
 International Journal of 

Molecular Sciences

Review

The Role of Ionic Liquids in the Pharmaceutical Field:
An Overview of Relevant Applications

Sónia N. Pedro , Carmen S. R. Freire, Armando J. D. Silvestre and Mara G. Freire *

Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro,
3810-193 Aveiro, Portugal; soniapedro@ua.pt (S.N.P.); cfreire@ua.pt (C.S.R.F.); armsil@ua.pt (A.J.D.S.)
* Correspondence: maragfreire@ua.pt

Received: 25 September 2020; Accepted: 2 November 2020; Published: 5 November 2020 ����������
�������

Abstract: Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to
solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks,
ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and
crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in
drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development
and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in
the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug
delivery. The most relevant research conducted up to date is presented and discussed, together with
a critical analysis of the most significant IL-based strategies in order to improve the performance of
therapeutics and drug delivery systems.

Keywords: active pharmaceutical ingredients; drug delivery systems; formulations; ionic liquids;
solubility; permeability

1. Introduction

Pharmaceuticals play a major role in medical care, boosting life quality and expectancy, especially
when considering chronic diseases [1]. The global prescription of medicines is forecast to grow
up to nearly $1.2 trillion by 2022 [2]. Although active pharmaceutical ingredients (APIs) can be
commercialized in several dosage forms, crystalline forms have been the preferred option [3,4].
However, 40 to 70% of the drugs under development present low water-solubility, which may
compromise the bioavailability and therapeutic efficacy and, thus, fail in the later stages of
development [5,6]. The irregular gastrointestinal absorption of solid forms, along with the low
therapeutic efficiency and possible toxicity and side-effects of polymorphs, are major concerns to
overcome [7]. For instance, large differences in bioavailability among different polymorphs require
different drug dosages [8]. On the other hand, the therapeutic dosage of a certain API can correspond
to a toxic or potential lethal dose if the wrong polymorph is administered. Polymorphism issues
result in significant economic losses in sales and in R&D to enable novel formulations back into the
market [9,10].

Beyond the well-known downsides of polymorphism, the APIs’ solubility in aqueous solution,
dissolution, and bioavailability are also dependent on particle size and properties [11]. Attempting
to improve the drugs solubility in water as well as their bioavailability, several strategies have been
investigated, especially when the oral route is envisaged [5,6]. Nevertheless, most of these strategies still
use large quantities of organic solvents in the manufacturing process of these formulations, particularly
to induce the crystallization of a given polymorphic form and particle size, having associated health
and environmental concerns [12]. Furthermore, solvent molecules can be incorporated into the crystal
structure of the API during the crystallization process [13]. Therefore, when considering the use of
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organic solvents, they must be removed from the API or their levels must be controlled in order to
ensure human consumption safety [12]. Despite the existence of extensive literature describing novel
and “greener” solvents to this purpose, there is still some reluctance by the pharmaceutical industry to
accept and implement these alternatives [14–16].

In the above context, liquid forms of APIs are appealing solutions to avoid both polymorphism
and improve low-water solubility constraints, while allowing to reduce organic solvents use.
The pharmaceutical industry has relied on eutectic mixtures for this purpose, shortly exploring
other options for commercialization [17,18]. In addition to these, ionic liquids (ILs) disclose high
potential in the pharmaceutical field, which is mainly due to their high versatility in terms of chemical
structure design towards a target application. ILs are molten salts that are composed of a large organic
cation and an organic/inorganic anion. The large dimensions of their ions lead to charge dispersion,
which makes difficult the formation of a regular crystalline structure [19,20]. ILs display a set of
unique features, from which is possible to highlight, if properly designed, their high thermal and
chemical stability and a strong solvation ability for a wide variety of compounds [21]. The proper
selection of cation-anion combinations in ILs enables the use of drugs as ion components, allowing
for the conversion of solid active pharmaceutical ingredients into liquid forms (API-ILs). Thus, this
strategy solves the problem of polymorphism and provides improved bioavailability, and ideally
boosts therapeutic properties [3,22].

Because of the unique properties of ILs, their application in the pharmaceutical field has been
extended far beyond the development of novel liquid forms (API-ILs), being investigated as well in
other stages of drug development and delivery. The number of publications related to the application
of ILs in the pharmaceutical field has grown exponentially in the past 20 years, as illustrated in Figure 1.
ILs have been applied in the development of purification platforms for pharmaceuticals (an application
out of the scope of this review), for which some recent review manuscripts exist [23–25]. Other relevant
reviews and book chapters recognizing the advances of ILs in different areas of pharmaceuticals
development, spanning from their formulation, biological activity, and application on drug delivery
are also available [22,26–34]. However, most of these focus on a specific application of ILs in the
pharmaceutical field. On the other hand, this review compiles and discusses the most relevant works
and overall applications of ILs in the pharmaceutical field, namely on the role of ILs as solvents,
reagents, and/or catalysts in the APIs’ synthesis, in the APIs crystallization, as solvents, co-solvents,
and emulsifiers to improve drugs solubility, as a way of producing liquid forms of APIs, and in the
development of drug delivery systems. Special attention is drawn to the most important achievements
reported so far on the use of ILs in the described applications and the resulting benefits in terms of
pharmaceutical formulations and pharmacological activity.
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Figure 1. Number of publications per year in a twenty years perspective related to ILs and active
pharmaceutical ingredients (APIs) (number of articles, reviews and book chapters according to a
ScienceDirect database search using as keywords “ionic liquids”, “active pharmaceutical ingredients”,
and “drug delivery”) (left). Overview of the ILs’ applications in the pharmaceutical field reported
hitherto (right).
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2. ILs in the Synthesis of Pharmaceutical Compounds

The increase in environmental awareness led to the proposal of the so-called Environmental
factor (E-factor), which assesses the environmental impact of manufacturing processes, being defined
by the ratio of the mass of waste per mass of product [35]. The pharmaceutical E-factor is one of
the highest in the industry context (25–100) [35]. The waste production that is generated by the
pharmaceutical industry is mainly attributed to solvent losses. In order to reduce these losses and
minimize the environmental impact, it is essential to consider alternative solvents, i.e., to develop
more sustainable processes. To this purpose, ILs have been studied as (i) solvents; (ii) catalysts; (iii)
reagents; and, (iv) enantioselectivity enhancers in the synthesis of different APIs [36–38]. Reactions in
these solvents may be faster and involve fewer steps than those that were carried out in conventional
organic solvents, and additionally be easier to implement [39]. However, an initial assessment of
conditions must be performed, since the kinetic of reactions that were carried out in ILs differ from
those performed in conventional organic solvents [40]. The following described examples intend to
illustrate the multifunction role displayed by ILs in APIs’ synthesis, in which some have been even
combined. Figure 2 provides an illustrative summary of the applications of ILs in the synthesis of APIs
and their precursors, giving one example of each application discussed in this section, with the goal of
replacing the use of volatile organic solvents.
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Figure 2. Multiple roles of ILs in the synthesis of different APIs and their respective efficiency (adequate
references are given along the current section).

Given the high ILs’ applicability in different chemical processes, they have been applied in
the production of pharmaceutical precursors, such as lactam [41], pyrazolone [42], thiazole [43],
imidazole [44], and thiazolidine [43,45] cores, which are APIs’ precursors with vast biological activities.
Due to their charged nature, ILs can provide fast microwave heating, resulting in faster and more
effective reactions. For example, this approach has been successfully applied to the direct lactamization
of lactones in a one-pot reaction with high yields (>80%), obtained in short reaction times (≤35 min.)
(Figure 3) [41]. The combination of ILs with ultrasound irradiation can be also useful to accelerate
organic reactions, allowing for synthetizing APIs’ precursors at room temperature with high yields
(95%) [46].
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The versatile nature of ILs allows for reducing the volume of solvents and the use of metal
catalysts in APIs synthesis [47]. Despite the variety of cations and anions, imidazolium-based salts
have been the most studied as solvents for the synthesis of APIs and their precursors [45,48–51].
In 2000, Seldon and coworkers reported the first high yield (90–94%) IL-based route to produce
a non-steroidal anti-inflammatory (NSAID) drug, pravadoline, using an imidazolium-based IL as
solvent, namely 1-butyl-3-methylimidazolium hexafluorophosphate ([C4C1im][PF6]) (Figure 4) [51].
Conventionally, the reaction to produce pravadoline is carried out in volatile organic solvents, such as
dimethylformamide (DMF), while using sodium hydride as a base that additionally presents health
and environmental concerns [52,53]. The proposed reaction using the IL as solvent and potassium
hydroxide as base allowed for improving the conventional reaction yield (70–91%) up to 95%, simply
by heating the IL at 150 ◦C for 2 min. With this strategy, it is possible to easily separate the API product,
recycle and reuse the solvent, and the only chemical waste generated in the process is an aqueous
solution of potassium chloride.
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A variety of pharmaceutical agents (e.g., antibiotics, antifungals, alkaloids, or cardiac glycosides)
have an heterocyclic structure to mimic the structure and, thus, the biological action of natural
compounds [54]. Reactions that were carried out in IL solvent media have high regioselectivity
and, for this reason, have been successfully applied in the synthesis of different heterocyclic
APIs [55,56]. Imidazolium-based ILs have been used as solvents in the synthesis of antiviral
drugs as brivudine, stavudine and trifluridine [56]. Figure 5 provides a summary on the
synthesis time and yield of nucleoside-based antiviral drugs in IL media. Trifluridine, for
example, was produced as a single product in IL media. Among others, the best results were
obtained with 1-methoxyethyl-3-methylimidazolium methanesulfonate ([(C1OC2)C1im][MsO]), using
4-dimethylaminopyridine (DMAP) as catalyst and acetic anhydride as acylating agent. Trifluridine
was obtained with 91% yield in 20–25 min. without the need of extra-purification steps. The IL was
recycled and reused up to four times.
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Antifungal and antiprotozoal drugs, such as iodoquinol and clioquinol, respectively, have been
prepared by a simple and efficient iodination method, while taking advantage of the ILs’ multiple
roles in synthesis, as summarized in Figure 6 [57]. The IL 1-butyl-3-methylpyridinium dichloroiodate
([C4C1py][DCI]) was used both as solvent and iodinating agent in the absence of any oxidant, catalyst,
or base. It was possible to regenerate the IL for up to five runs by addition of ICl (1.2 eq.), with >90%
yield, without losing its iodinating activity.
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Naproxen was initially synthesized and commercialized by Syntex while using b-naphthol
as precursor for its synthesis [58]. However, this process uses several undesirable reagents, such
as nitroaromatic compounds, ammonium sulfide sodium hydride, and methyl iodide. In order
to overcome these drawbacks, new procedures were considered, increasing the yields from less
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than 50% to 90%, but the formation of undesired side products and use of metal catalysts in these
processes remained [59]. Recently, 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1im][BF4])
was applied as a reaction medium in the electrosynthesis of naproxen through the electrocarboxylation
of 2-(1-chloroethyl)-6-methoxynaphthalene using CO2 [60], as summarized in Figure 7. This process
allowed for achieving high yields (89%) and conversion rates (90%), with 65% of atom economy when
considering the recovery of the solvent. Despite the new adapted synthesis routes mentioned above
also allowing for obtaining similar high yields, the process in IL media uses cheaper and more available
catalysts (electrons) and CO2 instead of CO, a well-known pollutant, contributing for the development
of “greener” routes in the synthesis of APIs.
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Biologically active compounds, with antidiuretic, anti-inflammatory, and antihypertensive
activities, usually possess 2,3-dihydroquinazolin-4(1H)-one (DHQ) cores. Due to their importance
for the production of such compounds, the synthesis of substituted DHQ derivatives
has attracted significant attention, and different synthetic strategies have been developed.
In alternative to the conventional harsh reaction conditions, gemini basic ILs (such as
(4,4′-(butane-1,4-diyl)bis(4-dodecyl-morpholin-4-ium)hydroxide ([Nbmd][OH])), have been proposed
as catalysts and reaction media for their synthesis [61]. In addition to the high reported yields (98%), it
was shown the possibility to reuse the ILs up to five times without significant losses in catalytic activity.

Several industrial processes apply enzyme-catalyzed reactions in organic media for the production
of APIs. An example of the advantageous use of ILs in biocatalysis was demonstrated in the
transesterification of ribavirin, a nucleoside antiviral drug, using C. antarctica lipase [55]. The use
of the IL [C4C1im][BF4] as adjuvant allowed to improve the regioselectivity, the reaction yield and
reaction rate about 3.5 times. The enantioselectivity and enzyme activity in IL media was comparable
or even improved when compared to the results that were obtained in traditional organic solvents.
Furthermore, lipase catalyzed transterification reactions can be 25 times more effective in IL media
than in conventional solvents [62].

