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O principal objetivo deste trabalho foi o estudo do efeito da adicdo de residuos
inorganicos alcalinos (cinzas volantes e lama vermelha), incorporados em esferas
geopoliméricas inorgéanicas, para controlo de pH e melhoria de processos anaerébios
durante o tratamento de residuos organicos complexos.

Numa primeira fase, foi estudada a adicdo de cinzas volantes a dois residuos: efluente
do primeiro estdgio de branqueamento de uma fabrica de pasta e papel, com elevadas
concentracdes de compostos organicos pouco biodegradéveis (AOX) e pH muito baixo
(= 2), e o subproduto da industria de lacticinios (soro de queijo), com elevada carga
organica e rapida tendéncia para acidificagdo em condi¢des anaerdbias. A adigdo de
cinzas permitiu a reducao de AOX em 62 % e remocgéo de 65 % de matéria organica
do efluente de branqueamento. Por outro lado, a quantidade de cinzas volantes
adicionadas ao processo de degradacé@o anaerdbia de soro de queijo foi insuficiente
para instigar a fase metanogénica, levando a elevadas concentracdes de &cidos
organicos volateis e baixa produtividade de metano.

Na segunda fase, estudou-se a adi¢éo de esferas geopoliméricas, com cinzas volantes
na sua constituicao, a digestores anaerébios descontinuos e semi-continuos para o
tratamento de soro de queijo, que possui um maior potencial de biodegradacéo. A
adicdo de esferas com maior quantidade de cinzas (FA-based) na sua constituicdo
obteve melhor produtividade em metano. Verificou-se também que o aumento da
quantidade de esferas aumentava a producdo de metano em cerca de 30 %. Além
disso, a porosidade e quantidade das esferas influencia o desempenho anaerébio.
Maiores quantidades e maior porosidade das esferas melhoram a producéo de metano
em 82 %, mesmo apos 2 adi¢gbes consecutivas de substrato, comparativamente com
a adicao de alcalinidade quimica. Com 4 adi¢cdes sequenciais de substrato, o sistema
com esferas FA-based de alta porosidade também apresentou um desempenho muito
bom a nivel de estabilizagdo de pH no digestor e uma melhoria de 8 % no rendimento
de metano.

Na terceira fase, estudou-se a adicao de esferas geopoliméricas, com lama vermelha
na sua constituicdo (RM-based), a digestores anaerébios semi-continuos para o
tratamento de soro de queijo. Com o aumento da carga orgéanica, os sistemas
anaerobios foram temporariamente inibidos, tendo recuperado apds um periodo mais
longo. A diferenca no desempenho entre os digestores com adicdo de alcalinidade
quimica e com a adicdo de esferas geopoliméricas RM-based foi evidente apds
inibicAo por acumulacdo de substrato. As esferas promoveram uma lixiviagdo
prolongada e lenta de alcalinidade, promovendo maior estabilidade do sistema e
melhorando a produgdo de metano em 94 % e a remocgdo de matéria organica em
44 %. ApoOs a utilizagdo nos digestores anaerébios, as esferas mantém a sua
integridade, podendo ser recuperadas e reutilizadas noutras aplicacdes, como
adsorventes de poluentes ou integradas em cimentos e argamassas.

Com este estudo, pode-se concluir que a utilizacdo de esferas geopoliméricas
inorganicas é uma estratégia inovadora e muito promissora para controlo de pH e para
promover a estabilidade dos processos anaerébios, contribuindo assim para o
conceito de economia circular, utilizando residuos (soro de leite, cinzas volantes e
lama vermelha) em processos biologicos, para valorizagdo em novos produtos
(esferas geopoliméricas) e energia (metano).
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The main objective of this work was the study of the effect of the addition of alkaline
inorganic residues (fly ash and red mud), incorporated in inorganic geopolymeric
spheres, for pH control and improvement of anaerobic processes during the treatment
of challenging organic wastes.

