4703,868	0,94	5025,500	5,026			
U15		4876 156			5 210			
1p1 C	2438,078	4070,100	0,94	5209,568	5,210			
U16	E101 620	10383,258	0.02	12540.260	12,549	1116	12 820	0 5 9 2
U16	5191,029		0,85	12549,200		010	12,820	0,562
1p1 B	5653,098	11306,196	0,83	13664,728	13,665			
U16		10607 68			12 820			
1p1 C	5303,84	10007,08	0,83	12820,498	12,820			
U17	5742 522	11485,046	0.47	24400 271	24,488	1117	22.000	0 5 9 6
101 A	5742,523		0,47	24488,371	-	017	23,880	0,580
1p1 B	5601,32	11202,64	0,47	23886,226	23,886			
U17		10025 719			22 21 7			
1p1 C	5467,859	10933,718	0,47	23317,096	23,317			
U18	4246 212	8692,626	0.02	0276 147	9,376	1110	0.276	0.196
101 A	4346,313		0,93	9376,147	-	018	9,376	0,186
1p1 B	4480,027	8960,054	0,93	9664,604	9,665			
U18		0620 500		,	0.219			
1p1 C	4319,254	8038,508	0,93	9317,774	9,318			
U19	F 437 600	10855,398	0.50	40267.046	18,368	1160	10.000	0.215
1p1 A	5427,699		0,59	18367,848	1	019	18,368	0,215
1p1 B	5495.676	10991,352	0,59	18597.888	18,598			
U19		10727 224	-,		10.100			
1p1 C	5368,617	10/3/,234	0,59	18167,909	18,168			

Nome amostr a	Conc. (pg/ml, Factor-2)	Correção de diluição (x2)	Creatinina mg/ml	Conc. Normalizad a 8OHdG(pg) /creatinina (mg)	Conc. 8- OHdG(ng) /creatinina(mg)	Designaçã o da amostra	Conc. Média ng/mg	Desvio padrão
U20		15601 276		(***87	12 552			Perme
1p1 A	7845,688	13091,370	1,25	12553,101	12,355	U20	12,553	0,076
020 1n1 B	7820 949	15641,898	1 25	12513 518	12,514			
U20	7020,515	45026 220	1,25	12010,010	12.001			
1p1 C	7913,164	15826,328	1,25	12661,062	12,661			
U21	7201 041	14563,882	1 55	0071 007	9,372	1124	0.272	0.212
101 A	7281,941		1,55	9371,807	-	021	9,372	0,313
1p1 B	7558,711	15117,422	1,55	9728,071	9,728			
U21		14146.406			9,103			
1p1 C	7073,203	1.1.0,.00	1,55	9103,221	3,200			
1p1 A	8337.898	16675,796	1.56	10662.274	10,662	U22	10.930	0.438
U22		10014 024	2,00	10001,17	11 510	011	20,000	0,100
1p1 B	9007,012	18014,024	1,56	11517,918	11,518			
U22	0547.045	17095,29	1.50	10020 402	10,930			
U23	8547,045		1,50	10930,492				
1p1 A	9770,504	19541,008	1,91	10230,894	10,231	U23	10,549	0,399
U23		20149 46			10 549			
1p1 B	10074,73	20113,10	1,91	10549,455				
023 1p1 C	10526.98	21053,96	1.91	11023.016	11,023			
U24	10520,50	42556 446	1,51	11020,010	47.645			
1p1 A	6778,223	13556,446	0,77	17614,925	17,615	U24	17,577	0,114
U24	6606 024	13392,062	0 77	47404 220	17,401			
1p1 B	6696,031		0,77	17401,328				
1p1 C	6763,668	13527,336	0,77	17577,100	17,577			
U25		13206.148			6,969			
1p1 A	6603,074	10100)110	1,90	6968,944		U25	6,969	0,475
1p1 B	6795.887	13591,774	1.90	7172.440	7,172			
U25		11075 610		,	6 267			
1p1 C	5937,809	110/5,010	1,90	6266,817	0,207			
U26	14006 75	29993,5	1 07	1600E 060	16,005	1126	16 127	0 202
U26	14990,75		1,07	10005,009	-	020	10,137	0,202
1p1 B	15368,12	30736,24	1,87	16401,409	16,401			
U26		30241.18			16.137			
1p1 C	15120,59		1,87	16137,236				
1p1 A	15864.02	31728,04	0,88	35932.095	35,932	U27	35,632	0,773
U27	. ,-	21/62 2	,	,	25 622		,	, -
1p1 B	15731,65	51403,3	0,88	35632,276	55,032			
U27 1p1 C	15217,96	30435,92	0,88	34468,766	34,469			

Nome amostr a	Conc. (pg/ml, Factor-2)	Correção de diluição	Creatinina mg/ml	Conc. Normalizad a 8OHdG(pg) /creatinina	Conc. 8- OHdG(ng) /creatinina(mg	Designaçã o da amostra	Conc. Média ng/mg	Desvio
		(x2)		(mg))			padrão
028 1p1 A	11110.02	22239,84	1 74	10701 517	12,782	001	10 776	0 222
101 A 1128	11119,92		1,74	12781,517	-	028	12,776	0,255
1p1 B	10765,93	21531,86	1,74	12374,632	12,375			
U28	,	22220.26	,	,	40.770			
1p1 C	11115,18	22230,36	1,74	12776,069	12,776			
U29		25137.58			15.718			
1p1 A	12568,79		1,60	15717,864		U29	15,718	0,386
029 1n1 B	12008 55	24197,1	1.60	15120 807	15,130			
U29	12030,33		1,00	15125,807	-			
1p1 C	12680	25360	1,60	15856,937	15,857			
U30		20146			18 568			
1p1 A	14573	29140	1,57	18567,879	18,508	U30	18,568	0,380
U30		28384,3			18,083			
1p1 B	14192,15		1,57	18082,627	-			
1n1 C	14780 59	29561,18	1 57	18832 376	18,832			
U31	14700,55		1,57	10032,370				
1p1 A	3522,898	7045,796	0,78	9033,072	9,033	U31	7,915	0,900
U31		6173 804			7 015			
1p1 B	3086,902	0175,804	0,78	7915,133	7,915			
U31	2020 640	5657,296	0.70	7050.044	7,253			
1p1 C	2828,648		0,78	7252,944				
052 1n1 Δ	13224 09	26448,18	1 98	13369 821	13,370	1132	13 370	0 123
U32	1022 1,00		1,50	10000,021		002	10,070	0,120
1p1 B	13364,23	26728,46	1,98	13511,505	13,512			
U32		26244.04			13 267			
1p1 C	13122,02	20244,04	1,98	13266,626	13,207			
U33	5070 050	11959,906	4.20	0707 507	8,788		0 700	0.400
1p1 A	5979,953		1,36	8/8/,58/	-	033	8,788	0,480
1p1 B	5838.383	11676,766	1.36	8579.549	8,580			
U33		12024 426	_,		0.400			
1p1 C	6462,063	12924,126	1,36	9496,051	9,496			
U34		24671			18,348			
1p1 A	12335,5	210/1	1,34	18348,208		U34	18,109	0,298
U34 1p1 P	11026 90	23873,78	1 24	17755 202	17,755			
	11330,05		1,54	11133,503	4			
1p1 C	12174,77	24349,54	1,34	18109,133	18,109			
U35	,	17076 020			25.250			
1p1 A	8938,414	1/0/0,828	0,71	25249,757	25,250	U35	25,250	0,429
U35		17490.656	a = -		24,704			
1p1 B	8/45,328	-,	0,71	24/04,316	-			
1p1 C	9044,637	18089,274	0,71	25549,822	25,550			

Nome	Conc.		Creatinina	Conc. Normalizad a	Conc. 8-	Designaçã o da	Conc. Média	
a	Factor-2)	Correção de diluição (x2)	mg/ml	8OHdG(pg) /creatinina (mg)	OHdG(ng) /creatinina(mg)	amostra	ng/mg	Desvio padrão
U36 1p1 A	9467,137	18934,274	1,98	9582,122	9,582	U36	9,517	0,048
U36 1p1 B	9374,84	18749,68	1,98	9488,704	9,489			
U36 1p1 C	9402,422	18804,844	1,98	9516,621	9,517			
U37 1p1 A	6711,723	13423,446	1,15	11662,421	11,662	U37	12,156	0,319
U37 1p1 B	7054,684	14109,368	1,15	12258,356	12,258			
U37 1p1 C	6995,969	13991,938	1,15	12156,332	12,156			
U38 1p1 A	7523,297	15046,594	1,52	9931,745	9,932	U38	9,932	0,325
U38 1p1 B	7314,574	14629,148	1,52	9656,203	9,656			
U38 1p1 C	7804,512	15609,024	1,52	10302,986	10,303			
U39 1p1 A	8105,801	16211,602	0,96	16922,340	16,922	U39	16,922	0,473
U39 1p1 B	7949,25	15898,5	0,96	16595,511	16,596			
U39 1p1 C	8396,207	16792,414	0,96	17528,616	17,529			
U40 1p1 A	2402,199	4804,398	1,22	3928,371	3,928	U40	3,928	0,435
U40 1p1 B	2149,816	4299,632	1,22	3515,643	3,516			
U40 1p1 C	2681,555	5363,11	1.22	4385.209	4,385			

*valores negativos para a concentração predita no FTIR, significam valores abaixo da capacidade de previsão do modelo de

calibração, podendo estar relacionadas também com o limite de deteção do método.

Figura 21. Valor médio da concentração de 8-OHdG ng/mg de creatinina por amostra de urina (U1 a U40) e seu respetivo desvio padrão. Amostras diluídas 1:1. O eixo y representa a concentração em ng/mg e o eixo x as amostras.

Os resultados apresentados, para a concentração 1:7,33, estavam com muitas concentrações em valores negativos (Figura 20), isto poderá dever-se a erros de pipetagem, por estarem abaixo da capacidade de previsão do modelo de calibração, podendo estar relacionadas com o limite de deteção do método.

O valor médio para as concentrações de 8-OHdG nas 40 amostras de urina previstas pelo FTIR na diluição 1:1, foi de 12,665 ng/ml e o desvio padrão de 0,370 ng/ml.

5.2.3 Espectros FTIR para 8-OHdG em amostras de DNA

Para os espectros das amostras de DNA purificado, foram realizados os mesmos prétratamentos descritos anteriormente no caso das amostras de urina.

