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Abstract  10 

Ecological niche modelling is used in deep-sea research to investigate the environmental 11 

preferences and potential distribution of data-poor species. We present a mesoscale assessment 12 

of Mediterranean seascape suitability for the cold-water coral Lophelia pertusa (= Desmophyllum 13 

pertusum, Linnaeus, 1758). We estimated seascape suitability and uncertainty maps using an 14 

ensemble approach of three machine-learning algorithms (Generalized Boosting Model, Random 15 

Forest, Maximum Entropy) based on environmental predictors. Bathymetry, bathymetric slope 16 

and pH were the most important predictors for the models. Overall the models reached good to 17 

excellent performance, with a very reliable prediction of the most suitable areas. In the 18 

Mediterranean Sea, L. pertusa encounters environmental settings close to its physiological limits 19 

but, despite the highly variable quality of the Mediterranean seascape, we identified high 20 

suitability areas mostly along the upper slope and at submarine canyons of the Western and 21 

Central margins. The existing MPAs do not overlap with high suitability areas, and therefore L. 22 

pertusa is only protected at the deepest fringe of its potential distribution by the implementation 23 

of the bottom trawling exclusion beyond 1000 m depth. This seascape suitability assessment 24 

may assist future research, including high-resolution modelling targeting high-suitability areas, 25 

investigation on the resilience of L. pertusa populations and development of conservation 26 

actions. 27 

Keywords:  Cold-water corals; potential distributio n; climate change; conservation; ensemble model  28 

1 Introduction 29 

The geographical distributions of species in the deep sea remain largely unknown. This 30 

knowledge deficit has hindered the development of effective management measures framed by 31 

recent policy initiatives (e.g., European Habitats and Marine Strategy Framework Directives) that 32 

aim to preserve the biodiversity and functioning of ecosystems. Conservation options heavily rely 33 
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on spatial explicit information (Reiss et al., 2015; Savini et al., 2014) and depend on modelling 34 

approaches at broad spatial scales (Burgman et al., 2005). This methodology allows capturing 35 

the multiple interactions between the organisms and their habitats and the spatio-temporal 36 

dynamics of the landscape (Turner et al., 1995). The mapping of areas with suitable conditions 37 

for the settlement of habitat forming species such as some cold-water corals (CWC) is an 38 

important aspect of conservation and management of deep-sea biodiversity. 39 

Cold-water corals are among the most emblematic deep-sea organisms and play an important 40 

role in the structure and functioning of marine ecosystems. CWC increase the complexity of the 41 

habitat, provide spawning, nursery and feeding areas and support attendant assemblages with 42 

significantly enhanced biodiversity and biomass when compared to the surrounding environment 43 

(Buhl-Mortensen et al., 2010; Capezzuto et al., 2018; Corbera et al., 2019; Linley et al., 2017). 44 

CWC are also involved in the provision of other important ecosystem functions and services 45 

(Giovanni Chimienti and D'Onghia, 2019) including nutrient cycling and carbon sequestration 46 

(Soetaert et al., 2016). Due to their low tolerance to disturbance (low resistance), slow growth 47 

rates (low recovery rates), and consequently poor resiliency, these organisms can be highly 48 

impacted by anthropogenic activities (D'Onghia et al., 2017; Fabri et al., 2017; 2014; Giusti et al., 49 

2019; Taviani et al., 2019a) and climate change (Georgian et al., 2016; Movilla et al., 2014). 50 

Among the reef-building CWC species, Lophelia pertusa is one of the most studied. Classified as 51 

deep-sea cosmopolitan along the western and eastern margins of the North Atlantic Ocean 52 

(Roberts et al., 2016), it is also widely reported from the Gulf of Mexico and the Caribbean Sea 53 

and in many mid-ocean islands (Rogers, 1999). In the Mediterranean Sea, there are many 54 

records of dead or subfossil remains, mostly dated from the late Pleistocene, 30000-15000 years 55 

B.P. (Delibrias and Taviani, 1985). Climate change that marked the end of the last glacial period, 56 

and its influence on patterns of productivity and deep-sea water circulation are hypothesized as 57 

the causes for a major decline of the once thriving Mediterranean populations (Delibrias and 58 

Taviani, 1985; Fink et al., 2015; Taviani et al., 2019b). Reports of presently living colonies in the 59 

Mediterranean Sea are few and restricted to the western-central Mediterranean basin (Chimienti 60 

et al., 2018; 2019). However, taking into account that few surveys targeting L. pertusa were 61 

conducted in the Mediterranean Sea and, nonetheless, several recent studies reported new 62 

occurrences of living colonies (e.g., Angeletti et al., 2014; Corbera et al., 2019; Taviani et al., 63 

2019a), the present Mediterranean distribution of L. pertusa is probably underestimated 64 

(Zibrowius, 2003).  65 

Recent studies have successfully used ecological niche models (ENMs) to estimate the potential 66 

distribution and the environmental suitability of various deep-sea species (e.g., Basher et al., 67 

2014; Davies and Guinotte, 2011; González-Irusta et al., 2015; Lo-Iacono et al., 2018). The 68 

panoply of ENMs available encompasses different approaches, modelling techniques, 69 

occurrence data inputs, and ecological concepts (Peterson et al., 2015; Valverde et al., 2008).  70 
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Correlative ENM forecasts based on presence-only data rely on a set of ecologically relevant 71 

predictors and provide meaningful results even for poor-data species. The modelling process 72 

consists in determining statistically the species environmental profile based on the values of 73 

predictors for the known occurrence locations and then project this profile over the model’s 74 

geographical space (Guillera-Arroita et al., 2015; Miller, 2010). The output is a continuous 75 

representation of the species potential distribution. Model predictions depend not only on the 76 

adopted modelling technique and settings defined by practitioners but are also subject to 77 

different types of uncertainties related to data quality and quantity (e.g., sample size, sampling 78 