In the first phase, the addition of fly ash to two different effluents was studied. It The
effluent from the first bleaching stage of a pulp and paper industry was used, with high
concentrations of low biodegradable organic compounds (AOX) and very low pH (= 2),
as well as the by-product of a dairy industry (cheese whey), with high organic load and
fast propensity to acidification under anaerobic conditions. The addition of fly ash
allowed the reduction of AOX by 62 % and the removal of 65 % of organic matter from
the bleaching effluent. On the other hand, the amount of fly ash added to cheese whey
degradation process was insufficient to instigate the methanogenic phase, thus leading
to high concentrations of volatile organic acids and low methane productivity.

In the second phase, it was studied the addition of geopolymeric spheres, with fly ash
in their constitution, to discontinuous and semi-continuous anaerobic digesters for the
treatment of cheese whey, which has a greater biodegradation potential. The addition
of spheres with a greater amount of ash (FA-based) in its constitution obtained better
productivity in terms of methane. It was also found that the increase in the number of
spheres boost the production of methane by about 30 %. In addition, the porosity and
concentration of the spheres influences anaerobic performance. Higher amounts and
greater porosity of the spheres improve methane production by 82 %, even after 2
consecutive substrate additions, compared to the addition of chemical alkalinity. With
4 sequential additions of substrate, the system with FA-based spheres with high
porosity achieved also a very good performance in terms of pH stabilization in the
digester and achieved a methane yield improvement of 8 %.

In the third phase, it was studied the addition of geopolymeric spheres, with red mud
in their constitution (RM-based), to semi-continuous anaerobic digesters for the
treatment of cheese whey. With the increase of the organic load, the anaerobic systems
were temporarily inhibited, recovering after a longer period. The difference in
performance between digesters with the addition of chemical alkalinity and the addition
of RM-based geopolymeric spheres was evident after inhibition by the substrate
accumulation. The spheres promoted a prolonged and slow leaching of alkalis,
promoting greater stability of the system and improving the production of methane by
94 % and the organic matter removal by 44 %. After being used in anaerobic digesters,
the spheres keep their integrity and can be recovered and reused in other applications,
such as pollutant adsorbents or integrated into cements and mortars.

With this study, it can be concluded that the use of inorganic geopolymeric spheres is
an innovative and very promising strategy for pH control and to promote the stability of
anaerobic processes, thus contributing to the concept of circular economy, using
wastes (cheese whey, fly ash and red mud) in biological processes, for their
valorization into new products (geopolymeric spheres) and energy (methane).
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“In a world where demands for freshwater are continuously growing, and where limited water
resources are increasingly stressed by over-abstraction, pollution and climate change, neglecting
the opportunities arising from improved wastewater management is nothing less than unthinkable

in the context of a circular economy.”

(United Nations World Water Assessment Programme, 2017)

1.1 Motivation and Relevance

1.1.1 From waste to energy: a sustainable approach

Worldwide, energy demand is increasing due to rapid population growth and the inevitable
associated activities. Similarly, waste materials, including solid waste and wastewater, are constantly
being generated and their accumulation or inadequate management can lead to significant
environmental and health problems. All sectors of our environment are affected when poor waste
management is the main practice (Kaza et al., 2018):

e oceans are contaminated due to dumped waste (organic and other, such as plastics) and
wastewater discharges;

e natural disasters, such as floods, are more common every day due to clogging drains
with several wastes;

e transmitted diseases and respiratory problems can be associated with the accumulation
of untreated waste;

e animals may be at risk when consuming waste without knowing it;

e economic development is affected and does not benefit from untreated waste.

In this sense, it is urgent to develop new technologies in the field of waste and wastewater
management that, at the same time, meet the population’s requirements in terms of energy and
preserve the maximum environmental resources. In parallel, there is a growing interest in the
development of carbon-neutral fuels provided from biomass, thus taking advantage of natural
resources. This change can help to reduce the impact of atmospheric carbon dioxide from the use
of fossil fuels and, at the same time, contribute to the application of the circular economy concept
(Mikheenko et al., 2019).

