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As the electron in the hydrogen atom, a bosonic field can bind itself to a black hole occupying a discrete 
infinite set of states. When (i) the spacetime is prone to superradiance and (ii) a confinement mechanism 
is present, some of such states are infinitely long–lived. These equilibrium configurations, known as 
stationary clouds, are states “synchronized” with a rotating black hole’s event horizon. For most, if not 
all, stationary clouds studied in the literature so far, the requirements (i)–(ii) are independent of each 
other. However, this is not always the case. This paper shows that massless neutral scalar fields can form 
stationary clouds around a Reissner–Nordström black hole when both are subject to a uniform magnetic 
field. The latter simultaneously enacts both requirements by creating an ergoregion (thereby opening up 
the possibility of superradiance) and trapping the scalar field in the black hole’s vicinity. This leads to 
some novel features, in particular, that only black holes with a subset of the possible charge to mass 
ratios can support stationary clouds.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Neutron stars and black holes in binary systems feed some 
of the most powerful astrophysical events in the Universe. Their 
gravitational–wave luminosity can reach a peak of approximately 
1057 erg s−1 [1,2], only comparable to the electromagnetic lumi-
nosity of the most luminous gamma–ray bursts [3]. The Advanced 
LIGO/Virgo’s first and second observation runs reported the detec-
tion of gravitational waves from ten different binary black hole 
mergers and a single binary neutron star merger. During the first 
half of the third observing run, a total of 39 gravitational–wave 
candidate events were observed, three of which may have origi-
nated from neutron star–black hole mergers [4]. Joint detections of 
gravitational and electromagnetic waves from neutron star–black 
hole coalescences are of particular interest for constraining the 
equation of state of dense nuclear matter [5] and measuring the 
Hubble constant [6]. Furthermore, some neutron stars, known as 
magnetars, are endowed with super–strong magnetic fields reach-
ing 1012–1015 G [7]. For instance, the magnetar SGR J1745–2900, 
which orbits the supermassive black hole Sagittarius A∗ , has a 
surface dipolar magnetic field of 1014 G. Neutron star–black hole 
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binary systems are thus natural laboratories for probing the intri-
cate interaction of black holes with magnetic fields.

A magnetic field B0 permeating a black hole with mass M
curves the spacetime in a non-negligible way beyond a threshold 
value set by M B ∼ 1 [8], or reinstating familiar units

B ≡ c4

G3/2M
∼ 1019

(
M�
M

)
G , (1)

where M� is the solar mass. A magnetic field of order B or larger 
warps significantly spacetime in the vicinity of the event hori-
zon (without changing its topology). Since the field strength of a 
magnetic dipole falls off as the cube of the distance from it, it is 
unlikely that stellar–mass black holes or even supermassive black 
holes are subject to magnetic fields of order B .

Even if its strength is significantly smaller than B , the impact 
of a magnetic dipole on fields interacting with black holes may 
be non–negligible, as they can acquire an effective mass and be 
trapped in its vicinity. A massless field traversing the black hole’s 
vicinity would then behave as if it had non–vanishing mass and 
its effective mass would depend on the magnetic field strength. In 
addition, if the field is bosonic, it can induce black–hole superra-
diance, i.e. the extraction of energy and angular momentum from 
rotating black holes (for a review, see [9]). Black–hole superradi-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ance takes place when the phase angular velocity w of the bosonic 
field satisfies

w < m�H , (2)

where m is the azimuthal harmonic index and �H is the black 
hole’s angular velocity. Together with a natural confinement mech-
anism, black–hole superradiance is responsible for bosonic fields 
to form quasi–bound states. These are continuously fed the ex-
tracted black hole’s energy and angular momentum until Eq. (2)
saturates, i.e. w = m�H , and they become bound states. The new 
equilibrium state is expected to be a classical bosonic condensate 
in equilibrium with the slowed–down black hole, which for a com-
plex bosonic field is a hairy black hole [10–14].