Stereoselectivity and enantioselectivity are major concerns regarding the bioavailability and safety
of pharmaceutics. In this context, ILs have been studied in order to improve the kinetic resolution of
APIs and API precursors. Enantiopure chiral alcohols have been shown to be versatile chiral building
blocks for the synthesis of chiral pharmaceuticals [63]. For instance, (S)-3-chloro-1-phenyl-1-propanol
((S)-CPPO) is a useful chiral building block for the synthesis of anti-depressant drugs [64]. Aiming
to produce (S)-CPPO with high yields and selectivity, a variety of ILs were tested as media, where
[C4C1im][NTf2] was ultimately selected for increasing the solubility of the (S)-CPPO’s precursor,
3-chloro-1-phenyl-1-propanone (3-CPP), in a IL/water mixture [65]. The use of the IL, allowed to
dramatically increase the concentration of 3-CPP and the yield of the target compound, where the
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yeast reductase YOL151W was able to convert the 3-CPP enantioselectively into (S)-CPPO exclusively,
with an enantiomeric excess of >99%.

The selected examples provide evidences where the use of ILs leads to comparable or superior
reaction conditions and yields, and they may also simplify the separation and purification steps of
some target products. The possibility to recycle and reuse ILs, without compromising the synthesis
yield and lack of toxic by-products production, as shown in some examples, further reinforces the
advantageous properties of ILs from the environmental and pharmaceutical perspectives. However,
as happens with organic solvents, the amount of residual IL in the final product must be limited in
order to guarantee the safety of the drug in the final dosage form. Following this, it is essential for a
more careful monitorization of these contaminants in the final product and to study their impact in the
drug’s therapeutic performance and toxicity.

3. ILs as Solvents, Co-Solvents or Emulsifiers for APIs Solubilization

The therapeutic efficacy of APIs is mostly defined by their solubility/bioavailability, since higher
solubilities in aqueous solutions may allow for better achieving the desired concentration of a drug
in systemic circulation [66]. An API is considered highly soluble when its highest dose strength is
soluble in 250 mL or less of aqueous medium over a pH range 1–6.8 at human body’s temperature [67].
Nevertheless, many APIs from different pharmacological classes do not fulfill these requirements and
they are only sparingly soluble in water. Although water is the preferable medium when considering
human consumption, occasionally the use of non-aqueous solvents is considered since their presence
may positively influence the API absorption [68]. Organic solvents like ethanol, methanol or dimethyl
sulfoxide (DMSO) are generally used as solvents or co-solvents in pharmaceutical formulations to
improve solubility [30]. To address this solubility challenge, ILs have been investigated as alternative
neat solvents [69]. The good solvation ability of ILs also allowed for increasing the aqueous solubility of
APIs by cosolvency, hydrotropy and micellization phenomena, as summarized in Table 1. ILs represent
a novel class of hydrotropes with superior performance to enhance the solubility of poorly water-soluble
compounds in aqueous solution, driven by the formation of API–IL aggregates [21]. Cosolvency,
unlike the hydrotropic mechanism, is not based on the formation of aggregates, but on the solvation
of the solute by a mixed solvent (water + IL), acting by disrupting the water self-association and
by reducing the interfacial tension between the API and the solvent medium [70]. The use of
surface-active agents, on the other hand, acts by taking advantage of their amphiphilic nature and
by incorporating hydrophobic APIs into the micelles core [71]. It has been demonstrated that the
selection of IL anion/cation combinations has a significant impact on the solubilization mechanism of
poorly water-soluble APIs and solvation ability, as shown by solubility enhancements for antifungal,
analgesic, and nonsteroidal anti-inflammatory drugs that are listed in Table 1. In particular, it has been
demonstrated that the solubility of drugs like amphotericin B, albendazole, itraconazole, paclitaxel, or
etodolac, which are very low-water soluble, can be enhanced by several orders of magnitude (from
700–5.6 × 106-fold) by adding ILs.
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Table 1. Solubility of different APIs in selected ILs and comparison with their water solubility.

API Structure Water Solubility IL Solubility Reference
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Table 1. Cont.

API Structure Water Solubility IL Solubility Reference
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Table 1. Cont.

API Structure Water Solubility IL Solubility Reference
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The application of pure ILs for APIs solubilization was first reported in 2008 by Jaitely et al. [85],
who investigated the ILs [C4−8C1im][PF6] on the solubilization of potassium penicillin V, dexamethasone
dehydroepiandrosterone, and progesterone. Although these ILs are immiscible in water, it is possible
to use these formulations to enhance the release of some solutes into an aqueous medium. The studied
ILs were submitted to a current flow (over the range 1–5 mA) allowing to increase the release rate of
the APIs from the IL to the aqueous medium. The release of these APIs slowly increased with the
increase of the alkyl chain length of the IL cation (up to three-fold). The partition of APIs in the studied
ILs/water systems was further correlated with the APIs octanol-water partition coefficient. To infer the
safety of these solvents for pharmaceutical applications, their cytotoxicity was evaluated in Caco-2 cell
lines, which suggests that, with the exception of 1-octyl-3-methylimidazolium hexafluorophosphate
([C8C1im][PF6]), these compounds are non-toxic (90% cell viability) at the conditions and concentrations
studied, and might be considered as excipients in pharmaceutical formulations.

The same trend was observed by Mizuuchi et al. [69], who studied similar ILs in order to
solubilize albendazole, danazol, acetaminophen, and caffeine. The increase in the hydrophobicity of
the imidazolium cation ([C4−8C1im]+) resulted in a higher solvation ability for hydrophobic drugs.
However, this trend resulted in a decrease in the solubility of hydrophilic drugs. The authors
demonstrated that it is possible to increase albendazole’s solubility more than 37,000-fold while
using [C8C1im][PF6] as solvent. In a different study by Forte et al. [82], the variation of the anion in
1-decyl-3-methylimidazolium-based ILs and the alkyl chain length of the cation ([C2-10C1im]+) were
studied to infer their effect on isoniazid’s (antibiotic) solubility. The results showed that the presence
of an acidic proton at the 2-position of [C2C1im]+ increases the ILs ability to hydrogen-bond with
isoniazid, leading to higher solubility values. Among the ILs studied, 1-decyl-3-methylimidazolium
trifluoromethanesulfonate ([C10C1im][CF3O3S]) was found to be the best solvent for isoniazid (at T
> 38 ◦C). Furthermore, the increase of the alkyl chain length at the imidazolium cation decreases
the acidity of the proton at the 2-position, thus increasing the API’s solubility in the IL. Overall, the
trends that were obtained in the described studies demonstrate that the influence of the cation’s alkyl
chain length differs according to the IL and the APIs nature, and accordingly with the molecular-level
mechanisms involved. These differences make difficult the establishment of heuristic rules and
development of predictive models that could be used in a widespread manner.

Although interactions between the IL anion and the API have been reported as relevant, mainly
via hydrogen-bonding, the influence of the IL anion in which the IL hydrogen-bond basicity can be
strongly tuned is less studied and still not completely understood. Although promising results have
been reported in terms of APIs solubility, comparisons between the results obtained in IL media with
the ones that were obtained with other common solvents, such as water or ethanol, are shortly explored
along with the bioavailability profiles. These assays should be considered in order to support the
advantageous use of IL-based solvents alternatives.

In addition to the study of pure ILs as solvents for APIs, the application of ILs as co-solvents has
been investigated. For instance, cholinium-based ILs have been successfully applied as co-solvents
in paclitaxel formulations for chemotherapeutic treatment [83]. Paclitaxel is a low-water soluble
API (<4 µg mL−1) that is used in the treatment of different types of cancer; however, its parenteral
formulation requires the use of ethoxylated castor oil (CrEL) and ethanol as solubilizing agents. The use
of these agents can be associated with major hypersensitivity reactions and side effects. By using
cholinium-amino-acid-based ILs as co-solvents, it was possible to remarkably enhance the APIs
solubility in aqueous media (>5500-fold) and decrease the formulation toxicity and hypersensitivity,
while maintaining the antitumor therapeutic action of the API. In a different study, also using
amino-acid-based ILs, and in particular cholinium tryptophan, it increased the glibenclamide’s (an
antidiabetic drug) solubility in aqueous solutions with 6.5 wt% of IL from 400 to 2000-fold [80].
The establishment of hydrogen bonds and π–π interactions between the API and the IL anion were
described as playing a major role in the obtained solubility improvements in both studies.
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In a more fundamental study, tetrabutylammonium-, phosphonium-, imidazolium-, pyridinium-,
piperidinium- and pyrrolidinium, and cholinium-based ILs were investigated in aqueous solution
regarding their ability to act as hydrotropes and improve the solubility of ibuprofen [86]. It was
found that the IL cation and anion synergistically contribute to the hydrotropic mechanism of
solubilization. Among the cations that were investigated in a chloride-based IL series, imidazolium-
and phosphonium-based ILs lead to a higher increase in the drug solubility. In order to evaluate the
influence of the IL anion on ibuprofen’s solubility, [C4C1im]- and sodium-based hydrotropes were
investigated, where a higher hydrotropic activity was disclosed with 1-butyl-3-methylimidazolium
thiocyanate ([C4C1im][SCN]) and 1-butyl-3-methylimidazolium dicyanamide ([C4C1im][N(CN)2]).
These ILs increase the aqueous solubility of ibuprofen by 60- and 120-fold, respectively, in comparison
to the API in pure water. The formation of IL-drug aggregates was proved based on dynamic light
scattering and molecular dynamics simulations. In particular, ILs have been reported as powerful
catanionic hydrotropes [23,86].

The use of surfactants above the critical micelle concentration (CMC) can be also an appealing
alternative to increase API’s solubility. By varying the cation type and alkyl chain length and the
nature and size of the counterion it is possible to change the ILs’ hydrophilic-hydrophobic balance. ILs
with surfactant behavior are usually referred to as surface-active ionic liquids (SAILs), displaying high
potential to increase the solubility of pharmaceutical agents in aqueous media. Sanan et al. [87] studied
1-dodecyl-3-methylimidazolium chloride ([C12C1im]Cl)-ibuprofen mixtures in aqueous solution,
ranging from monomeric to micellar regions. Aggregate assemblies in aqueous media (mixed micelles)
were observed, depending on the mixture composition. The formation of these complexes was mainly
attributed to the establishment of hydrophobic, electrostatic and hydrogen-bonding interactions.
Faria et al. [88] investigated surface-active ILs, both cationic and anionic, as well as composed of
different cations and anions, for the solubilization of the nutraceutic ursolic acid in aqueous media.
For this, different ILs constituted by long alkyl side chains with known surface-active characteristics
([C8-18C1im]X with X = Cl and [C8H17SO4]) and tributyltetradecylphosphonium chloride ([P444(14)]Cl)
were considered. The use of the best SAIL aqueous solutions allows for solubility enhancements of
ursolic acid in 8 orders of magnitude when compared to pure water. More recently, aqueous solutions
of [C12C1im]Cl were used to increase the solubility of the nutraceutical oleanolic acid [89]. An increase
in the IL concentration up to 1000 mM improved the solubility of oleanolic acid to 21.10 mg mL−1,
indicating that aqueous solutions of SAILs leads to a remarkable increase (up to 106-fold) on the
solubility of the target compound in water.

Although significant results have been disclosed on the use of ILs as solvents, co-solvents, or
surfactants to improve the APIs solubility, most studies reported so far focus on imidazolium-based
ILs. This trend is probably associated with the fact that these ILs are commercially available, and
well studied and characterized in literature. Although few other IL combinations were investigated,
the results reported hitherto on drug solubility enhancements promote the evolution of ILs further
from their solvent applications to the study of novel drug delivery approaches, where stability,
absorption, and bioavailability can be improved. Furthermore, special care must be taken for the
mutual administration of ILs and APIs, since these can also induce multixenobiotic/multidrug cell
resistance and/or reduce the effectiveness of therapies, an issue that is usually not addressed in the
reported studies. More biocompatible combinations are expected to be studied and more complete
studies are still required to boost IL research and enable their use in pharmaceutical formulations.