The possibility of recovering energy from waste and wastewater is growing in interest and several
countries have already implemented waste(water)-to-energy systems, as the case of Mexico, Egypt,
the USA, China, Brazil and India (Rodriguez et al., 2020). These integrated systems produce energy
from waste or wastewaters in the form of electricity, to be used in transport and energy to heat homes,
with the potential to replace the use of natural gas. These waste(water)-to-energy systems are
inexpensive to implement, renewable and represent a solution for waste and wastewater, which are
considered to be a form of energy readily available in cities around the world.

Anaerobic digestion (AD) process to convert the organic matter present in the waste or
wastewater into methane-rich biogas (Figure 1) is a widely-used and well-established biological
process, and it is very promising to be successfully integrated in the wastewater-to-energy treatment
systems (Merlin Christy et al., 2014).
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Figure 1| Waste(water)-to-energy process flow, encompassing a process of valorization through anaerobic

digestion of waste or wastewater streams into added-value products, such as methane-rich biogas and
digestate.

Several solid wastes such as food and garden waste, municipal wastewater (contaminated with
human waste) and industrial wastewater (from industrial activities) can be effectively converted into
methane by an AD process, reducing their pollution load. Methane formed during anaerobic
processes (composting and AD) contributes to global greenhouse gas (GHG) emissions if released
to the atmosphere, being 34 times more powerful than carbon dioxide in terms of the impact on the
greenhouse effect (Ashrafi et al., 2015). However, in waste(water)-to-energy systems, methane is
used as an energy source in several applications, preventing its natural release into the atmosphere,
as occurs if waste or wastewater has not been properly managed or disposed of without treatment.

The energy vector (methane) produced in this cheaper approach can be used to replace costly
and polluting energy sources, such as fossil fuels, to generate electricity, heat and fuel. In addition
to this cost reduction during energy production, the digestate of the AD process can also be sold to
be applied directly as a soil amendment, increasing the value of the generated products. The
digestate can also be subjected to solid-liquid separation to obtain a compost (solid fraction) and a
concentrated organic fertilizer (liquid fraction), both with the potential to be used in the agricultural
sector as soil amendments.

With new approaches to wastes and wastewaters management, considering them as valuable
resources instead of residues, it is possible to reduce the pollution load generated in several
industrial, domestic and agricultural activities and create value in the form of energy vector and other
secondary products with added value. Consequently, the AD process has the co-benefit of reducing
GHG emissions, while preventing the formation of odors and the release of pollutants into the
environment, and contributes to the maintenance of air, soil and water quality. In addition, other
waste and wastewater treatment technologies, already fully implemented, also provide the mitigation
of GHG emissions, improve health and environmental benefits and provide significant co-benefits for
the adaptation and sustainable development of communities (Intergovernmental Panel on Climate
Change, 2007).
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1.1.2 Sustainable Development Goals

In 2015, all United Nations (UN) Member States adopted the 2030 Agenda for Sustainable
Development. The 17 Sustainable Development Goals (SDG), as depicted in Figure 2, are a call for
action and a list of guidelines for all the countries involved, and each SDG has several targets to be
achieved until 2030 (United Nations, 2020).

NO IERO GOOD HEALTH QUALITY GENDER CLEAN WATER
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Figure 2| Sustainable Development Goals defined by the United Nations for 2030 (graphics from UN, 2020).