The bosonic field remains trapped in the vicinity of the black 
hole when it is massive. A non–vanishing intrinsic mass, however, 
is not always mandatory. Trapping can be attained even when the 
field is massless. For instance, a massless bosonic field interacting 
with a black hole immersed in a magnetic field is likely to form 
bound states. The magnetic field creates a potential barrier, confin-
ing the field into the neighborhood of the black hole.

An example that naturally embodies this idea is the interac-
tion of a massless scalar field with a Reissner–Nordström black 
hole embedded in a uniform axial magnetic field.1 The latter is de-
scribed by the Reissner–Nordström–Melvin (RNM) solution [15,16], 
obtained via a solution–generating technique known as Harrison 
(or “magnetizing”) transformation. Interestingly, the RNM solution 
is a stationary (rather than a static) solution of the Einstein–
Maxwell theory. The rotation is sourced by the coupling between 
the black hole’s electric charge and the external magnetic field. 
Besides, the spacetime features an ergoregion and, as a result, 
is prone to black–hole superradiance even for electrically neutral 
bosonic fields. This contrasts with the case of asymptotically–flat 
Reissner–Nordström black holes wherein (charged) superradiance 
is possible but only for charged bosonic fields [17] and a superra-
diant instability does not follow from a mass term; it requires, for 
instance, enclosing the black hole with a reflecting mirror – see, 
e.g., [18–20].

The present paper focuses on bound states between a massless 
scalar field and a RNM black hole (cf. [21]). These real–frequency 
states are characterized by the threshold of superradiance w =
m�H , hereafter referred to as synchronisation condition, and were 
first reported in [22], in which the author named them stationary 
clouds. Much attention has been paid to such synchronized states 
since their discovery [14,23–42], yet most works rely on intrin-
sically massive fields. For the case under consideration here, the 
fields need not have a non-vanishing mass for stationary clouds 
to arise.2 A peculiar feature of this model is that the scalar field’s 
effective mass is proportional to the black hole’s angular velocity, 
the proportionality constant being a function of the specific elec-
tric charge Q /M alone, where M and Q are, respectively, the black 
hole’s mass and electric charge. Curiously enough, the condition for 
the existence of bound states is only met for values of Q /M in a 
subset of [−1, 1].

The paper is organized as follows. First, the Einstein–Maxwell 
theory minimally coupled to a complex, ungauged scalar field is 
introduced in section 2. Together with a constant scalar field, the 
RNM solution is a particular case of the theory. Its main features 
are outlined in section 2.1, followed by a linear analysis of scalar 
field perturbations in section 2.2. The main results on stationary 
clouds are presented in section 3. A summary of the work can be 
found in section 4.

1 Although this is not a realistic astrophysical scenario, it suffices to sketch the 
main argument of the paper.

2 The same is true for AdS asymptotics – see, e.g., [26].
2

Natural units (G = c = 1) are consistently used throughout the 
text. Additionally, the metric signature (−, +, +, +) is adopted.

2. Framework

The action for the Einstein–Maxwell theory minimally coupled 
to a complex,3 ungauged scalar field � is

S = 1

4π

∫
d4x

√−g

[
R

4
− F 2

4
− (∇μ�∗)(∇μ�)

]
, (3)

where F = dA is the electromagnetic tensor and A is electromag-
netic four–potential.

The corresponding equations of motion read

Gμν = 2
[

T (A)
μν + T (�)

μν

]
, �� = 0 , ∇μF μν = 0 , (4)

where � ≡ ∇μ∇μ is the d’Alembert operator and

T (A)
μν ≡ Fμ

σ Fνσ − 1

4
gμν Fσλ F σλ, (5)

T (�)
μν ≡ 2∂(μ�∗∂ν)� − gμν(∂λ�

∗)(∂λ�) (6)

are the stress–energy tensors of the electromagnetic and scalar 
fields, respectively. The action has a global U (1) invariance with 
respect to the scalar field thanks to its complex character.

