
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ieru20

Expert Review of Proteomics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ieru20

De novo sequencing of proteins by mass
spectrometry

Rui Vitorino , Sofia Guedes , Fabio Trindade , Inês Correia , Gabriela Moura ,
Paulo Carvalho , Manuel Santos & Francisco Amado

To cite this article: Rui Vitorino , Sofia Guedes , Fabio Trindade , Inês Correia , Gabriela Moura ,
Paulo Carvalho , Manuel Santos & Francisco Amado (2020): De�novo sequencing of proteins by
mass spectrometry, Expert Review of Proteomics, DOI: 10.1080/14789450.2020.1831387

To link to this article:  https://doi.org/10.1080/14789450.2020.1831387

Accepted author version posted online: 05
Oct 2020.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ieru20
https://www.tandfonline.com/loi/ieru20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14789450.2020.1831387
https://doi.org/10.1080/14789450.2020.1831387
https://www.tandfonline.com/action/authorSubmission?journalCode=ieru20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ieru20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14789450.2020.1831387
https://www.tandfonline.com/doi/mlt/10.1080/14789450.2020.1831387
http://crossmark.crossref.org/dialog/?doi=10.1080/14789450.2020.1831387&domain=pdf&date_stamp=2020-10-05
http://crossmark.crossref.org/dialog/?doi=10.1080/14789450.2020.1831387&domain=pdf&date_stamp=2020-10-05


 

 

 

Publisher: Taylor & Francis & Informa UK Limited, trading as Taylor & Francis Group 

Journal: Expert Review of Proteomics 

DOI: 10.1080/14789450.2020.1831387 

De novo sequencing of proteins by mass spectrometry 

 

Rui Vitorino1,2,3 , Sofia Guedes1, Fabio Trindade3, Inês Correia2, Gabriela Moura2, Paulo 

Carvalho4, Manuel Santos2, Francisco Amado1 

 
1 QOPNA & LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, 

Portugal 
2 iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal 
3 Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de 

Medicina, Universidade do Porto, Porto, Portugal 

 

Correspondence: 

Rui Vitorino 

QOPNA & LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, 

Portugal 

Email:  

 

 

 

  ACCEPTED M
ANUSCRIP

T

https://crossmark.crossref.org/dialog/?doi=10.1080/14789450.2020.1831387&domain=pdf


 

 

 

Abstract 

Introduction  

Proteins are crucial for every cellular activity and unravelling their sequence and structure is a 

crucial step to fully understand their biology. Early methods of protein sequencing were mainly 

based on the use of enzymatic or chemical degradation of peptide chains. With the completion 

of the human genome project and with the expansion of the information available for each 

protein, various databases containing this sequence information were formed.  

Areas covered 

De novo protein sequencing, shotgun proteomics and other mass-spectrometric techniques, 

along with the various software are currently available for proteogenomic analysis. Emphasis is 

placed on the methods for de novo sequencing, together with potential and shortcomings using 

databases for interpretation of protein sequence data.  

Expert opinion: 

As mass-spectrometry sequencing performance is improving with better software and hardware 

optimizations, combined with user-friendly interfaces, de-novo protein sequencing becomes 

imperative in shotgun proteomic studies. Issues regarding unknown or mutated peptide 

sequences, as well as, unexpected post-translational modifications (PTMs) and their 

identification through false discovery rate searches using the target/decoy strategy need to be 

addressed. Ideally, it should become integrated in standard proteomic workflows as an add-on 

to conventional database search engines, which then would be able to provide improved 

identification coverage at controlled false discovery rates. 

 

Keywords: algorithms, database search, de novo, mass spectrometry, MS/MS, proteomics, 

sequence tags, sequencing, tandem MS 
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Article highlights 

• Peptide sequencing is an essential tool in biomedical and pharmaceutical research, 

among other fields. 

• The introduction of search algorithms and the development of protein databases has 

enhanced the quality of de novo sequencing. 

• The review discusses the advantages and limitations of traditional de novo sequencing 

methods, and the improvements brought about by the introduction of modern 

technologies. 

• The potential role of proteogenomics in improving the applicability of traditional 

sequencing methods has also been discussed. 
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1. Introduction 

Advancements in the field of medicine are a result of the spirit of inquiry of researchers toward 

human physiology and various associated biological processes. At the molecular level, proteins 

are one of the four important macromolecules necessary for critical physiological functions, and 

they are constituted by unique sequences of amino acids [1]. A thorough understanding of 

protein biology is crucial in biomedical sciences. When scientists discovered that amino acids 

are the building blocks of proteins, they were unaware of the precise arrangement of amino 

acids that forms the basis of protein structure [2]. Researchers have since attempted to 

determine protein sequence and structure. Molecular biology methods have enabled 

researchers to study biological molecules in detail. The initial methods used for protein 

sequence identification were manual and labor-intensive. The advent of high-throughput 

sequencing techniques gave rise to the multiple fields of omics [3,4]. Sequence data generated 

were deposited in several databases, which were subsequently converted into repositories 

containing detailed information on the sequences and the molecular features of biological 

molecules. At present, these databases are an indispensable resource for bioinformaticians, 

who employ in-silico methods to predict the function or behaviour of unknown molecules. 

However, before the development of sequencers and mass spectrometers, researchers mostly 

depended on de novo sequencing for sequence and structure prediction [5]. Currently, despite 

the growing availability of high-resolution mass spectrometers and the development of high-

throughput software, de novo sequencing remains a mandatory process for the identification of 

new post-translational modifications (PTMs), annotation of translational errors, or identification 

without database searching owing to the absence of reference sequences. Herein, we have 

discussed the methods used for de novo sequencing, the tools and software associated with it, 

the role of protein sequence databases in the analysis of mass spectrometry data, and the 

advantages and disadvantages of peptide-based approaches. Through this review, we aim to 

elucidate the current status of the applicability of peptide-based sequencing approaches, and 

the advancements required to ensure that these techniques can be applied with high accuracy. 