Os espectros de DNA podem ser observados na Figura 22. Foi realizada a média dos espectros das 3 réplicas de cada amostra, que se pode observar na Figura 23. Neste gráfico foi também ampliada a mesma região espectral de interesse, de 1800 a 900 cm⁻¹. Foi realizada a segunda derivada com o algoritmo *Savitzky-Golay* com os resultados apresentados na Figura 24.

Figura 22. Espectros para amostras de DNA purificado (D1 a D6 em três réplicas). O eixo y representa a absorvância em unidades arbitrarias e o eixo x o comprimento de onda entre 4000 a 600 cm⁻¹.

Figura 23. Valores médios dos espectros, para cada amostra de DNA. O eixo y representa a absorvância (unidades arbitrárias) e o eixo do x o comprimento de onda em cm⁻¹.A) Espectro total obtido;B) Ampliação da região espectral entre 1800 a 900 cm⁻¹.

Nos espectros apresentados nas figuras 22 e 23, é visível uma clara diferença de perfil no espectro da amostra D3 em relação às restantes amostras.

Figura 24. Espectros de DNA após aplicação da segunda derivada. O eixo dos y representa a absorvância (unidades arbitrárias) e o eixo do x o comprimento de onda de 1800 a 900 cm⁻¹.

Após a segunda derivada, a amostra D3 continua a destacar-se das restantes.

5.2.3.1 Cálculo da concentração de 8-OHdG nas amostras de DNA

As concentrações de 8-OhdG em DNA purificado foram calculadas como descrito no ponto 5.2.1.

Para tal, foram utilizadas 2 variáveis latentes com um erro de calibração (RMSEC) de ±805.48 e um erro de validação de (RMSECV) ± 1104.43 e são apresentadas os valores, suas médias e respetivo desvio padrão (Tabela 13). Na Figura 25 são apresentados os valores das médias e desvio padrão, obtidos para a concentração de 8-OHdG no DNA por amostra. A média das concentrações de 8-OHdG do total das amostras foi de 40,491 ng/ml total com desvio padrão de 0,126 ng/mIDNA total.

Tabela 13. Concentrações de 8-OHdG nas amostras de DNA, valor médio das 3 réplicas e respetivo desvio padrão.

Nome Amostra	Concentração (pg/ml, Factor- 2)	Concentração (ng/ml)	Designação da amostra	Média	Desvio Padrão
D1 A	47595,42	47,595	D1	48,044	0,31225102
D1 B	48043,61	48,044			
D1 C	48196,14	48,196			
D2 A	23879,71	23,880	D2	23,880	0,20964743

Nome Amostra	Concentração (pg/ml, Factor- 2)	Concentração (ng/ml)	Designação da amostra	Média	Desvio Padrão
D2 B	23879,71	23,880			
D2 C	23516,59	23,517			
D3 A	16047,95	16,048	D3	15,699	0,24259426
D3 B	15581,67	15,582			
D3 C	15698,65	15,699			
D4 A	45761,35	45,761	D4	45,934	0,224316003
D4 B	46206,25	46,206			
D4 C	45933,79	45,934			
D5 A	41668,65	41,669	D5	41,883	0,129127113
D5 B	41900,62	41,901			
D5 C	41882,94	41,883			
D6 A	39400,38	39,400	D6	39,099	0,496348745
D6 B	39099,24	39,099			
D6 C	38430,62	38,431			

5.2.4 Interpretação espectral FTIR

Na tentativa de obter informação sobre o grau de metilação das citosinas presentes nas mesmas amostras, foi realizada uma interpretação espectral, através de uma análise mais detalhada dos picos dos espectros obtidos para as amostras de DNA purificado (D1 a D6) (Figura 26 a 29).

5.2.4.1 Análise de componentes principais

Por forma a reduzir a complexidade inicial dos espectros, fez-seuma análise de componentes principais (PCA). Agrupando os dados espectroscópicos em duas componentes principais, PCA1 e PCA2, foi possível reduzir o conjunto de dados multidimensional, obtendo um conjunto de componentes principais (PCs) que explicam a maior parte da variabilidade dos dados das amostras. Foram realizados diagramas de coordenadas fatoriais (PCA/*scores*), que evidenciam diferenças e semelhanças entre amostras e diagramas de contribuições fatoriais (PCA/*loadings*), que especifica as origens das diferenças entre os clusters agrupados no diagrama de coordenadas factoriais[84]. Os resultados desta abordagem podem ser observados nos gráficos das Figuras 26 e 27.

Figura 26. Diagrama de coordenadas fatoriais das amostras de DNA (D1 a D6), onde o eixo dos Y representa a o PCA2 e o eixo do x representa o PCA1. PC1 e PC2 explicam 97% da variância total entre as amostras (14% para PC2 e 83% para PC1).

O espectro da amostra D3, situou-se no PC1 negativo enquanto todas as outras amostras se situaram no PC1 positivo (Figura 26) confirmando o comportamento diferente já

observado nos espectros das figuras 22 e 23. O perfil das contribuições fatoriais (*loading*) permite justificar esse comportamento (Figura 27).

Figura 27. Contribuições fatoriais das amostras de DNA (D1 a D6), onde o eixo dos x representa o comprimento de onda em cm⁻¹, a linha azul o PCA1 a linha laranja o PCA1.

De facto, os comprimentos de onda que caracterizam a amostra D3 são PC1 negativos e PC2 positivos, ou seja, principalmente os picos de comprimento: 1662 cm⁻¹, que pode ser responsável pelo alongamento da ligação C=O da timina [98] ou metilação das citosinas [101]; 1574 cm⁻¹ que pode ser responsável pela guanina [98] ; 1053 cm⁻¹ que pode ser responsável pelo alongamento da ligação C-O da desoxirribose [98] [99] e 1030 cm⁻¹ que pode ser responsável pela metilação das citosinas [101], ou alongamento da ligação C-O da ribose no RNA [99].

Devido ao perfil diferente da amostra D3, foi realizado então outro PCA sem esta amostra, para permitir a re-análise das restantes sem o ruído anterior (Figuras 28 e 29).

Figura 28. Diagrama de coordenadas fatoriais das amostras de DNA (D1, D2, D4, D5 e D6), onde o eixo dos Y representa o PCA2 e o eixo do x representa o PCA1. PC1 e PC2 explicam 99% da variância total entre as amostras (17% para PC2 e 82% para PC1).

Ao realizar o PCA sem a amostra D3 foi possível observar melhor as diferenças entre as restantes amostras, sendo que as amostras D2 e D6 se encontram no PC1 negativo e as D1, D4 e D5 no PC1 positivo. As amostras D5 e D4 se encontram no PC2 positivo enquanto as D1, D2, D6 no PC2 negativo.

Figura 29. Contribuições fatoriais das amostras de DNA (D1, D2, D4, D5 e D6), e a linha azul representa o PC-1 e a linha laranja representa o PC-2.

As contribuições fatoriais demonstradas no gráfico 22, com seleção dos comprimentos de onda de 1800 a 900 cm⁻¹, demonstram que a maior variabilidade que caracteriza as amostras do PC1 positivo se encontra nos comprimentos de onda 1356 cm⁻¹, 1079 cm⁻¹ e do PC1 negativo 1659 cm⁻¹, 1577 cm⁻¹. Já para o PC2 positivo a maior variabilidade está no comprimento de onda de 1628 cm⁻¹ e para o PC2 negativo nos comprimentos de onda 1036 cm⁻¹ e 1399 cm⁻¹.

D2 e D6 apresentam os picos característicos para o PC1 negativo, ou seja, principalmente 1659 cm⁻¹, 1577 cm⁻¹. Já para as amostras D1, D4, D5 os picos mais característicos são os para PC1 positivo, 1356 cm⁻¹, 1079 cm⁻¹.

Para o PC2, o pico que caracteriza melhor as amostras D5 e D4, está no PC2 positivo, 1628 cm⁻¹. Enquanto os picos que melhor caracterizam as amostras D1, D2 e D6 são os picos para PC2 negativo 1036 cm⁻¹ e 1399 cm⁻¹. As possíveis atribuições para os picos destas amostras podem ser observados na tabela 14. O facto de alguns destes picos estarem associados à metilação das citosinas sugere que possam ser usados, no futuro, para a quantificação deste nucleotídeo modificado.
 Tabela 14. Possíveis atribuições para os comprimentos de onda característicos por cada amostra.

	Comprimentos	
Amostra	de onda	Possíveis atribuições
D1	1399 cm ⁻¹	metilação das citosinas [101]
		adeninas ou guaninas em DNA A ou B, nas formas
		desoxiadenosina ou desoxiguaninosina anti [98]
	1356 cm ⁻¹	adeninas ou guaninas em DNA A ou B, nas formas
		desoxiadenosina ou desoxiguaninosina anti [98]
	1079 cm ⁻¹	vibração do grupo fosfato da cadeia principal do DNA [98]
	1036 cm ⁻¹	metilação das citosinas [101]
		alongamento C-O da ribose no RNA [99]
D2	1659 cm ⁻¹	metilação das citosinas [101]
	1577 cm ⁻¹	ligações de NH2, C4-NH2 da citosinas [101]
		anéis de piramidina da citosina [101]
		anéis de purina da guanina [101]
		vibrações da adenina [98]
	1399 cm ⁻¹	metilação das citosinas [101]
		adeninas ou guaninas em DNA A ou B, nas formas
		desoxiadenosina ou desoxiguaninosina anti [98]]
	1036 cm ⁻¹	metilação das citosinas. [101]
		alongamento C-O da ribose no RNA [99]
D4	1628 cm ⁻¹	ligações de NH2 e C4-NH2 das citosinas [101]
	1356 cm ⁻¹	adeninas ou guaninas em DNA A ou B, nas formas
		desoxiadenosina ou desoxiguaninosina anti [98]
		C6-H6, C4-Nh2 ou C5=C6 das citosinas [101]
	1079 cm ⁻¹	vibração do grupo fosfato da cadeia principal do DNA
		[101]
D5	1628 cm ⁻¹	ligações de NH2 ou C4-NH2 das citosinas [101]
	1356 cm ⁻¹	adeninas ou guaninas em DNA A ou B, nas formas
		desoxiadenosina ou desoxiguaninosina anti-[98]
		C6-H6, C4-Nh2 ou C5=C6 das citosinas [101]
	1079 cm ⁻¹	vibração do grupo fosfato da cadeia principal do DNA
		[101]
D6	1659 cm ⁻¹	metilação das citosinas [101]
	1577 cm ⁻¹	ligação NH2 ou C4-NH2 das citosinas [101]
		anéis de pirimidina da citosina [101]
		anéis de purina da guanina [101]
		vibrações da adenina [98]
	1399 cm ⁻¹	metilação das citosinas [101]
		adeninas ou guaninas em DNA A ou B, nas formas
		desoxiadenosina ou desoxiguaninosina anti-[98]
	1036 cm ⁻¹	metilação das citosinas [101]
		alongamento C-O da ribose no RNA[99]

5.3 Comparação das técnicas – concentração de 8-OHdG em amostras de urina

A tabela 15 e a Figura 29 mostram a comparação entre as duas metodologias utilizadas

para a quantificação da concentração de 8-OHdG .