bias, spatial resolution issues (Burgman et al., 2005; Zhang et al., 2015)). These issues and their 79 

implications on the model performance have prompted the use of ensemble forecasting 80 

frameworks that combine the output of multiple models into a single estimation. This 81 

methodology produces frequently more accurate predictions than single model methods (Turner 82 

et al. 2018) and allows highlighting consensual forecasts by mapping model uncertainty based 83 

on the agreement/disagreement of individual models (Araújo and New, 2007). 84 

The main objective of this work is to predict and map the Mediterranean seascape environmental 85 

suitability for L. pertusa using a multiple model ensemble forecasting approach that can provide 86 

support for management decisions and conservation actions. We provide here a succinct and 87 

easily readable potential distribution map, assess the performance of the model and derive the 88 

prediction uncertainty maps for the modelled geographical area. We also hypothesize that L. 89 

pertusa in the Mediterranean Sea is subjected to conditions near its physiological tolerance and 90 

that its persistence in this region is being challenged by climate change. To our best knowledge, 91 

this study is the first focusing on assessing the seascape suitability for L. pertusa in the 92 

Mediterranean Sea, encompassing the whole basin and using a multi-algorithm approach that 93 

provides both the prediction of seascape suitability and a measure of uncertainty of the forecast.  94 Jo
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2 Material and methods 95 

2.1 Modelling area and occurrence data 96 

We modelled the seascape suitability of the Mediterranean Sea for L. pertusa using present-day 97 

living occurrences reported for the study area. We extracted the occurrence records in the 98 

Mediterranean Sea from the Global Distribution of Cold-water Corals Database (version 3.0, 99 

Freiwald et al., 2017), further updated with records for the Mediterranean Sea obtained from the 100 

literature (Supplementary Table S1). We excluded colony records referring to transects covering 101 

a distance greater than 230 m to reduce the geographic uncertainty of the occurrence data. For 102 

shorter transects (8 out of 48), we considered the centroid of the transect as the location of the 103 

colony. Considering the modelling resolution (1/8 arc minute, ca. 230 × 230 m), this lack of 104 

accuracy was assumed as negligible. To remove duplicates and spatially auto-correlated 105 

occurrences, we proceeded with the spatial thinning of species occurrences (Aiello-Lammens et 106 

al., 2015), that reduced multiple occurrences within 230 m radius to a single record. This 107 

procedure minimizes the sampling bias and prevents the over-fitting of predictions without losing 108 

an excessive amount of information. 109 

2.2 Environmental predictors 110 

We based the selection of environmental predictors (Table 1) on the species ecology and 111 

previous modelling studies for L. pertusa. The bathymetry (meters) was extracted from the 112 

EMODnet Digital Bathymetry dataset and used to derive the bathymetric slope (degrees). Seven 113 

predictors related to ocean conditions were extracted from data assimilative ocean models 114 

available through the Copernicus Marine Environment Monitoring Service (CMEMS): salinity 115 

(psu), temperature (ºC), dissolved oxygen (mmol m-3), phosphate concentration (mmol m-3), 116 

phytoplankton carbon biomass (mmol m-3), pH and current velocity (m s-1). We used a 117 

continuous representation of near seafloor conditions for these variables following the 118 

methodology described by Davies and Guinotte (2011) but using kriging instead of inverse 119 

distance weighting as the interpolation method. This option was based on studies showing higher 120 

performance for the first method (Assis et al., 2018; Hofstra et al., 2008). The fitting of the 121 

universal kriging model was based on the 12 nearest values of each focal cell. The assessment 122 

of the up-scaling process of the environmental data was conducted using the data provided by 123 

the World Ocean Atlas 2013 (WOA 2013,version 2, E. H. Garcia et al., 2013; H. E. Garcia et al., 124 

2013; Locarnini et al., 2013; Zweng et al., 2013). Only the values of the WOA 2013 deeper than 125 

50 m were retained for the assessment of the quality of the interpolation process and compared 126 

with the interpolated data layers with the closest depth. Relationships were statistically analyzed 127 

using the Pearson's correlation coefficient. The predictors’ covariance was also assessed; the 128 

bathymetry and pH were highly correlated (r = 0.86 , Supplementary Fig. S1) however, we opted 129 

to retain both predictors since: 1) the bathymetry is frequently identified as one of the most 130 
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relevant predictors to estimate the environmental suitability for CWC in regional studies (e.g., 131 

Barbosa et al., 2019; Georgian et al., 2014); 2) the pH level is particularly relevant under the 132 

current state of ocean acidification (Hennige et al., 2014).   133 

Table 1 – Details of the environmental predictors used in the model fitting and respective sources. 134 

Variable (units) Native 
Resolution 

Derived 
from Source Reference 

Bathymetry (m) 0.002º 
 

EMODnet Digital 
Bathymetry 
(DTM 2016) 

EMODnet 
Bathymetry 

Consortium, 2016 

Bathymetric slope (°)  Bathymetry   

Phytoplankton carbon biomass - PCB (mmol m-3) 

0.063º  

Mediterranean 
Sea 

Biogeochemistry 
Reanalysis - 

CMEMS 

Teruzzi et al., 
2019 

Phosphate (mmol m-3) 

pH 

Dissolved O2 (mmol m-3) 

Salinity (psu) 

0.063º 

 Mediterranean 
Sea Physics 
Reanalysis -

CMEMS 

Simoncelli et al., 
2019 

Temperature (°C)   

Current velocity (m s-1)   

 135 

The modelling process was conducted using R (R Core Team, 2016) and the “Biomod2” 136 

package (Thuiller et al., 2009) – version 3.3-15) which supports different modelling techniques. 137 

The ensemble model output resulted from the consensus of three machine-learning algorithms: 138 

Generalized Boosting Model (GBM, also known as Boosted Regression Trees), Random Forest 139 