 

 

2. Shotgun proteomics  

Shotgun proteomics is likely the strategy of mass spectrometry (MS) used most frequently for 

de novo sequencing. Shotgun proteomics is a bottom-up protein analysis approach, in which 

proteins are subjected to proteolytic digestion and the peptides generated are subjected to liquid 
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chromatography-mass spectrometry (LC-MS) analysis [6][7]. While it was earlier dependent only 

on gel-free chromatography techniques for separation, such as strong cation exchange or 

reverse phase chromatography, techniques such as sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and isoelectric focusing are presently used for separation of proteins in shotgun 

proteomics studies [8]. Peptides are identified by comparing the experimental spectra against 

those generated from an existing sequence database [6]. The false discovery rate (FDR) is 

often controlled by including sequence decoys in the database, which are generally acquired by 

reversing the target sequences and using these decoy identification scores to model 

probabilistic functions [9]. Comparison to theoretical mass spectra was observed to be a rapid 

and less error-prone method compared to the method of using sequence interferences without 

comparison to sequences from a database; therefore, the former has been widely adopted as 

the typical approach for shotgun proteomics.  

Shotgun proteomics has become a relatively high-throughput technique, provided the steps 2D 

gel-based separation and proteolytic in gel-digestion can be omitted by working directly with 

sample solutions [10]. Shotgun proteomics is popularly used for proteome profiling, protein 

quantification, and analysis of protein modifications and protein-protein interactions [8]. For 

instance, the proteome of soybean root hair cells was analysed by shotgun proteomics using 

1D-PAGE-LC and multidimensional protein identification technology (MudPIT) [11,12]. In 

another study, the genes involved in light regulation in maize seedling leaves were studied 

using label-free quantitative proteomics, which led to the identification of several important 

proteins involved in the process [13]. In yet another study, the anti-inflammatory effects of 

rCC16 (Clara cell protein) were assessed using shotgun proteomics, where 12 proteins were 

identified, and their functional roles were studied using bioinformatics network analysis [14]. A 

shotgun proteomics workflow was designed where affinity chromatography was used for the 

separation of affinity-purified proteins (IPs), and proteins were identified in a single LC-MS/MS 

run on a Linear Trap Quadrupole (LTQ) Orbitrap instrument [15]. This method ensured the 

removal of background noise and facilitated the identification of unique protein interactions. The 

development of such workflows is crucial for the effective use of shotgun proteomics in protein 

identification and protein interactions studies.  

The success of shotgun proteomics methods was based on accurate database search. Several 

databases such as UniProt/Swiss-Prot, UniProt/TrEMBL, RefSeq, Ensemble, IPI, and Entrez 

Protein are used in shotgun proteomic analysis [10]. Data interpretation and validation of the 

identified sequences remain a challenge in high-throughput techniques, and the use of these 
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methods requires the development of large databases [10]. Further, the process of digestion of 

proteins to peptides without prior separation makes it challenging to match peptides with their 

respective proteins in complex samples containing multiple homologous proteins, such as those 

from higher eukaryotes. Therefore, shotgun proteomics has limited applicability in de novo 

sequencing of samples with proteins encoded by paralogous genes and with high sequence 

redundancy. Another major problem with this approach is its inability to correctly identify amino 

acids with identical masses, such as Ile and Leu, when low accuracy mass instruments, such as 

ion traps, are used. However, this problem can be solved using high-accuracy instruments. 

Although considered obsolete, MS-based sequencing coupled with enhanced fragmentation 

techniques, high-resolution spectrometers, and enhanced computational speed led to the 

establishment of spectral sequencing as a key approach in the era of modern proteomics 

[16,17]. 

 

 

3. Matrix-assisted laser desorption ionization (MALDI) vs electrospray ionization (ESI)  

For a successful MS experiment, the molecules in the sample first need to be charged to 

separate them based on the respective mass/charge (m/z) ratio in the mass analyzer [18]. Initial 

experiments of de novo sequencing were considerably limited by harsh ionization methods, 

which may destroy several peptides. Hence, the development of soft ionization techniques, such 

as ESI and MALDI, was a major breakthrough in this field [19]. 

ESI is used to analyze samples in solution [20]. The sample solution is transferred to a gas 

phase via three sequential steps, beginning with the dispersal of a fine spray of charged 

droplets, followed by the evaporation of the solvent, and the ejection of ions from these charged 

droplets under a strong electric field [18,21]. The sample is passed through a high potential (2.5-

6 kV) needle, which results in the formation of a spray of charged droplets by nebulization. 

Following this, the droplets shrink in size under high temperature and upon passing through a 

drying gas (nitrogen). During this process, the surface charge density on the droplets keeps 

increasing till it reaches a point that is energetically favourable for the ejection of droplets into 

the gaseous phase [18]. The emitted ions are then analysed using a mass analyzer and can be 

further fragmented and analysed using tandem-in-time MS in case of instruments such as 

Orbitrap or FTICR, or in a second mass analyzer using tandem-in-space MS with instruments 

such as Q-TOF to obtain detailed structural information (ESI-MS/MS). ESI allows the analysis of 
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ionic species with increased sensitivity and can also be used to evaluate neutral compounds by 

converting them to ionic species using protonation or cationization. This technique is a sensitive 

and robust method that allows the analysis of thermolabile and non-volatile molecules as well 

[21]. The combination of ESI with high-performance liquid chromatography (HPLC) allows the 

analysis of low or high molecular weight molecules having negative, positive, or neutral charge 

[18]. The nanospray technology also revolutionized this technique, as it facilitated the analysis 

of biological molecules with minimal sample quantities at a considerably low flow rate with a 

range of nanolitres per minute. [21]  

MALDI is another popular soft ionization technique introduced in 1988 [22,23]. In this technique, 

samples are first mixed with a suitable solvent and an organic, energy-absorbing compound 

known as the matrix. The sample then co-crystallizes with the matrix as the solvent dries 

[21,24]. This is followed by laser-induced desorption and ionization of the analytes present in 

the sample. These charged ions are then accelerated at a fixed potential, and are separated 

later on the basis of their m/z ratio in the mass analyzer (e.g., time of flight (TOF) analyzer), and 

are eventually detected by the detector [25]. Initially, MALDI required vacuum conditions for its 

overall operation; however, it was later modified to operate under atmospheric pressure with 

respect to the sample holder, which facilitated the simultaneous use of ESI and MALDI in mass 

spectrometers. The accuracy and sensitivity of MALDI depends on the choice of matrix used, 

which is influenced by the nature of the analyte and the charge imparted during ionization [21]. 