4. ILs in APIs Crystallization

The properties of crystalline APIs, such as their solubility, structural stability, and dissolution
rates, are mainly dependent on the respective polymorphs [8,90]. Thus, designing the correct
polymorph represents a critical requirement in drug development and production as it impacts the
APIs bioavailability and shelf life. Crystallization from organic or aqueous-based reaction media is
often a key step in pharmaceuticals isolation and purification [91]. APIs polymorphs can be originated



Int. J. Mol. Sci. 2020, 21, 8298 14 of 50

from the variety of intermolecular interactions between the molecules, which are dependent on the
crystallization conditions (solvent, temperature, additives, and supersaturation) [92]. It is possible
to fine-tune the polymorphic form by adjusting the crystallization conditions, introducing guest
molecules or promoting a preferred crystal nucleation while using additives [93]. Several studies
have reported the application of ILs as adjuvants in APIs crystallization [94–96], allowing for not only
the design of new polymorphic forms, but also to manipulate the crystal form and habit to present
enhanced properties, and ultimately, to separate and isolate specific polymorphic forms that are not
achievable with conventional solvents (Figure 8). IL-based crystallization techniques, which include
solvent-antisolvent [97], cooling crystallization [98], or drowning-out [92] techniques, were proposed
in order to promote the correct habit and polymorphic forms of several drugs.
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The use of ILs has shown the possibility to design new APIs’ polymorphs with enhanced thermal
stability [92]. The IL 1-allyl-3-ethylimidazolium tetrafluoroborate ([(CH2CH=C2)C2im][BF4]) has been
applied to design polymorphs of adefovir dipivoxil, through drowning-out crystallization. This process
can be considered to be one of the most important techniques to be applied when the separation of
solutes from multicomponent solutions is envisaged [99]. This method relies on the supersaturation
of the solution by adding specific substances, drowning-out agents to the initial solution in order
to reduce the solubility of the solute. The use of the IL in the crystallization process allowed for
obtaining the form-II of the API, and upon an increase of the crystallization temperature two new
polymorphic structures and hydrated crystals form. A significant increase in the thermostability in
aqueous solutions was verified when using the IL.

By the application of the IL [(CH2CH=C2)C2m][BF4] as solvent and 1-butyl-2,3
-dimethylimidazolium tetrafluoroborate ([(C4C1C1m][BF4]) as antisolvent, a new form of adefovir
dipivoxil crystal was obtained at a crystallization temperature below 50 ◦C [97]. This new polymorphic
form was achieved due to unique intermolecular interactions between API molecules that were
promoted by the IL, resulting in different molecular packing during crystallization. However, when
considering the use of the ILs [(CH2CH=C2)C2m][BF4], 1,3-diallylimidazolium tetrafluoroborate
([(CH2CH=C2)2im][BF4]) and 1-ethyl-3-methylimidazolium ethylsulfate ([C2C1im][EtSO4]), the
conventional form-I polymorph was obtained. The possibility to use high crystallization temperatures
enabled the formation of a stable polymorph, with enhanced solubility and thermal stability over
100 ◦C (two-fold increase in the decomposition temperature). Using a similar approach, rifampicin
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nanosized particles were prepared to improve the solubility and dissolution kinetics of poorly-water
soluble APIs [100]. To this purpose, the use of the IL 1-ethyl-3-methylimidazolium methylphosphonate
([C2C1im][CH3OHPO2]) as alternative solvent and phosphate buffer as an antisolvent was considered,
allowing for obtaining API crystals with <1 µm. Reducing the particle size down to the submicron
range allowed not only a faster dissolution ability, but also to increase the APIs’ solubility by 30%.

Imidazolium-based ILs have been studied to control the crystallization of gabapentin, a neuroleptic
drug used to treat epilepsy [101]. This API presents three polymorphic forms (forms II, III, and
IV) and a hydrated form (form I) [102]. The commercialized polymorph is the form II due to
its highest thermodynamic stability [103]. However, forms III and IV are commonly obtained
through crystallization in ethanol at room or high temperature, where the form IV cannot be
completely isolated [102]. Distinct IL cation/anion combinations were studied in order to access
their ability in directing the crystallization process towards the isolation and stabilization of less stable
polymorphs [101]. Using 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6C1im][BF4]), the API
form IV was isolated, which is a highly unstable polymorph.

ILs have been investigated as well for the isolation of specific polymorphic forms of
paracetamol [94]. Imidazolium-based ILs were studied regarding their impact on the API’s solubility,
mainly by tailoring their hydrogen-bond ability with the API. Because the solubility of the API
was shown to be governed by the basicity of the IL anion, 1-ethyl-3-methylimidazolium acetate
([C2C1im][CH3COO]) was then selected for the crystallization process. The strong interactions between
the IL and the studied antisolvents (ethanol, acetic acid, and 1,1,1,3,3,3-hexafluoroisopropanol) allowed
for engineering the crystallization in the form of polymorph I (the most stable) and manipulating the
system’s interactions to obtain crystallization yields greater than 88% at room temperature.

Attempting to control the crystallization of paracetamol, Smith et al. [104] studied the ILs
[C4C1im][PF6] and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6C1im][PF6]). The selected
ILs, the respective concentration, and the method of crystal growth considered (cooling crystallization)
have shown impact on the crystal habit and size. When [C6C1im][PF6] was used at the lowest
concentration (16 mg mL−1), tetragonal bypyramids were formed; by increasing the concentration
of the IL, it was possible to move from plate particles to more tubular structures (30–69 mg mL−1)
as a consequence of growth post spontaneous nucleation. At higher concentrations, ≈ 69 mg mL−1,
particles with 23 to 206 µm were obtained.

To avoid the use of an antisolvent, Weber et al. [98] proposed the cooling crystallization in
IL media, with 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2C1im][NTf2]),
also acting as a purification methodology for twelve APIs with anti-inflammatory, antifungal and
antipyretic properties. From those, ten of the APIs proved to be highly soluble in the IL at their melting
temperature. Among the studied systems, similar or higher purities with improved yields to those
that were obtained with antisolvent crystallization were achieved, enabling the possibility to use this
method for APIs purification.

Despite the promising results reported so far and the growing interest on the use of ILs to tailor
the APIs polymorphs, there is still a gap in a systematic and comprehensive research on this topic,
particularly to better understand the IL cation and anion effects. The use of computational methods
can be an advantageous alternative to understanding the IL-API interactions driving the formation of
specific polymorphic forms and habits, as it is already performed for other conventional solvents [105].
Furthermore, the development of effective separation methods and research on techniques to avoid the
IL contamination in the final product are highly demanding.

5. ILs with Biological Activity

Because of the myriad of anion-cation combinations in ILs, these solvents may display specific
biological activities [106]. Although the application of ILs in this area is emerging, promising results
were already disclosed. Figure 9 provides an overview on the biological activities of ILs, namely
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antioxidant, anti-tumoral, and antimicrobial activity, covering some of the main types of cation-based
ILs studied so far.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 17 of 51 
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Imidazolium- and pyridinium-based ILs have been largely investigated in what regards their
antibacterial activity [107–110]. Although some exceptions may appear and have been reported, in
general, an increase in the alkyl chain length of the IL cation (1-alkyl-3-methylimidazolium based ILs
([C4-8C1im]+) and 1-alkyl-N-methylpyrrolidinium based ILs ([C4-8C1pyr]+)) leads to higher antibacterial
activity. Furthermore, ILs cations with longer aliphatic chains and more alkyl group substituents on
the cation ring exhibit higher antibacterial activity against Gram-positive bacteria (e.g.,: Staphylococcus
aureus, Bacillus subtilis) and Gram-negative bacteria (e.g.,; Escherichia coli, Pseudomonas fluorescens) and
Saccharomyces cerevisiae [110]. From these, B. subtilis demonstrated the higher susceptibility to the tested
ILs. Later studies with ILs with longer alkyl chain lengths (1-alkyl-3-methylimidazolium based ILs
([C8-14C1im]+) and 1-alkyl-N-methylpyrrolidinium based ILs [C8-14C1pyr]+)) provided further insights
on the antimicrobial activity of ILs [111]. Overall, the effect of the tested ILs against Gram-positive
microorganisms was similar or even higher than that displayed by a common antimicrobial agent,
cetyltrimethylammonium chloride. Based on the exposed, the ILs antibacterial efficiency can be tuned
by varying both the alkyl chain length and modifying the head group at the cation. The increase in the
susceptibility of these pathogens can be assigned to the ability of ILs to interact or disturb biological
membranes, which leads to cell death [112]. In all of these cases, varying the anion identity did not
reveal a significant effect on the ILs’ antimicrobial activity.

Doria et al. [113] synthesized a series of N-cinnamylimidazolium salts with different alkyl chain
lenghts (1, 6, 8, and 10 carbons), and evaluated their antibacterial activity against skin and soft tissue
infections. These ILs were synthesized while employing microwave radiation under solvent-free
conditions, attempting to minimize the environmental concerns that were related to conventional IL
synthesis. Based on antimicrobial activity studies, it was possible to verify that as the alkyl chain
is increased, the antibacterial activity increased with a dose-dependent effect. Molecular dynamics
simulation studies allowed for explaining this antimicrobial behavior, as the result of the ILs’ insertion
in the lipidic double layer, facilitating the subsequent diffusion to the intracellular space. While higher
aliphatic chain lenght ILs extend to the interior of the membrane, the lack of hydrophobicity of lower
alkyl chain lenght ILs reduces this phenomenon [113].
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More recently, predictive models for the antimicrobial and antifungal activities of ILs started
to be developed, aiming at a rational design of ILs to be included in pharmaceutical applications.
Cho et al. [114] reported six quantitative structure-activity relationship (QSAR) models, which were
developed while using linear free energy relationship (LFER) descriptors calculated by density
functional theory and a conductor screening model, to predict the minimal inhibitory concentration
(MIC) and minimal biocidal concentration (MBC) of ILs against E. coli and S. aureus. Later, QSAR and
molecular docking were applied in order to address the antibacterial activity of 131 imidazolium-based
ILs against S. aureus ATCC 25923 and its clinical isolate [115]. The developed models presented
robustness, predictive power and reliability, with 80–82% of accuracy. The obtained results reveal that
ILs with C12 alkyl chains or with two identical C8 and C9 alkyl chains seem to have higher activity
against the pathogen, and they can be foreseen to design novel strategies against this microorganism.
Attempting to investigate IL candidates as antibacterial agents, Zheng et al. [116] studied a series of ILs
by molecular dynamics. The cations of ILs were found to insert into the lipid bilayer spontaneously,
regardless of the cation types. Furthermore, imidazolium-based ILs with different alkyl chain lengths
not always keep the preferential orientation, presenting the alkyl side chain of the cations close to the
tail groups of the bilayer and the imidazolium ring close to the head groups of the lipid bilayer. This
spontaneous insertion and reorientation inside the lipidic bilayers might be the cause of disorder and
disruption of membranes and, thus, influence antibacterial activity [116].

In addition to antibacterial properties, ILs were disclosed as presenting antiviral activity.
A systematic analysis investigated the effects of defined structural elements of 55 ILs (by changing the
cation core, anion, and the length of the cation alkyl side chains) on virus activity, namely on the human
norovirus surrogate phage MS2 and phage P100, representing non-enveloped DNA viruses [117].
Imidazolium-based ILs ([C1-10C1im]Cl) did not show particular effectiveness against the phages, except
for the IL with a higher alkyl chain cation that exhibited a reduction in the phages number. The antiviral
activity shown to be IL concentration-dependent. Because the phages used in the previous study are
nonenveloped, the observed inactivation by long alkyl chain ILs could be mainly attributed to protein
denaturation (as the capsid of the phages consists of proteins), rather than membrane disturbance
typically caused by surfactant-like behavior. However, the effect of the IL anion on the antiviral activity
remains unclear.

Despite their antibacterial and antiviral properties, some ILs can present antifungal activity, even
at low concentrations (0.28 µg mL−1). Bergamo et al. [118] reported an in vitro antifungal activity
of 1-hexadecyl-3-methylimidazolium chloride ([C16C1im]Cl) against multidrug-resistant Candida
tropicalis isolates, whereas other authors [107] have shown the potential of [C6-14C1m]Cl ILs to control
planktonic bacteria and biofilm formation. ILs with tetraalkylammonium and pyridinium cations were
combined with anions that were derived from artificial sweeteners (saccharinate and acesulfamate)
attempting to pair the biological activity inherent in the cation with the anion’s biological function [119].
These ILs were tested for their antifungal activity against C. albicans. However, these ILs present
equal or decreased antifungal activity towards the microorganism than the starting compounds.
Previous findings have shown that the IL effect on fungal metabolism is more intricated than the
attribution of their activity to the ILs’ toxicity [120]. In this regard, Suchodolski et al. [121] synthesized
novel menthol-based ammonium ILs ([C10-12-Am-Men]Cl) attempting to understand the mechanisms
underlying their antifungal activity on C. albicans. As it happens for the previous mentioned works,
the antimicrobial activity increased with the increase of the alkyl chain length of the cation, being the
most effective ILs the ones that present more than 11 carbon atoms. When used at 50 µM, these ILs
cause partial decomposition of the cell wall and promote the detachment of fungal cells. These novel
ILs can be considered as disinfectants due to their antifungal activity and low hemolytic activity.