(RF), and Maximum Entropy (MaxEnt). The machine-learning class algorithms are among the 140 

most appropriate for mapping and discriminating areas with different suitability degrees while 141 

keeping a high predictive performance (Carvalho et al., 2017; Mi et al., 2017; Reiss et al., 2015; 142 

Scales et al., 2016). Moreover, the predictions of these algorithms are considered more robust to 143 

predictors’ correlations (Anderson et al., 2016) and to issues related to sample size (Hernandez 144 

et al., 2006; Mi et al., 2017; Wisz et al., 2008). They are also adequate for handling complex 145 

interactions between species response and predictor variables (Wisz et al., 2008). 146 

The selected algorithms require pseudo-absence or background information for building the 147 

models. We generated ten datasets with 100 randomly sampled pseudo-absences each for GBM 148 

and RF algorithms, following the recommendations by Barbet-Massin et al. (2012). A minimum 149 

distance of 10 km from any presence point was imposed using the geographical constraint 150 

strategy offered in “Biomod2” to avoid pseudo-replicates. Considering the nature of MaxEnt 151 

(Philips and Miroslav, 2008), the procedure applied to the models using this algorithm differed 152 

slightly from the previous – 10000 random background points were selected to reach the optimal 153 

performance of the algorithm, and no geographic constraints were applied. Although a sampling 154 
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bias correction in the selection of the background data for MaxEnt models is recommended 155 

(Philips and Miroslav, 2008), this procedure was hindered by the paucity of publicly available 156 

data for the Mediterranean Sea that affects the current knowledge regarding L. pertusa 157 

distribution. The adjustment of the model complexity is also recommended by Merow (2013) but 158 

we maintained the default settings supplied by “Biomod2” because of the lack of truly 159 

independent evaluation data for model tuning. The tuning process is fundamental for models 160 

aiming high transferability (i.e., to be projected to other areas or periods) but it is less important 161 

in studies aiming to project the prediction of the model to the same area used for its calibration 162 

(Anderson and Gonzalez, 2011). We weighted equally each observation (either presence or 163 

pseudo-absence/background point) during the calibration process. 164 

2.2.1 Evaluation of models’ performances 165 

A total of 300 single models were generated resulting from ten runs of the three algorithms for 166 

the ten datasets using either pseudo-absences (GBM and RF) or background points (MaxEnt). 167 

The evaluation of the models was performed by splitting the original datasets randomly into two 168 

subsamples: 75% of the data were selected for the calibration of the models, and the remaining 169 

25% were used to test their predictions. This procedure was repeated 10 times using the method 170 

implemented in “Biomod2”, similar to a cross-validation procedure. This method results in a quite 171 

robust test of the model performance in the absence of independent data (Thuiller et al., 2009). 172 

There is no consensus on the most appropriate metrics to assess the accuracy of a model and, 173 

instead, a multi-metric approach is encouraged. We chose three of the most commonly used 174 

metrics: the area under the curve of the Receiver Operator Characteristic (ROC), the True Skill 175 

Statistic (TSS), and the Boyce Index. The ROC is a threshold independent metric, neutral to 176 

species prevalence, which measures the discrimination capacity regarding relative proportions of 177 

correctly and incorrectly classified predictions (Pearce and Ferrier, 2000). The ROC values range 178 

from 0 to 1, with 1 corresponding to a perfect classification. The TSS is also independent of the 179 

species prevalence and compares the number of correct predictions subtracted by those 180 

assigned by chance in a perfect theoretical forecast (Omri et al., 2006); this statistic ranges from 181 

-1 to 1, with values near 1 indicating a good agreement between predictions and observations. 182 

The Boyce Index (Boyce et al., 2002; Hirzel et al., 2006), calculated separately using the 183 

“ecospat” package (Di Cola et al., 2017) for R, is a threshold independent evaluator ranging also 184 

from -1 to 1. Values close to 1 indicate a good agreement between the model predictions and the 185 

presences distribution in the evaluation dataset, i.e., areas with a high number of occurrences 186 

are scored with high suitability values (Hirzel et al., 2006). Conversely, values close to -1 indicate 187 

that areas with a high number of occurrences are scored with low suitability values, and thus the 188 

model performed poorly. Values close to zero indicate that the model is not different from a 189 

random forecast. For each algorithm, we calculated the mean of each metrics. 190 
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The contributions of the variables to the models can differ between algorithms and between runs. 191 

We estimated the importance of each predictor using a randomization procedure. We used the 192 

built-in method in “Biomod2” that uses Pearson correlation between the standard predictions and 193 

the predictions where the variable of interest has been randomly permuted. If the correlation 194 

value between the two predictions is high, the variable permutated is considered not important 195 

for the model prediction. This method is independent of the modelling techniques and thus allows 196 

direct comparisons between models (Thuiller et al., 2009). This procedure was repeated ten 197 

times for each predictor during the modelling process.  198 

2.2.2 Ensemble modelling 199 

Ensemble forecasting was performed by combining a subset of the single models. Only models 200 

with a TSS equal or greater than 0.8 were retained to build the consensus maps. As for the 201 

evaluation of models, there is no consensus on the most appropriate metric to select the single 202 

models used to build the ensemble model (Scales et al., 2016). However, the TSS and the ROC 203 

are among the metrics most frequently used. We opted to use the TSS over the ROC because 204 

the reliability of the latter has been heavily criticized (Lobo et al., 2008).  205 

We combined the habitat suitability values of each grid cell using three consensus algorithms 206 