MALDI is also useful for studying biomolecules such as DNA, lipids, and glycoconjugates [21].  

Both these methods are commonly used. Yet, there are advantages and limitations associated 

with their use. Samples with low concentration, such as in the picomolar range, can be analysed 

using both ESI and MALDI [21]. ESI offers high instrument flexibility owing to the use of sample 

solvation, and exhibits compatibility with various mass analyzers. Advancements in both these 

techniques have widened the scope of these techniques in some way; for example, in case of 

ESI, the use of nanospray ionization has significantly improved the sensitivity of the instrument, 

whereas in case of MALDI, the recent addition of imaging applications allows the user to study 

spatial large-scale proteomics. MALDI also allows sample reanalysis [26]. In a study performed 

using human pancreatic cells for understanding the differences between and the limitations of 

ESI and MALDI, a GeLC-MS workflow was used. MALDI is primarily dependent on the gas-

phase basicity of the analyte [26], and the peptides ions are mostly singly charged, whereas ESI 

also relies on the hydrophobicity of the molecule [37], with the formation of multiply charged ions 

[27], which results in the biased identification of peptides [36]. Notwithstanding, the ESI 
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technique proved to be better for detection of modifications, whereas MALDI was observed to 

have limited applicability owing to time constraints [26]. Additionally, it was observed that both 

techniques could be used to identify only a low number of peptides, and the limited detection of 

cysteine-, tryptophan- and methionine-containing peptides was demonstrated specifically. 

Eventually, the use of both techniques was proposed for robust and accurate prediction of 

peptide sequences. With respect to peptide quantification, measurements are more difficult to 

perform using MALDI owing to heterogeneous sample crystallization [21], while ESI is more 

susceptible to the presence of contaminants in the sample.  

4. De novo sequencing  

In the postgenomic era, in-silico protein sequencing strategies using MS-based computational 

tools can be made feasible using protein sequence databases. However, de novo peptide 

sequencing is still the preferred method for identification of novel proteins and peptide 

sequences involved in drug design [28]. De novo peptide sequencing is also useful for studying 

novel proteoforms generated as a result of mutations or PTMs. The multiple approaches for de 

novo sequencing include Edman degradation, MS, and ladder sequencing. While Edman 

degradation is time-intensive, MS-based techniques are economical and efficient [28]. 

Essentially, there are two approaches for protein identification by MS, namely, the top-down and 

bottom-up proteomics approaches. In the bottom-up approach, proteins are first digested and 

then identified using MS analysis, whereas in top-down approaches, intact proteins are 

analysed [29]. In the former, the sample complexity increases due to proteolytic digestion. The 

peptides are digested using enzymes (for instance, trypsin) directly in solution or after 

separation by gel electrophoresis methods. Afterwards, the digested proteins are subjected to 

ionization before MS analysis. Bottom-up approaches allow the quantification of proteins and 

provide information on the location of PTMs [29]. In the latter, protein sequence information 

including PTMs, truncations, and variations in the sequence are preserved depending on the 

fragmentation used in the mass analyzer [30]. Since the sequencing of labile PTMs presents a 

challenge in terms of identification and sequence localization, ETD and high-energy collision 

dissociation (HCD) ensure better performance in protein PTMs analysis. MS-based approaches 

were first used to sequence peptides such as glutaredoxin or calcitonin and parathyroid 

hormone using collision induced decomposition (CID) or Fast Atom Bombardment, where 

overlapping peptides were generated and identified based on the MS spectra generated [31,32]. 

These initial attempts at de novo protein sequencing were followed by the use of shotgun 

proteomics techniques. Whole genome sequence assemblies were also used for protein 

ACCEPTED M
ANUSCRIP

T



 

 

 

sequencing based on homology search. Various strategies have been adopted for de novo 

sequencing using combinations of bottom-up and top-down approaches. The collected MS/MS 

spectra work as a bar plot, where each fragment ion forms a peak corresponding to its 

respective m/z ratio [33]. The MS/MS spectra consist of b-ions corresponding to N-terminal 

peptide fragments and y-ions corresponding to C-terminal peptide fragments [34]. In de novo 

sequencing, the peaks generated during the peptide sequencing process are compared against 

the reference peaks for the 20 standard amino acids. The difference in the corresponding 

masses of two consecutive peaks yields the mass of a single amino acid, and this can, in 

principle, lead to the determination of the peptide sequence. The mass spectra also show 

modifications that occur in the peptide due to inherent changes or variations during sample 

processing [33]. Even though the sequence can be predicted using MS/MS spectra, some of the 

peaks may be missing; therefore, the use of specific algorithms was proposed for robust and 

rapid sequence prediction. PAAS was one of the first algorithms developed for sequence 

determination from fragmented peptides [35]. This algorithm generates all possible 

combinations of amino acids, the masses of which could add up to the required peptide mass, 

and compares it with theoretical spectra, thereby making the process slow and computationally 

expensive [5]. Another method used for sequencing is based on prefix pruning; however, this 

method has limited applicability in cases in which the prefixes are poorly represented [36]. A 

third approach is based on sub-sequencing, where short sequences from one of the terminals 

are tested against the fragmented ions, following which the best match is considered [5]. More 

recently, a method of computer-assisted manual interpretation was developed. In this method, 

the mass difference between the fragmented ions are analysed on the graph to establish a link 

between them. The most common and popular algorithms are based on graph theory [33,34]. In 

this method, a spectral graph is generated for each MS/MS spectrum which has MS/MS peaks 

as the nodes, representing the masses of fragmented peptides. Edges are formed when the 

difference in nodes corresponds to the mass of an amino acid [33]. The peptide sequence is 

determined by connecting the edges and on the basis of the graph score. These graph-based 

methods can be used to accurately identify the correct sequence from a combination of all 

possible sequences. Other algorithms based on machine learning, dynamic programing, linear 

programing, and hidden markov models (HMM) have also been used for de novo sequencing 

[33]. Various software based on different algorithms, such as SEQUEST, PeptideSearch, 

Lutefisk, Sherenga, PEAKS, and PepNovo, were developed for de novo sequencing of peptides 

[5]. 