The SDG defined that economic growth must be spurred and, at the same time, strategies must
be adopted to end poverty, improve health and education and reduce inequality, with the ever-
present problem of climate change, channeling efforts to preserve the oceans and the forests (United
Nations, 2020). In line with the defined SDG, some of them can be framed in the work developed
here:

e “SDG 6: Clean water and sanitation” is divided into eight main targets. One of the targets
includes the reduction of pollution, elimination of dumping and minimizing the release of
hazardous materials, with an increase in the amount of water to be treated, recycled and
reused. Furthermore, the implementation of integrated water resources management is
addressed in the SDG 6.

e As defined in “SDS 7: Affordable and clean energy”, it is important to increase energy
efficiency and the share of renewable energies in the global energy mix. Biogas
generation can be included as it is considered as renewable energy from renewable
sources (wastes and wastewaters).

e “SDG 11: Sustainable cities and communities” highlights the importance of reducing the
environmental impact of cities, paying special attention to air quality and the management
of municipal and other waste.

e The “SDG 12: Responsible consumption and production” proposes the promotion of
sustainable management and the efficient use of resources and energy, reducing the
release of pollutants in water, air and soil to minimize their effects on human health and
in the environment, and reduction of waste generated globally through prevention,
reduction, recycling and reuse.
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e “SDG 13: Climate action” refers to all modifications or solutions that promote the fight
against climate change and its impacts. It includes the increase of renewable energy use
and all measures to reduce GHG emissions, being this SDG transversal and
interconnected to other goals.

e “SDG 14: Life below water” and “SDG 15: Life on land” are closely related and propose
the conservation of oceans, water basins and forests, and the sustainable use of marine
resources and terrestrial ecosystems.

The current waste and wastewater management measures applied in some countries already
contribute to the achievement of the goals established for 2030 by UN, which focus on sustainability.
However, with the increasing amounts of waste and wastewater generated every year, it is of high
importance to improve and optimize the waste(water)-to-energy systems, creating solutions for
effective reduction of pollution and wastewater treatment. The development of waste(water)-to-
energy systems to manage both waste and wastewater, producing energy vectors like methane, is
considered a renewable energy source. Potential applications for methane produced in the AD
process can contribute to the reduction of fossil fuels consumption, replacing them in several
applications. In addition, this integrated valorization process can reduce greenhouse gas emissions,
avoiding inappropriate wastes deposition and the discharge of untreated wastewater. Thus, the
proposed methodology for waste and wastewater valorization has the potential to contribute to the
fight against climate change, the preservation of water and forest resources and the generation of
clean and sustainable energy from materials that are discharged daily by human activities.

1.1.3 Pulp and paper industry, dairy industry and alumina refining:

How to connect them?

Industrial activities generate a huge amount of solid and liquid waste. With the increase in
environmental regulations, several sectors of the industry must adapt their practices to reduce the
amount of waste generated in their production process and/or develop technologies to treat the waste
and wastewater generated. In some industries, the complexity of waste hinders the success of
technologies such as biological treatment.

In the case of the pulp and paper (P&P) industries, they are major consumers of freshwater and
are a significant source of wastewater. Some wastewater streams generated in the process, mainly
from pulp bleaching, can be potentially polluting and dangerous for the environment and human life
(Ashrafi et al., 2015). In addition, the biomass combustion for energy generation in the P&P mill
generates solid residues, namely bottom and fly ashes (FA), and they must be properly managed
(Weiss-Hortala et al., 2020). In the integrated approach proposed here, the two types of waste
(wastewater from pulp bleaching and fly ash from biomass combustion) can be combined through
the implementation of an anaerobic biological process. On the one hand, in the anaerobic process
the organic load and some complex compounds are removed from the pulp bleaching wastewater
and, on the other hand, fly ash can be used as mineral additives to correct the pH in the treatment
of highly acidic wastewater and improve the AD process in terms of methane production.