(Thuiller et al., 2009): 1) the mean of the probabilities over the selected models; 2) the binary 207 

models' committee averaging; and 3) the coefficient of variation of probabilities. The first 208 

algorithm provides the prediction of seascape suitability while the other two provide a measure of 209 

uncertainty of the predictions.  210 

The ensemble model based on the mean of probabilities of the selected models (TSS ≥ 0.8) is a 211 

continuous representation of the habitat suitability index (HSI) ranging from 0 to 1000, with 212 

values close to 1000 representing the most suitable areas. The committee averaging returns the 213 

average of binary prediction (transformation of the models' output to presence/absence 214 

estimations) based on a threshold that maximises the values of TSS; it gives both a prediction 215 

and a measure of uncertainty. Values close to 1 or 0, mean that all models agree to predict 216 

presence and absence, respectively, while values around 0.5 correspond to the highest 217 

uncertainty in the predictions. The coefficient of variance (i.e., standard deviation/mean of 218 

probabilities) can also be used as a measure of the model uncertainty: lower scores correspond 219 

to better predictions and higher scores to higher levels of uncertainty. 220 

To rank the seascape features in the Mediterranean Sea by suitability, we intersected the output 221 

of the mean ensemble model with the seafloor geomorphological classification produced by 222 

Harris et al. (2014), the authors used the nomenclature defined, primarily, by the International 223 

Hydrographic Organization for the seafloor feature types. According to the terminology used by 224 

Harris et al (2014), and references therein) we identified the following features in the 225 

Mediterranean Sea:  226 
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• Shelf valleys - features incising the continental shelves or intersecting the shelf breaks no 227 

longer than 10 km in length. 228 

• Terraces on the continental slope - “isolated or group of relatively flat horizontal or gently 229 

inclined surfaces, sometimes long and narrow, which are bounded by a steeper ascending 230 

slope on one side and by a steeper descending slope on the opposite side”. 231 

• Continental rise - identifiable by the occurrence of a smooth sloping seabed adjacent to the 232 

base of the continental slope, in general, with a sediment layer > 300 m thick. 233 

• Sills - “seafloor barriers of relatively shallow depth restricting water movement between 234 

basins”. 235 

• Seamounts - “discrete or group of large isolated elevations, greater than 1000 m in relief 236 

above the sea floor, characteristically of conical form”. 237 

• Guyots or tablemounts - “isolated or group of seamounts having a comparatively smooth flat 238 

top”. 239 

• Submarine canyons - “steep-walled, sinuous valleys with V-shaped cross sections, axes 240 

sloping outwards as continuously as river-cut land canyons and relief comparable to even the 241 

largest of land canyons”. 242 

• Ridges - “isolated or group of elongated narrow elevations of varying complexity having steep 243 

sides, often separating basin features”. 244 

• Troughs: “long depressions of the sea floor characteristically flat-bottomed and steep sided 245 

and normally shallower than a trench”. 246 

• Trenches: “long narrow, characteristically very deep and asymmetrical depressions of the sea 247 

floor, with relatively steep sides”. 248 

• Bridges - blocks of material that partially infill trenches and troughs. 249 

• Fans - “relatively smooth, fan-like, depositional features normally sloping away from the outer 250 

termination of a canyon or canyon system”. 251 

Additionally, we used the MPAtlas database of the Marine Conservation Institute 252 

(www.mpatlas.org) to analyze the overlap between areas of suitability and the existing marine 253 

protected areas (MPAs) in the Mediterranean Sea.  254 

3 Results 255 

We estimated the environmental suitability of the seascapes for L. pertusa in the Mediterranean 256 

Sea. A total of 30 occurrences of living colonies sparsely distributed across the western and 257 

central Mediterranean basins were used in our model (Fig. 1). No records of living colonies of L. 258 

pertusa were reported in the literature for the eastern Mediterranean Sea.  259 
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 260 

Fig. 1 - The distribution of the living colonies of L. pertusa in the Mediterranean Sea used in the ecological niche 261 
model. 262 

3.1 Environmental profiling 263 

The intersection of the record of presences with the values of the environmental predictors 264 

(Fig. 2) illustrates how the species distribution is related to these variables. On the other hand, 265 

the response curves (Fig. 3) describe the suitability variation along the observed range of values 266 

for the different predictors. The MaxEnt models returned the most complex behavior but possibly 267 

the best representation of the species response to the extremes of environmental gradients (with 268 

predicted responses close to zero, Fig. 3). The GBM and RF models showed smoother response 269 

curves and similar trends, but lower sensitivity to the environmental gradient variation. The 270 

response curves of the ensemble model combine the responses of the selected single models. 271 

The colonies of L. pertusa were mainly concentrated at depths between 200 and 620 m and in 272 

gentle slope areas. According to our model (Fig. 3), suitability is high between 180 and 950 m 273 

and peaks at depths close to 300 m; it also rises progressively with increasing slope and 274 

maintains high values at slopes >8°.  275 
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 276 

Fig. 2 - Violin plots showing the distribution of the species occurrences (white area illustrates the relative 277 
frequency of occurrence) intersected with the environmental predictors. 278 

 279 

Fig. 3 - Univariate response curves for each environmental predictor according to the mean ensemble model 280 
(solid line) and the average response of single models (dashed lines) according each algorithm. The variables 281 
environmental gradients are represented in the x-axis and the suitability prediction values in the y-axis. The 282 
shaded areas correspond to the range of values observed for the single models according to each algorithm. The 283 
rug lines (x-axis) correspond to the data points of the L. pertusa occurrences and pseudoabsences used in the 284 
models’ fitting. 285 
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The occurrences of L. pertusa in the Mediterranean Sea were concentrated at temperatures 286 

between 13-14 ºC and salinity values ranging from 38.1 to 38.8 (Fig. 2). Values beyond these 287 

intervals result, according to the ensemble model, in a decrease in the environmental suitability 288 

for the occurrence of L. pertusa colonies in the modelling area (Fig. 3). The colonies were 289 

detected at concentrations between 193-217 mmol m-3 of dissolved oxygen (DO), with values 290 

greater than 197 mmol m-3 offering more suitable conditions for the species occurrence (Fig. 3). 291 

All colonies were subject to pH levels ranging from 8.07 to 8.12 and phosphate concentrations of 292 