 

ACCEPTED M
ANUSCRIP

T



 

 

 

5. Database-based interpretation of MS data 

In the postgenomic era, the field of medical sciences was flooded with genomic information, 

which became an important tool for performing in-silico analysis. This extensive genomic 

information was stored collectively in a single platform in the form of a database, such as 

UniProt. The success of MS techniques is also dependent on the robustness and accuracy of 

databases [37]. LC-MS/MS is the most commonly used strategy for proteomic analysis, where 

LC is used for the removal of contaminants and the separation of compounds from the sample, 

and MS is used for calculating the m/z ratio. Tandem mass spectrometry (MS/MS) approaches 

for the identification of peptides and their sequences mostly depend on automated de novo 

sequencing, and manual sequencing methods are used only in case of unavailability of 

reference genome database or to study modifications unique to a system. The most common 

method for obtaining complete peptide sequences is based on database search either using 

experimental spectral libraries or peptide sequence databases [38,39]. In the first strategy 

(spectral libraries), existing spectra generated from actual peptide sequences are used as 

references for newly generated spectra [38]. This method omits the use of theoretical spectral 

data, and hence, allows analysis using data obtained through experiments. To achieve 

complete coverage and accuracy in protein sequencing, researchers need to generate several 

thousand spectra, which need to be analysed individually to identify the best match for a protein 

sequence [38,40]. The creation of spectral libraries with experimental data is an ongoing 

process, and therefore, at present, in-silico protein identification using peptide databases is the 

preferred technique.  

Various databases and search algorithms were developed for easy and accurate identification 

of peptide sequences. A unique workflow was designed to identify pathogenic bacteria using 

tandem MS analysis [41]. Researchers constructed a proteomic database by automated 

analysis using the existing sequences of 87 bacterial genomes available in public repositories. 

MS/MS peptide-spectral matching was performed using the software SEQUEST [41]. 

ProteomeGenerator, which is another workflow, was developed based on mRNA sequencing 

data and proteogenomic peptide-spectral matching for proteomic analysis [42]. In this method, 

the pipeline assembles proteomes of actively transcribed genes using mRNA expression and 

identifies non-canonical peptides. An algorithm considers and compares the mass spectra 

generated by various software, such as SEQUEST HT, MaxQuant, Byonic, and PEAKS, and 

generates the best output. Lastly, complete computational environments for handling 
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quantitative shotgun proteomics data should be considered as well; some examples of these 

are PatternLab for proteomics and TransProteomic Pipeline [43,44].  

The database-based interpretation of protein sequences has certain drawbacks: i) data 

redundancy, which may prevent the identification of novel protein sequences, ii) the datasets, 

their matching score, and the accuracies of various databases are variable, and no single 

platform exists that can represent a comprehensive and robust database with uniform identifiers 

and file formats, iii) search algorithms and workflows for each database are different, and the 

final output of all databases are mostly represented in a probabilistic manner, iv) proteomic 

homology searches suffer from a bias of enzymatic digestion and degeneracy in the genetic 

code, which can prevent the accurate prediction of protein sequences from a fragmented 

peptide, v) the m/z values and the errors associated with them may result in variations in 

sequence interpretation [40].  

5.1 Limitations of cross-species protein identification using MS-based sequence 

similarity searches 

It is widely known that MS-based protein sequencing approaches are database-dependent, 

which is useful in cases where the whole genome sequence of an organism is available in the 

database. Although advanced genomic techniques and next-generation sequencing technology 

allow easy and economical retrieval of whole genome sequence information, the number of 

genomes available in public repositories is limited, considering the wide diversity of living 

organisms [45]. This poses a challenge in the identification of proteins in species for which 

sequence information is unavailable [27]. Minor genomic changes, such as single nucleotide 

variations, also limit cross-species identification owing to the limitations of databases. At times, 

minor changes in protein sequences may hinder their detection owing to changes in their 

chemistry. Furthermore, the occurrence of species-specific PTMs also prevents cross-species 

protein identification [27]. Early methods of cross-species protein identification were based on 

peptide mass fingerprinting (PMF), which is aimed at the determination of amino acid 

composition and estimation of the intact protein mass and pin values of unsequenced genomes 

[46]. The study showed that the combination of PMF with sequence composition data enhanced 

the identification of proteins. Later studies have showed that beyond PMF analysis, it is crucial 

to determine the phylogenetic distance between the query and reference species, such that the 

sequence identity is more than 80% [47]. These studies also demonstrated that the accuracy of 

sequence prediction was highly dependent on sequence identity between the query and 

reference genomes [27]. This led to the use of homology search methods against specific 
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databases containing MS data. However, database accuracy also poses a problem in the use of 

these methods. While database search algorithms such as FASTA or BLAST are optimized to 

search queries comprising sequences with more than 35 amino acid residues, the peptide 

sequences obtained through tandem MS are approximately of 10-15 amino acids [45]. MS 

BLAST, which is a modified BLAST tool specifically used for peptide sequences generated via 

tandem MS, is used for identifying protein sequences in unsequenced genomes [48]. 

PepExplorer is an example of one of the latest developments within an integrated proteomic 

data analysis environment [49]. These tools can directly use the output of the tandem MS data 

from LC-MS/MS or MALDI-MS/MS experiments among others. However, this approach also has 

limited applicability in the characterization of complete proteomes. These search methods are 

dependent on the threshold values of identity, as well as on length, which will indicate the 

similarity percentage of proteins [45]. A detailed workflow based on the combination of PMF, 

tandem MS data, and de novo sequencing was developed for accurate cross-species protein 

identification [38,50].  