This field theory admits all of the stationary solutions of gen-
eral relativity. These are characterized by � = �0, for some con-
stant �0. Linearizing the equations of motion around � = �0, one 
obtains the ordinary Einstein–Maxwell equations together with the 
Klein–Gordon equation for the scalar field perturbation δ� ≡ (� −
�0). This system describes the linear or zero–backreaction limit of 
the theory: the limit in which the backreaction of both the gravita-
tional and electromagnetic fields to a non–constant scalar field is 
negligible. This first–order approximation suffices to capture po-
tentially relevant astrophysical phenomena such as superradiant 
scattering. The framework allows one to solve the Klein–Gordon 
equation �(δ�) = 0 for a known solution {g, A} of the Einstein–
Maxwell equations.

2.1. Reissner–Nordström–Melvin black holes

This paper will focus on scalar field perturbations of RNM black 
holes. These solutions belong to a family of electrovacuum type 
D solutions of the Einstein–Maxwell equations which asymptoti-
cally resemble the magnetic Melvin universe. The latter describes 
a non–singular, static, cylindrically symmetric spacetime represent-
ing a bundle of magnetic flux lines in gravitational–magnetostatic 
equilibrium. It can be loosely interpreted as Minkowski spacetime 
immersed in a uniform magnetic field; but it should be kept in 
mind that such magnetic field, no matter how small, changes the 
global structure of the spacetime, in particular its asymptotics.

Given an asymptotically–flat, stationary, axi–symmetric solution 
of Einstein–Maxwell equations, it is possible to embed it in a 
uniform magnetic field via a solution–generating technique called 
Harrison transformation (also commonly known as “magnetizing” 
transformation). This possibility, first realized by Harrison [44], 
was explored for the Schwarzschild and Reissner-Nordström solu-
tions [15] and for the Kerr and Kerr–Newman solutions [45].

The RNM solution, which describes a Reissner–Nordström black 
hole permeated by a uniform magnetic field, reads [16]

3 Stationary clouds are not exclusive to complex scalar fields. A single real scalar 
field can equally form infinitely long–lived states at linear level – see [43].
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g = |
|2
(

−�

r2
dt2 + r2

�
dr2 + r2dθ2

)

+ r2 sin2 ϑ

|
|2 (dϕ − �dt)2 ,

A = �0dt + �3(dϕ − �dt) (7)

where t ∈ (−∞, +∞), r ∈ (0, +∞), ϑ ∈ [0, π ], ϕ ∈ [0, 2π) and

� = r2 − 2Mr + Q 2 ,


 = 1 + 1

4
B2

0(r
2 sin2 ϑ + Q 2

0 cos2 ϑ) − i Q B0 cosϑ ,

� = −2Q B0

r
+ Q B3

0r

2

(
1 + �

r2
cos2 ϑ

)
,

�0 = − Q

r
+ 3

4
Q B2

0r

(
1 + �

r2
cos2 ϑ

)
,

�3 = 2

B0
− 1

|
|2
[

2

B0
+ B0

2

(
r2 sin2 ϑ + 3Q 2 cos2 ϑ

)]
.

B0 is the strength of the magnetic field, which is assumed to be 
much weaker than the threshold value (1), i.e. M B0 
 M B = 1.

When applied to the Reissner–Nordström solution, the Harri-
son transformation produces a stationary (rather than a static) 
solution. The dragging potential � is directly proportional to the 
coupling Q B0, which suggests that the interaction between the 
charge Q and the magnetic field B0 serves as a source for rota-
tion.

The solution possesses two (commuting) Killing vectors, ξ = ∂t

and η = ∂ϕ , associated to stationarity and axi–symmetry, respec-
tively. The line element has coordinate singularities at � = 0 when 
Q 2 ≤ M2, which solves for r± = M ±

√
M2 − Q 2. The hypersurface 

r = r+ (r = r−) is the outer (inner) horizon. Besides, there is an 
ergo–region that extends to infinity along the axial direction, but 
not in the radial direction. Here, ergo–region means the regions 
outside the outer horizon wherein ξ is spacelike.

The dragging potential � is constant (i.e. ϑ–independent) on 
r = r+ , where it has the value

�H ≡ −2Q B0

r+

(
1 − r2+B2

0

4

)
. (8)

�H is the angular velocity of the outer horizon. The Killing vector 
χ = ξ + �Hη becomes null on the hypersurface r = r+ and it is 
timelike outside it.