Antioxidant properties have gained interest in the pharmacological context due to the possibility to
reduce the free radicals’ concentration at skin, and thereby preventing and repairing damages caused by
oxidative stress. Some phenolic compounds present high antioxidant and anti-inflammatory activities;
however, their limited aqueous solubility represents a disadvantage towards their incorporation in
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water-rich pharmaceutical formulations and skin care products. To overcome these drawbacks, phenolic
acids have been considered as IL anion sources to increase their solubility and antioxidant activity.
However, it should be remarked that due to their action and when considered for therapeutic purposes,
these may be also considered as new active principle ingredients in the form of ILs (API-ILs), which
are discussed below. Overall, ILs have proven to possess high antioxidant activities, as summarized
in Table 2. Sintra et al. [122] synthetized five cholinium-based ILs using gallate, caffeate, vanillate,
syringate, and ellagate anions. The resulting ILs demonstrated a solubility in water ≈ 3 orders of
magnitude higher than the corresponding phenolic acids. These ILs presented not only similar, but
even higher antioxidant activities, as well as comparable cytotoxicity and lower ecotoxicity profiles
than their acidic precursors, being the most promising results obtained with the IL dicholinium ellagate.
In another study, hydroxyl functionalized ammonium dicationic ILs containing natural derived ions
and ether linkage between cationic head groups were synthesized and described as a novel form
of antioxidants, where protocatechuic acid (also known as 3,4-dihydroxybenzoic acid), a natural
compound with not only antioxidant properties but also chelation ability, was considered as anion [123].
All of the in vitro studies indicated that the antioxidant activity of dicationic ILs was significantly
higher than that of free acids or commonly used antioxidants. More recently, attempting to understand
the effect of the cation structure towards the antioxidant activity, Ahmad et al. [124] evaluated five
ferulate-based ILs with ammonium cations comprising different alkyl chain lengths. The prediction of
their antioxidant activity based on the σ-potential of the COSMO-RS model was in agreement with
the experimental DPPH free radical scavenging results, revealing that tertiary alkanolamine-based
ILs have higher antioxidant activities than secondary alkanolamine-based ILs. All of the synthesized
ILs showed higher antioxidant activities than the ferulic acid precursor, even at low concentrations
(up to 12.93 µM). In a different approach, novel ILs derived from natural sources were designed
to enhance other biological properties in aqueous solutions, such as analogues of glycine-betaine
(AGB-ILs) [125]. AGB-ILs, namely triethyl [2 -ethoxy-2-oxoethyl]ammonium bromide ([(C2)3NC2]Br),
have recently been studied regarding their potential to enhance anti-inflammatory and antioxidant
activities. These ILs allowed for increasing the antioxidant/anti-inflammatory activities of nutraceutical
extracts, being possible to use them in nutraceutical formulations.

Table 2. Antioxidant activity of ILs and comparison with reference compounds.

IL
DPPH Free

Radical
Scavenging (µM)

Reference
Compound

DPPH Free
Radical

Scavenging (µM)
Reference

2-(methylamino)ethanol ferulate 17.40

Ferulic acid 21.40 [124]

2-(propylamino)ethanol ferulate 16.61

2-(butylamino)ethanol ferulate 16.34

3-dimethylamino-1-propanol ferulate 12.93

3-diethylamino-1-propanol ferulate 14.09

Bis(ammonium) protocatechuate 5.06–5.98 Protocatechuic acid 15.83 [123]

Cholinium caffeate 2.55 Caffeic acid 1.99 [122]

Cholinium syringate 2.44 Syringic acid 2.04 [122]

Cholinium vanillate 16.03 Vanillic acid 80.46 [122]

Dicholinium ellagate 1.22 Ellagic acid 0.79 [122]

ILs have been largely tested in different cell lines in order to assess their antitumoral activity. From
these, cancer cells lines have provided relevant results towards the understanding of the ILs potential as
anticancer agents [126]. Phosphonium-, tetralkylammonium-, and, later, imidazolium-based ILs have
been tested in vitro in 60 human tumor cell lines [126,127]. Phosphonium-based ILs were found to have
higher anti-tumor activity than ammonium-based ones. Imidazolium-based ILs showed particularly
high activity against leukemia cell lines, whereas an increase in the alkyl chain length leads to significant
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improvements in antitumor activity. Thus, multiple possibilities of IL cation-anion combinations can
rule the resulting biological activity and associated cytotoxicity, playing a major role in therapeutic
applications. The apoptotic mechanism that was caused by alkyl-methylimidazolium-based ILs was
later unveiled using rat pheochromocytoma (PC12) cells [128].

As the analysis of the biological activity of ILs is strongly dependent on the organism considered,
it is important to consider a broader study for each IL in order to obtain a complete profile of its activity.
The proper cation/anion combination will allow for the synthesis of ILs with specific pharmacodynamic
properties. These ILs with biological properties can be applied not only as novel active compounds,
but ideally, and by taking advantage of their solubilization ability, be designed to enhance the solubility
of a given API and supplement and/or potentiate their therapeutic action. Furthermore, a closer look
is required towards the understanding of ILs’ distinct mechanisms of membrane binding, insertion,
and disruption.

6. API-ILs as Liquid Forms of APIs

The design of novel liquid forms of APIs where they are at least one the constituting ions in
ILs (API-ILs) is an appealing strategy to overcome the solubility, bioavailability, and polymorphism
drawbacks. Their charged and liquid state allow to overcome the melting enthalpy barrier and improve
solubility/bioavailability. The large variety of IL cation–anion combinations allows for obtaining new
drugs in the form of API-ILs with specific physicochemical and biological properties, and even to
possess dual pharmacological action. These ILs can be also obtained using oligomeric ions or by
applying the prodrug strategy to one of the ions of an API-IL. Figure 10 summarizes the options of
design for API-ILs found in the literature. During this section, several alike summarizing images will
be provided with the information collected from the works to be discussed.
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API-ILs were first reported by Rogers and coworkers [129] in 2007, with the synthesis of ranitidine
docusate ([Ran][Doc]), liquid at room temperature. Ranitidine, which is a histamine H2-receptor
antagonist, is well known for its polymorphic conversion that affects its pharmaceutical action.
The authors demonstrated its conversion into an IL form by incorporating the docusate anion, which,
in addition to overcoming the polymorphism concern, also improves the API absorption. After this
pioneering work, an increasing number of reports on API-ILs emerged over the years, where the
structural and chemical properties of the ions and a wise selection of counterions led to the formation of
IL forms of the pristine drugs, with single or dual therapeutic action [130–134]. However, it should be
taken into account that, upon dissolution, the combination of APIs with simple and inert counterions
or other active agents will dissociate in the body fluids, and the cationic and anionic components will
follow their independent pharmacokinetic and metabolic pathways [135].

API-ILs of different pharmacological classes have been reported, including the following APIs:
lidocaine [106,136], sulfacetamide [129,137], ibuprofen [137,138], indomethacin [139], procaine [136],
aspirin [131,136], salicylic acid [136], piperacillin [137], penicillin G [137], and docusate [138]. Most of
the reported works comprise the API as the anion combined with an “inert” cation, as summarized in
Figure 11, such as cholinium or phosphonium cations. These cations are mostly explored since they
are widely characterized in the literature and, especially, in the case of cholinium, this is a safe and
low-cost cation source. However, the possibility to predict if the selected ions will result in an API-IL
and their resulting properties is still a challenge to be tackled.
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In general, API-ILs exhibit improved solubility in water and bioavailability when compared with
the original and non-charged APIs. Figure 12 depicts examples of promising solubility enhancements
that are achieved by this approach, which can be advantageous alternatives for different pharmacological
classes. As an example, betulinic acid, a low-water soluble natural product with anti-cancer,
anti-inflammatory, and anti-HIV properties, has been converted into an API-IL using cholinium
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as counterion [140]. The cholinium-based derivative has a significantly higher solubility in water
than betulinic acid (by 100-fold) and its half maximal inhibitory concentration (IC50) was considerably
improved (from 60 to 22 µg mL−1), meaning that a higher ability of liberating its latent biological
activity for inhibition of HIV-1 protease. The API-IL approach has been also applied to increase the
solubility of nalidixic acid by its conversion into cholinium nalixidixate ([Ch][Nal]) and of niflumic acid
by its conversion into cholinium niflumate ([Ch][Nif]), where an increase of 3300-fold and 53,0000-fold
in solubility in aqueous media, respectively, was observed [141]. Furthermore, the in vitro study on two
human cell lines, Caco-2 colon carcinoma cells and HepG2 hepatocellular carcinoma cells, revealed that
the cytotoxicity of these APIs is preserved upon their conversion into ILs. Other poorly water-soluble
APIs, such as diclofenac, ibuprofen, ketoprofen, naproxen, sulfadiazine, sulfamethoxazole, and
tolbutamide, were converted into tetrabutylphosphonium-based ILs, and their solubility in water
as compared to the free acids and sodium salts [142]. Tetrabutylphosphonium-based ILs improve
the solubility of the corresponding API in aqueous media, where significantly higher maximum
concentrations were reached with ibuprofen (≥80-fold), ketoprofen (≥60-fold), naproxen (≥70-fold),
sulfadiazine (130-fold), and sulfamethoxazole (≥50 fold). In another study, the conversion of ibuprofen
into the IL 1-ethanol-3-methylimidazolium ibuprofenate ([C2OHC1im][Ibu]) allowed for increasing
the API’s solubility in water by 155,000-fold in comparison to the original API [143].
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Ferraz et al. [144] reported the conversion of ampicillin into ampicillin salts/ILs, including API-ILs
liquid below body’s temperature, namely trihexyltetradecylphosphonium ampicillin ([P666(14)][Amp])
and 1-hydroxy-ethyl-3-methylimidazolium ampicillin ([C2OHC1im][Amp]), as well as a water-soluble
alternative with low melting temperature (Tm = 58 ◦C), cholinium ampicillin ([Ch][Amp]). Later,
the water solubility (at room and body’s temperature) and the respective hydrophilic/lipophilic
balance of these API-ILs was evaluated [145]. The solubility for [Ch][Amp] and [C2OHC1im][Amp]
was found to be comparable to the water solubility of the respective ampicillin sodium salts and it
increased by nine-fold at body’s temperature in comparison with the pure salt, thus standing as a
competitive alternative to the marketed drug. For both ILs, an enhancement in the octanol–water
partition coefficient by 11- and 7-fold was relatively verified to the starting ampicillin. The authors also
evaluated the antibacterial activity of the prepared ampicillin-based ILs [146]. The studied ILs showed
increased growth inhibition for some Gram-negative resistant bacteria, achieving MIC values 10–1000
higher than the ampicillin salt, including the action against resistant bacterial strains. More recently,
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the anti-tumoral activity of these ampicillin-based-ILs was assessed in human cancer cell lines in order
to evaluate the possibility to have multiple and enhanced biological activity in the liquid form. To this
purpose, the anti-tumoral activity was assessed in T47D (breast), PC3 (prostate), HepG2 (liver), MG63
(osteosarcoma), and RKO (colon) cell lines [147]. [C2OHC1im][Amp] shown to be the most relevant
ampicillin-based IL, with a higher antiproliferative activity and lower cytotoxicity being associated
towards healthy cells.

Following the previous reports with ampicillin [144–147], primaquine-based ILs were synthesized
aiming to treat malaria infection [148]. Primaquine blocks disease transmission due to its
gametocytocidal action; however, its action is overshadowed by toxicity issues and by the drug’s
poor activity against blood-stage parasites. Aiming to tackle these drawbacks, the API was combined
with different cinnamates as counterions and screened against blood-stage chloroquine-sensitive and
chloroquine-resistant Plasmodium falciparum parasites. The novel API-ILs showed an increased in vitro
blood-stage activity when compared to the pure API. Later, it was discovered that primaquine-derived
ILs may contribute to increasing the API’s permeation into malaria-infected erythrocytes, behavior
that considerably diverges from that of the parent drug [149]. This trend was explained based on more
pronounced electrostatic interactions of the charged anti-malarial drugs with the polar head groups of
the phospholipids in the erythrocyte membranes, thus potentiating treatment efficacy [149].