 

5.2 PTMs 

Extensively studied PTMs include phosphorylation, methylation, and acetylation, all of which 

play important roles in signaling events [51,52]. The analysis of these PTMs in the proteome 

has been facilitated through proteomic studies. UStag, a de novo sequencing based tool, was 

developed for the identification of PTMs by using Fourier transform tandem MS data of yeast 

[53]. The sequences were filtered and compared to UStags, and noisy sequences were 

excluded to obtain the final list of sequences with PTMs [53]. Although known PTMs can be 

identified using western blot, MS is the only option to identify novel or undetected PTMs and 

determine its location within the sequence, as it can detect mass changes occurring in the 

protein owing to any kind of modification [29]. However, bottom-up proteomics approaches for 

detection of PTMs cannot ensure the robust identification of modified amino acids against their 

unmodified counterparts. Different approaches, such as affinity-based enrichment of modified 

peptides before MS analysis, have also been used to detect modifications beforehand [29]. 

These methods also have constraints, such as limited sequence coverage and loss of 

connectivity. Conversely, top-down approaches are useful as they analyze intact proteins with 

all known modifications; nevertheless, spectral interpretation is considerably more difficult. 

Therefore, MS-based techniques are used frequently for the quantification and identification of 

PTMs; however this process is not fully comprehensive, as the search algorithms used in 
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MS/MS analysis are unable to indicate the significant diversity in these PTMs. Besides, this 

process is also highly time-consuming [54]. To overcome the limitations of incorrect assignment 

of PTMs, and to reduce the time spent in the process, a computational tool named TagGraph 

was developed to search MS/MS datasets without any restrictions on protein number, PTMs, or 

protease specificities. TagGraph uses an optimized probabilistic model for the identification of 

PTMs. This tool has expanded the knowledge on PTM modifications and has facilitated the 

rapid characterization of PTMs [54].  

 

 

6. Commercial vs non- commercial software 

There are various tools and software that assist researchers in the de novo sequencing of 

peptides. Most of these tools are freely available, whereas some are available under 

commercial licenses (Table 1). A peptide sequencing program based on the identification of 

positive ion peptides generated as a result of FAB was developed as early as 1986 [55]. PAAS 

3 was one of the first programs to allow the MS-based identification of peptides and 

determination of their sequence information [35]. The tool is freely available. The program first 

generates all possible combinations of amino acids for a particular sequence, which are 

matched and searched against the reference spectrum. Lutefisk was one of the first de novo 

sequencing algorithms, which scans protein databases based on tandem mass spectra of 

trypsin-digested peptides [56]. Using the database, the algorithm applies graph theory and 

identifies several fragmented peptides that act as the query for a subsequent homology-based 

search. Mascot and SEQUEST are the two most widely used algorithms for MS/MS data 

interpretation. While SEQUEST is more commonly associated with ion trap MS/MS analyzers, 

Mascot is more often used in TOF analyzers [57]. Mascot uses a probabilistic model to assess 

the chances that a particular fragment is associated with the observed spectrum, while 

SEQUEST scores the observed and predicted spectra using correlation measures [58].  

The use of spectral graphs for sequence identification takes into account the best match; 

however, this match may not necessarily represent the actual sequence. Therefore, a 

suboptimal algorithm considering tandem mass spectra as a matrix was developed [59].  

AUDENS was developed for automated de novo peptide sequencing using MS/MS data [60]. 

The tool uses a dynamic programming algorithm and distinguishes between actual peaks and 

real signals in the spectrum. This algorithm assigns values to each of the observed peaks and 
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constructs a sequence path using the best scored peaks to reveal the complete sequence. The 

algorithm is freely available as an open source [60]. An HMM-based algorithm developed for de 

novo peptide sequencing using Bayesian framework was named NovoHMM [61]. The algorithm 

uses a graphical model and factorial HMM for improved peptide identification. This is also freely 

available at present. PepNovo was one of the first scoring methods developed for de novo 

sequencing using tandem MS data [62]. The scoring method is based on a probabilistic 

network, where the probability of occurrence of a peak in mass spectrum is evaluated as a 

chance or actual event. This is a freely available software. Another algorithm using MS/MS data 

is MSNovo, which is freely available and is compatible with LCQ and LTQ spectrometers [63]. 

This algorithm can accurately predict peptide sequences, as well as sequence tags, besides 

handling high-resolution data. Vonode, a de novo sequencing algorithm, was developed for the 

analysis of high-resolution tandem mass spectra [64]. This program is free to use and has 

shown better performance than PepNovo v2.0. To overcome the shortcomings of using specific 

algorithms unique for CID, HCD, or ETD (electron transfer dissociation) spectra, a universal tool 

with the ability to use MS/MS data from all spectra was developed [65]. This tool was named 

UniNovo and is freely available. The tool uses an improved scoring function based on a 

probabilistic module. A neural model based-peptide sequencing algorithm was developed and 

named DeepNovo [66]. This algorithm uses convolutional and recurrent neural networks to 

characterize MS/MS spectra in detail. These networks are then integrated using dynamic 

programming to perform de novo sequencing. This algorithm was tested using a wide range of 

data and was found to achieve up to 99.5% accuracy [66]. The software is freely available. A de 

novo peptide sequencing approach extending beyond an m/z ratio of 1600 was developed 

utilizing TOF-TOF data [67]. This method, known as LIPCUT (length incremented peptide 

composition lookup table), performs exhaustive analysis of MS/MS spectra using single 

molecule decomposition, where the peaks generated in a MALDI TOF/TOF spectra are search 

against a reference table with detailed compositional information on amino acids combinations, 

which are iterated in each step [67]. PEAKS is a de novo sequencing software that provides 

amino acid information by using MS/MS spectrum without referring to existing information from 

databases [68]. This algorithm provides the peptide sequences that match best to the peaks in 

the spectrum, and the output shows the confidence scores of amino acids and detailed 

sequence information. PEAKS performs classic de novo peptide sequencing, in which an amino 

acid sequence is derived from a mass spectrum without the referring to a sequence database. 