2.2. Scalar field perturbations

In general, the Klein–Gordon equation �(δ�) = 0 does not ad-
mit a multiplicative separation of variables of the form

δ�(t, r) = e−iwt R(r)S(ϑ)e+imϕ , (9)

where w is the phase angular velocity, R and S are respectively 
the radial and angular functions and m ∈ Z is the azimuthal har-
monic index. However, in the limit of sufficiently “weak” mag-
netic fields, i.e. neglecting terms of order4 higher than O(B2

0), the 
ansatz (9) actually reduces the problem to two differential equa-
tions in the coordinates r and ϑ . The radial and angular equations 
read [21]

4 For a straightforward identification of the order of each term, it is convenient 
to introduce the dimensionless quantities {t B0, rB0, M B0, Q B0, w/B0} so that all 
physical quantities are measured in units of the magnetic field strength. Note that 
the first four quantities are of order O(B0), whereas the last is of order O(B−1

0 ).
3

d

dr

(
�

dR

dr

)
+

[
K 2

�
− (m2 B2

0r2 + λ)

]
R = 0 , (10)

1

sin ϑ

d

dϑ

(
sinϑ

dS

dϑ

)

+
(

λ − m2

sin2 ϑ
− 3m2 Q 2 B2

0 cot2 ϑ

)
S = 0 , (11)

respectively, where K = r2 w + 2mQ B0r and λ is the separation 
constant. Equations (10)–(11) are both confluent Heun equations: 
the former (latter) has singular points at r = r± (ϑ = 0, π ). They 
are coupled via the Killing eigenvalues {w, m}, B0, Q and the sepa-
ration constant λ and remain invariant under the discrete transfor-
mation {w, mQ B0} → {−w, −mQ B0}. This guarantees that, with-
out loss of generality, one can take sgn(w) = sgn(B0) = +1. When 
mQ B0 = 0, the angular equation reduces to the general Legen-
dre equation, whose canonical solutions are the associated Legen-
dre polynomials of degree � and order m, Pm

� (ϑ), provided that 
λ = �(� + 1). Thus, if |mQ B0| 
 1, the angular dependence of δ�
is approximately described by the scalar spherical harmonics of 
degree � and order m, Y m

� (ϑ, ϕ) = Pm
� (ϑ)e+imϕ .

Equation (10) can be cast in Schrödinger–like form, yielding

−d2ρ

dy2
+ V eff(y)ρ = w2ρ , (12)

where ρ ≡ rR and y is the tortoise coordinate, defined by

y(r) = r + r2+
r+ − r−

log(r − r+) − r2−
r+ − r−

log(r − r−) ,

which maps the interval r ∈ [r+, ∞) into r∗ ∈ (−∞, +∞). The ef-
fective potential V eff, whose expression is omitted here, has the 
following limiting behavior:

lim
y→−∞ V eff(y) = w2 − (w − m�H)2 , (13)

lim
y→+∞ V eff(y) = m2 B2 . (14)

The last limit suggests that a non–vanishing external mag-
netic field makes the scalar field acquire an effective mass μeff =√

m2 B2
0. It is important to remark, however, that the problem at 

hand is not equivalent to that of a massive scalar field perturba-
tion on an asymptotically–flat stationary spacetime, wherein the 
mass dominates the asymptotic behavior of the field. Besides pro-
viding the field an effective mass, the magnetic field also changes 
the asymptotic behavior at infinity (to be that of the Melvin mag-
netic universe), which has similarities with AdS asymptotics in the 
sense that it is naturally confining.

