
SPECTRAL INEQUALITIES FOR KUBO-ANDO OPERATOR MEANS

RUTE LEMOS AND GRAÇA SOARES

Abstract. Eigenvalue and singular value inequalities, involving Kubo-Ando operator connec-
tions or means, are established. Previous results from Lemos and Soares in 2018 are generalized
or complemented, some log-majorizations are included. As a consequence, a refinement of an
independent result by Ando and by Visick in 1995 on the eigenvalues of the Hadamard product
is derived. Some singular value inequalities by Zou in 2017 are further extended.

1. Introduction

Let Mn be the algebra of n-square complex matrices and I be the identity matrix of order n.
The subsets of Mn of all Hermitian and all symmetric matrices in Mn are denoted by Hn and
HT
n , respectively. Let A,B,X ∈Mn. For simplicity of notation, we consider AX = X∗AX. As

usual, A ≥ B means that A,B ∈ Hn and A−B is positive semidefinite, and A > 0 means that
A is positive definite. The Hadamard product of A and B is denoted by A ◦ B. If A has real
spectrum, let the eigenvalues of A be arranged as follows

λ1(A) ≥ · · · ≥ λn(A).

If A ≥ B, then AX ≥ BX and λi(A) ≥ λi(B), i = 1, . . . , n [6]. We also recall that AB and BA
have the same eigenvalues, including multiplicities [6, Theorem 1.3.20] and λ1(A

−1) = λ−1n (A),
whenever A is invertible. Let the singular values of A, that is the eigenvalues of |A|, the unique
positive semidefinite square root of A∗A, be denoted and ordered as follows

s1(A) ≥ · · · ≥ sn(A).

The spectral or operator norm of A is ‖A‖ = s1(A). A norm ||| · ||| on Mn is said to be unitarily
invariant if |||A||| = |||UAV ||| for all A ∈ Mn and all U, V ∈ Mn unitary. The operator norm,
other Ky Fan k-norms and Schatten p-norms [2] are examples of such norms.

If A,B have nonnegative eigenvalues, the log-majorization A ≺log B is defined by

k∏
i=1

λi(A) ≤
k∏
i=1

λi(B), k = 1, . . . , n,

with equality for k = n. If A,B have real eigenvalues, the majorization A ≺ B means

(1)
k∑
i=1

λi(A) ≤
k∑
i=1

λi(B), k = 1, . . . , n,

with equality for k = n; the weak majorization A ≺w B holds if (1) is fulfilled. Log-majorization
implies weak majorization and, in particular, trace inequalities. Majorization is a powerful tool
to derive norm inequalities. Two classical results [2, 10] are:

Schur Majorization Theorem: H ◦ I ≺ H for any H ∈ Hn;

Fan Dominance Theorem: |A| ≺w |B| ⇔ |||A||| ≤ |||B||| for any unitarily invariant norm ||| · |||.
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This note is organized as follows. In Section 2, Kubo-Ando theory of operator connections
and means [7] is recalled. The main theorem is proved in Section 3. Eigenvalue and singular
value inequalities involving operator connections are established. Some results from [8, 14] are
extended or complemented. For instance, in Section 4, two eigenvalue inequalities independently
proved in [8] are deduced from particular cases of the main result. In Section 5, we derive
some log-majorizations for weighted geometric means, using the antisymmetric tensor power
technique. In Section 6, we present a refinement of the next result by Ando [1] and Visick [12]:

(2)
n∏
i=k

λi(A ◦B) ≥
n∏
i=k

λi
(
ABT

)
, k = 1, . . . , n,

for A,B ≥ 0, inspired by a parallel result of Hiai and Lin [5]. In Section 7, singular value
inequalities by Zou [14] are further generalized.

2. Kubo-Ando theory of operator connections and means

The axiomatic theory of operator connections was developed by F. Kubo and T. Ando [7].
A matrix connection of order n is a binary operation σ on the cone of positive semidefinite
matrices in Mn, satisfying for any A,B,C,D,Ak, Bk ≥ 0:

C1. (joint monotonicity) A ≤ C and B ≤ D ⇒ AσB ≤ C σD;

C2. (transformer inequality) (AσB)X ≤ AX σ BX for any X ∈Mn;

C3. (joint continuity from above) Ak ↓ A and Bk ↓ B ⇒ Ak σ Bk ↓ AσB.

If X is invertible, C2. becomes a transformer equality and we get the positive homogeneity

c(AσB) = (cA)σ (cB), c ∈ R+.