This is in contrast to the method use for “database search”, which is another popular peptide 

identification approach, which searches a given database to identify the largest peptide. De 
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novo peptide sequencing is the only available option when sequence databases are 

unavailable. This makes PEAKS the preferred method for identifying novel peptides and 

proteins from organisms with unsequenced genomes. The ability to combine de novo peptide 

sequencing results with those of a database search is unique to PEAKS. De novo peptide 

sequences are aligned with protein database entries to provide additional information about 

PTMs, mutations, homologous peptides, and novel peptides. This software is one the earliest 

commercial software used in de novo peptide sequencing and is updated regularly [68].  

Other software programs, such as Probed, EigenMS, PFIA, MAARIAN, and SeqMS, which are 

based on unique algorithms, have also been developed for de novo sequencing [69-71]. 

Performance evaluation of five de novo sequencing algorithms revealed that these algorithms 

failed to achieve more than 50% identification of peptide sequences using both QSTAR and 

LCQ datasets, which indicates the need to expand existing spectral data sets for enhancing the 

performance of these algorithms [72]. A web-based tool DeNovoID was also developed for de 

novo peptide sequencing, which uses degenerate amino acid sequences and MS-based mass 

data to perform search in a peptide database [73]. The hallmark of this algorithm is that it is 

independent of the protein sequence and is only dependent on the composition of amino acids. 

This algorithm is useful in cases where the spectra do not generate high-quality matches. 

Novor, a real-time peptide sequencing software, was developed to sequence novel peptides 

from MS/MS data [74]. The tool uses a machine learning approach to enhance the efficiency 

and speed of sequencing. The tool is more rapid than any existing software, and its speed 

surpasses that of MS, which facilitates robust protein sequence identification by analysis of 300 

MS/MS spectra within a second [74].  

 

7. Advantages of peptide-based approaches 

Although the exact number of human protein products remains unknown to date, over 20,000 

protein-coding genes exist in the genome [75]. Given the high number of possible variations at 

transcriptional and translational levels, more than 100,000 encoding proteins can be expected to 

exist [76,77]. In addition, a primary source of protein complexity is ubiquitously represented in 

PTMs, with more than 200 PTMs known [76]. As a result, genes act as precursors for a variety 

of structurally variant products, and even small structural changes can alter protein function [77]. 
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In bottom-up experiments, all types of protein digestions commence with backbone cleavage at 

specific sites, which yields more complex peptide mixtures [76]. The products released by the 

lysis step are easily identified by MS. In particular, LC can separate peptides better than 

proteins. Most proteins will produce soluble peptides (even if the parent protein itself is 

insoluble), under conditions favorable for ionization [78]. Peptides are more efficiently 

segmented in the mass spectrometer when linked sequentially, which produces serial mass 

spectra [76]. Peptides are then separated using LC and analysed using MS/MS. The MS/MS 

spectra obtained in each experiment are scanned against a database of simulated MS/MS 

spectra generated from the computerized digestion of directly inserted proteins or proteins 

sequenced from DNA [78]. A score is assigned for each match between an experimental 

spectrum and a theoretical spectrum, and the peptide sequence with the best score (above a 

predetermined threshold) in the database is usually considered valid [78]. Generally, if the 

threshold is not reached, then no sequence assignment is made. Once the experimental peptide 

sequence is set alongside the theoretical peptide sequences [79], a database of known proteins 

is scanned to identify the proteins that may contain the peptides. This is a powerful strategy and 

there are only a limited number of alternatives. The process is time-consuming, expensive, and 

complex to the extent of being impractical, if not impossible to perform [78]. Likewise, the de 

novo interpretation of the ion spectral part or sequencing using sequence markers will be 

incompatible with the several thousand ion spectra produced per hour by the modern mass 

spectrometer [76,79]. Therefore, the combination of peptide-centered proteins with an 

automated sequencing database provides a practical option that can help identify 1000-2000 

proteins in biological samples, and if proteins and peptides are separated, up to 4000-8000 

proteins can be identified in each sample and sorted comprehensively [80]. However, this 

method has inherent limitations with respect to the loss of intact protein information, and the 

collective aspects of protein modification cannot be addressed [78]. 

Peptide-centered strategies can also be used to quantify individual proteins in a mixture [81]. 

Stable peer-marked peptides can be added to the sample mix to quantify specific proteins; this 

facilitates relative and absolute quantification with high accuracy [82]. Alternatively, tag-free 

methods such as spectral count and ion current measurements can provide less accurate yet 

differential (or comparative) estimates of peptide levels [81,82].  

Usually, numerous MS/MS spectra are generated during protein-centered peptide analysis for a 

single sample, and these spectra are automatically matched with computer-generated trypsin 

peptides in relevant databases [81,82]. High-quality spectra of unmodified peptides are often 
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matched without interference from other precursor ions; however, these spectra remain 

mismatched and unallocated [82]. Improvements in the instrument, especially for the 

measurement of high-precision precursors, can increase the proportion of assigned spectrum. 

However, the MS/MS spectrum may not be recognized for the following reasons [83]: i) the 

mass spectrum is generally highly populated, and there is insufficient information regarding the 

particle ions; ii) the segmented precursors are not peptides [82,83]; the peptides are modified in 

a manner that the search algorithm cannot detect them [84]; iii) the peptides are not present in 

the searched database; iv) multiple precursor ions can be detected in a specific precursor 

window and split simultaneously to generate a complex spectrum [84]. Most importantly, spectra 

derived from dipeptides, or spectra that contain residues modified by processes such as 

oxidation, reduction, nitration, and phosphorylation often remain unmatched [82-84]. 

Unrecognized modifications are of particular importance and occur for a variety of reasons [82]. 

Although researchers can choose to include modifications in their search strategies, in most 

cases, several modifications are not considered after translation [81], because once the 

statistical criteria are applied, the required search space increases significantly along with the 

search time, in addition to the decrease in the number of valid IDs. Besides, the physical 

properties of the modified residue (its quality or ionizing efficiency) may hinder its detection [83]. 

However, if the focus is on defining specific modifications in pure proteins, the peptide-centered 

approach [76] will offer certain advantages, because the effect of modification on quality is more 

pronounced at the peptide level than at the protein level [82]. It is difficult to detect and quantify 

minor changes in multiple sites at the protein level; however, it is easier and more accurate to 

determine the nature and number in peptide identification [83]. 