The possibility of replacing the “inert” counterion of an API-IL by a second API may lead to
dual therapeutic function ILs. However, the physicochemical and pharmaceutical properties of both
APIs in the API-IL form, i.e., the resulting melting temperature, solubility, bioavailability, and stability
will most likely be different for the two APIs in comparison to the precursors, and their adequate
characterization is mandatory. Both lidocaine and etodolac, in the form of lidocainium etodolac
([Lid][Eto]), can exhibit superior water solubility than both APIs alone, with an increase of >90-fold
for etodolac and two-fold for lidocaine [150]. Rogers and co-workers reported the enhancement of
aqueous solubility, thermal stability and topical analgesic effect of lidocainium docusate ([Lid][Doc]) in
comparison with the parent API (lidocaine hydrochloride)[129]. Lidocaine is known for its anesthetic
effect, where docusate was selected due to its action as dispersing agent in formulations. Studies of
anti-nociception in mice suggested that [Lid][Doc] produces a longer duration of antinociceptive effect
than the original APIs. The longer pain relief afforded by this API-IL is provided by the synergistic
effect of both APIs that impact pharmacokinetic, resulting in a different mechanism of action with
higher therapeutic efficacy. The bioavailability of [Lid][Doc] was later addressed in vivo through its
transdermal application on Sprague–Dawley rats [151]. The concentration of lidocaine in blood plasma
was evaluated over time after the topical application of creams containing 5.0 wt% of [Lid][Doc].
However, the total systemic lidocaine absorption was almost undetectable even after 240 min. of the
transdermal application. Despite the fact that many APIs display higher solubility in water and higher
therapeutic efficacy when solubilized in ILs or when converted into ionic liquid salts, addressing the
in vivo bioavailability of the developed formulations is a crucial requirement.

The conversion of APIs into liquid forms as API-ILs may not always require a stochiometric
approach. Oligomeric ion formation can be a possible alternative [152]. The preparation of oligomeric
API-ILs, which are hydrogen-bonded moieties that include both the ions and the neutral non-ionized
material, may contribute to the expansion of liquid drug formulations by simply changing the
stoichiometry and/or complexity of the ions, i.e., by introducing the free acid/base of the conjugate
base/acid within the salt formulation, thus lowering the API’s melting point [22]. This concept
was first introduced in 2010, by Bica and coworkers [153], with tetrabutylphosphonium salicylates,
([PBu4][Sal]nHm−1). The combination of tetrabutylphosphonium hydroxide and salicylic acid beyond
one equivalent originated several liquid compositions in a range of [PBu4][Sal]1.3–3H0.7–2, where the
proton transfer is stronger. This behavior can be explained by the formation of hydrogen-bonded
dimer complexes between salicylic acid and the salicylate anion, which can reach the composition of
[PBu4][Sal]3H2 (Figure 13). MacFarlane et al. [154] presented a library of nine compounds and also
four oligomeric API-ILs were synthesized and prepared. Benzoic, salicylic, and gentisic acids were
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chosen for this study, as these are frequently found in pharmaceutical formulations. These oligomers
may modulate membrane transport properties in vivo, enabling a higher permeability of APIs in this
form than the starting materials.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 24 of 51 
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Another way of enhancing the APIs therapeutic action and their delivery is by the prodrug
approach. The prodrug concept has been refined over the years, and, nowadays, is defined by IUPAC
as any compound that undergoes biotransformation before exhibiting pharmacological effect [155].
A prodrug only has activity after enzymatic and/or chemical transformation in vivo in order to
release the active parent drug into the therapeutic target [156]. The prodrug strategy may enable
the optimization of several drug properties, i.e., achieve higher stability, improved solubility and/or
increased permeability. Yet, solid prodrugs can suffer from the same problems as any solid API and
notably polymorphism [157]. Therefore, the combination of API-IL advantages with a prodrug strategy
can be an appealing alternative to enhancing the APIs efficacy. The functionalization of APIs with
easily biochemically cleavable (e.g., by hydrolysis) ionic functional moieties, which can be combined
with selected counterions, is the basis of prodrug API-IL development. Similar to other IL strategies, it
is possible to design the prodrug API-IL for a specific therapeutic purpose by the proper selection of
the counterion, which may also include a second API (dual-function prodrug) or even a permeation
enhancer [22,158]. A reported example of this approach encompasses liquid paracetamol-based drugs
combined with imidazolium, pyrrolidinium, pyridinium, and phosphonium paired with docusate
(Figure 14) [158]. The resulting prodrugs present lower water solubilities than the neutral paracetamol
and slower release profiles in aqueous media. These differences in the paracetamol derivative properties
may be advantageous for the development of controlled release systems. The promising results that
were obtained with paracetamol may boost the study of this strategy for other APIs.
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Despite being shortly explored, prodrug API-ILs can be designed to target specific tissues.
Following this notion, a promising protecting-group-free synthesis for the modification of tertiary-
and heteroaryl-amine containing complex small molecules with quaternary-ammonium linkers has
recently been proposed as a chemoselective approach for targeted delivery [159].

The diversity in the API-IL toolbox stands as a unique possibility to provide new biologically
active combinations that must be properly investigated. The largest fraction of published works focus
on enhancing the APIs solubility; however, the assessment of in vitro and especially in vivo studies
of API-ILs are still less reported. Furthermore, the lack of pharmacokinetic and pharmacodynamic
studies with new API-ILs hinders the understanding of the changes on the therapeutic action, the
metabolic pathways that are involved in their uptake and the alterations in toxicity in comparison
with the precursor API. This gap might be partially attributed to the lack of guidelines from the
pharmaceutical entities for API-ILs, which makes difficult their formulation and correct testing as new
drugs. Establishing these lines will allow for overcoming these drawbacks and also considering other
challenges, such as the scale-up, purification, stability, and delivery of liquid forms of therapeutics.

7. IL-Based Drug Delivery Systems

In the field of drug delivery, ILs have been applied as novel pharmaceutical forms (API-ILs)
and the respective drug delivery appraised, and as solvents or as polymerizable monomers for the
development of polymer drug delivery systems [75,79,80,160–166]. ILs are excellent solvents for a
wide range of biopolymers, such as proteins [167,168], DNA [169,170], and polysaccharides [171–173],
being used in their processing into films and micro and nanoparticles with potential for drug delivery.
Additionally, ILs have shown promising ability to functionalize ionogels, opening new routes for
designing advanced materials, including their use as drug release systems [174,175]. Figure 15 depicts
the versatility of ILs in the development of novel drug delivery systems. Adding up to existing reviews
on this area [30,161,176], our discussion focuses on the advances made for each type of administration
route. The selection of the administration route is mostly dependent on the physicochemical properties
of the API (e.g., melting temperature, molecular weight, polarity, solubility, etc.), its pharmacokinetic
profile and ultimately the intended target site of action [6,177]. This selection is also dependent on
other factors, such as invasiveness, where non-invasive routes of administration are preferable.
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7.1. Intravenous Drug Delivery

Intravenous drug administration is a preferable choice when aiming to bypass biological absorption
barriers [178]. The selection of this route offers several advantages, since it provides the most complete
drug bioavailability with a minimal delay. Foreseeing intravenous drug delivery applications, ILs have
recently been explored for the development of polymer nanocomplexes. In this field, the conjugation
of SAILs with chitosan was studied [179]. The SAILs 1-butyl-3-methylimidazolium octylsulfate
([C4C1im][C8OSO3]) and 3-methyl-1-octylimidazolium chloride ([C8C1im]Cl) induced the formation
of chitosan nanoparticles at low concentrations. While the negative charge of the counter ion Cl- of
[C8C1im]Cl could promote the IL-chitosan agglomeration (particles size of 450 nm), [C4C1im][C8OSO3]
allowed for the formation of particles with smaller size due to stronger electrostatic interactions
between the positively charged chitosan chain and [C8OSO3]- ions (particles with 300 nm). Thus, work
focused on the preparation and characterization of these particles; however, further studies regarding
the encapsulation and release profile of a selected drug from these particles, as well as the knowledge
of their cytotoxicity profile, are required issues to better appraise their potential in drug delivery. More
recently, the IL 1-butyl-3-methylimidazolium acetate, ([C4C1im][CH3COO]), was applied as solvent
media for the synthesis of an amphiphilic derivative of a chitosan oligosaccharide grafted with linoleic
acid-(LCOS), followed by self-assembly in aqueous media [180]. The use of the IL allowed for a higher
degree of grafting when compared to the values obtained with a conventional procedure using DMSO.
It was then possible to obtain ibuprofen-loaded LCOS micelles in aqueous solution with an average
size lower than 200 nm, suitable for intravenous administration. Despite the possibility to recover and
reuse the IL from the reaction media, the cytotoxicity of the loaded LCOS micelles was not assessed.

In a different approach, polydopamine nanoparticles that were loaded with doxorubicin and the IL
[C4C1im][PF6] were recently developed for cancer treatment (Figure 16) [181]. The IL was employed as a
microwave sensitizer to prepare these novel nanoplatforms for combined chemotherapy and microwave
thermal therapy by intravenous administration. The antitumor efficacy of doxorubicin-loaded
IL-polydopamine nanoparticles was demonstrated in in vitro and in vivo experiments in the treatment
of tumors in mice, after intravenous injection via tail vein. The referred nanoparticles exhibited high
inhibition effect when combined with the microwave thermal irradiation, acting in the tumor ablation
without inducing significant tissue toxicity.
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Micelles self-assembled from amphiphilic block copolymers were proposed for the administration
of prednisone, a glucocorticoid that was mostly used to suppress the immune system [182]. To this
end, the IL 1-allyl-3-methylimidazolium chloride ([(CH2CH=C2)C1im]Cl) was used as solvent in order
to prepare cellulose grafted with polylactic acid by ring opening graft polymerization of l-lactide.
Colloidal solutions comprising micelles of cellulose-g-PLLA were prepared in aqueous media by
a membrane-dialysis method. The resulting micelles exhibited spheric morphology within a size
range of 30–80 nm, and allowed for sustained drug release. The IL removal and the cytotoxicity
evaluation in 3T3 mouse fibroblasts cell line showed low toxicity towards cells, reinforcing their
potential applicability as drug carriers.

ILs can be used to form IL-in-oil (IL/O) [183], IL-in-water (IL/W) [79,184], oil-in-IL (O/IL), and
water-in-IL (W/IL) [185] emulsions. The possibility to manipulate and design the IL structure
allows for the use of IL-based vesicles and micelles as novel carriers of low-water soluble APIs.
Accordingly, hydrophobic nontoxic ILs were used to prepare novel IL/W nanoemulsions for intravenous
administration of amphotericin B [186]. Amphotericin B is an antifungal agent that, due to its
low-water solubility (<1.0 µg mL−1) and self-aggregation in aqueous media, presents undesired
side-effects, thus being its intravenous drug delivery a challenge. In a preliminary study, high
contents (>5.0 mg mL−1) of the API were solubilized in a new hydrophobic dicholinium-based IL
with the bis(trifluoromethanesulfonyl)imide ([NTf2]−) anion. The mixture of this hydrophobic IL
with a hydrophilic cholinium-based IL resulted in the solubilization of the drug, preventing the
concentration-dependent aggregation with controlled release of the API. Despite the maintenance of
the antifungal activity of the API, and the low toxicity towards embryo-larval zebrafish models, further
studies are required in order consider this formulation adequate for intravenous administration.

7.2. Oral Drug Delivery

The challenges that are faced in oral drug delivery are primarily related with the API’s poor
bioavailability, i.e., related with the API’s dissolution, permeability, and solubility. An example
of using ILs in the development of oral drug delivery systems comprises their application as
monomers in the synthesis of positively charged polymers loaded with naproxen, in the form of
an anionic API [187]. The drug delivery systems were prepared by free radical polymerization
while using two IL monomers, 1-(4-vinylbenzyl)-3-methyl imidazolium hexafluorophosphate
and 1-(4-vinylbenzyl)-4-(dimethylamino)-pyridinium hexafluorophosphate, and methyl styrene.
The resulting positively charged polymers were loaded with naproxen and provided a controlled release
of the API, avoiding the delivery in acidic and neutral media (pH 2–6.5). Given their pH-dependent
behavior, these systems can be envisaged to target the intestine delivery. Similarly, ILs with a
pH-sensitive character have been used in order to modify positively charged silica nanoparticles for
oral delivery of methotrexate, a chemotherapeutic drug [188]. Imidazolium-based ILs were grafted
to silica nanoparticles that were also grafted with polymethacrylic acid to form stimuli-responsive
nanoparticles. These systems allowed for high drug encapsulation efficiencies (76%) due to the strong
electrostatic interactions established between the nanoparticles and the API. Recently, cholinium
geranate ([Ch][geranate2(H)]) has been used for insulin solubilization as a novel formulation for the
administration of this API [189]. The IL-based insulin formulation was coated with Eudragit L-100
and orally administrated, exhibiting a promising, in vivo, pharmacokinetic and pharmacodynamic
outcome. The respective oral bioavailability of the IL-insulin formulation was found to be 51% relative to
subcutaneous injection of insulin. When orally administrated, this formulation significantly enhanced
the paracellular transport of insulin, protecting it from enzymatic degradation, which resulted in a
sustained decrease in blood glucose down to 45% in 2.5 h. This delivery system was also investigated
for its cytotoxicity and stability, showing no relevant toxicity and a constant stability over two months
at room temperature and for at least four months under refrigeration. Despite tolerability tests still
being required to establish a direct comparison between this system and the injection administration
of insulin, the possibility to develop alternative and less invasive routes of administration must
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be highlighted as an advantage of the use of ILs for delivery purposes. Additionally, this type of
formulations preserves the API structure, avoiding immunological reactions or loss of the API in a
multistep system development.