0.14-0.27 mmol m-3 (Fig. 2). Values out of these ranges result in the decrease of the 293 

environmental suitability for the species occurrence in the Mediterranean Sea (Fig. 3). The live 294 

colonies of L. pertusa were subjected to very low concentration of the phytoplankton carbon 295 

biomass and to current velocities lower than 0.014 m s-1 (Fig. 2). The increase of the current 296 

velocity results in a progressive reduction in the environmental suitability of the species 297 

occurrence (Fig. 3).   298 

The contributions of the variables to the predictions differ between algorithms (Fig. 4). The 299 

bathymetric slope, pH and bathymetry showed, in this order, the highest contributions in GBM 300 

and RF estimates, while bathymetry, phytoplankton carbon biomass and bathymetric slope were 301 

the most relevant contributors for MaxEnt estimates. On the other hand, DO, current velocity, 302 

and salinity were amongst the least important contributors to models’ estimates. The variables’ 303 

contributions to the ensemble model are not presented because this model is composed of a 304 

combination of the results from different algorithms and therefore such contributions cannot be 305 

interpreted in a meaningful way (Aguirre-Gutiérrez et al., 2013). 306 
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 307 

Fig. 4 - Predictors contributions scored as the relative importance to models considering all pseudo-absence 308 
datasets and evaluation runs by algorithm (ranging between 0 and 1). The higher the value, the more important 309 
the variable is to the model, while the value zero means no influence at all. The interaction between predictors 310 
was not considered. 311 

3.2 Performance of the models 312 

The performance of the models was assessed using ROC, TSS and Boyce index (Fig. 5). ROC 313 

values greater than 0.95 and TSS scores equal or greater than 0.8, were considered highly 314 

accurate. According to the different metrics, the GBM and RF models reached good to excellent 315 

average predictive scores, while the MaxEnt models performed worst. According to the Boyce 316 

index individual performance, the RF models attained high levels of agreement between the 317 

presence dataset and grid cells with high HSI.  318 
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 319 

Fig. 5 - Performances of the models grouped by modelling algorithms (presence/pseudo-absence datasets and 320 
repetitions pooled) according to ROC, TSS and Boyce evaluation scores. The models' scores above the 321 
threshold indicated by the dashed lines are considered highly accurate. The average scores of single models are 322 
indicated by the white dots (n = 100). Black dots are the scores for the ensemble model.  323 

The ensemble model forecast was built from the consensus of 198 out of the 300 simulated 324 

models, selected according to the defined TSS threshold (0.8). For the three metrics, the scores 325 

of the ensemble model were higher than the average scores of the single models indicating that 326 

it out-performed the estimation from the single algorithms. 327 

3.3 Seascape suitability 328 

The highest HSI values were found mainly along the upper slope of the Mediterranean margins, 329 

in the Western region (e.g., canyons in the Gulf of Lion), in the Central region of the 330 

Mediterranean Sea off the Island of Malta, and in the North of the Ionian Sea (deep-water coral 331 

provinces of Santa Maria di Leuca) and in the South Adriatic Sea (Fig. 6A). The HSI reached 332 

values close to zero in shallower (e.g., North Adriatic, and Tunisian and Libyan continental 333 

shelves) and abyssal depths.  334 

The result of the committee averaging model (Fig. 6B) indicates high reliability (agreement 335 

between the presence/absence binary transformation of the single models’ prediction) of the 336 

ensemble forecast for the most suitable and most unsuitable areas and low reliability (values 337 

around 0.5) overall for the upper slope of the Central and Southeastern Mediterranean regions. 338 

The coefficient of variance (Fig. 6C) returned overall a low uncertainty of the ensemble forecast 339 

along the upper slope of the Mediterranean margins and higher uncertainty for the abyssal areas 340 

and parts of the Northern Adriatic Sea. 341 
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 342 

Fig. 6 - (A) Ensemble model based on the mean probabilities of the selected models and expressed as HSI 343 
(ranging from 0 to 1000, representing the least and the most suitable areas, respectively). (B) Map of the 344 
committee averaging score; this map offers a measure of reliability of the ensemble model (values close to 1 or 0 345 
indicate a good agreement among the single models’ predictions regarding the potential presence or absence, 346 
respectively; values around 0.5 mean that the estimates of the models are evenly distributed by 0 and 1 values). 347 
(C) The coefficient of variance (i.e., standard deviation/mean) of the probabilities estimated for the selected 348 
models is also a measure of uncertainty: dark colours correspond to better predictions, while lighter colours mean 349 
that prediction uncertainty is higher.  350 

Among the 15 geomorphologic features identified by Harris et al. (2014) in the Mediterranean 351 

Sea, ridges, shelf valleys, trenches, seamounts, guyots, bridges and sills represent individually 352 
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less than 1% of the seascape area (0.9, 0.9, 0.4, 0.3, 0.1, 0.01, <0.01%, respectively). The 353 

continental slopes and submarine canyons are, regarding the area covered, the two most 354 

relevant features with high HSI values estimated by our model (Fig. 7); together with troughs and 355 

terraces, they cover 33.2% of the Mediterranean seascape. The variation of the HSI estimates 356 

within each category was large, indicating a highly heterogeneous environment, and the limits of 357 

the third quartile remained below 287 for all categories. The geomorphologic categories showing 358 

the highest proportions of low suitability habitats (in all cases the third quartile showed HSI 359 

scores lower than 90) were the abyssal areas, continental shelves and rise, and submarine fans, 360 

in total accounting for 64.1% of the Mediterranean seascape. 361 

 362 

Fig. 7 - Classification of seascape suitability of the geomorphologic feature categories (Harris et al., 2014) 363 
present along the Mediterranean Sea by decreasing order of the 3rd quartile. The lines indicate the HSI value 364 
ranges and the boxplots show the 1st quartile, the median and the 3rd quartile. The coverage percentages were 365 
given by the area of the shape of the polygons that defined the individual features in Harris et al. (2014). 366 
Features with an area lower than 1% were omitted. 367 