7.1. Incomplete databases 

Another basic assumption is that the selected protein database is complete and contains all 

protein structures and variables in the target sample [85,86]. Such databases are rare (if at all 

present). Several variables are not described or documented. In addition, there are several 

restricted databases, and each database has defects and errors that affect the search results, 

and there is no consensus on the ideal database to be used or the method for selecting or 

modifying the minimum requirements [84,86]. 

It is clear that the matching strategy may only be a robust as the database [87]. For example, if 

the genome and proteins of an organism are not well defined, even high-quality spectra derived 

for the organism will not have an accurate match [87]. The search tool always provides the “best 
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match” between experimental and stored data [84,86]. However, the challenge is to objectively 

assess the quality and accuracy of the output result. There are tools for performing this, and 

alternative methods are being developed as well [87]. Specifically, a mixed statistical model is 

usually used to distinguish between real matching and fake peptides from a false-positive 

peptide spectrum [86], and this model combines a set of factors in a single degree of distinction 

or statistics using decoy strategies [84,87]. Problems can occur even with a large population 

database [86]. If only a single peptide entry is appropriate for experimental data, there is no 

guarantee for correct designation, and when multiple database entries are similar or nearly 

similar to the experimental data, the selection process becomes subjective [87]. 

7. 2. Protein inference issues 

A group of peptides can be common to several protein sequences. Therefore, regardless of the 

quality of the analytical work, it is often impossible to select the specific protein being studied 

[83]. As proteins are cleaved into peptides in the first step of peptide-centric analysis, there is no 

direct method to restore the link between peptides and their parent proteins [87]. As such, it is 

usually impossible to determine the number of proteins identified, as only the number of 

peptides is reported. To address such limitations, besides reporting all possible protein 

sequences, the best practice is to report a list of proteins according to maximum parsimony, that 

is, the minimum number of proteins that correspond to all identified peptides [88]. 

7. 3. Incomplete data obtained  

It is important to note that only a part of the peptides that form the backbone of a complete 

protein are recovered, and these peptides are used only for protein identification [89]. If there 

are gaps in the sequence, "filling" of the lost amino acids can be performed by assuming that 

the lost amino acids are exactly the same as those specified in the database entry. For low-

abundance proteins, fewer peptides and distributed ancestors are recovered [83,87]. Therefore, 

more inferences are needed. However, assuming that the modifications themselves can 

negatively affect their chances of being discovered, it is fair to assume there are no 

modifications or mutations in the mismatched regions [83,87]. For example, a one-point amino 

acid mutation within a trypsin peptide will prevent matching, and the presence of most 

subsequent translation modifications will prevent matching as well [83,87,89]. 

7. 4. Sample flow and collection 
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Peptide-centered analysis of a sample can require one hour or more, thereby reducing the 

analysis throughput [90]. As a result, research aimed at the identification of heterogeneous 

populations is often insignificant. Clusters or subsets of multiple samples could improve this; 

however, this would hide natural variance by averaging protein data [91]. 

 

 

8. Proteogenomics for the integration and identification of new peptide 

sequences/mutations  

Proteogenomics is an amalgamation of the fields of proteomics and genomics that is used for 

the identification of novel peptides by using both MS-based proteomics data and sequenced 

genomic and transcriptomic data [92]. This approach can help by unifying sequence data with 

other detailed information of a protein. These proteins can also be unified in specific databases 

representing their functional roles. This technology assists in the collection of information on 

various peptides associated with gene mutations or genome reorganization. Proteogenomics 

enables improved annotation of novel genome sequences, such as in case of the backbone of 

Bombyx mori, a silkworm species used in the sericulture industry, or the lake trout Salvelinus 

namaycush, an indicator of environmental pollution, as well as in other organisms, such as fungi 

(Sordaria macrospora) or peanut (Arachis hypogaea L.) [93-96]. Improved techniques and novel 

approaches in proteogenomics can also help reduce data redundancy by facilitating the 

integration of large-scale genomic data to generate specific datasets [97]. Proteogenomic 

studies have important applications in cancer studies and have been widely used for the 

detection of cancer-related mutations, chromosomal hotspots, and cancer markers [98,99]. 

Various proteogenomic workflows and computational tools have also been designed to identify 

cancer-related prognostic markers and novel peptides [100-102]. The use of proteogenomics is 

also reported in immunopeptidome profiling for the detection of antigenic variations and 

identification of neoantigens [103-105]. Proteogenomic studies using LC-MS/MS or any other 

tandem MS method assist the identification of disease biomarkers that play a crucial role in 

diagnosis and prevention of disease [106-109]. The combination of proteogenomic approaches 

and de novo peptide sequencing is useful for the identification of novel genes and genomic 

features, including PTMs [95]. This advanced technology is a breakthrough in the field of 

characterization of human proteome variation [110].  
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9. Expert opinion 

Mass spectrum sequencing is a technique that is completely independent of an external protein 

database resource. This unbiased approach is efficient and accurate, as the quality of spectra 

produced by high-accuracy and high-resolution mass spectrometers improves further. In 

principle, sequencing algorithms can be used to retrieve previously unidentified or mutated 

peptide sequences, as well as unexpected PTMs. This approach can be used complementarily 

with database searches in fully integrated environments. One of the primary issues that has 

rarely been discussed in literature is the evaluation of the quality of sequencing matches and 

the estimation of a reliable FDR, as performed for database searches using the target/decoy 

strategy. This can be especially challenging when evaluating matches containing sequence 

mutations. Owing to advancements in sequencing techniques, a wide range of genome 

sequences are being added to databases, the quality of which cannot be estimated using 

bioinformatics approaches alone. Modern computational power and the use of computer 

clusters allow the integration of mass spectrum sequencing into any proteomics workflow; 

however, achievement of complete accuracy in peptide identification cannot be guaranteed yet. 