Dos resultados obtidos com diluições de 1:7,33, muitos estavam negativos, como pode ser visto no tópico 5.2.2.1, tendo-se considerado que estavam abaixo na concentração apropriada para uma quantificação correta, pelo que não foram incluídas nesta comparação.

Para o FTIR, foram utilizadas 40 amostras de urina e para o ensaio ELISA foram utilizadas apenas 29 amostras, devido ao limite de poços da microplaca desta técnica, pelo que a comparação foi feita apenas com as amostras analisadas pelas duas técnicas.

Amostra	Concentração ELISA (ng/mg)	Desvio padrão	Concentração 8- OHdG - FTIR (ng/mg)	Desvio padrão
U1	7,080	0,289	23,023	0,230
U2	2,883	0,833	7,705	0,398
U3	5,802	1,393	1,871	0,253
U4	10,354	0,099	-1,175	0,345
U5	5,171	0,522	16,032	0,711
U6	11,209	4,626	13,610	0,119
U7	6,292	0,608	3,223	0,292
U8	6,532	0,638	19,863	0,991
U9	5,645	1,845	11,276	0,113
U10	13,659	7,146	22,122	0,896
U11	24,812	3,671	26,388	2,005
U13	4,810	0,304	2,340	0,849
U16	24,650	2,282	12,820	0,582
U18	16,428	0,031	9,376	0,186
U19	15,647	0,985	18,368	0,215
U20	7,712	1,391	12,553	0,076
U21	9,485	2,412	9,372	0,313
U23	7,139	0,033	10,549	0,399
U24	12,527	1,836	17,577	0,114
U25	8,103	1,668	6,969	0,475
U26	5,931	0,064	16,137	0,202
U27	8,902	1,191	35,632	0,773
U28	6,489	0,146	12,776	0,233
U29	4,330	0,300	15,718	0,386

 Tabela 15. Concentração de 8-OHdG nas amostras de urina através dos ensaios ELISA e FTIR. Valores normalizados pela creatinina.

Amostra	Concentração ELISA (ng/mg)	Desvio padrão	Concentração 8- OHdG - FTIR (ng/mg)	Desvio padrão
U30	5,367	0,287	18,568	0,380
U31	19,224	1,623	7,915	0,900
U32	6,061	0,543	13,370	0,123
U33	8,320	2,106	8,788	0,480
U34	9,929	1,998	18,109	0,298

Figura 30. Concentração 8-OHdG por amostra de Urina - ELISA versus FTIR. O eixo dos x representa a amostra e o eixo dos y a concentração de 8-OhdG em ng/mg de creatinina das amostras de urina. As barras roxas correspondem à concentração de 8-OHdG obtida por ELISA e as barras laranja correspondem à concentração de 8-OHdG obtidas pelo modelo de calibração construído por FTIR.

As duas séries de concentrações, obtidas pelos dois métodos de análise, foram comparadas utilizando um teste T-student para amostras emparelhadas (Excel da Microsoft Corporation) [74] para avaliar se havia diferenças significativas entre os dois métodos. No âmbito deste teste, a variância entre as amostras do ensaio de FTIR (61,67), foi 1,91 vezes maior que a variância das amostras no ELISA (32.20); e o Coeficiente de Pearson, que é a associação linear entre as variáveis, teve o valor de 0,213, um valor positivo, que indica uma associação linear entre as duas variáveis[88]. Quanto ao teste T-student, o valor de p foi de

0,0252 o que indica haver diferença significative entre as duas medições, para um nível de significância de 5%, mas não para 1% [74][86][87].

Também foi realizado um gráfico de correlação, com as médias das concentrações de 8-OHdG por amostra de urina para os ensaios ELISA *versus* FTIR (Figura 31). O valor do coeficiente de determinação obtido foi também baixo, confirmando as conclusões anteriores (r²=0,0452), já que quanto maior for este valor, maior o grau de associação linear entre as variáveis[88]. Neste caso, o ensaio ELISA possui uma correlação de apenas 4,5% com o ensaio FTIR.

Figura 31. Correlação entre as técnicas, onde o eixo x representa as concentrações de 8-OHdG em ng/mg previstas pelo ELISA para as amostras de Urina e o eixo y representa as concentrações de 8-OHdG em ng/mg previstas pelo FTIR, para as mesmas amostras.

Através destes testes, conclui-se que, apesar da Correlação de Pearson demonstrar uma tendência linear para as duas técnicas, o *p-value* do teste T é significativo, e o R², apresenta um valor extremamente baixo e longe de 1, o que demonstra que existem diferenças significativas entre os dois ensaios ELISA e FTIR, para a quantificação do composto 8-OHdG, no presente estudo.

Contudo, quando são comparadas as curvas padrão medidas pelas duas técnicas obtém-se uma Correlação de Pearson de 0,871 e um coeficiente de correlação de 76% (Figura 32), o que representa uma boa correlação entre as técnicas e sugere que as diferenças agora

obtidas para as amostras podem ser devidas a outros fatores, não presentes nas soluções padrão.

Figura 32. Correlação entre o ELISA versus FTIR, considerando as diluições seriadas dos padrões (STD1 a STD9).

5.4 Relevância biomédica

Para explorar uma possível associação entre a idade dos indivíduos (de 50 a 81 anos) e as concentrações de 8-OHdG previstas para as 29 amostras de urina através do ensaio ELISA foi também realizado um gráfico de correlação (Figura 33). Não foi possível estabelecer uma correlação entre a concentração de 8-OHdG na urina e a idade dos indivíduos. A correlação encontrada entre estas variáveis foi de 0,13% (R²=0,0013), ou seja, não significativa.

Também foi testada uma possível relação entre as idades dos indivíduos e as concentrações de 8-OHdG nas 40 amostras de urina previstas pelo modelo de calibração construído com base no FTIR (Figura 34). Apesar da percentagem de correlação ter sido maior, 0,17% (R² = 0,0017), permanece muito baixa.

Figura 33. Correlação entre idade dos indivíduos e a concentração de 8-OHdG na urina (pelo método ELISA). O eixo x representa as idades e o eixo y representa as concentrações de 8-OHdG em ng/mg creatinina.

Figura 34. Correlação entre a idade dos indivíduos e a concentração de 8-OHdG na urina (pelo método FTIR). O eixo x representa a idade dos indivíduos e o eixo y as concentrações em ng/mg creatinina.

Como exploração adicional da relação eventualmente existente entre o grau de oxidação do DNA quantificado neste trabalho a algumas das variáveis clínicas da coorte utilizada, foram realizadas comparações entre as concentrações de 8-OhdG dos indivíduos,

divididos por sexo. Foi obtida a variância, média e desvio padrão entre as amostras de urina dos indivíduos para ambos os sexos. Para as concentrações de 8-OHdG previstas pelo método ELISA, o valor da variância entre amostras do sexo feminino foi de 57,26 e do sexo masculino foi de 4,31. A média de concentração de 8-OHdG para o sexo feminino foi de 8,717 ng/mg com desvio padrão de 7.567 e, para o sexo masculino, de 7,426 ng/mg com desvio padrão de 2,007 (Figura 35). Então foi realizado um teste t para amostras com variâncias desiguais onde o teste t deu 1,791 com um valor de p de 0,093. o valor de p sendo maior que 0,005 demonstra que há não diferenças significativas entre as duas hipóteses.

Já nas concentrações de 8-OHdG previstas pelo FTIR a variância entre elas para os indivíduos do sexo feminino foi 177.133 e para os de sexo masculino foi de 43,594. A média das concentrações nos indivíduos do sexo feminino foi de 15,718 ng/mg com desvio padrão de 13,31 e para os do sexo masculino foi obtida uma média de 12,156 ng/mg com o desvio padrão de 6,61 para as amostras de urina do FTIR (Figura 36). Então foi realizado um teste t para amostras com variâncias desiguais onde o teste t o valor foi de 0,698 e o valor de p foi 0,49 sendo maior que 0,05 demonstra que não há diferenças significativas entre as duas hipóteses.

Figura 35. Concentração de 8-OHdG nas amostras de urina, em ng/mg creatinina, obtida pelo método ELISA, onde o eixo x identifica o sexo dos indivíduos e o eixo dos y corresponde à concentração média de 8-OHdG. Em azul sexo feminino, em laranja sexo masculino.

Figura 36. Concentração de 8-OHdG nas amostras de urina em ng/mg creatinina, obtida pelo método FTIR, onde o eixo x representa o sexo dos indivíduos e o eixo dos y corresponde à concentração média de 8-OHdG. Em azul sexo feminino, em laranja sexo masculino.

Por último, foi também estudada a influência da idade dos indivíduos no grau de oxidação do DNA purificado (a partir de células do sangue). O coeficiente de correlação foi igualmente baixo tendo valor de 14%, apesar de maior do que para as amostras de urina (Figura 36).

Figura 37. Correlação entre idade e concentração de 8-OHdG nas amostras de DNA purificado a partir de sangue, medida através do método FTIR, onde o eixo x representa a idade dos indivíduos e o eixo y as concentrações de 8-OHdG em ng/ml.

6. Discussão

A utilização do nível de oxidação do DNA como biomarcador para o envelhecimento humano tem ganho importância para a pesquisa em diversas áreas[44] e diagnósticos[103]. Quando envelhecemos, o organismo humano perde capacidade de reparação, podendo acumular compostos oxidantes que, uma vez em excesso, produzem danos oxidativos persistentes no organismo [25] causando modificações nas proteínas, lípidos, DNA ou RNA [26]. Isto faz com que a quantificação dos efeitos do stress oxidativo seja indicativa, de certa forma, da idade biológica dos indivíduos, que permitirá identificar aqueles em maior risco de manifestar as doenças próprias do envelhecimento. Contudo, para medir o stresse oxidativo presente numa célula ou tecido, os próprios radicais livres não são apropriados, devendo ser utilizados outros compostos como os derivados destes radicais livres, ou mesmo os seus efeitos nas biomoléculas alvo como, por exemplo, os ácidos nucleicos[30].