An operator connection is a matrix connection of every order n ∈ N. An operator mean is an
operator connection σ, satisfying the normalization property I σ I = I.

If σ, τ are operator connections and a, b ∈ R+, then a σ + b τ is an operator connection too.
A partial order is introduced on the cone of operator connections by σ ≤ τ if and only if

AσB ≤ Aτ B, ∀ A,B ≥ 0.

On the core of Kubo-Ando theory is the interplay between operator connections and operator
monotone functions, that is, real-valued continuous functions f defined on a real interval Ω,
such that

A ≥ B ⇒ f(A) ≥ f(B)

for all A,B ∈ Hn with spectra in Ω and all n ∈ N. Löwner-Heinz inequality [9, 13] states that

A ≥ B ≥ 0 ⇒ Aα ≥ Bα, α ∈ [0, 1],

that is, f(t) = tα, t ≥ 0, with α ∈ [0, 1] is an operator monotone function. For each operator
connection σ, there exists a unique operator monotone function f : R+ → R+, satisfying

fσ(t) I = I σ (tI), t > 0,

with fσ(1) = 1 if σ is an operator mean. The map σ 7→ fσ is an affine order-isomorphism and
fσ is called the representing function of σ. Conversely, for any operator monotone function
f : R+ → R+, there exists a unique operator connection σ given for A,B > 0 by

AσB = A
1
2 f
(
A−

1
2BA−

1
2

)
A

1
2

with the right hand side defined via analytic functional calculus and extended to A,B ≥ 0 by

AσB = lim
ε→0+

(A+ εI)σ (B + εI).
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The dual of a nonzero operator connection σ is the operator connection σ⊥ defined by

Aσ⊥B =
(
B−1σ A−1

)−1
for A,B > 0 and extended by continuity to A,B ≥ 0 as usual. Its representing function satisfies

fσ⊥(t) = t/fσ(t), t > 0.

Typical examples of operator connections are the sum A+B and its dual, the parallel sum.
If σ is an operator mean and f ′σ(1) = α, then σ is an α-weighted operator mean. Additionally,
if σ is symmetric, that is, AσB = B σA for all A,B > 0, then σ has weight α = 1

2
.

For α ∈ [0, 1] and r, s ∈ [−1, 1], we find operator monotone functions defined by

fα,r(t) =
(
1− α + α tr

) 1
r , t > 0,

where the case r = 0 is understood as the limit of fα,r(t) when r → 0, that is, as tα; and by

Fr,s(t) =

(∫ 1

0

f sα,r(t) dα

)1
s

, t > 0,

also taking the limit of Fr,s(t) when s→ 0 if s = 0. In particular, F0,0(t) =
√
t. For fixed t > 0,

Fr,s(t) is monotone increasing on each parameter r, s ∈ [−1, 1].
For each α ∈ [0, 1] and r ∈ [−1, 1], fα,r(t) gives rise to the (α, r)-weighted power operator

mean, here denoted by mα,r. If α = 0 and α = 1, we find the left-trivial mean AwlB = A and
the right-trivial mean Awr B = B. The cases r = 1 and r = −1 yield

A∇αB = (1− α)A+ αB and A !αB =
(
(1− α)A−1 + αB−1

)−1
,

the α-weighted versions of the arithmetic mean and harmonic mean, respectively; r = 0 gives

A]αB = A
1
2

(
A−

1
2BA−

1
2

)α
A

1
2 ,

the α-weighted geometric mean. Indexes are dropped if α = 1
2
. In particular, the only self-dual

operator connection (in the sense that σ⊥= σ) is the geometric mean A]B, which is the unique
positive semidefinite solution of the Riccati equation XA−1X = B, also characterized by

(3) A]B = max

{
X ∈ Hn :

[
A X
X B

]
≥ 0

}
.

We can see that m⊥α,r = m1−α,−r and mα,r ≤ mα,s, whenever −1 ≤ r ≤ s ≤ 1. In particular,
!α ≤ ]α ≤ ∇α is the arithmetic-geometric-harmonic operator mean inequality.

For r, s ∈ [−1, 1], the extension σr,s of the power difference mean [11] is the operator mean
with representing function Fr,s(t), which is symmetric and σ⊥r,s = σ−r,−s. This family interpo-
lates well-known operator means. For instance, the logarithmic mean ` and the identric mean
ι have representing functions

F0,1(t) =

∫ 1

0

tα dα =
t− 1

log t
and F1,0(t) = exp

(
t log t

t− 1
− 1

)
, t > 0,

respectively, and ] ≤ ` ≤ ι ≤ ∇ holds.