Fig. 1 shows the effective potential as a function of the radial 
coordinate r for different (negative) specific electric charges. In an 
asymptotically–Melvin spacetime, the magnetic field acts like a po-
tential barrier at rB0 ∼ 1, whose maximum, about ten times larger 
than O(B2

0), approaches the outer horizon with decreasing Q /M
(i.e. tending to extremality). Moreover, there is a potential well 
for all positive specific electric charges (not plotted in Fig. 1) as 
well as for negative ones above a certain threshold (away from 
extremality). The effective potential resembles a mirror placed at 
rB0 ∼ 1 and confines (low–frequency) scalar field perturbations 
in the black hole’s vicinity [46,47]. It is then natural to impose a 
Robin (or mixed) boundary condition at r = r0 as the outer bound-
ary condition,

tan(ζ ) = − R(r0)

R ′(r0)
, (15)
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Fig. 1. Effective potential for scalar field perturbations with � = m = 1 and w =
0.5B0 of RNM black holes with M B0 = 0.1. (Inset) Zoom near rB0 ∼ 1 to display 
the maximum of the effective potential.

where r0 is of order O(B−1
0 ), ζ ∈ [0, π), with ζ = 0 (ζ = π/2) 

corresponding to a Dirichlet (Neumann) boundary condition, and 
the prime denoting differentiation with respect to r.

In realistic astrophysical scenarios, magnetic fields occur in ac-
cretion disks around black holes. The “magnetic” potential barrier 
is then at a radial distance smaller than about the mean radius D
of the disk, i.e. r0 � D . Since the matter in the accretion disk is ex-
pected to be close to the innermost stable circular orbit, D ∼ 3M
and it follows that M B0 � 0.1, which clashes with the assump-
tion M B0 
 1 (for a more complete discussion, see [47]). Despite 
this caveat, the main argument of the paper holds at least from a 
purely theoretical perspective.

Furthermore, physically meaningful solutions to the radial equa-
tion satisfy the inner boundary condition

R|y→−∞ ∼ e−i(ω−m�H)y , (16)

i.e. they behave as waves falling into (emanating from) the black 
hole when w > m�H (0 < w < m�H).

3. Stationary scalar clouds

When the scalar field’s phase angular velocity is a natural mul-
tiple of the black hole’s angular velocity, i.e.

w = m�H = −2mQ B0

r+
+O(B3

0) , (17)

bound states, known as stationary clouds, are found. Equation (17)
is called synchronisation condition and does depend on the scalar 
field’s effective mass, μeff =

√
m2 B2

0. The ratio |w/μeff| = 2|Q |/r+
is independent of B0 and its absolute value is smaller than or 
equal to 2. Since it was assumed that sgn(w) = sgn(B0) = +1, 
the synchronisation condition dictates that the bound states sat-
isfy sgn(mQ ) = −1.

The synchronisation occurs in one–dimensional subsets of the 
two–dimensional parameter space of Reissner–Nordstöm–Melvin 
black holes, described by {M, Q }. These subsets – known as ex-
istence lines – are disjoint and can be labeled with a set of three 
“quantum” numbers: the number of nodes in the radial direction5

5 The number of nodes in the radial direction does not include the node at r = r0

when ζ = 0 (Dirichlet boundary condition).
4

n, the orbital/total angular momentum � and the azimuthal har-
monic index m. These states will be labeled with |n, �, m〉.

In the following, stationary scalar clouds around RNM black 
holes are obtained both (semi–)analytically and numerically. The 
existence lines will be plotted in the (M, Q )–plane normalized to 
the magnetic field strength B0.

3.1. Analytical approach

The eigenvalue problem at hand can be solved using the 
matched asymptotic expansion method (see, e.g., [48]), i.e. con-
structing approximations to the solutions of (10) that separately 
satisfy the inner and outer boundary conditions. The interval 
r ∈ [r+, r0] is thus split into two: (i) the inner region, r − r+ 
 λc , 
where λc = μ−1

eff ≤ r+/(m|Q |B0) is the scalar field’s Compton 
wavelength; inspection shows that λc � M; and (ii) the outer 
region, r − r+ � M . The inner and outer expansions are then 
matched in the overlap region, where both conditions can hold 
simultaneously, defined by M 
 r − r+ 
 λc .