In a different approach, API-ILs have been incorporated in carrier materials for the development of
IL-based oral drug delivery systems. For instance, tetrabutylphosphonium ibuprofenate ([P4444][Ibu])
and lidocainium ibuprofenate ([Lid][Ibu]) were successfully immobilized into mesoporous silica
particles for a fast and complete API release when placed into an aqueous environment, where
approximately within 5 min. all IL was released from the solid support [190]. Zhang et al. [191] proposed
an all-in-one concept for the application of API-ILs as drug delivery systems. The pharmaceutically
active IL itself works as both the carrier and the active drug. The API-IL self-assemble into vesicles
in aqueous solution due to the combination of an anionic surfactant (sodium dodecylsulfate) with a
cationic drug with anti-depressive properties (amitriptyline hydrochloride) (Figure 17). Furthermore,
the referred IL-based vesicles have high drug loading contents, an advantage over conventional drug
delivery systems. Also, it was possible to control the release profile of the API, moving from a total
release of 74% and 82% to 28% and 32% in just 2 h, using the correspondent API-IL, at pH 7.4 and
pH 1.2, respectively.
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Itraconazole and cinnarizine were converted into lipophilic ILs (cinnarizine decylsulfate,
itraconazole dioctyl sulfosuccinate) aiming to facilitate their incorporation into lipid-based
formulations [192]. The resulting API−ILs were completely miscible or highly soluble in lipid-based
self-emulsifying drug delivery systems (SEDDs). These systems, composed of long or medium chain
glycerides, surfactants, such as Kolliphor-EL, and cosolvents, like ethanol, were easily incorporated
into lipid-based formulations for in vivo oral drug delivery. The pharmacokinetic evaluation upon the
administration of SEDDs revealed higher drug plasma exposure for the API-IL formulations (2-fold for
cinnarizine and 20-fold for itraconazole) in comparison with the SEDDs with the respective parent
APIs. The use of API-ILs for the development of these formulations enabled obtaining liquid SEDDs,
increasing the oral exposure to the API. The increase in the drug absorption is enabled by the increase
in the APIs’ solubility and by promoting the gastrointestinal lipid absorption pathways. The design of
the IL structure was also employed for optimization of the solubility of danazol, an API used in the
treatment of endometriosis and fibrocystic breast disease, and itraconazole, an antifungal drug [77].
Like many other low-water soluble APIs, itraconazole and danazol present low-water and lipidic
solubilities. Such conditions hinder the selection of formulation excipients that can enhance these
drugs’ bioavailability. The solubility of danazol and itraconazole was increased 20-fold and >500-fold
using 1-hexyl-3-hexyloxycarbonylpyridinium dicyanamide ([C6C6OCOpy][N(CN)2]), when compared
to its solubility in soybean oil (a common lipid excipient). These solubility enhancements surpass
those that were provided by using co-solvents like PEG and ethanol. The oral administration of the
danazol-containing self-emulsifying IL formulation rises up to 4.3-fold the API’s bioavailability when
compared to the respective crystalline drug. Not only the absorption of the API was improved, but also
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its release sustained, as the formulation prolonged the plasma exposure to the API when compared
with the respective lipid formulation.

7.3. Topical and Transdermal Drug Delivery

When considering the topical application of APIs, the drug delivery system must target one
or more different skin layers and underlying tissues, or skin associated structures (sebaceous or
sweat glands, etc.) [193]. Transdermal drug delivery, in particular, aims to reach systemic circulation,
representing an alternative to parenteral and oral routes, while avoiding pre-systemic metabolism [194].
Despite being just recently explored, ILs have been studied as promising pharmaceutical agents
or formulation components in order to tackle the challenges in topical and transdermal delivery
systems, presenting a wide range of applications, as illustrated in Figure 18 [195]. ILs have been
investigated in microemulsions, nanoparticles, (bio)polymer-based drug delivery systems (e.g., patches
and membranes), and as permeation enhancers aiming to deliver poorly water-soluble drugs at topical
and transdermal level, as summarized in Table 3.
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Microemulsions have been proposed in order to improve transdermal delivery, especially
when comprising ILs. A single IL can replace different components in a given drug formulation,
by substituting the oil, water or surfactant phase in microemulsions, acting as the permeation enhancer
and/or being the API itself, as aforementioned. Furthermore, the fine-tuning of SAILs allows for
manipulating the structure and dynamics of their micellar aggregates, making these ILs promising
vehicles for APIs delivery due to their ability to enhance the solubility and specially the permeability
of the drug across biological membranes.
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Table 3. IL application in topical and transdermal strategies.

Strategy IL IL Role API Reference

Micellar system [C14C1im]Br Surfactant

Dopamine
hydrochloride
Acetylcholine

chloride

[196]

Micellar system [C12C1im]Cl Surfactant Ibuprofen [87]

Micellar system [C12C1im]Cl
[C14C1im]Cl Surfactant Lidocaine

hydrochloride [197]

Microemulsion [C6C1im]Cl
[C4C1im][PF6] Aqueous/Oil phase Reichardt’s dye

(drug model) [29]

Microemulsion [C4C1im][PF6] Oil phase Etodolac [79]

Microemulsion [C1C1im][(CH3O)2PO2] Aqueous phase Acyclovir [198]

Microemulsion

[Ch][formate]
[Ch][lactate]

[Ch][propionate]
[Ch][oleate]

Non-aqueous
phase; Surfactant in

oil phase
Acyclovir [199]

Microemulsion [C1C1im][(CH3O)2PO2] Aqueous phase Methotrexate [200]

Microemulsion [C2OHC1]Cl
[C1C1im][C12SO3]

Aqueous phase;
Surfactant phase Dencichine [201]

Bacterial
nanocellulose
membranes

[Ch][Caf]
[Ch][Gal] API Caffeic acid

Gallic acid [202]

Bacterial
nanocellulose
membranes

[Ch][Ibu]
[Ch][Nap]
[Ch][Ket]

API
Ibuprofen
Naproxen

Ketoprofen
[203]

Bacterial
nanocellulose
membranes

[Ch][B3]
[Ch][B5]
[Ch][B6]

API
Niacin

Pantothenic acid
Pyridoxine

[204]

Patch [Lid][Eto] Dual API Lidocaine
Etodolac [205]

Polyvinvylidene
fluoride membrane

[Lid][Nap]
[Lid][Ibu]
[Lid][Dicl]

Dual API
Naproxen
Ibuprofen
Diclofenac

[206]

PLGA
nanoparticles

[Ch][Phe]
[Ch][Glu] API solubilization Rutin [207]

Permeation
enhancers

[C8im]Cl
[C1C8im]Cl

[C1C1C8im]Cl

Membrane
disruption Testosterone [208]

Permeation
enhancers [ProOEt][Ibu] API Ibuprofen [209]

Permeation
enhancers

[mPEG3N444][Sal]
[HN444][Sal]

[Ch][Sal]
[C1Pyrr][Sal]

API Salicylic acid [210]

Permeation
enhancers [Ch][geranate2(H)] API Geranic acid [211]

The design of IL-excipient with tunable lipophilicity/hydrophilicity character is advantageous,
especially when used as a solubility-enhancing agent for complex amphiphilic APIs, like amphotericin
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B and itraconazole, which are antifungal drugs [76]. Mahajan et al. [196] studied the performance
of the SAIL 1-methyl-3-tetradecylimidazolium bromide ([C14C1im]Br) as a drug carrier, and then
compared it to a conventional cationic surfactant tetradecyltrimethylammonium bromide (TTAB).
[C14C1im]Br revealed not only superior surface activity, but also acts as better drug carrier of APIs,
namely dopamine hydrochloride and acetylcholine chloride, than the traditional TTAB. Further,
Sanan et al. [87] established the effect of the aggregate morphology and dilution on the micellar
transition of [C12C1im]Cl and ibuprofen mixtures. The transition is driven by the release of the API
from the mixed micelles due to the solubility disparity between both components. Similar SAILs,
[C12C1im]Cl and 1-methyl-3-tetradecylimidazolium chloride ([C14C1im]Cl) have shown capability
to form aggregates with lidocaine hydrochloride, improving the drug’s dissolution into aqueous
media [197]. Furthermore, the reported thermal stability of nonaqueous IL microemulsions (up to
150 ◦C) was shown to be compatible with sterilization processes, an advantage over conventional
formulations [212]. All of the described works envisioned the application of the studied emulsions
in transdermal and topical drug delivery; however, permeation studies on skin models were not
conducted for evaluating the ability of these systems to improve dermal delivery.

The influence of imidazolium-based ILs on the properties and stability of oil-in-water (W/O)
and water-in-oil (O/W) emulsions was investigated by Dobler et al. [29] using a fluorescent probe,
namely Reichardt’s dye, as a drug model. A hydrophilic IL, 1-hexyl-3-methylimidazolium chloride
([C6C1im]Cl), and a hydrophobic IL, [C4C1im][PF6], were incorporated as water and oil phase
components, respectively, resulting in stable formulations. Skin permeation across pig’s ear skin was
studied in vitro on Franz glass diffusion cells. A permeation enhancement was observed when using
these formulations due to the disruption of the lipidic bilayer packing by the ILs used. These ILs present
antimicrobial activity and preservative efficacy within these formulations, being possible to fulfil the
requirements as novel preservatives. Similar ILs where studied for an IL/W microemulsion designed
for etodolac’s topical delivery [79], which is used in the treatment of inflammation and pain that are
associated with rheumatoid arthritis and osteoarthritis [213]. The prepared microemulsion was based
on [C4C1im][PF6], Tween 80 as surfactant, and ethanol as co-surfactant. The IL/W-based formulation
was able to efficiently enhance the solubility and ex-vivo permeability of the API for its transdermal
delivery [79]. Skin penetration was evaluated while using the fluorescent dyes sodium fluorescein
(a hydrophilic fluorescence marker) and Nile red (lipophilic), which in the presence of ILs revealed a
more efficient penetration into the deeper skin layers. Likewise, in-vivo pharmacodynamic evaluation
showed improved anti-arthritic and anti-inflammatory activities in comparison to O/W microemulsions
and marketed etodolac’s formulations, exhibiting the high capability of these formulationsin order to
enhance the API’s performance.

The first IL-based microemulsion reported for transdermal delivery aimed to improve membrane
transport of a sparingly soluble API, namely the antiviral drug acyclovir [198]. In this work, a blend of
two nontoxic surfactants, Tween-80 and Span-20, was used in combination with imidazolium-based
ILs to form stabilized IL droplets. In the referred microemulsion, the external phase (oil phase) is
constituted by isopropyl myristate (Figure 19). Among the investigated ILs, dimethylimidazolium
dimethylphosphate ([C1C1im][(CH3O)2PO2]) presented superior ability to dissolve the selected API
and form more stable droplets in the formulation. This improvement was justified by the hydrogen
bonding interactions between the polar groups of acyclovir and the IL anions. The in vitro study across
Yucatan micropig porcine skin (performed on Franz diffusion cells), allowed for verifying an increase
in acyclovir’s skin permeability of several orders of magnitude, as well as the API’s transdermal
permeation when using the IL/O system as drug carrier.
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Cholinium-based ILs comprising anions that were derived from carboxylic acids were also used in
IL/O microemulsions to increase the transdermal delivery of acyclovir, as non-toxic and non-irritating
alternatives [199]. Hydrophilic ILs (cholinium formate, cholinium lactate and cholinium propionate)
were used as the non-aqueous polar phase and a surface-active IL (cholinium oleate) as the surfactant
in combination with a co-surfactant, Span 20, in a continuous oil phase. An enhancement in skin
permeation due to the modification and disruption of the regular arrangement of the corneocytes
of the stratum corneum was observed, and related to the ionic character of the IL. Cytotoxicity tests
revealed a high cell survival rate (>90%) in comparison with Dulbecco’s phosphate-buffered saline
solution, highlighting the potential of these formulations as low toxic drug carriers. Similarly, the
IL [C1C1im][(CH3O)2PO2] was used in an IL/O microemulsion in order to improve the transdermal
delivery of the sparingly soluble chemotherapeutic methotrexate [200]. In this work, drug permeation
across a similar skin model to the previous enounced was evaluated, revealing a significant transdermal
permeation of the API in comparison to the application of other typical O/W and O/W formulations.
IL-based microemulsions were also developed for enhancing the skin permeation of dencichine, a
haemostatic agent [201]. An initial screening with fourteen imidazolium-based ILs was performed, from
which 1-(2-hydroxyethyl)-3-methylimidazolium chloride ([C2OHC1im]Cl) and dimethylimidazolium
dodecanesulfate ([C1C1im][C12SO3]) were selected and incorporated into the aqueous and surfactant
phases, respectively, with an enhancement on skin permeation of approximately 10-fold. However,
despite that the in vivo pharmacodynamic activity was found to be in good correlation with the in vitro
permeability, hemostatic activity studies revealed no statistic difference between these formulations
and dencichine aqueous solution.