A total of 898 MPAs, mostly encompassing coastal and shelf depths, confer some legal 368 

protection within the modelling region. From these MPAs, a clear majority allows multiple uses, 369 

and only 6.46%, covering a total area of 9863 km2 ca. of 0.4% of the Mediterranean Sea area, 370 

have restriction to some type of fisheries or are no-take zones (Supplementary Fig. S2). Note 371 

that these values exclude the vast bottom trawl closure area, the largest non-fishing area in the 372 

Mediterranean Sea, covering depths greater than 1000 m, as well as the Shark and Cetacean 373 

Habitat Protected Areas and the Marine Mammal Sanctuary where the allowed fishing activities 374 

do not have relevant impacts on the seabed. The analysis of the overlap between the seascape 375 

suitability and Mediterranean MPAs showed that the vast majority of the areas with highest HSI 376 

values were not covered by any MPA (Supplementary Fig. S2). The few exceptions were the 377 

deepest areas located in the South of Italy, the Central Mediterranean region off the Island of 378 

Malta and the area around the Island of Crete which was covered by the bottom trawl closure. 379 
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4 Discussion 380 

The output of a presence-only model is an estimation of the species environmental preferences 381 

(Guillera-Arroita et al., 2015) and can be interpreted as a measure of habitat suitability for the 382 

species occurrence. Species respond differently to a large variety of processes and 383 

environmental constraints at local, regional and global scales. Hence, the analysis of the 384 

organisms’ distribution should take into consideration different levels of the environment spatial 385 

hierarchy (Mackey and Lindenmayer, 2001). Our aim was not to provide a fine-scale assessment 386 

of the Mediterranean seascape suitability for L. pertusa, for which the spatial resolution of the 387 

ensemble model is not adequate. Instead, we present a continuous assessment of the 388 

environmental conditions, compare the model results with the empirical knowledge on the 389 

Mediterranean distribution of L. pertusa and provide relevant information to identify focal areas 390 

for future efforts using higher resolution models currently only applicable at local scales. To our 391 

best knowledge, this work is the first mesoscale (seascape level) estimation of the habitat 392 

suitability for L. pertusa that encompasses the whole Mediterranean Sea using an ensemble 393 

ENM with a multi-algorithm approach, providing both the prediction of seascape suitability and a 394 

measure of uncertainty of the forecast.  395 

4.1 A challenging ecological niche 396 

The concept of ecological niche is central for the ENM approach, and the quality of the forecast 397 

can be partly inferred from the response curves and their ecological plausibility. Despite some 398 

variations between algorithms the bathymetry, bathymetric slope and pH showed the highest 399 

contributions to the forecasts. Bathymetry and bathymetric slope are frequently selected as 400 

relevant predictors to estimate the seascape suitability for L. pertusa (e.g., Barbosa et al., 2019; 401 

Rengstorf et al., 2013; Ross and Howell, 2013). Similarly, for the pH, predictors related to ocean 402 

acidification and the calcification of the corals’ skeleton (e.g., aragonite saturation state – ΩARAG) 403 

are also among the variables with higher contribution in ENM studies focusing in L. pertusa (e.g., 404 

Davies and Guinotte, 2011; Morato et al., 2020). The limited availability of modern-day 405 

observation data for the Mediterranean Sea regarding the carbonate chemistry hampers the 406 

development of accurate chemistry models for the region. For this reason, we opted for not 407 

including the ΩARAG in our ENM study. Notwithstanding, in situ data indicates that the 408 

Mediterranean seawater is likely to remain supersaturated in the future (Fajar et al., 2015); 409 

therefore, the ΩARAG may not be a major limiting factor for the L. pertusa distribution in the 410 

Mediterranean Sea as it might be for other regions owing to the shallowing of the aragonite 411 

saturation horizon (Lunden et al., 2013). In fact, the optimal bathymetric range estimated by our 412 

model (Fig. 3) and the currently known distribution of the species in the region coincide with 413 

depths considerably shallower than 2500 m (Fig. 2) for which seawater remains supersaturated 414 

(Fajar et al., 2015; Schneider et al., 2007). Our results also agree with Davies and Guinotte 415 

(2011) that the species distribution coincide mostly with areas with low concentrations of 416 
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nutrients and limited organic inputs. A strong link between CWC occurrence and the 417 

hydrodynamic regime has often been reported (e.g., Rengstorf et al., 2014) but our results 418 

indicate current velocity as one of the predictors contributing less to the model predictions. This 419 

result can be partially explained by the relatively coarse resolution of our model that is insufficient 420 

to represent the fine-scale local hydrodynamics and its complex interaction with topography, 421 

probably underestimating the actual influence of this predictor on the species fine-scale spatial  422 

distribution (Davies and Guinotte, 2011; Rengstorf et al., 2014). Salinity and dissolved oxygen 423 

concentration were classified as relevant environmental predictors in previous ENM studies with 424 

L. pertusa (e.g., Barbosa et al., 2019; Davies and Guinotte, 2011). In our study, these two 425 

variables were however among the ones with lower contribution for the models’ prediction. This 426 

result may be related to the low spatial variability close to the seabed of these predictors in the 427 

Mediterranean Sea (Supplementary Fig. S3). Surrogates of terrain variables derived from 428 

bathymetry such as rugosity are also widely recognised as important proxies for habitat suitability 429 

for CWC in local high-resolution models (e.g., Lo Iacono et al (2018)). However, we intentionally 430 

excluded these variables because terrain attributes are highly scale-dependent and their 431 

computation at coarse resolutions results in significant differences between the derived data and 432 

the local characteristics (Rengstorf et al., 2012).  433 

The distribution of living CWC in the Mediterranean Sea has been historically considered as 434 

restricted, partly owing to the near homoeothermic conditions (12.7-14.5 ºC, Delibrias and 435 