3.1.1. Outer region
The outer region is well–defined only if the outer boundary is 

sufficiently far from the black hole, i.e. as long as r0 � M . Given 
that Q 2 ≤ M2, one can take � ∼ r2. Besides, if r2 � |2mQ B0/w|, 
then K ∼ wr2. When the synchronization condition (17) holds, the 
latter approximation is equivalent to r � r+ , which is consistent 
with r − r+ � M .

The radial equation (10) then reduces to that of a massless 
scalar field perturbation with phase angular velocity defined by 
� 2 ≡ w2 − μ2

eff = m2 B2
0(4Q 2/r2+ − 1) and angular momentum �

in Minkowski spacetime,6

d2

dr2
(rR+) +

[
� 2 − �(� + 1)

r2

]
(rR+) = 0 , (18)

where R+(r) ≡ limr→r0 R(r). The general solution is

R+(r) = α+ j�(� r) + β+ y�(� r) , (19)

where j� and y� are the spherical Bessel functions of the first and 
second kinds, respectively, and α+, β+ ∈C. For sufficiently large r, 
the spherical Bessel functions are a linear combination of ingo-
ing and outgoing waves if � is real, i.e. if w2 > μ2

eff. The Robin 
boundary condition (15) fixes the quotient

γ ≡ β+
α+

=
[
− j�(� r) + tan(ζ ) j′�(� r)

y�(� r) + tan(ζ )y′
�(� r)

]∣∣∣∣
r=r0

. (20)

The small–r behavior of the asymptotic solution (19) is

R+(r) ∼ α+
(� r)�

(2� + 1)!! − β+
(2� − 1)!!
(� r)�+1 . (21)

3.1.2. Inner region
Near the outer horizon, the radial equation (10) reduces to

d

dr

(
�

dR−
dr

)
− �(� + 1)R− = 0 , (22)

where R−(r) ≡ limr→r+ R(r). Introducing the radial coordinate z ≡
(r−r+)/(r−r−) and defining R−(z) = (1 −z)�+1 F (z), one can bring 
the radial equation (22) into the form

z(1 − z)
d2 F

dz2
+ [c − (a + b + 1)z]

dF

dz
− abF = 0 , (23)

6 Alternatively, one could say that Eq. (18) describes a scalar field with mass √
m2 B2, phase angular velocity m�H and angular momentum �.
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with a = b ≡ � + 1 and c ≡ 1. Equation (23) is a Gaussian hy-
pergeometric equation, which has three regular singular points: 
z = 0, 1, ∞. The most general solution is [11,49]

F (z) =α− F (a,a;1; z)

+ β−

⎡
⎣F (a,a;1; z) log z + 2

+∞∑
j=1

f( j)z j

⎤
⎦ , (24)

where

f( j) =
[

(a) j

j!
]2

[ψ(a + j) − ψ(a) − ψ( j + 1) + ψ(1)]

and (a) j = �(a + j)/�(a) and ψ is the digamma function. The sec-
ond term in Eq. (24) diverges logarithmically as z → 0 (r → r+). 
As the inner boundary condition must be regular, the constant β−
must vanish. In terms of the radial function R− , the solution thus 
reads

R−(z) = α−
(2� + 1)!

(�!)2

[
(−1)2�+1 R(D)(z) + R(N)(z)

(� + 1)2

]
,

where

R(D)
− (z) = (1 − z)�+1 F (� + 1, � + 1;2� + 2;1 − z) ,

R(N)
− (z) = (1 − z)−� F (−�,−�;−2�;1 − z) .

When r � M , z ∼ 1 and (1 − z) ∼ (r+ − r−)/r, meaning that

R(D)
− (z) ∼ (r+ − r−)�+1r−�−1 ,

R(N)
− (z) ∼ (r+ − r−)−�r� .