The dairy industries are considered the largest source of wastewater from food processing and
use fresh water at all steps of the production process (Farizoglu and Uzuner, 2011). The high organic
load and the high content of solids and fats in these wastewaters require specialized treatments to
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minimize further environmental problems. Again, the development of anaerobic processes to treat
this type of wastewaters has some advantages, such as energy formation, low sludge generation
and low nutrient requirements, but it is important to strictly control the environmental conditions to
avoid process failures. The use of fly ash (FA) from biomass combustion as an inorganic additive to
control pH is a developing approach and is already used in a wide variety of substrates, such as
biological sludge (Guerrero et al., 2019), sulfate-rich wastewaters (Montalvo et al., 2019), pulp and
paper sludge (Huilifir et al., 2015) or food waste (Huang et al., 2018). Thus, the use of FA as an
inorganic additive in dairy effluents or by-products (such as cheese whey) can act as a process
controller and enhancer regarding methane formation.

The recovering of fly ash after its use in anaerobic treatment can be a problem and have the
aggravation that they can only be used once. An innovative approach to overcome these constraints
is the manufacture of geopolymer spheres, to be used as a buffer material in anaerobic processes
(Novais et al., 2017). The incorporation of fly ash in the geopolymer spheres structure is
advantageous since the raw materials normally used (metakaolin) are replaced by a residue. Thus,
FA-based geopolymer spheres (FAGS) can be used in a wide range of applications, as in the case
of anaerobic processes (Novais et al., 2018c), as they also have the minerals from fly ashes in the
structure, with the advantage of easy recovery.

The bauxite residue, also known as “red mud” is the largest industrial waste produced worldwide
(Guevara et al.,, 2017). The huge amount of residue produced in the Bayer process for bauxite
refining and its characteristics, such as extremely alkaline pH (> 10) and the presence of aluminum
and iron in high concentrations, led to additional precautions regarding the treatment and disposal of
bauxite residue. Several applications have already been explored to transform and valorize this
residue, as reviewed by Klauber et al. (2011). An innovative application for bauxite residue is the
incorporation of this residue in the geopolymer spheres (Novais et al., 2018a). The use of red mud-
based geopolymer spheres (RMGS) to control the pH in the AD of complex substrates is an
innovative alternative to the use of bauxite residue.

Thus, considering the three types of industries (chemical, food and mining) described, and some
of the wastes generated in their production process, it is possible to integrate them as a new
approach to the concept of waste(water)-to-energy, as depicted in Figure 3.

| Phase 1 \ \ Phase 2 | \ Phase 3

CH, CH, CH, CH,
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A v & cw FAGS cwW T cw

Figure 3| Integration of different types of wastes in waste(water)-to-energy approach, divided into three
phases, according to the type of inorganic waste added. In phase 1, the addition of fly ash (FA) powder to the
AD of both pulp and paper (P&P) effluent and cheese whey (CW); in phase 2, the addition of fly ash-based GS
(FAGS) and in phase 3, the addition of red mud-based GS (RMGS), both to the AD of CW for methane
production.

Solid wastes, such as FA and red mud (RM), can be used as inorganic additives in the powder
form or in the form of geopolymer spheres (GS), in the AD treatment of liquid wastes, as effluents
from pulp bleaching (P&P effluent) or by-products from dairy industry such as cheese whey (CW).
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The use of different wastes in a treatment process, with the advantage of renewable energy formation
as methane (CHa), is a paradigm shift regarding waste and wastewater management.

Scientific interest in the application of these types of waste has increased in recent years,
reflected in the number of publications by keywords, namely “red mud” or “bauxite residue”, “fly ash”
and “cheese whey” (Figure 4).
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Figure 4] Number of publications for the three main wastes under study: “red mud or bauxite residue” from
alumina refining industry, “fly ash” from biomass combustion and “cheese whey” from the dairy industry. Data
collected from the SCOPUS database, in March 2020, and includes all the publications until 2019.

The generation, characterization and use of fly ash in different processes makes them the most
studied waste. This is linked to the general keyword “fly ash” related to several thermochemical
processes, in addition to the applications known as soil pH corrector or incorporated in types of
cement or mortars. Red mud, due to its challenging characteristics, has increased interest, tripling
the number of publications in the last 10 years, most of them related to the attention paid to this
severely alkaline waste and its disposal in line with the challenges of sustainable practices, including
waste management.