3. Main result

Our main theorem presents spectral inequalities, dealing with matrices A,B ≥ 0, an Hermi-
tian or symmetric matrix C ∈ Mn and nonzero operator connections σ, τ, ρ with representing
functions, satisfying either

(4) f 2
σ(t) ≤ fτ (t) fρ(t), t > 0,

or the reverse inequality. It is presented in Theorem 3.1 in a condensed form that can be
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splitted into cases, depending on C. Under the hypothesis (4), these cases are as follows.

i. If C is Hermitian, then

(a1) s1
(
(Aτ⊥B)

1
2 C (AσB)C (Aρ⊥B)

1
2

)
≤ λ1(AC B C);

(b1) sn
(
(Aτ B)

1
2 C (Aσ⊥B)C (AρB)

1
2

)
≥ λn(AC B C).

ii. If C is symmetric, then

(a2) s1
(
(Aτ⊥B)

1
2 C (AσB)TC (Aρ⊥B)

1
2

)
≤ λ1(AC B

TC);

(b2) sn
(
(Aτ B)

1
2 C (Aσ⊥B)TC (AρB)

1
2

)
≥ λn(AC BTC).

In the sequel, the condensed notation X∼ stands for X or XT , C ∈ H∼n means that C ∈ Hn

or C ∈ HT
n , so that the symbol ∼ is either omitted or acts as T along each result; if the symbol

appears in an inequality not containing C, then it holds for both choices of ∼. This notation
allows us, for instance, to present both (a1) and (a2) stated before as item (a) in Theorem 3.1.

Theorem 3.1. Let A,B ≥ 0 and C ∈ H∼n . Consider nonzero operator connections σ, τ, ρ. If
f 2
σ(t) ≤ fτ (t)fρ(t), t > 0, then

(a) s1
(
(Aτ⊥B)

1
2C∗(AσB)∼C (Aρ⊥B)

1
2

)
≤ λ1(AC

∗B∼C);

(b) sn
(
(Aτ B)

1
2 C∗(Aσ⊥B)∼C (AρB)

1
2

)
≥ λn(AC∗B∼C).

If f 2
σ(t) ≥ fτ (t)fρ(t), t > 0, then (a) and (b) hold with each connection replaced by its dual.

Proof. Firstly, if f 2
σ(t) ≤ fτ (t)fρ(t), t > 0, we will prove (a) and (b) when ∼ is replaced by T

and C is a real diagonal matrix D. In this case, (a) is given by

(5) s1
(
(Aτ⊥B)

1
2D(AσB)TD (Aρ⊥B)

1
2

)
≤ λ1(ADB

TD).

We only need to show that

(6) λ1(ADB
TD) ≤ 1 ⇒ s1

(
(Aτ⊥B)

1
2D (AσB)TD (Aρ⊥B)

1
2

)
≤ 1,

because both hand sides of (5) have the same order of homogeneity for A,B,D, and so each ma-
trix can be multiplied by a positive scalar. If λ1(ADB

TD) ≤ 1, equivalently, λ1(DA
TDB) ≤ 1,

then DATD ≤ B−1 and DBTD ≤ A−1, whenever A,B are invertible. By the transformer ine-
quality and joint monotonicity of ρ⊥, also recalling the expression of the dual, we find

D (Aρ⊥B)TD = D
(
ATρ⊥BT

)
D ≤ (DATD) ρ⊥(DBTD)

≤ B−1ρ⊥A−1 = (AρB)−1.

Analogously, for τ⊥ we get D (Aτ⊥B
)T
D ≤ (Aτ B)−1. Moreover, the representing functions

of σ, τ, ρ satisfy f 2
σ(t) ≤ fτ (t)fρ(t), t > 0, if and only if

(7) (AσB)(AρB)−1(AσB) = A
1
2fσ(H)

(
fρ(H)

)−1
fσ(H)A

1
2 ≤ A

1
2fτ (H)A

1
2 = Aτ B,

where H = A−
1
2BA−

1
2 . Therefore

s21
(
(Aτ⊥B)

1
2D (AσB)TD (Aρ⊥B)

1
2

)
= λ1

(
(AσB)D (Aρ⊥B)TD (AσB)D (Aτ⊥B)TD

)
≤ λ1

(
(AσB)(AρB)−1(AσB)(Aτ B)−1

)
≤ 1

and (6) holds. If A,B ≥ 0 are not invertible, we can replace these matrices in (5) by
A + ε I, B + ε I > 0, ε > 0, and then we use a continuity argument, letting ε ↓ 0.