3.1.3. Matching
It is clear that the larger–r behavior of the asymptotic solu-

tion R− exhibits the same dependence on r as the small–r behav-
ior of the asymptotic solution R+ . Matching the two solutions, one 
gets

γ = (� + 1)2

(2� + 1)!!(2� − 1)!! [�(r+ − r−)]2�+1 . (25)

Using Eq. (20), one finally obtains

tan(ζ ) = − j�(� r0) + γ y�(� r0)

j′�(� r0) + γ y′
�(� r0)

, (26)

which establishes the existence condition for stationary scalar 
clouds around (non–extremal) RNM black holes. These exist as 
long as the field perturbation has a radial oscillatory character and 
therefore can satisfy a Robin boundary condition at r0 B0 ∼ 1. This 
requirement is met provided that � is real, i.e. if

w2 > μ2
eff ⇔ 4Q 2

r2+
> 1 =⇒ Q 2

M2
>

16

25
, (27)

or |Q /M| ∈ (0.8, 1.0), where sgn(Q ) = ±1 for sgn(m) = ∓1 so 
that sgn(w) = +1. Note that this restriction on the specific electric 
charge is a by–product of the proportionality between w = m�H
and μeff.

3.2. Numerical approach

Stationary clouds can also be found by solving numerically the 
coupled equations (10)–(11). For that purpose, it is convenient to 
replace the mass M by the outer horizon radius r+ and work with 
the dimensionless quantities {r+ B0, Q B0, �H/B0}. To impose the 
5

correct inner boundary condition the radial function may be writ-
ten as a series expansion around r = r+ [50],

R|r→r+ ∼
+∞∑
j=0

a( j)(r − r+) j . (28)

The coefficients {a( j)} j>0 are obtained by plugging (28) into (10), 
writing the resulting equation in powers of (r − r+) and setting 
the coefficient of each power separately equal to zero. The result-
ing system of equations must then be solved for {a( j)} j>0 in terms 
of a(0) . The latter is set to 1 without loss of generality. The coef-
ficients {a( j)} j>0 depend on the black hole’s parameters {r+, Q }, 
the Killing eigenvalue m and the separation constant λ. Instead 
of solving the angular equation (11), one approximates the latter 
by �(� +1), which is accurate enough if mQ B0 
 1. Since Q 2 ≤ M2

and M B0 
 M B = 1, the approximation is valid for moderate val-
ues of m.

The parameters {r+, �, m} are assigned fixed values. By virtue 
of the regular singular point at r = r+ , Eq. (10) must be integrated 
from r = r+(1 + δ), with δ 
 1, to r = r0, where r0 is the outer 
boundary radial coordinate. A simple shooting method finds the 
Q –values for which the numerical solutions satisfy a Robin bound-
ary condition at r = r0.

3.3. Existence lines

Fig. 2 displays the (numerical) existence lines for stationary 
clouds |0, 1, 1〉 with r0 B0 ∈ {4, 6, 8, 10} and ζ ∈ {0, π2 , π4 }. The 
shaded bands represent the allowed regions of the parameter 
space for the existence of bound states. The upper boundary, de-
fined by Q 2 = M2, corresponds to the extremal line. The RNM black 
holes in the lower boundary satisfy Q 2 = 0.64M2, in accordance 
with the conclusion at the end of section 3.1.3.

The panels below the main plots show the absolute difference 
σ between each existence line and that corresponding to r0 B0 = 4
and the absolute difference ε between the numerical and analyt-
ical existence lines. As expected, given that the analytical condi-
tion (26) is valid when M B0 
 1, ε → 0 as M B0 → 0.

All existence lines lie within the shaded bands. Also, they con-
verge to (M, Q ) = (0, 0), i.e. σ → 0 as M B0 → 0, which is in 
agreement with the expectation that scalar field perturbations can-
not attain stationary equilibrium with respect to asymptotically–
Melvin black holes. Fixing M B0, as the region of influence of the 
magnetic field decreases, i.e. as r0 B0 decreases, the Coulomb en-
ergy of the black hole supporting the stationary cloud increases. 
Vaster clouds thus require lower angular velocities so that they do 
not collapse into the black hole. Also, there is an overall decrease 
in the Coloumb energy as ζ varies continuously from 0 (Dirichlet 
boundary condition) to π

2 (Neumann boundary condition).
The existence lines for the states |0, �, m〉 with � = m = 1, . . . , 4, 

r0 B0 = 4 and ζ = 0 are plotted in Fig. 3. These approach the ex-
tremal line as � = m decreases, a trend already noticed in previous 
works (see, e.g., [25]).