The application of API-ILs represents an advantage in the design of topical delivery systems due not
only to the possibility of providing new biologically active combinations and enhancing the therapeutic
action, but also due to the possibility to enhance the transdermal delivery of pharmaceuticals. The use
of API-ILs might allow significant developments in delivery systems, since these can be designed to
self-aggregate, trapping the drug in a micelle, or to display tunable hydrophilic-lipophilic balance
to potentiate the drugs permeation. In addition to the incorporation of ILs into microemulsions as
transdermal drug delivery systems, the combination of API-ILs with polymers and biopolymers has
been recently investigated. Morais et al. [202] synthesized cholinium-based ILs paired with anions that
are derived from phenolic acids, namely gallic, caffeic, and ellagic acids. These ILs were incorporated
into bacterial nanocellulose membranes (BC). The developed drug delivery systems showed superior
antioxidant activity to the starting materials, and with controlled diffusion of the active compounds from
the wet membranes. The obtained results demonstrated that the dissolution profiles were essentially
governed by the solubility of the ILs rather by their interactions with the BC nanofibrils. For both
BC-[Ch][Caf] and BC-[Ch][Gal] wet membranes, approximately 70% dissolution of the IL content in
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membranes was reached after 6 h. Regarding the cytotoxicity of these delivery systems, it was shown
that they do not cause any decrease in cell viability at the concentrations investigated. Additionally,
the exposure of cells to BC-ILs membranes significantly decreases the LPS-induced NO production,
indicating a relevant anti-inflammatory and antioxidant potential (Figure 20). The permeation flux
of both API-ILs from the BC membranes was assessed in vitro in human epidermal skin, at body’s
temperature, on Franz diffusion cells. The skin permeation assay showed the possibility to obtain a
slow and sustained release profile while using these drug delivery systems over 5 h of administration.
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Chantereau et al. [203] later incorporated NSAID-based ILs also into BC membranes envisaging
their use in transdermal drug delivery systems. These [Ch][NSAID] ILs allowed for increasing up to
100-fold the solubility of the respective NSAID precursors (ibuprofen, naproxen and ketoprofen) in
aqueous media. The impregnation of BC membranes with these ILs also increased, by 18 to 26-fold,
the rehydration ability of the membranes, allowing their potential application on the absorption of
exudates. Giving the obtained results, the developed systems are promising alternatives for the design
of transdermal patches for anti-inflammatory drugs delivery. More recently, the same researchers
investigated the possibility to develop membranes that were loaded with vitamin B-based ILs for
dermal applications [204]. Three ILs, namely cholinium nicotinate ([Ch][B3]), cholinium pantothenate
([Ch][B5]), and cholinium pyridoxylate ([Ch][B6]), were also synthesized and incorporated in BC,
resulting in more thermally stable forms for the vitamins without toxicity associated for skin cells.
The solubility of these ILs in aqueous media was higher than their vitamin precursors, with solubility
enhancements up to 30.6-fold. The increase on the re-hydration ability of BC-IL membranes, allowed
for obtaining a complete and faster release profile of ILs in aqueous media than the release of the
precursor vitamins. These ILs also displayed a plasticizing effect on the BC membranes, favoring the
application of these systems on irregular skin regions.

The IL [Lid][Eto] has been incorporated into a topical delivery system [205]. The patch (Etoreat),
studied by IL Pharma Inc. (MEDRx, Kagawa, Japan), contains the only API-IL that has reached
clinical trials. This API-IL based patch for alleviating pain caused by inflammation was tested for the
treatment of ankle sprains and low back pain, due to its enhanced skin absorption. However, due to
the lack of statistic significant results between Etoreat and placebo administration, its further stage
of development was suspended. In addition to this example, other dual-active API-ILs have been
considered for improving transdermal delivery of analgesic and anti-inflammatory APIs in wound
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healing [206]. Lidocainium naproxen ([Lid][Nap]), [Lid][Ibu], and lidocainium diclofenac ([Lid][Dicl])
were synthesized, which resulted in liquid mixtures at room temperature. These API-ILs displayed
significantly higher solubility in aqueous media than the parent APIs, except for [Lid][Dicl]. These
ILs were then incorporated into a bilayer wound dressing, which was composed of a hydrophobic
polyvinylidene fluoride membrane that acts as a drug reservoir and a biocompatible hyaluronic
acid layer. The assessment of anti-inflammatory activity revealed similar therapeutic efficacy when
compared with the original APIs, through the inhibition of LPS-induced production of nitric oxide and
prostaglandin E2 by macrophages. These systems enable higher permeation of both APIs in API-IL form
than the parent APIs without compromising the fibroblasts proliferation. Furthermore, the hyaluronic
acid that was used in these systems played a protective effect on the cytotoxicity since it minimized
the potential antiproliferative effects attributable to the APIs, allowing the simultaneous delivery of
anti-inflammatory and analgesic drugs to the injured area without compromising skin regeneration.

ILs were also studied as solubility enhancers in conjugation with polymers as novel nanoparticle
hybrid systems for the delivery of poorly water-soluble drugs [207]. Two amino-acid-based ILs,
namely cholinium phenylalanine ([Ch][Phe]) and cholinium L-glutamine ([Ch][Glu]), were used in
blends with poly-(lactic-co-glycolic acid) (PLGA) that was loaded with rutin, which shows antidiabetic,
antihypertensive, and antilipidemic activities. These systems allowed for a drug loading capacity
higher than 50% for both ILs, and up to 76% for [Ch][Phe] while using only 0.2% (v/v) of IL. The systems
provided a sustained release of rutin, with 85% released after 72 h, without toxicity to associated
skin cells.

Zhang et al. [208] used testosterone as a model drug to investigate the transdermal delivery
enhancement provided by twenty imidazolium-based ILs. The conducted study revealed an
interdependence between the API permeation enhancement and the structure and composition
of the IL. ILs with longer alkyl side chains (N-octylimidazolium chloride ([C8im]Cl)), 1-octyl-3-methyl
imidazolium chloride ([C1C8im]Cl) and 1-octyl-2,3-dimethyl imidazolium chloride ([C1C1C8im]Cl))
led to higher transdermal delivery enhancements. Additionally, the number of alkyl groups at the
cation, as well as the anionic constitution, was demonstrated to have an impact on the drug penetration
through skin. However, this trend follows the cytotoxicity profile and disruptive character of ILs with
longer alkyl chain lengths, in which the most cytotoxic compromise in a larger extent the structural
integrity of biological membranes. The enhancement of API permeation was attributed to the change
in skin permeability, rather than the change in drug concentration. Evaluations by ATR-FTIR and
atomic force microscopy of skin membrane indicated that the ILs can disrupt the regular and compact
arrangements of the corneocytes, altering the skin structure to a more permeable state. Although this
mechanism was not observed for all ILs, further information must be gathered in order to properly
understand the process of the interaction between these ILs and skin cells to better design IL-based
permeation enhancers. This subject has been addressed by Jing and coworkers [214], which confirmed
that amphiphilic ILs could disrupt the lipid bilayer by IL insertion, endcapping the hydrophobic edge of
the lipid bilayer, and eventually disintegrating the membrane (Figure 21). This destabilization is directly
related with the IL concentration, the length of the IL cation alkyl chain, and anion hydrophobicity,
which are also correlated with the IL cytotoxicity. Hydrophilic and hydrophobic ILs seem to act on the
APIs transportation through the stratum corneum by different mechanisms [215]. While hydrophilic
ILs, particularly imidazolium-based ones, fluidize the cell membrane in order to create pathways for
the diffusion of molecules (paracellular transport), hydrophobic ILs, on the contrary, modify the APIs
partitioning by providing channels through biological membranes (transcellular transport) [211,216].
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Different ILs that were based on carboxylic acids [217], aliphatic amines, amino acids [209,218] and
polyethylene glycol derivatives [210] have been also studied as alternative permeation enhancers. An
amino acid ester (proline ethylester) was used in combination with ibuprofen as a novel API-IL (proline
ethylester ibuprofenate ([ProOEt][Ibu])) to improve transdermal delivery [209]. An approximately
10-fold enhancement in the cumulative amount of API was achieved at 96 h when compared with the
control sample while using [ProOEt][Ibu].

ILs generated by a neutralization reaction between aliphatic carboxylic acids (octanoic acid or
isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) were proposed in
order to study the mechanism of permeability enhancement of model hydrophilic and hydrophobic
APIs [217]. The model formulation containing these ILs exhibited a more pronounced permeation
enhancement under acidic excess conditions than under neutral environments. Despite that these
formulations displayed superior controlled release for the hydrophilic model API, the mechanism
that was responsible for this behavior was not further explored. Later, the difference between
API-ILs transport across membranes and the respective commercial sodium salts was studied for
salicylic acid [210]. The membrane transport ability and rate of the ILs triethylene glycol monomethyl
ether tributylammonium salicylate ([mPEG3N444][Sal]), tributylammonium salicylate ([HN444][Sal]),
cholinium salicylate ([Ch][Sal]), and 1-methylpyrrolidiniumsalicylate ([C1Pyrr][Sal]), as well as the
respective sodium salt (Na[Sal]) and neutral form (HSal), was evaluated while using a Franz diffusion
cell system. The cation influence in the efficiency of the membrane transport was also highlighted, as
[mPEG3N444][Sal] showed a transport enhancement by ~2.5-fold in comparison to PEG-free cations.

Zakrewsky et al. [211] investigated the application of ILs in a multiple context for drug delivery,
where the IL [Ch][geranate2(H)] was used not only to improve transdermal delivery, but also to
tackle skin biofilm-protected microbial infections. This IL allowed to increase by 16-fold the delivery
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of a model antibiotic, cefadroxil, into deeper skin layers when compared to its aqueous solution.
The potential clinical efficacy of the IL formulation was accessed in vivo based on its antimicrobial
activity against biofilm-infected wounds. [Ch][geranate2(H)] enabled reducing Pseudomonas aeruginosa
and Salmonella enterica bacterial viability by >95% after 2 h. The IL ability to disrupt the bacterial biofilm
allowed for delivering the antibiotic with increased efficacy, improving the pathogens susceptibility to
the antibiotic.

For topical and transdermal, as it happens for intravenous and oral delivery systems, it is
important to understand and better evaluate the activity, in vivo behavior, and safety to achieve
more effective and less toxic options with a desired drug activity. Although an increase in in vivo
results on the administration of IL-based formulations has been observed, the available information
is still scarce. The evaluation of pharmacokinetic and pharmacodynamic parameters as well as the
therapeutic efficacy must be encouraged to be pursued to provide missing insights on this strategy. In
the future, other IL-(bio)polymer combinations are expected and the understanding of their mechanistic
levels should be encouraged to be unveiled. The understanding of these therapeutic options and the
increase in the research of ILs in the nanoparticle field will allow for developing targeted-specific
drug delivery systems that will reduce drug side-effects and fluctuation in circulating drug levels,
optimizing the treatment efficacy. For this, ILs use in drug delivery should be further explored
from the use of imidazolium-based ILs to options with low toxicity and known cytotoxicity profiles.
Additionally, it is expected an increase in the studies comprising IL-(bio)polymer-based systems with
stimulus-responsiveness, and investigation on their ability to protect drugs from degradation while
providing controlled drug release.

8. Conclusions and Future Perspectives

Organic volatile solvents have been a main choice in the pharmaceutical industry, particularly
in the reaction and purification steps, but they still raise concerns on the contamination of the final
product and on the related environmental and health impacts. To overcome some of these drawbacks,
ILs have been investigated as solvents, reagents, or catalysts in the synthesis of APIs and applied
in the crystallization process of drugs. Still, additional studies should focus on the development of
more sustainable strategies to remove ILs after the APIs synthesis. A careful monitorization of these
contaminants in the final product and study of their impact in the drug’s performance and toxicity must
be taking into consideration. Furthermore, the use of solvents and co-solvents, like ethanol, methanol
or DMSO, hydrotropes, and surface-active agents, to improve the API’s solubility in pharmaceutical
formulations has been challenged by applying ILs to this purpose. ILs have been shown to allow the
aqueous solubility improvement of APIs from distinct pharmacological classes in several orders of
magnitude (to be best of our knowledge and up to date, up to 5.6 × 106-fold), standing as competitive
alternatives to organic solvents. However, these formulations require a more comprehensive study in
what concerns the stability, absorption and bioavailability of APIs. Furthermore, more recent studies
employing aqueous solutions of ILs instead of pure ILs can be the key for their use and acceptance by
the pharmaceutical field.