On the other hand, “cheese whey” has kept its number of publications in the last ten years, as it
is considered a by-product and not a waste, and the technologies for its valorizations and production
of added-value products are already implemented on an industrial scale. However, there is always
room for the development of new technologies and the optimization of existing ones, justifying the
growth in the number of publications.

Crossing these terms referring to the types of wastes with the term “anaerobic digestion”, the
technology developed in this work, it is possible to observe that less than 0.5 % of the published
documents with “red mud” or “fly ash” also consider the application of an anaerobic process. On the
other hand, as anaerobic technology is already used to treat dairy effluents, 9 % of the published
documents regarding the use of cheese whey also explore the application of the AD process. Again,
this reinforces the innovation of the integrated process developed, using AD technology to treat
complex streams, with the addition of inorganic materials.
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1.2 Objectives

The main goal of this work was to provide new solutions for pH control in anaerobic digestion
processes treating complex wastes, through the application of sustainable methodologies based on
residue recovery. For this purpose, different streams, namely bleaching effluent from the pulp and
paper industry and cheese whey, a byproduct from the dairy industry, were selected as a substrate
for anaerobic digestion processes. Different solid wastes, such as fly ash from biomass combustion
and red mud from bauxite refining, have been used as inorganic additives for anaerobic processes
to promote pH stabilization, enhance the organic matter reduction and boost the energy formation in
the form of methane.

The anaerobic biodegradability of a given stream is highly important for its valorization, whether
energetic (methane) or material (volatile fatty acids or ethanol). Consequently, the anaerobic
biodegradability of both selected streams was evaluated in the presence of powdered fly ash with
different origins, to understand the effect of adding inorganic wastes on pH regulation and, ultimately,
on the methane formation. In addition, with anaerobic biodegradability tests, it was possible to select
a proper substrate to be studied in more detail, implementing new strategies for pH control in
laboratory-scale reactors.

Usually, the addition of inorganic wastes to anaerobic processes focuses mainly on their effects
on the process, neglecting the recovery and/or disposal of the inorganic materials used. For this
reason, besides the addition of fly ash in the powder formulation, inorganic spheres incorporating
residues (fly ash or a mixture of fly ash and red mud) in their composition were also used as new
buffer materials for anaerobic degradation processes, with a material whose recovery is facilitated
after its use in AD processes.

Therefore, this innovative approach used for pH control has been implemented to evaluate the
performance of anaerobic systems concerning pH control and increased methane production. In
addition, the performance of reactors with inorganic spheres was compared to the performance of
reactors without pH control and with the performance of reactors with the addition of chemical
compounds (such as NaOH or carbonates) as buffer materials, widely used in the laboratory and
industrial-scale reactors. For this purpose, anaerobic batch reactors and anaerobic sequencing batch
reactors have been operated for long periods. These different reactor configurations made it possible
to understand the effect of the addition of inorganic spheres with different characteristics and in
different concentrations on the main anaerobic operational parameters.

With this work, innovative buffer materials were produced from waste, with a huge potential to be
used as inorganic additives in biological processes. The reduction or total replacement of virgin raw
materials in different steps of the proposed approach, whether in the manufacture of inorganic
spheres or in the replacement of chemicals used as buffer compounds for the anaerobic process,
allowed the implementation of a more sustainable process, aligned with sustainable development
goals.
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1.3 Thesis Outline

This thesis is divided in seven chapters, including the introduction section, the reference list and
the appendices section.

Chapter 2: “State-of-art” provides a general framework of the main issues relevant to this thesis,
including the waste production from the pulp and paper industries, dairy industries and alumina
industries, and the current solutions applied to several wastes. A review of relevant advances for pH
control in anaerobic systems is also presented, including the use of new alkaline materials to replace
the addition of the chemical compounds.