The impact of the orbital angular momentum � is enlightened
in Fig. 4, in which the existence lines for the states |0, �, 1〉 with 
� = 1, . . . , 4, r0 B0 = 6 and ζ = 0 are shown. As � increases, so does 
|Q /M|, which suggests that stationary clouds |0, �, 1〉 with � > 1
are more energetic than |0, 1, 1〉.

4. Conclusion

The RNM black hole stands out as a toy model for a rotating 
black hole immersed in an external axial magnetic field. In fact, 
it is the simplest stationary (but not static) solution of Einstein–
Maxwell equations asymptotically resembling the magnetic Melvin 
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Fig. 2. Stationary scalar clouds |n, �, m〉 = |0, 1, 1〉 around Reissner–Nordström black 
holes embedded in a uniform axial magnetic field of strength B0, for different Robin 
boundary conditions, parametrized by ζ , at the outer boundary r0.

universe. Frequently overlooked due to its astrophysical irrele-
vance, it is still worth studying as it may offer some insights into 
the interaction of black holes with magnetic fields.

The present paper aimed precisely to explore the interplay be-
tween bosonic fields and black holes when permeated by a uni-
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Fig. 3. Stationary scalar clouds |n, �, m〉 = |0, �, �〉 around Reissner–Nordström black 
holes embedded in a uniform axial magnetic field of strength B0 and satisfying a 
Dirichlet boundary condition (ζ = 0) at r0 B0 = 4.

Fig. 4. Stationary scalar clouds |n, �, m〉 = |0, �, 1〉, with � = 1, . . . , 4, around 
Reissner–Nordström black holes embedded in a uniform axial magnetic field of 
strength B0 and satisfying a Dirichlet boundary condition (ζ = 0) at r0 B0 = 6.

form magnetic field. It was shown in particular that RNM black 
holes support synchronized scalar field configurations known as 
stationary clouds. They are somehow akin to atomic orbitals of the 
hydrogen atom in quantum mechanics in that they are both de-
scribed by quantum number. In effect, stationary clouds are char-
acterized by the number of nodes in the radial direction, n, the 
orbital angular momentum, �, and the azimuthal harmonic index, 
m, which labels the projection of the orbital angular momentum 
along the direction of the magnetic field.

It is now well known that stationary equilibrium is possible 
whenever a bosonic field at the threshold of superradiant insta-
bilities (i.e. obeying the so–called syncrhonization condition) is 
confined in the black hole’s vicinity. The confinement mechanism 
(either natural or artificial) creates a potential barrier which may 
prevent the field from escaping to infinity. As a result, infinitely 
long–lived configurations arise. For example, a massive bosonic 
field can form such stationary clouds around Kerr black holes – 
with the field’s mass providing a natural confinement mechanism. 
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So does a massless charged scalar field in a cavity enclosing a 
Reissner–Nordström black hole – with the boundary of the cav-
ity, a reflective mirror, sourcing an artificial confinement mecha-
nism [18]. The properties of both equilibrium configurations are 
similar despite minor qualitative differences.

Additionally worth mentioning is the fact that, in two previous 
examples, the occurrence of superradiance does not rely on the 
existence of a confining environment; one could say that the two 
ingredients are added separately. However, in the setup under con-
sideration, the magnetic field of the RNM black hole is responsible 
not only for developing an ergoregion and hence trigger superradi-
ant phenomena but also for making low–frequency fields acquire 
an effective mass and thus be trapped, allowing the formation of 
stationary clouds. In view of this, it does not come as a surprise 
that both the black hole’s angular velocity �H and the field’s ef-
fective mass μeff – synonyms for superradiance and confinement, 
respectively – depend on B0.

Lastly, a by–product of considering the RNM black hole was the 
realization that the quotient m�H/μeff is a function of the black 
hole’s specific electric charge Q /M only. Consequently, the con-
dition for the existence of bound states constrains the values of 
Q /M for which stationary clouds can exist.
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