Because the APIs’ solubility in aqueous solution and bioavailability can be limited by
polymorphism, controlling this process is essential for obtaining a stable and high-quality drug
product. The study of ILs in the crystallization process of APIs has enabled the possibility to design
new polymorphs, with higher thermal stability, to select the crystal form and habit, and even isolate
and purify the correct API polymorph through crystallization. To expand the research on this topic, it
is still mandatory to comprehensively understand the IL-API interactions that drive the formation of
specific polymorphic forms and habits. The use of computational tools can be helpful in designing ILs
in such a way. Furthermore, as it happens with the APIs synthesis, the research on effective separation
methods and the limitation of the IL contamination in the final product are highly demanding issues.

ILs can be designed to present biological activities due to the broad number of anion-cation
combinations. In this sense, ILs have been successfully studied regarding their antimicrobial,
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antioxidant, and anti-tumoral activities. So far, IL activities have been mainly studied in vitro
and have focused on imidazolium-based ILs. To expand this field of research, it is necessary to unveil
the mechanisms of interaction between the IL and biological membranes and, consequently, establish a
correlation with their biological activities, and in which computational tools may also play a crucial
role. The possibility to manipulate the cation-anion combinations also allowed for obtaining new drugs
with desired chemical and biological properties, while avoiding polymorphism concerns. API-ILs have
provided double action in therapeutic formulations for topical and transdermal delivery, namely by
providing the API facilitating its permeation through biological membranes. In this field, API-ILs stand
as novel liquid forms that can be designed with a specific or dual pharmacological action, obtained
by incorporating APIs as IL ions, using oligomeric ions or by applying a prodrug strategy. However,
in this field, only few works conducted bioavailability assays, however allowing to demonstrate the
increase in the API’s bioavailability and the therapeutic efficacy of these novel drugs. Because API-ILs
can present contrastive, enhanced or even dual effect when compared to the initial precursors, in vivo
pharmacokinetic and pharmacodynamic tests are mandatory in understanding the pathways that are
involved in their absorption, metabolism, and routes of elimination. These assays are required to
enable the acceptance of these new drugs by the pharmaceutical industry, favoring the establishment
of guidelines for their development and research. Until their implementation, additional obstacles
are expected to be faced. The pharmaceutical industry is majorly prepared in order to produce solid
APIs; thus, the scale-up implementation might be a lengthy process. Years of routinely working with
solid forms of APIs might make the development of standardized procedures for the liquid drugs’
purification difficult.

The flexibility of ILs allowed for the development of tailored (bio)polymer drug delivery systems
as well, both due to their polymerizable character and polymer solvation ability. Because ILs can
enhance the APIs solubility in aqueous media, they have successfully allowed the incorporation and
delivery of several low-water soluble drugs, enabling the consideration of new administration routes.
However, the lack of more complete studies on this topic that can assist the conscious development
of more effective drug delivery options still confines their use and commercialization. Advances in
this area should comprise integrated studies where the IL can be designed with a specific biological
activity and/or therapeutic action. These designed ILs can simultaneously have a specific role in the
development of the drug delivery systems. In this line, stimuli-responsive drug delivery systems,
promoted by the IL and/or by the polymer, also are of particular relevance.

Overall, ILs have potential to overcome solubility, bioavailability, permeation, polymorphism, and
stability concerns that are associated to solid-state pharmaceuticals. Furthermore, ILs are promising
alternatives to volatile organic solvents when applied as solvents, reagents, and anti-solvents in
the synthesis and crystallization of active pharmaceutical ingredients (APIs). More recent studies
demonstrated their potential to improve the performance of drug-delivery-based systems. The results
and advances herein revised support the multiple roles of ILs in the pharmaceutical field, encouraging
new ways of taking advantage of their unique properties.
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Abbreviations

General
3-CPP 3-chloro-1-phenyl-1-propanone
AGB-ILs Ionic liquids analogues of glycine-betaine
APIs Active pharmaceutical ingredients
API-ILs Ionic liquid comprising active pharmaceutical ingredients
BC Bacterial cellulose
Cellulose-g-PLLA Cellulose-graft-poly (L-lactide)
CrEL Ethoxylated castor oil
DHQ 2,3-Dihydroquinazolin-4(1H)-one
DMAP 4-Dimethylaminopyridine
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
DPPH 2,2-diphenyl-1-picrylhydrazyl
FTIR–ATR Fourier transform infrared spectroscopy—attenuated total reflectance
HSal Salicylic acid (neutral form)
IC50 Half maximal inhibitory concentration
IL Ionic liquid
IL/O IL-in-oil
IL/w IL-in-water
LCOS Linoleic acid-grafted chitosan oligosaccharide
LFER Linear free energy relationship
MIC Minimal inhibitory concentration
MBC Minimal biocidal concentration
NSAID Non-steroidal anti-inflammatory
[Na][Sal] Sodium salicylate
O/IL Oil-in-IL
PC12 Pheochromocytoma cells
PLGA Poly (lactic-co-glycolic acid)
QSAR Quantitative structure-activity relationship
SAIL Surface-active ionic liquid
(S)-CPPO (S)-3-chloro-1-phenyl-1-propanol
SEDDs Self-emulsifying drug delivery systems
TTAB Tetradecyltrimethylammonium bromide
W/IL Water-in-IL
Ionic Liquids
Ammonium
[C4C1im][BF4] 1-butyl-3-methylimidazolium tetrafluoroborate
[(C4C1C1m][BF4] 1-butyl-2,3dimethylimidazolium tetrafluoroborate
[C6C1im][BF4] 1-hexyl-3-methylimidazolium tetrafluoroborate
[C8C1im][BF4] 1-octyl-3-methylimidazolium tetrafluoroborate
[(CH2CH=C2)C2m][BF4] 1-allyl-3-ethylimidazolium tetrafluoroborate
[C4C1im]Br 1-butyl-3-methylimidazolium bromide
[C14C1im]Br 1-methyl-3-tetradecylimidazolium bromide
[C8im]Cl N-octylimidazolium chloride
[C1C8im]Cl 1-dodecyl-3-methylimidazolium chloride
[C1C1C8im]Cl 1-methyl-3-tetradecylimidazolium chloride
[C6C1im]Cl 1-hexyl-3-methylimidazolium chloride
[C8C1im]Cl 3-methyl-1-octylimidazolium chloride
[C12C1im]Cl 1-hexadecyl-3-methylimidazolium chloride
[C14C1im]Cl 1-octyl-3-methyl imidazolium chloride
[(CH2CH=C2)]Cl 1-allyl-3-methylimidazolium chloride
[C2C1im][CH3COO] 1-ethyl-3-methylimidazolium acetate
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[C2C1im][CH3OHPO2] 1-ethyl-3-methylimidazolium methylphosphonate
[C1C1im][(CH3O)2PO2] Dimethylimidazolium dimethylphosphate
[C4C1im][C8OSO3] 1-butyl-3-methylimidazolium octylsulfate
[C1C1im][C12SO3] Dimethylimidazolium dodecanesulfate
[C2C1im][EtSO4] 1-ethyl-3-methylimidazolium ethylsulfate
[C4C1im][N(CN)2] 1-butyl-3-methylimidazolium dicyanamide

[C2][NTf2]
N-ethyl-2-hydroxy-N,N-dimethylethanammonium
bis(trifluoromethylsulfonyl)amide)

[C2C1im][NTf2] 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
[C4C1im][NTf2] 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
[C6C1im][NTf2] 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
[C10C1im][NTf2] 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
[C2C1im][CF3O3S] 1-ethyl-3-methylimidazolium trifluoromethanesulfonate
[C4C1im][CF3O3S] 1-butyl-3-methylimidazolium trifluoromethanesulfonate
[C10C1im][CF3O3S] 1-decyl-3-methylimidazolium trifluoromethanesulfonate
[C4C1im][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate
[C6C1im][PF6] 1-hexyl-3-methylimidazolium hexafluorophosphate
[C8C1im][PF6] 1-octyl-3-methylimidazolium hexafluorophosphate
[C4C1im][SCN]) 1-butyl-3-methylimidazolium thiocyanate
[(C2)3NC4]Br Triethyl[2-ethoxy-2-oxoethyl]ammonium bromide
[C4NH3][CH3COO] N-butylammonium acetate
[C6NH3][CH3COO] N-hexylammonium acetate
[C8NH3][CH3COO] N-octylammonium acetate
[C4NH3][oleate] N-butylammonium oleate
[C6NH3][oleate] N-hexylammonium oleate
[C8NH3][oleate] N-octylammonium oleate
[(C1OC2)C1im][MsO] 1-methoxyethyl-3-methylimidazolium methanesulfonate
[C2OHC1im]Cl 1-(2-hydroxyethyl)-3-methylimidazolium chloride
[DDA][NO3] Didecyldimethylammonium nitrate
[N4,1,1,1][NTf2] N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide
Cholinium
[Ch][Ala] Cholinium alaninate
[Ch][Ile] Cholinium isoleucine
[Ch][geranate2(H)] Cholinium geranate
[Ch][Glu] Cholinium L-glutaminate
[Ch][Gly] Cholinium glycinate
[Ch][Leu] Cholinium leucinate
[Ch][Phe] Cholinium phenylalanine
[Ch][Pro] Cholinium prolinate
[Ch][Se] Cholinium serinate
[Ch][Try] Cholinium tryptophan
Morpholinium
[Nbmd][OH] 4,4′-(butane-1,4-diyl)bis(4-dodecyl-morpholin-4-ium)hydroxide
Phosphonium
[P444(14)]Cl Tributyltetradecylphosphonium chloride
[P6,6,6,14]Cl Trihexyltetradecylphosphonium chloride
[P6,6,6,14][NTf2] Trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide
Pyridinium
[C4C1py][DCI] 1-butyl-3-methylpyridinium dichloroiodate
[C6C6OCOpy][N(CN)2] 1-hexyl-3-hexyloxycarbonylpyridinium dicyanamide
[C6C6OCOpy][NTf2] 1-hexyl-3-hexyloxycarbonylpyridinium bis(trifluoromethylsulfonyl)imide



Int. J. Mol. Sci. 2020, 21, 8298 39 of 50

Pyrrolidinium
[Pyrr4,1][NTf2] Butylmethylpyrrolidinium bis(trifluorosulfonyl)amide
API-ILs
[C4C1im][Ibu] 1-butyl-3-methylimidazolium ibuprofenate
[(C10)2C1C1im][Doc] Didecyidimethylammonium docusate
[(C10)2C1C1im][[Ibu] Didecyldimethylammonium ibuprofenate
[(C10)2C1C1im][Pen G] Didecyldimethylammonium penicillin G
[(C10)2C1C1im][Sal] Didecyldimethylammonium salicylate
[Ch][Amp] Cholinium ampicilate
[Ch][BA] Cholinium betulinate
[Ch][B3] Cholinium nicotinate
[Ch][B5] Cholinium pantothenate
[Ch][B6] Cholinium pyridoxylate
[Ch][Caf] Cholinium caffeate
[Ch][Gal] Cholinium gallate
[Ch][Ibu] Cholinium ibuprofenate
[Ch][Ket] Cholonium ketoprofen
[Ch][Nal] Cholinium nalixidixate
[Ch][Nap] Cholinium naproxen
[Ch][Nif] Cholinium niflumate
[Ch][Sal] Cholinium salicylate
[Ch]2[Ell] Dicholinium ellagate
[C2OHC1im][Amp] 1-hydroxy-ethyl-3-methylimidazolium ampicilate
[C2OHC1im][Ibu] 1-ethanol-3-methylimidazolium ibuprofenate
[C1Pyrr][Sal] 1-methylpyrrolidinium salicylate
[HN444][Sal] Tributylammonium salicylate
[Lid][Asp] Lidocainium acetylsalicylate
[Lid][Dicl] Lidocainium diclofenac
[Lid][Doc] Lidocainium docusate
[Lid][Eto] Lidocainium etodolac
[Lid][Ibu] Lidocainium ibuprofenate
[Lid][Nap] Lidocainium naproxenum
[Ran][Doc] Ranitidine docusate
[mPEG3N444][Sal] Triethylene glycol monomethyl ether tributylammonium salicylate
[P4444][Ibu] Tetrabutylphosphonium ibuprofenate
[P666(14)][Amp] Trihexyl-tetradecyl phosphonium ampicilate
[PBu4][Sal]nHm-1 Tetrabutylphosphonium salicylates
[ProOEt][Ibu] Ethylester ibuprofenate
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