Chapter 3: “Methodology” details the substrates and inorganic additives for pH control, used in
the operated bioreactors. The experimental set-up and the conditions applied in the anaerobic
assays, and the methodologies for monitoring the developed anaerobic processes are detailed in
this section. This chapter also explains the parameters calculated to evaluate the anaerobic
performance of the bioreactors.

Chapter 4: “Results and discussion” is divided into three sections, as shown in Figure 5 for better
understanding. The first and second sections are related to the use of fly ash as basic waste for pH
control, and the third section is related to the use of red mud as the basic waste for pH control in the
developed anaerobic digestion processes. In phase 1 (first section) the results and their discussion
of anaerobic assays testing the addition of powder fly ash (from biomass combustion) to the
anaerobic digestion of two types of substrates are presented: bleaching effluent from the pulp and
paper industry and cheese whey by-product from the dairy industry. In phase 2 (second section) the
results and their discussion for the anaerobic digestion tests are presented, using geopolymer
spheres with fly ash in their constitution, as an additive for pH control in the anaerobic treatment of
cheese whey. In phase 3 (third section) the results and their discussion are presented for the
anaerobic digestion assays treating cheese whey and using geopolymer spheres with red mud
wastes in their constitution.
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Figure 5| Schematic division of the work presented in this thesis.

Finally, Chapter 5: “Conclusions and perspectives for future work” presents the general
conclusions of the biological processes developed and presented in this work, as well as suggestions
for future research in this field of knowledge.
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2.1 Waste and wastewater production

Driven by the increase in the world population in the last century, by the migration of populations
to urban areas, by growing economies and by the change in lifestyle, the demand for energy and
recourses has increased exponentially. In addition, global water use has increased six-fold in the
past 100 years and will continue to grow by 1 % per yeatr, increasing pressures on limited natural
resources and ecosystems. In addition, the production of waste and wastewater has also increased.
The management strategies for these wastes and wastewaters depend on local management and
can be recovered, treated, used directly, indirectly or discarded without value recovery (Mateo-
Sagasta et al., 2015).

Currently, 2.01 billion tons of solid waste are generated worldwide, and the World Bank has
estimated an increase of 70 % by 2050 unless measures are taken to reduce their generation (Kaza
et al., 2018). Almost 45 % of the waste generated nowadays is organic, such as food and green
waste (Figure 6 (a)), and metal, glass, plastic and paper and cardboard together represent 38 % of
the total solid waste generated (data from 2018). Most waste is produced in developed (high-income)
countries (Figure 6 (b)), thus showing a positive relationship with economic development. In low-
income countries, at least 90 % of waste is disposed of without proper management, increasing the
health risk and emissions, directly affecting the quality of life of the populations.
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Figure 6] Main types of waste generated worldwide (a) and the annually waste generation by region (b),
based on data presented by Kaza et al. (2018).

Wastewater is considered to be the combination of one or more sources of water discharge,
including domestic wastewater, water from commercial establishments and institutions and hospitals,
industrial effluents and agricultural runoff (Raschid-Sally and Jayakody, 2008). Considering the
wastewater generation worldwide, most of this resource is discarded without treatment or collection.
Every year, about 80 % of wastewater produced globally is released into the environment without
proper treatment (Rodriguez et al., 2020).

With the change in consumption patterns and the increase in industrial activities, an increase in
the demand for water resources was observed (Mateo-Sagasta et al., 2015). In addition, water quality
directly influences public health, food security and several ecosystem services and functions.
Untreated wastewater, in addition to environmental contamination, also contains pathogens,
organics and other nutrients and can contain a variety of hazardous substances, including heavy
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metals. Thus, water pollution limits opportunities for safe and productive use (or reuse) of water
sources and this has become a problematic issue especially in regions that face water scarcity or
where water-related infrastructure and services are inadequate.