As mass spectrum sequencing performance is improving with enhanced software and hardware 

optimizations, as well as with the introduction of user-friendly interfaces, the application of this 

promising technique will surely increase in shotgun proteomic studies. Ideally, the process 

should be integrated in standard proteomic workflows as an add-on to conventional database 

search engines, which could then be used to provide improved identification coverage at 

controlled FDRs. By relying on brief, pre-defined protein sequence databases, traditional 

research algorithms perform poorly when analysing mass spectra derived from completely 

unrecognized protein products [111]. In contrast, de novo peptide sequencing algorithms can 

interpret mass spectra without relying on a reference database [112]. However, because there 

is no method to automatically verify the results of de novo sequencing, it is difficult to apply 

these algorithms to complex protein mixtures [113]. 

Therefore, future indicators for evaluation of the performance of de novo sequence algorithms in 

the interpretation of large-scale protein datasets and methods for accurate calibration of the 

FDR will be important aspects of de novo sequencing applications [111]. Sequence 

identification has significantly improved with the latest optimization tools, as indicated by the 

high accuracy of Novor and PEAKS data compared to HCD and CID segment data [114]. 

Notably, Novor performs better in terms of sensitivity, and significantly reduces uptime [111]. 

Although there is no evaluation algorithm that accurately evaluates full-length peptide 
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sequences from experimental data, it is still possible to obtain accurate values when matching 

short peptide markers [113]. 

Additionally, promising results on simulated data indicate that improvements in data quality may 

increase recognition [112]. Although algorithms show improved performance in the evaluation of 

high-resolution data, long-sequenced peptides (for example, those caused by skewed multiple 

divisions) continue to pose challenges that cannot be appropriately addressed [113]. These 

results indicate that there is an urgent need to improve algorithms that can make de novo 

sequencing a practical alternative to the common recognition workflow based on database 

inquires [115]. In this case, providing reliable references or baseline data will improve the 

assessment of current and newly developed algorithms [116]. In addition to the necessary 

improvements implemented by the bioinformatics community, MS tool vendors must improve 

their understanding of the true potential of this technology, which should form the basis for 

further development. Furthermore, the combination of proteogenomic approaches and de novo 

peptide sequencing will be useful for the identification of novel genes and genomic features, 

including PTMs and/or mutations. Indeed, proteogenomic strategies should be on data sets 

derived from deep, shotgun-like and top-down sampling of the transcriptome and proteome. 

Though both techniques can deeply sample fragments, a major drawback is the inability to know 

with certainty the sequence of the intact transcript or protein from which these fragments were 

derived. There are, however, still many challenges in proteogenomics including the limited 

coverage and dynamic range of MS based proteomics, and the difficulty of generating 

proteogenomic data sets with large numbers of samples because of cost and sample 

accessibility. The synergistic relationship between nucleotide sequencing and proteomics will 

continue to evolve and will be key for the complete characterization of the human proteome in 

the coming decades.  

The advent of MS for protein identification, and its combination with de novo sequencing has 

revolutionized modern proteomics with the development of the nascent field of proteogenomics. 

The ability to identify novel peptides, their sequences, mutations, and modifications using these 

advanced techniques has broadened the understanding of molecular biology, particularly of 

proteins. Unravelling the genomic features of a protein is crucial for their characterization and 

understanding their functional role. There are various advancements in de novo sequencing of 

proteins, and new software are being developed continuously for robust and accurate 

identification. The Human Genome Project has paved the way for in-silico studies that will save 

time and optimize the use of resources. The limitations of such techniques are being studied to 

improve the usefulness of this approach in protein sequencing.  
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Tables 

 

Table 1: Different software for de novo  sequencing  

 

Software 

name 

Algorithm Score Comment References  

AUDENS Spectrum 

graph 

Internally calculated sum 

of peak relevance 

Assigns relevance to 

peaks during 

preprocessing 

[60] 

EigenMS Spectral graph 

partitioning 

Mass fit, ion abundance, 

probability to observe ion

Usage of two graphs [70]  

GutenTag Combination of 

de novo and 

database 

search 

algorithms 

Scores sequence  tag Identifies proteins 

correctly considering 

modifications and post 

translational 

modifications  

[117] 

Lutefisk Spectrum 

graph 

Sum of b-ion 

probabilities 

during subsequence 

Rescoring of prediction 

with 

several measures 

[118] 

MSNovo DP mass array 

spectrum 

representation 

Probabilistic distribution 

of 

mass tolerance 

LCQ/LTQ 

Charges 1–3 

[119] 

NovoHMM Hidden Markov 

model 

Bayesian posterior 

probabilities for amino 

acids 

Tested on 1252 

spectra and 

compared with other 

algorithms 

[61] 

Novor Spectrum Decision tree model Academic or non- [74]  
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graph commercial license 

OpenSea Heuristic 

algorithm 

Partially correct 

sequence tags with a 

database to identify the 

homologous or modified 

proteins 

Accurately locates 

sequence variation 

sites and unanticipated 

posttranslational 

modifications 

[120] 

PEAKS Generation of 

105 candidate 

sequences 

Peak abundance, mass 

fit, fragment 

complementarity 

Commercial software, 

algorithm not fully 

disclosed 

[68] 

PepNovo Spectrum 

graph 

Likelihood ratio 

hypothesis 

testing in respect to 

random model 

Only a few learned 

models available 

[62] 

SeqMS Spectrum 

graph 

Ion abundance, fragment 

complementarity 

Originally for HCD 

spectra, 

later adapted for low-

energy 

[121] 

SHERENGA Spectrum 

graph 

Scoring is based on 

assigning a probability-

based score, taking into 

account 

rewards/penalties for 

fragment ions that are 

present or missing. 

The algorithm will use 

the highest scoring 

sequence path from 

the spectrum graph as 

the peptide sequence. 

[122] 

SPIDER Dynamic 

programming 

The de novo cost 

function, the homology 

score matrix, 

insertion/deletion cost  

Free software  [123] 

SWPepNovo Spectrum 

graph 

SW26010 many-core 

processor, namely 

SWPepNovo, to process 

the large-scale peptide 

MS/MS spectra using a 

A two-level 

parallelization 

mechanism 
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