Os métodos existentes até ao momento para quantificar o grau de oxidação do DNA são demorados, exigem manipulação das amostras, mão de obra e capacidade financeira. Produzem frequentemente resultados muito variáveis, em parte porque são sensíveis à complexidade composicional destas amostras, e consomem, definitivamente, um volume razoável das mesmas. Este trabalho teve como o objetivo principal contribuir para a escolha de um método fácil, minimamente destrutivo, de baixo custo e boa sensibilidade para prever níveis de 8-OHdG em amostras biológicas, neste caso urina. Como validação, amostras de urina foram usadas para quantificar 8-OHdG através de um dos métodos pré-estabelecidos (ELISA) mas também usando FTIR, a metodologia proposta.

6.1 Oxidação do DNA em amostras de urina.

Com a finalidade de comparar ambas as técnicas (FTIR e ELISA), para a quantificação de 8-OHdG, e verificar se era possível mensurar o dano oxidativo pelo FTIR, com as concentrações previstas resultantes de ambas as técnicas, foram realizados diversos métodos estatísticos de comparação. Um deles, o Coeficiente de Pearson, indicou uma associação linear entre as duas séries de valores, mas os valores de t e p demonstram que existem diferenças significativas entre os dois ensaios apesar da associação linear. O valor baixo para o R2, por outro lado, não implica necessariamente que as variáveis não apresentem relação entre si, mas sim que suas alterações não variam consistentemente [86][109][74][86][87].

De facto, apesar de haver fraca correlação entre os dois tipos de valores, a média da concentração de 8-OHdG obtida pelo FTIR no presente estudo foi apenas 1,66 vezes maior do que a média pelo ELISA. Diversos estudos fizeram, no passado, comparações entre técnicas diferentes, tendo encontrado frequentemente diferenças maiores. Por exemplo, no trabalho de Wu et al., 2004,[110] 10% das amostras de urina, analisadas por ELISA, apresentaramvalores para concentração de 8-OHdG mais de quatro vezes superiores aos obtidos por HPLC com espectrometria de massa de massa em tandem. Também Shimoi et al. 2002,[92] relatou estimativas por ELISA cerca de duas vezes maiores do as estimadas por HPLC.

Esta diferença inter-técnicas pode provir das dificuldades na comparação de técnicas e da menor consistência de resultados para a medição de 8-OHdG na urina. Um dos fatores para este problema está relacionado com a já mencionada sensibilidade do método ELISAa interferências de determinados compostos em amostras biológicas, embora também se deva levar em consideração a composição da urina, tempo de coleta, variação intra-individual, etc [66].

Curiosamente, quando a comparação entre técnicas foi feita ao nível das diluições para a curva padrão a correlação encontrada já foi de 76% o que mostra a importância da complexidade das amostras biológicas, já que a curva padrão foi, num caso e noutro, criada com uma matriz muito mais simples (analito em solução tampão).

No confronto entre as duas metodologias testadas, verificou-se, contudo, um grau muito baixo de sobreposição, que poderá, por um lado, demonstrar a já referida variabilidade da quantificação por ELISA, mas também sugerir que o protocolo utilizado para o FTIR deva ainda ser alvo de diversos melhoramentos.

Relativamente ao método de ELISA, tratando-se de um método de imunoensaio competitivo, é particularmente sensível a variações, razão pela qual as amostras devem ser

90

lidas, idealmente, em triplicados. Neste ensaio, e devido a diversos constrangimentos de acesso ao laboratório, alguns dos componentes do kit utilizado poderiam já não estar nas perfeitas condições, o que torna ainda mais imperativa a sua repetição. Na realidade, diversos fatores podem interferir nos resultados do ensaio ELISA, entre eles, contaminação entre as lavagens, pipetagem das substâncias, a temperatura do laboratório, a estabilidade do antígeno alvo, erros do leitor de microplacas, erros de análise humana [52] ou componentes presentes naturalmente em amostras biológicas, 103. Contudo quando não só as densidades ópticas das amostras estão baixas mas também as do padrão, como é o caso dos resultados obtidos no ELISA para este estudo, isso pode ocorrer devido, como já foi referido, à hipótese da placa ou os reagentes serem antigos, mas também dos poços estarem secos, as lavagens serem excessivas, os reagentes não estarem à temperatura ambiente antes do ensaio, ao armazenamento do kit a uma temperatura incorreta, à disponibilização de anticorpo detetor insuficiente, poços riscados com pipeta, etc. [97]

em relação ao FTIR foi percetível a importância da diluição feita às amostras, já que volumes pequenos geram maiores erros de pipetagem, que podem ser exponenciados numa diluição alta. Sendo assim, recomenda-se que novos ensaios comparativos sejam desenvolvidos, com um número superior de amostras, e com mais réplicas para cada amostra, por forma a que a variabilidade técnica e biológica possa ser acautelada.

Por outro lado, ao quantificar compostos em urina é necessário corrigir a ingestão e consequente excreção de água, que é diferente na urina de cada indivíduo, para isto, uma vasta literatura corrobora com o uso da creatinina em urina matinal, [94] [66] sendo a taxa de creatinina inversamente proporcional ao fluxo urinário [95] a forma mais utilizada quando não se é possível a utilização de amostras de urina de 24 horas, tendo uma boa concordância tanto interlaboratórial quanto interténicas [66]. Contudo, deve-se levar em consideração que a creatinina pode estar correlacionada com outras características individuais [96], como fatores genéticos, biológicos, massa muscular, sexo e até alimentação, podendo gerar diferenças entre a concentração estimada dos resultados com a concentração real do indivíduo.

91

Nos resultados do ELISA, depois da correção para creatinina, o resultado deste estudo obteve uma concentração média de 7,712 ng/mg com desvio padrão de 5,674 ng/mg. Na literatura, em indivíduos saudáveis, todos os achados se podem considerar dentro da mesma ordem de grandeza dos do presente trabalho. Miwa 2004 et al.,[90] obtiveram 1,67 vezes maior que o valor médio do presente trabalho (em 83 indivíduos, através do ensaio ELISA). Konishi et al., 2018 [91] um valor médio 5.71 vezes maior (45 mulheres com idades na média de 20 anos através de LC-MS/MS). Shimoi et al. 2002., [92] um valor médio 7,13 vezes maior (em 120 homens saudáveis com idades entre 18 e 58 anos). E Huang et al., dois valores médios um 1,38 vezes maior e 1,55 vezes maior do que a média no presente trabalho (80 indivíduos).

Quanto aos resultados do FTIR, por outro lado, a concentração de 8-OHdG para as amostras de urina com a diluição de 1:7,33 apresentou muitos dados de concentração abaixo dos valores da concentração limite do padrão na curva de calibração e uma menor variabilidade entre os valores de concentração das amostras, que foram também mais baixos, o que poderá dever-se ao facto da concentração do analito em causa estar abaixo do limite de deteção do FTIR e/ou, a diluição usada ser elevada para o modelo de calibração construído. Portanto, a diluição mais baixa, de 1:1, originou valores de concentração dentro dos valores de concentração da curva padrão, sendo então esta a diluição mais adequada para a análise da concentração de 8-OHdG nas amostras de urina.

Nestas circunstâncias, obteve-se uma média 12,665 ng/ml e o desvio padrão de 0,370 ng/ml nas 40 amostras de urina dos indivíduos analisados. Ao comparar com a literatura, em indivíduos saudáveis, todos os achados também podem ser considerados dentro da mesma ordem de grandeza dos do presente trabalho para o FTIR, assim como a semelhança dos resultados foi maior que a anterior predita pelo ELISA. Em Miwa 2004 et al.,[90] obtiveram 1,02 vezes maior que o valor médio do presente trabalho pelo FTIR (em 83 indivíduos, através do ensaio ELISA). Konishi et al., 2018 [91] um valor médio 3,47 vezes maior (45 mulheres com idades na média de 20 anos através de LC-MS/MS). Shimoi et al. 2002., [92] um valor médio 4,34 vezes maior (em 120 homens saudáveis com idades entre 18 e 58 anos). Já em Huang et al., dois valores médios foram 1,19 vezes menor e 0,89 vezes menor do que a média no

presente trabalho para a concentração previsa no FTIR (80 indivíduos). Mostrando que é possível estimar a quantificação de 8-OHdG/mg através de uma técnica rápida e de fácil manejo. Segundo a literatura, este analito responderá nesta técnica através dos picos para as bases de purina, anéis de vibração C=N, vibração entre base e açúcar, ligamento vibracional da interação C-H, todos relacionados com a guanina, o que parece sugerir a real possibilidade deteção deste composto pelo FTIR.

Como contribuição para este objetivo, desenvolveu-se um protocolo preliminar para a quantificação de 8-OhdG em urina/solução de DNA purificado por meio de FTIR (ver Anexo I). Pretende-se com isto que o conhecimento agora adquirido possa ter utilizado nos próximos passos que serão necessários para a utilização deste metodologia para este fim. Uma das principais vantagens da metodologia proposta é a facilidade de analisar qualquer número de amostras rapidamente, uma vez que as amostras podem ser lidas independentemente umas das outras, sem necessidade de reunir conjuntos para preencher uma placa de ELISA, por exemplo.