To change this scenario, an alternative is the implementation of efficient measures for the
management of waste and wastewater, emphasizing the recycling and valorization processes,
applying a more circular and, therefore, more sustainable approach. In addition, it is necessary to
implement appropriate technologies to exploit the energy potential of both domestic and industrial
wastewaters generated, besides its use as an alternative source of clean water or nutrients, and as
a support for sustainable agriculture. The collection and treatment of waste and wastewater
management are costly and require significant amounts of energy, but the potential chemical, thermal
and hydraulic energy contained in these streams can be recovered and generate value, and the initial
investment cost is easily covered.

2.1.1 Bioenergy and the “European Green Deal”

Energy from bio-based sources (biomass or biological commodity), also called bioenergy, is
considered a renewable source of energy. Currently, energy from bio-based sources has the largest
renewable share and accounts for approximately 66 % of the total renewable energy mix. Regarding
energy consumption, bioenergy represents about 14 % of total energy consumption, with oil (39 %),
natural gas (21 %) and coal (20 %) being the main contributors (World Bioenergy Association, 2020).

Considering the period between 1990 and 2015, biogas is the third fastest growing renewable
energy source worldwide, after solar photovoltaic and wind power. In Europe, 6 % of the total
renewable electricity is generated from biogas and the currently produced methane represents about
4 % of the total natural gas consumed (European Biogas Association, 2019).

Although the high-energy potential of methane, it is one of the gases that causes global warming.
The global warming potential (GWP) of methane, which measures the amount of energy that
emissions of 1 ton of gas will absorb over a period of time, is 84 over a period of 20 years and 28 to
36 over a period of 100 years (Myhre et al., 2013). The CH4 emitted today lasts about 10 years in
the climate system, which is a shorter period than CO: (thousands of years). However, CH4 also
absorbs much more energy than CO2, and the effect of CH4 on global warming results from its high
infrared absorbance and its role in the complex chemical reactions that occur in the stratosphere,
also affecting ozone levels (Schaechter, 2004). Nonetheless, when captured instead of released into
the atmosphere, methane is a clean source of energy and has the potential to replace natural gas of
fossil origin, leading to a reduction in its environmental impact.

For many years, the trend observed worldwide has been the increase in waste disposal in landfills,
driven by the increase in human activities. This behavior also tended to increase the amount of
methane released into the atmosphere. Other sources of methane are agricultural activities, due to
the increased use of ruminants for the production of meat and dairy products and the increased
development of rice paddies (Schaechter, 2004). However, nowadays, the interest of the world
population in the environment has led to a change in consumption patterns, reducing the use of
products with a production cycle related to high pollution discharges in the environment, such as
meat and dairy products. This change in mentalities has also led to a change in the way the world
deals with the waste generated and the emissions of gases.

14



2 | State-of-art

One approach to achieve the reduction of GHG is to implement the AD process to dispose of
livestock and agricultural wastes (Aydin, 2017). In many European countries, the gas released in
landfills (where the organic fraction of waste decomposes) is captured and used in a cost-effective
way, mitigating GHG emissions. In addition, GHG savings of 240 % can be achieved by producing
electricity from biogas, when compared to the use of fossil fuels (European Biogas Association,
2019). Besides the AD process to produce biogas from organic waste and wastewaters, the use of
digestate also saves GHG emissions. Compared to the commonly used mineral fertilizer (fossil
origin), the use of digestate allows the recovery of nutrients and contributes to the concept of circular
economy applied to biological processes (European Biogas Association, 2019).

“European Green Deal” is a concept introduced by current Commissioners since October 2019.
The idea of the new concept is to make Europe the world’s first climate-neutral continent by 2050
(European Comission, 2020). With the revision of legislation associated with climate change and
GHG emissions, the new tight targets to be imposed in the coming years require the implementation
of new sustainable technologies for the production of energy, with the potential to reduce GHG
emissions. Consequently, the biogas indu