Next, we prove (b) for A,B > 0 and D invertible, otherwise λn(ADBD) = 0 and the result
is trivial. For that, replace A,B,D in (5) by B−1, A−1, D−1, respectively, and take inverses of
both hand sides of this inequality, so that

s−11

(
(B−1ρ⊥A−1)

1
2D−1(B−1σ AT )−1D−1(B−1τ⊥A−1)

1
2

)
≥ λ−11

(
B−1D−1(AT )−1D−1

)
.
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Denoting the inverses of XT , X1/2 by X−T , X−
1
2 , the previous inequality is equivalent to

sn
(
(B−1τ⊥A−1)−

1
2D (B−1σ A−1)−TD (B−1ρ⊥A−1)−

1
2

)
≥ λn

(
DATDB

)
= λn

(
ADBTD

)
and, due to the expression of the dual operator connection, we find (b) for C = D.

Furthermore, all the arguments above remain valid if the symbols of transpose are deleted.
Now, if C ∈ H∼n , we split the proof into two cases: i. C ∈ Hn; ii. C ∈ HT

n .
i. If C is Hermitian, then there exists U unitary, such that U∗CU = D is real diagonal.

Since U is invertible, the transformer equality holds for σ, τ⊥, ρ⊥ when X = U . After replacing
A,B by AU , BU ≥ 0, respectively, in (5) with T deleted, its left hand side may be written as

λ
1
2
1

(
(AσB)U D (Aτ⊥B)U D (AσB)U D (Aρ⊥B)UD

)
= s1

(
(Aτ⊥B)

1
2 C (AσB)C (Aρ⊥B)

1
2

)
.

It is also clear that λ1(AUDBUD) = λ1(ACBC). Then (a) and analogously (b) follow.
ii. If C is symmetric, by Takagi’s factorization [6, Corollary 4.4.4], there exist V unitary and

D diagonal, with the singular values of C in the main diagonal, such that C = V D V T . Since
V is invertible, AV σ BV = (AσB)V . Its transpose is (AσB)TV . Replacing A,B by AV , BV ≥ 0
in (5), respectively, by the transformer equality, we get

s1
(
((Aτ⊥B)V )

1
2D (AσB)TV D ((Aρ⊥B)V )

1
2

)
≤ λ1

(
AV DBT

V D
)
,

where BT
V = (BV )T . The left hand side of the previous inequality is equal to the square root of

λ1
(
(Aτ⊥B)V D V ∗(AσB)T V D V T (Aρ⊥B)V D V ∗(AσB)T V D V T

)
and the right hand side is equal to λ1

(
AC BTC

)
. Thus, (a) and similarly (b) are obtained.

Finally, if the inequality satisfied by the representing functions of σ, τ, ρ is reversed, then

(8) (t/fσ(t))2 ≤ (t/fτ (t)) (t/fρ(t)) ⇔ f 2
σ⊥(t) ≤ fτ⊥(t)fρ⊥(t),

which provides an inequality for the representing functions of the corresponding dual operator
connections. Hence, the result readily follows, replacing σ, τ, ρ in (a) and (b) by their duals. �

Under the hypothesis of Theorem 3.1, we observe that

(9) λi(AC
∗B∼C) = λi(AC

∗B∼C)∼ = λi(B C∗A∼C), i = 1, . . . , n,

because C is Hermitian when ∼ is omitted, and C is symmetric when ∼ acts as the transpose.

Remark 3.2. If A,B > 0, then (4) is equivalent to (7) and by [3, Theorem 1.3.3] to

(10)

[
Aτ B AσB
AσB AρB

]
≥ 0.

This implies, having in mind (3), that AσB ≤ (Aτ B) ] (AρB). The previous right hand side
is equal to the composition operator mean Aτ(])ρB (see [1]). The square of its representing
function

fτ(])ρ(t) = fτ (t)
(
fρ(t)/fτ (t)

) 1
2 , t > 0,

reduces to fτ (t)fρ(t). In other words, the condition (4) is equivalent to σ ≤ τ(]) ρ.
The reverse condition f 2

σ(t) ≥ fτ (t) fρ(t), t > 0, is equivalent to (8), to the positive semidefi-
niteness of the block matrix in (10) with σ, τ, ρ replaced by their duals and to σ ≥ τ(]) ρ.