6.2 Relevância biomédica

Uma vez que o presente trabalho se baseou em amostras reais de origem humana, fezse ainda uma tentativa de tentar perceber até que ponto as metodologias utilizadas contribuiriam para detetar variações biológicas no grau de oxidação do DNA, uma vez mais, utilizando como biomarcador de oxidação a concentração de 8-OhdG. Para tal, recorreu-se à informação clínica disponível para esta coorte, que incluía a idade cronológica dos indivíduos (i.e. número de anos passados desde o nascimento). Ao tentar associar a idade dos indivíduos com as concentrações de 8-OHdG, quando utilizado o ELISA, obteve-se uma correlação de apenas 0,13% onde quanto maior a idade menor a concentração. Já utilizando o FTIR, o valor foi de 0,17%, mas aqui quanto maior a idade maior foi também a concentração (Figuras 33 e 34), o que alinha melhor com o que seria esperado. Uma hipótese explicar esta baixa correlação é a alta variabilidade intra-indivíduos nas concentrações de 8-OhdG devida, por exemplo, à própria natureza variável da amostra. Ou seja, uma amostra de urina pode não representar a taxa de excreção de 8-OHdG de um individuo a longo prazo, mas antes ser o resultado da exposição momentânea a fatores oxidantes ou antioxidantes, antes da coleta de urina, ou no período referente a esta [96]. Recomenda-se, por isso, para este efeito, uma coleta durante um maior período de tempo, com preferência para a urina de 24 horas, para obter uma maior homogeneidade nas medições. Em todo o caso, deve ser referido neste ponto, que outros indicadores de envelhecimento estudados na mesma coorte não produziram melhores resultados em termos de alinhamento com a idade dos indivíduos. Por exemplo, a capacidade cognitiva destes indivíduos foi avaliada no passado através de diversos métodos (dados não apresentados), não tendo sido encontrada uma correlação significativa entre esta e a idade individual. Este facto sugere que, de facto, no que se refere a este grupo de indivíduos, idade cronológica e idade biológica podem não se correlacionar tanto quanto se poderia esperar, o que pode ajudar a explicar o que foi observado neste trabalho.. Por último, para um estudo que vise determinar a existência de correlação entre os níveis de 8-OHdG e a idade cronológica, seria importante um maior alcance de idades para abranger e comparar jovens, adultos e idosos. As amostras utilizadas referem-se a adultos já com alguma idade, e co-morbilidades associadas, o que pode impedir que se encontrem diferenças significativas dentro do grupo, em termos de idade biológica. Segundo a maior parte da literatura, as mulheres excretam maior quantidade de 8-OHdG do que os homens [96] [110], apesar de não ter sido encontradas diferenças significativas o valor médio da concentração de 8-OHdG foi maior nas mulheres tanto no ELISA (0,852 vezes maior) quanto no FTIR (0,772 vezes maior) (Figuras 35 e 36).

6.3 Oxidação em amostras de DNA purificado

Embora a urina constitua uma amostra biológica bastante relevante, na maior parte dos casos, no entanto, o DNA em estudo no laboratório provém de células, tecidos ou culturas, que são usados num processo de extração para obter DNA purificado. No âmbito deste trabalho, pretendeu-se também validar a utilização da técnica de FTIR para analisar DNA purificado, e não numa amostra biológica. Para tal, e tirando partido da diminuta quantidade de amostra de que necessita, o ensaio FTIR foi escolhido para determinar a concentração de 8-OHdG em 6 amostras, que resultaram em um valor médio de 40,491 ng/ml, com desvio padrão de 0,126 ng/ml. Num estudo publicado em 2021, Vieira e colaboradores [107]obtiveram, em amostras de DNA extraído do plasma de 35 indivíduos com mais de 60 anos e através do método ELISA, um resultado médio de 50,64 ng/ml com desvio padrão de 27,25 ng/ml, 1,25 vezes maior que o resultado obtido neste trabalho. A. Cunha et al. (2017)[108], em amostras de sangue de 195 idosos de ambos os sexos, recorrendo ao ensaio ELISA, obtiveram um valor médio 6,89 ng/ml, desvio padrão de 8,95 ng/ml, com o maior valor encontrado de 42,85 ng/ml.o valor médio sendo 5,87 vezes maior do que os obtidos neste trabalho.

Não há referência a concentrações de 8-OhdG em DNA purificado por medição FTIR, pelo que estas comparações, não mesmo não sendo diretas, apresentam resultados semelhantes, são de mais difícil interpretação. O resultado do presente trabalho foi semelhante ao encontrado por Vieira (2021) et al., [107] e próximos aos máximos valores encontrados em Cunha et al. (2017)[108]. Esta diferença pode provir de as absorvâncias medidas pelo FTIR nas amostras de DNA purificado estiveram acima da curva padrão, o que pode ter originado resultados erróneos. A ser verdade, níveis elevados de oxidação em amostras de DNA purificado podem dever-se à alta taxa de oxidação que ocorre ao DNA depois de extraído, interferências de outras bases nitrogenadas ou a alta variabilidade no processo de digestão do DNA, que por sua vez faz variar o acesso a este por parte dos agentes oxidantes. Mais uma vez se conclui a necessidade de repetir estes ensaios, e com maior número de amostras.

6.4 Interpretação espectral - Metilação no DNA

Tal como a oxidação, também o grau de metilação das moléculas de DNA num organismo irá variar ao longo do seu envelhecimento. Designadamente, o nível global de metilação decresce com a idade biológica, sendo por isso outro potencial biomarcador com utilidade neste contexto. A técnica de FTIR tem a vantagem de gerar multiplas informações estruturais da amostra num único espectro [112], portanto, tendo o composto padrão para realizar uma curva de calibração, consegue-se prever sua quantificação na amostra analisada. Isto significa que, a partir de um espectro único, havendo curva padrão para a concentração de 8-OhdG mas também para 5mC, será, hipoteticamente, possível realizar as duas medições, o que acarretaria evidentes vantagens no laboratório. Contudo, uma vez que não havia nem método alternativo de quantificação, nem composto padrão, optou-se apenas pela exploração e interpretaçãodos espectros já existentes, para, utilizando a localização dos picos indicada na literatura para este composto, tentar avaliar a possibilidade de quantificar também a concentração de citosinas metiladas numa amostra, por FTIR.

De facto, os picos descritos como estando associados à metilação das citosinas nos espectros FTIR das amostras de DNA (D1, D2, D3 e D6) são os seguintes: 1399 cm⁻¹, 1036 cm⁻¹, 1659 cm⁻¹, como pode ser confirmado pela observação da tabela 14. Curiosamente, estes picos apresentaram diferenças entre as amostras lidas, o que parece sugerir, que estas amostras apresentam um perfil diferente de metilação das amostras D5 e D4 e que seja realmente possível a deteção dos biomarcadores de metilação da citosina através deste método.

Quanto aos espectros de urina obtidos pelo FTIR, a mesma abordagem originou resultados paralelos, demonstrando a versatilidade da técnica. Neste contexto, duas amostras se diferenciaram das demais quanto à sua composição: aamostra U12 e a amostra U32, que se continuaram a destacar das restantes amostras mesmo após o cálculo da segunda derivada, tendo permitido atribuir picos a estas diferenças (Tabela 16).

Na informação clínica disponível para esta coorte verificou-se que o indivíduo correspondente à amostra U12, amostra que aparenta ser de natureza diferente das demais, possui dislipidemia. Contudo, para além de condições de dislipidémia não estarem necessariamente associados a lipidúria, a região espectral em estudo não inclui picos característicos da presença de lípidos, não tendo sido possível confirmar essa alteração bioquímica através da urina. Outra possibilidade que justifica a diferença de perfil

96

espectroscópico da amostra é ter havido uma contaminação, mesmo após a limpeza do cristal ATR: sabe-se que esta foi a primeira amostra adquirida no dia e o cristal pode ter sido contaminado por um composto referente a outro trabalho experimental.

Já o indivíduo correspondente à amostra de urina U32 tinha diabetes e, consequentemente, a sua urina poderia conter glucose. Este açúcar pode ser detetado no espectro pela presença de um pico no comprimento de onda de 1135 cm⁻¹ [103].

Foi possível ainda identificar outras diferenças entre as amostras quanto à sua composição, demonstrando que o FTIR pode ser utilizado para uma gama de informações amostrais mesmo em amostras complexas

7. Conclusão, limitações do estudo e perspetivas futuras

Este estudo propôs a utilização de uma técnica rápida, sensível, de baixo custo, que pode ser utilizada com uma quantidade pequena de amostra, capaz por isso de responder às dificuldades da atual quantificação de 8-OHdG em amostras biológicas.

Apesar de não ter sido obtida uma boa correlação entre a técnica de validação (ELISA) e a técnica proposta (FTIR), ao comparar a quantificação o analito nas amostras de urina, foi possível obter uma diferença mínima, em termos médios, e uma correlação entre elas para a análise das soluções padrão. Também foi possível a execução de uma curva de calibração do 8-OhdG válida para a identificação e quantificação do mesmo, em amostras de urina e DNA.

Os resultados deste estudo são, portanto, promissores, para a quantificação de 8-OHdG através desta técnica, tendo sido proposto um protocolo preliminar para a mesma. No entanto, para a realização de estudos futuros visando a quantificação do composto 8-OHdG o método apresentado deve ser refinado, servindo de ponto de partida para nova ronda de testagem deste método, corrigindo as falhas agora identificadas, por forma a conseguir de facto uma validação do método. Em termos de relevância biológica da quantificação de 8OhdG e sua correlação com a idade, é recomendado um maior alcance de idades, para comparação do analito de interesse entre jovens-adultos e idosos. Amostras de urina, se possível, de 24 horas, com coletas espaçadas para melhor representação da oxidação real do DNA do indivíduo, diminuindo assim a interferência de fatores como patologias, hábitos e alimentação momentâneos. Recomenda-se ainda a utilização de, um maior número de amostras.

Referências Bibliográficas

Esteiro ASM. Bases celulares e moleculares do envelhecimento. *Universidade de Coimbra*.
 2013; p.15-17; 21. Acessed september, 2019. http://hdl.handle.net/10316/48072

[2] Beltrami AP, Cesselli D, Beltrami CA. At the stem of youth and health, *Pharmacology & Therapeutics*. 2011;129(1):3-20. doi:10.1016/j.pharmthera.2010.10.005.

[3] Parrinello S, Coppe J-P, Krtolica A, Campisi J. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. *J Cell Sci*. 2005;118:485-496. doi:10.1242/jcs.01635.

[4] Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. *Nature*. 2010;464(7288):520-528. doi:10.1038/nature08982.

[5] Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, et al. *Epigenetic Predictor of Age. PLOS ONE*. 2011;6(6):e14821. doi:10.1371/journal.pone.0014821.

[6] Rattan SIS. Biogerontology: research status, challenges and opportunities. *Acta Biomed*.2018;89(2):291-301. Published 2018 Jun 7. doi:10.23750/abm.v89i2.7403.

[7] Rattan, SIS. Ageing Genes: Gerontogenes. John Wiley & Sons, Ltd (Eds). eLS. 2018;1-5. doi:
 10.1002/9780470015902.a0003059.pub3.

[8] Barbon FJ, Wiethölter P, Flores RA. Alterações celulares no envelhecimento humano. *Journal of Oral Investigations*. 2016;5(1):61-65 doi:10.18256/2238-510X/j.oralinvestigations.