Taviani, 1985). Our results show that in the Mediterranean Sea, L. pertusa lives at temperature 436 

and salinity values (T: 13-14 ºC; S: 38.1-38.8) that may be close to the upper limit of the species 437 

tolerance. In fact, these values are considerably higher than the ones found in areas of the 438 

northeast Atlantic Ocean with thriving L. pertusa reefs (T<10 ºC, S< 35.6, Dullo et al., 2008). 439 

Studies on the physiological response of L. pertusa to temperature variations revealed that 440 

significant effects are observed  on the calcification rate, despite the species capacity for thermal 441 

adaptation (Naumann et al., 2014). Although L. pertusa shows some biogeographic physiological 442 

plasticity to face environmental changes (Georgian et al., 2016), the populations in the 443 

Mediterranean Sea may be already subjected to the limits of their physiological tolerance, as 444 

already assumed by other authors (Freiwald et al., 2009; Maier et al., 2009). 445 

The species distribution is also determined by the seawater chemistry that constraints the 446 

calcification of the carbonate skeleton (Maier et al., 2009). Our model suggests a considerable 447 

decrease of the seascape suitability for L. pertusa with pH reduction. Lowering pH values by 448 

0.15-0.3 units in laboratory comparing to present North Atlantic Ocean conditions resulted in a 449 

reduction of the calcification rate of 30-56% (Maier et al., 2009). The Mediterranean Sea shows a 450 

westward trend of decreasing pH (Álvarez et al., 2014) and, despite the high buffering capacity of 451 

the Mediterranean Sea (Schneider et al., 2007) this trend may be accentuated by further 452 

accumulation of carbon from anthropogenic origin in the intermediate and deep waters (Fajar et 453 

al., 2015). Therefore, the synergies of multiple stressors, especially in the current scenario of 454 
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global change,  is expected to accentuate the already challenging environmental setting for the 455 

species occurrence in the Mediterranean Sea.  456 

4.2 Performance, predictive capacity and limitation of the ENM models 457 

The good performance scores of the single models were surpassed by the ensemble model 458 

scores in all metrics, strengthening our confidence in its predictive capacity. The estimates of the 459 

committee averaging and coefficient of variance, indicating overall low uncertainty levels for the 460 

forecast of the ensemble model further support the advantages of using this modelling approach. 461 

The projection of the ensemble model over the Mediterranean Sea (Fig. 6A) encompasses areas 462 

of medium to high HSI scores located along the upper slope  along the Gulf of Lion and Central 463 

Mediterranean region (i.e., around Corsica and Sardinia, off Malta and south of the Adriatic Sea). 464 

The lowest HSI values cover vast areas including the continental shelves (<100 m depth) and the 465 

deepest regions (>1500 m).  466 

ENMs are scale-dependent, and predictions are overestimated for larger grid cells (Seo et al., 467 

2009); hence ground-truthing surveys are always required. Moreover, regardless of their 468 

performance, ENMs commonly overestimate the species potential distributions since they 469 

assume that their occurrence is largely influenced by the ecological niche, ignoring other 470 

important drivers for species prevalence (Georgian et al., 2014). A species may be absent in 471 

areas with suitable conditions owing to biotic interactions, oceanographic barriers (e.g., water 472 

column stratification, prevailing currents) and other complex ecological mechanisms preventing 473 

dispersal and/or colonization (Rogers, 2003). Moreover, ENM predictions are always coupled 474 

with a certain level of uncertainty associated to the data characteristics (i.e., quality and quantity) 475 

and to the methodological decisions made during the modelling process. Nevertheless, the 476 

influence of various limitations on the models' forecasts are difficult to quantify. Among the main 477 

sources of uncertainty affecting deep-sea ENM are the limitations in the occurrence datasets 478 

which, in the case of L. pertusa, derive, at least partly,  from an insufficient coverage by surveys 479 

targeting CWC in the Mediterranean Sea. In the Mediterranean Sea, field observations indicate 480 

that L. pertusa is less common than in other oceans and has a more patchy distribution, often 481 

occurring as isolated colonies (Howell et al., 2011; Orejas et al., 2009). The increasing number of 482 

biological surveys in the Mediterranean Sea and the growing tendency to use remote sensing 483 

and underwater technologies in oceanographic cruises, is likely to increase the number of coral 484 

areas detected in this region (Taviani et al., 2017). Recent efforts to catalogue coral occurrences 485 

in the Mediterranean Sea (Chimienti et al., 2019; Taviani et al., 2019a) highlighted the existence 486 

of an “almost uninterrupted, albeit patchy, belt of CWC sites” along the south-western Adriatic 487 

margin (Angeletti et al., 2014) and a coral reef of considerable size was observed in the Lacaze-488 

Duthiers submarine canyon (Gori et al., 2013). These and other well-known CWC areas were 489 

scored with high HSI by our model: the Santa Maria di Leuca coral province (e.g., Tursi et al. 490 

(2004)), the South Adriatic (e.g., Freiwald et al. (2009), Angeletti et al. (2014), South of the Island 491 
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of Malta (e.g., Maier et al. (2012), the Melilla CWC Province (Lo-Iacono et al., 2014), and several 492 

submarine canyons (e.g., the Cap de Creus (Orejas et al., 2011) and Lacaze-Duthiers (Fabri et 493 

al., 2014) in the Gulf of Lion, Nora (Taviani et al., 2017) in the South of the Island of Sardinia, 494 

Bari (Freiwald et al., 2009) in the South Adriatic Sea). The number of occurrences used in our 495 

models probably influenced the ENM forecasts. Hence, to improve the predictive capacity of our 496 

model, we selected algorithms that show good performances with a small number of presences 497 