For A,B ≥ 0 and X ∈Mn, we have A1/2BXA
1/2 ≥ 0, so that

(11) λ1(ABX) ≤ ‖ABX‖ and λn(ABX) ≥ sn(ABX).

Thus, under the hypothesis of Theorem 3.1, if f 2
σ(t) ≤ fτ (t) fρ(t), t > 0, it follows that∥∥(Aτ⊥B)

1
2 C∗(AσB)∼C (Aρ⊥B)

1
2

∥∥ ≤ ‖AC∗B∼C‖,
sn
(
(Aτ B)

1
2 C∗(Aσ⊥B)∼C (AρB)

1
2

)
≥ sn

(
AC∗B∼C

)



6 LEMOS AND SOARES

and analogous inequalities hold for the dual connections, whenever f 2
σ(t) ≥ fτ (t) fρ(t), t > 0.

4. Some consequences

Let A,B ≥ 0, X ∈ Mn and σ, τ be nonzero operator connections, satisfying σ ≤ τ . Then
τ⊥ ≤ σ⊥ and we easily find

λj
(
(Aτ⊥B)(AσB)X

)
≤ λj

(
(Aσ⊥B)(AσB)X

)
≤ λj

(
(Aσ⊥B)(Aτ B)X

)
for j = 1, . . . , n, as well as

det
(
(Aτ⊥B)(AσB)X

)
≤ det (ABX) ≤ det

(
(Aσ⊥B)(Aτ B)X

)
with equality when τ = σ. Nevertheless, under the previous conditions,

λ1
(
(Aτ⊥B)(AσB)X

)
≤ λ1(ABX)

does not always hold, as the next counterexample shows, but it becomes true when X is replaced
by any C ∈ Hn, as shown in Corollary 4.2.

Example 4.1. Consider

A =

[
1 −1
−1 2

]
, B =

[
2 −1
−1 1

]
, X =

[
2 0
2 −2

]
.

In this case A,B ≥ 0 and

λ1
(
(A]B)(A]B)X

)
≈ 14.0622 ≥ λ1

(
ABX

)
≈ 10.4721.

Some consequences of Theorem 3.1 are now provided. Relevant particular cases allow us to
recover previous results from [8].

Corollary 4.2. Let A,B ≥ 0, C ∈ H∼n and σ, τ be nonzero operator connections. If σ ≤ τ ,
then

(12) λ1
(
(Aτ⊥B)C∗(AσB)∼C

)
≤ λ1(AC

∗B∼C);

λn
(
(Aτ B)C∗(Aσ⊥B)∼C

)
≥ λn(AC∗B∼C).

Proof. If σ ≤ τ , then f 2
σ(t) ≤ f 2

τ (t), t > 0. So we may apply Theorem 3.1 with ρ = τ . Since

s1
(
(Aτ⊥B)

1
2 C∗(AσB)∼C (Aτ⊥B)

1
2

)
= λ1

(
(Aτ⊥B)C∗(AσB)∼C

)
,

then (12) readily follows. The other inequality is similarly obtained. �

As the next counterexample shows, Corollary 4.2 is not true, keeping in the inequalities ∼ as
the transpose, when C ∈ HT

n is replaced by X ∈ Hn.

Example 4.3. Let

A =

[
3 1− 3i

1 + 3i 4

]
, B =

[
3 −1 + 3i

−1− 3i 4

]
, X =

[
−1 −1− i
−1 + i −1

]
.

We have A,B ≥ 0, X ∈ H2 and

λ1
(
(A]B) (A]B)TX

)
≈ 11.8285 ≥ λ1

(
ABT

X

)
= 4.

Remark 4.4. In particular, if C ≥ 0 and τ = σ in Corollary 4.2, then [8, Theorem 2.1] is
obtained from (12) when ∼ is not present. Reciprocally, σ ≤ τ implies τ⊥ ≤ σ⊥ and

λ1
(
(Aτ⊥B)C (AσB)C

)
≤ λ1

(
(AσB)C (Aσ⊥B)C

)
≤ λ1(AC B C)

for A,B,C ≥ 0, that is, in this special case, (12) also follows from [8, Theorem 2.1].
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Corollary 4.5. Let A,B ≥ 0, C ∈ H∼n and σ be a nonzero operator connection. If σ ≤ σ⊥,
then

(13) λ1
(
(AσB)C∗(AσB)∼C

)
≤ s1

(
A

1
2 C∗(AσB)∼C B

1
2

)
≤ λ1(AC

∗B∼C);

(14) λn
(
(Aσ⊥B)C∗(Aσ⊥B)∼C

)
≥ sn

(
A

1
2 C∗(Aσ⊥B)∼C B

1
2

)
≥ λn(AC∗B∼C).