[9] Galkin F, Mamoshina P, Aliper A, Magalhães JP, Gladyshev VN, Zhavoronkov A. Biohorology and biomarkers of aging: Current state-of-the-art, challenges and opportunities. *Ageing Research Reviews*. 2020;60(101050). doi:10.1016/j.arr.2020.101050.

[10] Okamoto K, Seimiya H. Revisiting Telomere Shortening in Cancer. *Cells*. 2019;8(2):107.doi:10.3390/cells8020107.

[11] Mandal, P. Recent advances of Blood telomere length (BTL) shortening: A potential biomarker for development of cancer. *Pathol. Oncol. Res.* 2019;25:1263–1265. doi:10.1007/s12253-018-0425-5.

[12] Jaskelioff M, Muller FL, Paik JH, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. *Nature*. 2011;469(7328):102-106. doi:10.1038/nature09603.

[13] Roake, C.M., Artandi, S.E. Regulation of human telomerase in homeostasis and disease. *Nat Rev Mol Cell Biol*. 2020;21:384–397. doi:10.1038/s41580-020-0234-z.

[14] Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK, Telomerase and Telomeres in Endometrial Cancer. *Frontiers in Oncology*. 2019;9;344 doi:10.3389/fonc.2019.00344.

[15] Hannum G, Guinney J, Zhao L, et al. Genome-wide Methylation Profiles Reveal Quantitative
 Views of Human Aging Rates. A Cell Press journal. Molecular Cell. 2012;49(2):59-367, 2012.
 doi:10.1016/j.molcel.2012.10.016.

[16] Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. *EMBO Mol Med*. 2012;4(8):691-704. doi:10.1002/emmm.201200245

[17] Cavalcanti Jr, GC. p53 e as hemopatias malignas. *Revista Brasielira de Cancerologia*.
2002;48(3):419-427. Acessed january 4, 2020.

https://www.researchgate.net/publication/259477759_p53_e_as_hemopatias_malignas.

[18] Kodani N, Nakae J. Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone. *Cells*. 2020; 9(3):702. doi:10.3390/cells9030702.

[19] Nikitaki Z, Hellweg CE, Georgakilas AG, Ravanat J-L. Stress-induced DNA damage biomarkers: applications and limitations. *Frontiers in Chemistry*. 2015;3:35 doi:10.3389/fchem.2015.00035.

[20] Jacob KD, Noren Hooten N, Trzeciak AR, Evans MK. Markers of oxidant stress that are clinically relevant in aging and age-related disease. *Mech Ageing Dev*. 2013;134(3-4):139-157. doi:10.1016/j.mad.2013.02.008.

[21] Graça ADA. Estudo de alterações moleculares induzidas por agentes oxidantes e antioxidantes em modelo eucarionte. *Escola Superior de Saúde - Instituto Politécnico do Porto*. 2019. Acessed april
 17, 2020. https://recipp.ipp.pt/bitstream/10400.22/13948/1/DM_AndreiaGra%C3%A7a.pdf.

[22] Guo C, Li X, Wang R, et al. Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2'-deoxyguanosine by UPLC-MS/MS Analysis. *Sci Rep.* 2016;6. doi:10.1038/srep32581

[23] Kobierski J, Lipiecbc E. DNA structure change induced by guanosine radicals – A theoretical and spectroscopic study of proton radiation damage. *Journal of Molecular Structure*. 2019;1178:162-168 doi:10.1016/j.molstruc.2018.10.032.

[24] Cooke AS, Evans MD, Dove R, et al. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis.* 2005;574(1–2):58-66. doi:10.1016/j.mrfmmm.2005.01.022.

[25] Barbosa KBF, Costa NMB, Alfenas RCGA, de Paula SO, Minim PR, Bressan J. Estresse oxidativo: conceito, implicações e fatores modulatórios. *Rev. Nutr.* 2010;23(4):629-643. doi:10.1590/S1415-52732010000400013.

[26] Lima, KQF. Níveis de metilação do gene MTHFR e sua relação com níveis glicêmicos, estresse oxidativo e estilo de vida em indivíduos adultos: um estudo de base populacional. *Universidade Federal da Paraíba*. 2018. p.14;30. Acessed november 17, 2020.

https://repositorio.ufpb.br/jspui/bitstream/123456789/13431/1/Arquivototal.pdf.

[27] Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. *Advances in Medical Sciences*. 2018;63(1):68-78. doi:10.1016/j.advms.2017.05.005.

[28] Huber PC, Almeida WP, de Fátima A. Glutationa e enzimas relacionadas: papel biológico e importância em processos patológicos. *Química Nova*. 2008;31(5). doi:10.1590/S0100-40422008000500046.

[29] Cadet J, Davies KJA. Oxidative DNA damage & repair: An introduction. *Free Radic Biol Med*.2017;107:2-12. doi:10.1016/j.freeradbiomed.2017.03.030

[30] Czerska M, Mikołajewska K, Zieliński M, Gromadzińska J, Wąsowicz W. Today's oxidative stress markers. *Med Pr.* 2015;66(3):393-405. doi:10.13075/mp.5893.00137.

[31] Malayappan B, Garrett TJ, Segal M, Leeuwenburgh C. Urinary analysis of 8-oxoguanine, 8oxoguanosine, fapy-guanine and 8-oxo-2'-deoxyguanosine by high-performance liquid chromatography–electrospray tandem mass spectrometry as a measure of oxidative stress, *Journal of Chromatography A*. 2007;1167(1):54-62. doi10.1016/j.chroma.2007.08.024. [32] Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2' -deoxyguanosine (8-OHdG): A Critical
 Biomarker of Oxidative Stress and Carcinogenesis, *Journal of Environmental Science and Health*.
 2009;27(2):120-139. doi:10.1080/10590500902885684

[33] Wells PG, McCallum GP, Chen CS, et al. Oxidative Stress in Developmental Origins of Disease: Teratogenesis, Neurodevelopmental Deficits, and Cancer, *Toxicological Sciences*. 2009;108(1):4–18. doi:10.1093/toxsci/kfn263

[34] Sies H, Berndt C, Jones DP. Oxidative Stress. *Annual Review of Biochemistry*. 2017;86:715-748. doi:10.1146/annurev-biochem-061516-045037.

[35] Evans MD. Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. *Bioessays*, 2004;26: 533-542. doi:10.1002/bies.20027.

[36] Ciccarone F, Tagliatesta S, Caifa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms?. *Mechanisms of Ageing and Development*. 2018;174:3-17. doi:10.1016/j.mad.2017.12.002.

[37] Teschendorff A, West AE, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift?. *Human Molecular Genetics*. 2013;22(1)R7–R15. doi:10.1093/hmg/ddt375.

[38] Horvath S. DNA methylation age of human tissues and cell types [published correction appears in Genome Biol. 2015;16:96]. *Genome Biol*. 2013;14(10):R115. doi:10.1186/gb-2013-14-10-r115

[39] Asenso J, Wang L, Du Y, et al. Advances in detection and quantification of methylcytosine and its derivatives. *J Sep Sci*. 2019;42:1105–1116. doi:10.1002/jssc.201801100.

[40] Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentos de Química Analítica: Tradução da 8ª edição norte-americana. *Thomson*, 2006. p.4;670:734;770.

[41] Lanças, M.F. A cromatografia líquida moderna e a espectrometria de massas: Finalmente
 "compatíveis"? II. A escolha do analisador de massas. *Scientia Chromatographica*, editora cubo.
 2013;5(1):27-46. doi:10.4322/sc.2013.005.

[42] Santos WTP, Azevedo EF, Richter EM, Albuquerque YDT. Construção e caracterização de um detector eletroquímico para análises em fluxo. *Quím. Nova.* 2009;32(9):2412-2416. doi:10.1590/S0100-40422009000900033.

[43] Kaur H, Halliwell B. Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. *Biochem J.* 1996;318 (1): 21–23. doi: 10.1042/bj3180021.

101
[44] Chepelev NL, Kennedy DA, Gagné R, et al. HPLC Measurement of the DNA Oxidation
 Biomarker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, in Cultured Cells and Animal Tissues. *J. Vis.* 2015;102(52697). doi:10.3791/52697.

[45] Cooke MS, Olinski R, Loft S. Measurement and Meaning of Oxidatively Modified DNA Lesions in Urine. *Cancer Epidemiol Biomarkers Prev.* 2008;17(1):3-14. doi:10.1158/1055-9965.

[46] Li, W, Sancar, A. Methodologies for detecting environmentally induced DNA damage and repair. Environ Mol Mutagen. 2020; 61: 664– 679. doi:10.1002/em.22365.

[47] Collins, A. R. (2004). The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations. Molecular Biotechnology, 26(3), 249–261. doi:10.1385/mb:26:3:249

[48] Fang, L., Neutzner, A., Turtschi, S., Flammer, J., Mozaffarieh, M. Comet Assay as an Indirect Measure of Systemic Oxidative Stress. J. Vis. Exp. (99), e52763, doi:10.3791/52763 (2015).

[49] Clark, T.A., Spittle, K.E., Turner, S.W. et al. Direct Detection and Sequencing of Damaged DNA Bases. Genome Integrity 2, 10 (2011). doi:10.1186/2041-9414-2-10.

[50] Strachan T, Read A. Human Moleclar Genetics 4th Edition, Garland Science. 2011. p.222;223.

[51] Gedik CM, Collins A; ESCODD (European Standards Committee on Oxidative DNA Damage). Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. *FASEB J*. 2005;19(1):82-84. doi:10.1096/fj.04-1767fje.

[52] Alhajj M, Farhana A. Enzyme Linked Immunosorbent Assay. [Updated 2020 Mar 27]. In: StatPearls. Treasure Island (FL). *StatPearls*. 2020. Asseced: july 11, 2020.

https://www.ncbi.nlm.nih.gov/books/NBK555922/.

[53] Abbas K.A, Lichtman AH, Pillai S. Imunologia celular e molecular. Tradução da 7ª edição, *Elsevier*. Capítulo: Métodos de laboratório usando anticorpos, 2012.

[54] Vaz AJ. Imunoensaios Utilizando Conjugados: Enzyme-linked Immunosorbent Assay
 (ELISA). In: VAZ, Adelaide J.; TAKEI, Kioko; BUENO, Ednéia Casagranda. Imunoensaios Fundamentos e
 Aplicações: Ciências Farmacêuticas. *Guanabara koogan*, 2007. p.74-78.

[55] Shah K, Maghsoudlou P. Enzyme-linked immunosorbent assay (ELISA): the basics. *Br J Hosp Med (Lond)*. 2016;77(7):C98-C101. doi:10.12968/hmed.2016.77.7.C98.