(Hernandez et al., 2006; Mi et al., 2017; Wisz et al., 2008). The more reliable predictions of the 498 

models coincided with known living CWC provinces and surrounding areas. On the other hand, 499 

in the eastern Mediterranean Sea, where many fossil CWC occurrences are reported but no 500 

living colonies of L. pertusa, an almost continuous belt along the continental slope was classified 501 

with intermediate HSI values. Hence, future modelling efforts updated with more species records 502 

may improve the seascape suitability forecast for the region. Uncertainties in the models’ 503 

predictions may also derive from the spatiotemporal variability of the environmental predictors. 504 

We applied an up-scaling process to improve the spatial resolution of the environmental data 505 

extracted from the CMEMS ocean models. The interpolated variables were positive and 506 

significantly correlated (p<0.001, Supplementary Fig. S4-7) with the in situ collected data, 507 

generally reflecting the patterns observed in the WOA data, both along the depth, longitude and 508 

latitude gradients. These results attest to the accuracy of the interpolated layers and therefore 509 

minimize the uncertainty on the models’ predictions that can be derived from environmental data. 510 

4.3 Mediterranean seascape suitability 511 

Previous studies using predictive modelling at global and regional scales identified the 512 

continental slopes (Davies and Guinotte, 2011) and geomorphologic features such as canyons 513 

(Rengstorf et al., 2013) as offering the most suitable conditions for L. pertusa occurrence. The 514 

ranking of submarine canyons with some of the highest HSI scores in our ensemble model 515 

confirms previous indications that, as a consequence of their complex topography and influence 516 

on hydrodynamics, these geomorphologic features may be considered CWC hotspots (Orejas et 517 

al., 2009; Van den Beld et al., 2017). The high-energy environments and roughed topography 518 

commonly associated with canyons can result in low sediment coverage and higher availability of 519 

hard substrates for reef development (Sánchez et al., 2014). Such conditions may also be 520 

frequently found in escarpments and rocky outcrops on continental slopes. Seamounts (and 521 

guyots) are also recognized as preferential areas for CWC development (Roberts et al., 2009). 522 

Despite the relatively coarse resolution of our model (230 x 230 m) and the low percentage 523 

coverage occupied by seamounts in the Mediterranean Sea (Harris et al., 2014), some areas 524 

classified with higher HSI in regions such as the Alboran Sea (Fig. 6A), coincide with the location 525 

of these features (Rovere and Würtz, 2015). 526 

Apart from the ecological reasons mentioned above, species distributions can be constrained by 527 

the type, intensity and frequency of anthropogenic disturbance. Human activities can lead to 528 
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local extinctions of vulnerable species from otherwise environmental suitable locations (Clark et 529 

al., 2016). Many studies exposed severe impacts on CWC populations (Fabri et al., 2014; 530 

Taviani et al., 2019a) that result from fishing activities, litter accumulation and waste disposal. 531 

Conservation measures to mitigate some of these detrimental activities  are implemented in 532 

areas classified as Sensitive Habitats by the European Commission and/or marine Sites of 533 

Community Importance (p-SCI) included in the Natura 2000 network (Madurell et al., 2013). 534 

However, these examples correspond mainly to MPAs covering coastal and shelf regions and 535 

therefore not effectively protecting L. pertusa. The bottom trawl closure area is a clear exception, 536 

but despite its great importance and extent, the exclusion of fishing activities below the 1000 m 537 

may only provide partial protection to L. pertusa since it barely overlaps with the deepest fringe 538 

of the most suitable areas. Besides, locations classified with high HSI coincide with areas with 539 

medium to high cumulative human impacts in Mediterranean ecosystems (Micheli et al., 2013). 540 

Considering these issues, the conservation of L. pertusa habitat and the persistence of its 541 

Mediterranean populations could be at risk with serious consequences for the biodiversity and 542 

functioning of deep-sea ecosystems (particularly at the continental slopes). In this context, 543 

canyons may have a supplementary conservation value acting as natural refuges for CWC 544 

against some of the anthropogenic impacts (e.g., bottom trawling (Van den Beld et al., 2017), 545 

particularly because the Mediterranean Sea is one of the world’s regions where canyons are 546 

more densely and closely spaced (Harris and Whiteway, 2011) occupying naturally delimited and 547 

therefore potentially more manageable areas for conservation purposes.  548 

4.4 Conclusion 549 

Regardless of their limitations, ENMs are important to compile and interpret information on the 550 

species ecology, provide insights on their potential distributions and are particularly relevant for 551 

research on data-poor species (Morato et al., 2020; Vierod et al., 2014). Our seascape suitability 552 

assessment broadens the perception of the Mediterranean potential distribution of L. pertusa, 553 

and its ecological constraints, previously based on fragmented information from punctual 554 

biological surveys and local modelling efforts. The results show that L. pertusa in the 555 

Mediterranean Sea seems to be subjected to physiological stress due to the current 556 

environmental conditions observed in the area. Despite eventual biogeographic plasticity in the 557 

physiological response of L. pertusa, the resilience of the Mediterranean reefs may be 558 

compromised by a further intensification of stressful conditions. This scenario is likely to occur 559 

under the current climate change trend, increasing anthropogenic pressure and lack of adequate 560 

protection of CWC habitats in the Mediterranean Sea. The mapping of the seascape 561 

environmental suitability of L. pertusa may assist future research efforts, including further 562 

modelling studies with higher resolution data on the areas identified as most suitable, the 563 

development of action plans for their conservation and the investigation of the mechanisms 564 

governing the persistence of L. pertusa reefs in the Mediterranean Sea.  565 
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Highlights  

• We mapped the potential distribution of Lophelia pertusa in the Mediterranean Sea  
• We provide uncertainty estimates for the model predictions 
• Mediterranean colonies are subjected to challenging environmental conditions  
• The most suitable areas occur in the continental slope of the west and central basins  
• The overlap of the Mediterranean MPAs with the most suitable areas is limited 
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