[56] .PensaBio,ELISA, Paragon genomics, Biolog, RDW, et al. Acessed november 17, 2020 https://www.pensabio.com.br.

[57] Invitrogen, DNA Damage Competitive ELISA Kit, EIADNAD, *Thermofisher Scientific*, 2017. Acessed december, 2020. [58] Kuby J, Goldsby R, Osborn BA. Immunology antigen-antibody, Interactions: Principles and
 Applications: Enzyme-linked Immunosorbent Assay (ELISA) 4ª edição. WH Freeman & Co, 2000. cap.
 6,148. ISBN 978-0716733317. 148.

[59] P, Kasai H, et al. Prospective study of 8-oxo-7,8-dihydro-2'-deoxyguanosine excretion and the risk of lung cancer. *Carcinogenesis*. 2006;27(6):1245–1250. doi:10.1093/carcin/bgi313.

[60] Correia CAC. Espectroscopia de infravermelho na análise de mostos e vinhos. 2011.
 Universidade de Aveiro. Acessed 4 january, 2020. http://hdl.handle.net/10773/8108. Capítulo 2 Espectroscopia no infravermelho.

[61] Pavia DL. Lampman GM, Kriz GS, Vyvyan JR. VYVYAN JR. Introdução à Espectroscopia:
 Tradução da 5ª edição. *Cengage Learning*, 2015. 18;24;

[62] Bureau S, Cozzolino D, Clack CJ. Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: A review. *Postharvest Biology and Technology*. 2019;148,:1-14. doi:10.1016/j.postharvbio.2018.10.003.

[63] Dwi Putra SE, Neuber C, Reichetzeder C, Hocher B, Kleuser B. Analysis of Genomic DNA
 Methylation Levels in Human Placenta using Liquid Chromatography-Electrospray Ionization Tandem
 Mass Spectrometry. *Cell Physiol Biochem.* 2014;33:945-952. doi: 10.1159/000358666.

[64] Taylor, RM, Smith, R, Collins, CE, et al. Global DNA methylation and cognitive and behavioral outcomes at 4 years of age: A cross-sectional study. *Brain*

Behav. 2020;10:e01579. doi:10.1002/brb3.1579.

[65] Seiler CL, Fernandez J, Han Q, Tretyakova NY. Experimental methodologies for detection and mapping of epigenetic DNA marks, *Chemical Epigenetics Springer*. 2019;33:487-521,

doi:10.1007/7355_2019_77.

[66] Barregard L, Møller P, Henriksen T, et al. Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine. *Antioxid Redox Signal*.
2013;18(18):2377-2391. doi:10.1089/ars.2012.4714.

[67] Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clinica Chimica Acta. 2004;339(1–2)1-9. doi:10.1016/j.cccn.2003.09.010.

[68] Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. *Clin Interv Aging*.2018;13:757-772. doi:10.2147/CIA.S158513.

103

[69] AllPrep DNA/RNA mini Kit, *QIAGEN*. Acessed november 4, 2020.

https://www.qiagen.com/pt/products/discovery-and-translational-research/dna-rna-

purification/multianalyte-and-virus/allprep-dnarna-mini-kit/?clear=true#orderinginformation.

[70] DNA Damage Competitive ELISA kit, Invitrogen, Thermofisher Scientific. Acessed november 4,
 2020. https://www.thermofisher.com/elisa/product/DNA-Damage-Competitive-ELISA-Kit/EIADNAD.

[71] Leitor de Microplaca *Infine® M200* da *Tecan*. Acessed november 10, 2020.

https://www.tecan.com.

[72] i-controlTM microplare reader software. *Tecan*. Acessed december 24, 2020.https://www.selectscience.net/products/i-control-microplate-reader-software/?prodID=81307

[73] MyAssays, MyAssays Ltd. Acessed november 20, 2020. https://www.myassays.com/

[74] Excel. *Microsoft Corporation*. Acessed november 20, 2020.

https://www.microsoft.com/en/microsoft-365/excel

[75] FTIR ALPHA, PLATIUM-ATR, *©Brunker*. Acessed november 20, 2020.

https://www.bruker.com/

[76] OPUS Spectroscopy Software, ©Brunker. Acessed november 20, 2020.

https://www.bruker.com/products/infrared-near-infrared-and-raman-spectroscopy/opus-spectroscopy-software.html

[77] Bunaciu AA, Aboul-Enein, HY, Hoang, VD Body fluid analysis. Vibrational Spectroscopy Applications in Biomedical. *Pharmaceutical and Food Science*. 2020;*39-70*. doi:10.1016/b978-0-12-818827-9.00004-4

[78] Unscrambler analytics suite: Unscrambler. *©Camo Analytcs*. Acessed december 24, 2020. *https://www.camo.com/unscrambler/*

[79] Fast and easy analyses of spectral data. Unscrambler analytics suite: Unscrambler. Acessed december 24, 2020. https://www.camo.com/spectroscopy/.

[80] Wang Z, Liu D, Dong S. In-situ FTIR study on adsorption and oxidation of native and thermally denatured calf thymus DNA at glassy carbon electrodes. *Biophysical Chemistry*. 2001;89(1):87-94. doi:10.1016/S0301-4622(00)00217-9.

[81] Fidêncio, PH. Análise de solos por espectroscopia no infravermelho próximo e aplicação de métodos quimiométricos. Universidade de Campinas. Acessed december 24, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249824. 26-30 [82] Morgano, MA, Faria CGF, Marco F, Ferreira M MC. Determinação de açúcar total em café cru por espectroscopia no infravermelho próximo e regressão por mínimos quadrados parciais. *Química Nova*. 2007;*30*(2):346-350. doi:10.1590/S0100-40422007000200020.

[83] Mehmood T, Liland KH, Snipen L, Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. *Chemometrics and Intelligent Laboratory Systems*. 2012;118:62-69 doi:10.1016/j.chemolab.2012.07.010.

[84] Caliskan S, Oldenhof H, Brogna R, Rashidfarokhi B, Sieme H, Wolkers WF. Spectroscopic assessment of oxidative damage in biomolecules and tissues. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. 246,2021(119003)1386-1425. doi:10.1016/j.saa.2020.119003.

[85] TIBCO Statistica [™]. *TBCO Software Inc.* https://www.tibco.com/resources/productdownload/tibco-statistica-trial-download-windows.

[86] Loureiro LMJ, Gameiro MGH, Interpretação crítica dos resultados estatísticos: para lá da significância estatística. *Revista de Enfermagem Referência*. 2011. Acessed december 24, 2020. http://www.scielo.mec.pt/pdf/ref/vserIIIn3/serIIIn3a16.pdf.

[87] Ruberg SJ, Détente: A Practical Understanding of *P* values and Bayesian Posterior Probabilities. *Clin. Pharmacol. Ther.*. 2021. doi:10.1002/cpt.2004.

[88] Martins M. Coeficiente de correlação amostral. *Rev. Ciência Elem*. 2014;2(02):042.doi:10.24927/rce2014.042.

[89] TESTE.T (função TESTE.T), Microsoft Corporation. Acessed 24 december, 2020. https://support.microsoft.com/pt-pt/office/teste-t-fun%C3%A7%C3%A3o-teste-t-d4e08ec3c545-485f-962e-276f7cbed055.

[90] Miwa M., Matsumaru H, Akimoto Y, Naito S, Ochi, H. Quantitative determination of urinary 8-hydroxy-2'-deoxyguanosine level in healthy Japanese volunteers. BioFactors. 2004;22(1-4);249–253. doi:10.1002/biof.5520220150.

[91] Konishi S, Yoshinaga J, Nishihama Y, Onoda Y, Chisaki Y, Imai H. Urinary 8-Hydroxy-2'deoxyguanosine (8-OHdG) Concentrations and Menstrual Cycle Characteristics in Female University Students. Int. J. Environ. Res. Public Health. 2018;15(12): 2616. doi:10.3390 / ijerph15122616.

[92] Shimoi K, Kasai H, Yokota N, Toyokuni S, Kinae N. Comparison between high-performance liquid chromatography and enzyme-linked immunosorbent assay for the determination of 8-hydroxy-

2'-deoxyguanosine in human urine. Cancer Epidemiol Biomarkers Prev. 2002;11(8):767-770. Acessed 12 January, 2021. https://pubmed.ncbi.nlm.nih.gov/12163331/.

[93] Factors Affecting Signal Generation in ELISA *ThermoFisher Scientific*. Acessed 12 January, 2021. https://www.thermofisher.com/pt/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-elisa/elisa-data-analysis.html.

[94] Poulsen HE, Loft S, Prieme H, Vistisen K, Lykkesfeldt J, Nyyssonen K Jukka T, Salonen JT. Oxidative DNA damage *in vivo*: Relationship to age, plasma antioxidants, drug metabolism, glutathione-S-transferase activity and urinary creatinine excretion. *Free Radical Research*. 1998;(29:6):565-571. doi:10.1080/10715769800300601.

[95] Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. *Environ Health Perspect*. 2005;113(2):192-200. doi:10.1289/ehp.7337

[96] Pilger A, Germadnik D, Riedel K, Meger-Kossien I, Scherer G, Rüdiger HW. Longitudinal study of urinary 8-hydroxy-2'-deoxyguanosine excretion in healthy adults. *Free Radical Research*.
2001;(35:3)273-280. doi: 10.1080/10715760100300811.

[97] ELISA Troubleshooting Guide. Thermofisher Scientifc. Acessed 12 January, 2021.

https://www.thermofisher.com/pt/en/home/life-science/protein-biology/protein-biology-learningcenter/protein-biology-resource-library/pierce-protein-methods/overview-elisa/elisatroubleshooting-guide.html

[98] Han Y, Han L, Yao Y, Li Y, Liu X. "Key factors in FTIR spectroscopic analysis of DNA: the sampling technique, pretreatment temperature and sample concentration. JORNAL *Anal. Methods*, The *Royal Society of Chemistry*. 2018;10(21);2436-2443. doi:10.1039/C8AY00386F.

[99] Lipiec E, Kowalska J, Lekki J, Wiecheć, A, Kwiatek WM. FTIR Microspectroscopy in Studies of
 DNA Damage Induced by Proton Microbeam in Single PC-3 Cells. *Acta Physica Polonica A.* 2012;121:506-509. doi:10.12693/APhysPolA.121.506.

[100] Pascolo L, Bedolla DR, Vaccari L, et al. Pitfalls and promises in FTIR spectromicroscopy analyses to monitor iron-mediated DNA damage in sperm. *Reproductive Toxicology*. 2016; 61: 39-46. doi:10.1016/j.reprotox.2016.02.011. [101] Kelly J. G, Najand GM, Martin FL. Characterisation of DNA methylation status using spectroscopy (mid-IR versus Raman) with multivariate analysis. *Journal of Biophotonics*.
 2010;4(5);345–354. doi:10.1002/jbio.201000085.

[102] Martin TMP, Esculier F, Levavasseur F, Houot S. Human urine-based fertilizers: A review. *Critical Reviews in Environmental Science and Technology*. 2020, doi:

10.1080/10643389.2020.1838214.

[103] Oliver, KV. Infrared spectroscopy as a clinical diagnostic method for detection of disease states: developments and applications in kidney diseases and cancer diagnoses. University College London 2015. Acessed 28 January, 2021.

https://discovery.ucl.ac.uk/id/eprint/1473224/1/K_Oliver_Thesis.pdf

[104] Takamura A, Watanabe K, Akutsu T, *et al.*. Soft and Robust identification of body fluid using fourier transform infrared spectroscopy and chemometric strategies for forensic analysis. *Sci Rep.* 2018;(8):8459. doi:10.1038/s41598-018-26873-9.

[105] Brixner Riça L, Corbellini VA, Silveira Salbego A, Assmann LL, Aplicação de FT-IR e
 quimiometria para predição de idade gestacional pela urina. *57º Congresso Brasileiro de Química*.
 2017. ISBN:978-85-85905-21-7. Acessed 28 January, 2021.

http://www.abg.org.br/cbg/2017/trabalhos/11/11054-24575.html.

[106] Naumann D. FT-Infrared and FT-Ramam Spactrosopy in biomedical research. *Applied Spectroscopy Reviews*. 2001;36(2-3):239-298. doi: 10.1081/ASR-100106157.

[107] Vieira E L, Mendes-Silva A. P, Ferreira J. D. et al.. Oxidative DNA damage is increased in older adults with a major depressive episode: a preliminary study. Journal of Affective Disorders.
 2021;15:106-110. doi:10.1016/j.jad.2020.09.084.

[108] Cunha GL, Oliveira GT, Berlese DB, Santos GA. Dano oxidativo ao DNA em idosos com vida independente e suas correlações com parâmetros sociodemográficos, antropométricos e funcionais. *Revista Brasileira de Geriatria e Gerontologia*. 2017;*20*(2):225-231. doi:10.1590/1981-22562017020.160085.

[109] Ferreira JC; Patino CM (2015). What does the p value really mean?. *Jornal Brasileiro de* Pneumologia. 2015;41(5):485. doi:10.1590/S1806-37132015000000215.

[110] Wu LL, Chiou C-C, Chang P-T, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. *Clinica Chimica Acta*. 2004;(1-2);1-9. doi:10.1016/j.cccn.2003.09.010.

[111] Loft, Mooler P. Oxidative DNA Damage and Human Cancer: Need for Cohort Studies. Antioxid.
Redox. 2006;(8):1021-1031.Gorbunova V, Seluanov A, Mao Z, Hine C. Changes in DNA repair
during aging. *Nucleic Acids Res.* 2007;35(22):7466-7474. doi:10.1093/nar/gkm756
[112] Banyay M, Gräslund A, Structural effects of cytosine methylation on DNA sugar pucker
studied by FTIR. *Journal of Molecular Biology.* 2002;324(4):667-676. doi:10.1016/S00222836(02)01104-X.

Anexo I

Protocolo experimental para a quantificação de 8-OHdG em amostras de urina e DNA com recurso ao FTIR.

Material	Quantidade
Amostras	
Amostras de Urina	>25 µl **
Amostras de DNA (extraído e purificado).	>5 µl ***
Reagentes e Soluções	
Padrão 8-OHdG (160 ng/ml de danos ao DNA em solução	
estabilizadora).*	
Assay Buffer (5x)*	14ml
Ethanol 70%	-
Água destilada	-
Equipamentos	
FTIR BUNKER, Alpha Platium-ATR (Refletância Total	1
Atenuada)	
Outros	
Papel absorvente	****
Microtubos 1,5 μl	****
Pipetas automáticas e respetivas pontas	****
Banho de gelo	1

Tabela 1. Material necessário para execussão do experimento.

*O padrão 8-OHdG e o Assay Buffer, utilizados foram os do kit ELISA DNA Damage (EIADNAD) podendo ser substituídos por equivalentes.

** Para amostras de urina com creatinina entre 25634 e 4690 (em 5 μl de amostra de urina ter creatinina entre 0,025 a 0,128mg)

*** Para amostra de DNA purificado em solução de extração, concentração de 61,4 a 103 ng/μl (em 5 μl de DNA ter concentrações entre 356 ng a 515 ng)

**** Quanto for suficiente

Preparação dos reagentes (5 minutos).

- Assay Buffer (1x)
 - o diluir 14 ml de Assay Buffer concentrado (5x) em 56 ml de água destilada.
 - rotular e guardar no frio (4°C) (nestas condições, tem validade de 3 meses)

Preparação dos padrões (30 minutos).

- 1. Estabilizar os padrões à temperatura ambiente.
- 2. Rotular 11 microtubos de 1,5 µl com nomes dos padrões de 8-OHdG
- 3. Realizar uma diluição seriada de acordo com a tabela 1.

Nome	Composição da diluição seriada	Concentração final
STD1	475 μl Assay Buffer + 50 μl de 8-Hidroxi2'-deoxiguanosina	16000 pg/ml
	Standard	
STD2	250 μl de Assay Buffer (1x) + 250 μl STD1	8000 pg/ml
STD3	250 μl de Assay Buffer (1x) + 250 μl STD2	4000 pg/ml
STD4	250 µl de Assay Buffer (1x) + 250 µl STD3	2000 pg/ml
STD	250 μl de Assay Buffer (1x) + 250 μl STD4	1000 pg/ml
STD	250 μl de Assay Buffer (1x) + 250 μl STD5	500 pg/ml
STD	250 µl de Assay Buffer (1x) + 250 µl STD6	250 pg/ml
STD	250 μl de Assay Buffer (1x) + 250 μl STD7	125 pg/ml
STD	250 μl de Assay Buffer (1x) + 250 μl STD8	62,6 pg/ml
STD10	250 μl de Assay Buffer (1x) + 250 μl STD8	31,3 pg/ml
STD11	250 μl de Assay Buffer (1x)	0 pg/ml

Tabela 2: Modo de preparação dos padrões de 8-OHdG

Obs: para obtenção de melhores resultados, realizar três diluições seriadas do padrão.

Preparação das amostras (duração dependente do número de amostras).

<u>Urina</u>

- 1. Descongelar à temperatura ambiente
- 2. Centrifugar a 1.000xg por 5 minutos.
- 3. Aliquotar o sobrenadante em microtubos de 1,5 µl

- Realizar uma diluição de 1:0,5 (20 μl da amostra de urina em 10μl de Assay Buffer 1x (ou 50;25).
- 5. Armazenar a -20 °C.

<u>DNA</u>

- 1. Descongelar a temperatura ambiente o DNA
- 2. Diluir 5 μl, DNA em 25 μl, 1:5.

Aquisição dos espectros dos padrões de 8-OHdG e das amostras de Urina ou DNA extraído e purificado (de 10 a 30 minutos por padrão e por amostra).

- Descongelar as amostras a utilizar no dia, à temperatura ambiente, e mantê-las em banho de gelo.
- 2. Verificar a temperatura e humidade da sala (deverão ser mantidas entre 24ºC e 45%.)
- Configurar o programa OPUS © Brunker. com resolução 8 cm⁻¹; 64 scans para aquisição do espectro da amostra e do *background*; selecionar a região espectral entre 4000– 600 cm⁻¹).
- 4. Limpar a superfície do cristal de ATR do espectrómetro com Etanol 70% utilizando um papel absorvente limpo, em seguida limpar o mesmo com água destilada utilizando um papel absorvente limpo (repetir este procedimento sempre que se muda de amostra, antes da aquisição do espectro de background).
- Adquirir os espetros do *background*, com o cristal limpo, vazio e seco (repetir este procedimento sempre antes de adquirir o espectro de cada padrão ou amostra e antes de colocar a amostra no cristal).
- Medir, com auxílio de uma pipeta, 5 μL da amostra de URINA ou DNA no cristal ATR do espectrómetro e deixar secar completamente a amostra (6 a 30 minutos).
- 7. Adquirir o espectro no software OPUS da ©Brunker.
- 8. Repetir o passo 6 e 7 mais duas vezes, cada amostra deverá ter 3 réplicas).
- Guardar os espectros para serem transferidos para o software Unscrambler da ©Camo Analytcs[76].

Tratamento de dados

Os espectros deverão ser submetidos a análise multivariada no software Unscrambler da ©Camo Analytcs[76]

Construção da Curva de Calibração com os padrões de 8-OHdG

- Construir uma matriz com todos os espectros dos padrões de 8-OHdG e respetivas réplicas.
- 2. Corrigir linha de base dos espectros.
- Selecionar a região espectral de interesse para a análise em questão (de 1800 cm⁻¹ a 900 cm⁻¹).
- 4. Normalizar à área dos espectros.
- 5. Traçar a segunda derivada com o algoritmo Savitzky-Golay.
- 6. Construir um vetor com as concentrações dos padrões, emparelhar cada linha com o espectro correspondente.
- Aplicar a ferramenta de análise Partial Least Squares (PLS) (regressão por mínimos quadrados parciais), para obter a curva de calibração (que será usada para prever a concentração de 8-OHdG) e o correspondente Coeficiente b.

Previsão da concentração de **8-OHdG** nas Amostras de URINA e DNA. Extraído e purificado

- Construir uma matriz com todos os espectros das amostras de Urina e/ ou de DNA extraído e purificado.
- 2. Corrigir linha de base dos espectros.
- Selecionar a região espectral de interesse para a análise em questão (de 1800 cm⁻¹ a 900 cm⁻¹).
- 4. Normalizar à área dos espectros.
- 5. Traçar a segunda derivada com o algoritmo Savitzky-Golay.

- Aplicar, na matriz dos espectros da amostra, o modelo de calibração obtido no anterior ponto
 7, para obtenção da concentração prevista de 8-OHdG nas amostras a partir dos respetivos espectros.
- Calcular a média e desvio padrão da concentração de 8-OHdG nas amostras de urina ou de DNA extraído e purificado.