Proof. The first inequality in (13) and (14) follow from Corollary 4.2 with ∼ deleted, τ = σ⊥

and C replaced by C∗(AσB)∼C ≥ 0, then taking square roots of the obtained eigenvalues. In
the previous case, the right hand side becomes

λ
1
2
i

(
AC∗(AσB)∼C B C∗(AσB)∼C

)
= si

(
A

1
2 C∗(AσB)∼C B

1
2

)
, i = 1, n.

The remaining inequalities follow from Theorem 3.1 when τ, ρ are the trivial operator means
wl, wr, because fwl(t)fwr(t) = t, t > 0, and σ ≤ σ⊥ is equivalent to f 2

σ(t) ≤ t, t > 0. �

Taking squares of both hand sides of the second inequality in (13) with C = I yields

λ1
(
A (AσB)∼B (AσB)∼

)
≤ λ21(AB

∼),

whenever A,B ≥ 0 and σ ≤ ]. Having also in mind (11), the previous inequality for σ = ],
implies [8, (10) of Theorem 3.3] as stated in the next corollary.

Corollary 4.6. If A,B ≥ 0, then

λ1
(
A (A]B)B (A]B)

)
≤ λ1

(
A2B2

)
.

We have just seen that Theorem 3.1 simultaneously allows us to obtain two results inde-
pendently proved in [8], namely [8, Theorem 2.1], as stated in Remark 4.4, and the previous
corollary.

5. Log-majorizations

Let k ∈ {1, . . . , n} and nk =
(
n
k

)
. The kth compound or kth antisymmetric tensor power of

A ∈Mn is the matrix A∧k ∈Mnk with entries given by the minors detA(i, j), where the index
sets i, j ⊂ {1, . . . , n} have cardinality k and are lexicographically ordered. As usual, A(i, j)
denotes the submatrix of A that lies in rows and columns indexed, respectively, by i and j.
Some useful properties [2] are listed below.

P1. (AB)∧k = A∧kB∧k, A,B ∈Mn (Binet-Cauchy formula);

P2. (A∧k)T = (AT )∧k, A∧k = A
∧k

,
(
A∧k

)r
= (Ar)∧k, r > 0 (and r = −1 if A is invertible);

P3. The nk eigenvalues of A∧k are λi1(A)λi2(A) · · ·λik(A), 1 ≤ i1 < · · · < ik ≤ n;

P4. If A,B ∈Mn have nonnegative spectra, then

A ≺log B ⇔ λ1
(
A∧k

)
≤ λ1

(
B∧k

)
, k = 1, . . . , n, and detA = detB.

Briefly, any expression involving products, fractional matrix powers and transposes “commutes”
with the kth compound. A powerful tool to derive matrix log-majorizations is thus provided.
For instance, replacing A,B,X by A∧k, B∧k, X∧k in the first inequality in (11) gives

(15) ABX ≺log

∣∣ABX

∣∣, A,B ≥ 0, X ∈Mn.

Some log-majorizations are now derived from the results of the previous sections, applying the
antisymmetric tensor power technique, also called Weyl’s trick.

Corollary 5.1. If A,B ≥ 0, C ∈ H∼n and 0 ≤ α ≤ β ≤ 1, then

(16)
∣∣(A]1−αB)

1
2 C∗(A]β

2
B)∼C (A]1+α−βB)

1
2

∣∣ ≺log AC
∗B∼C.
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Proof. We remark that β − α ∈ [0, 1]. Consider σ = ]β
2
, τ = ]α, ρ = ]β−α, with representing

functions, satisfying f 2
σ(t) = fτ (t)fρ(t), t > 0. By Theorem 3.1, we have

s1
(
(A]1−αB)

1
2 C∗(A]β

2
B)∼C (A]1+α−βB)

1
2

)
≤ λ1(AC

∗B∼C).

Then replace A,B,C by their kth compounds and apply properties P1-P4. For example, use

A∧k]1−αB
∧k = (A]1−αB)∧k, k = 1, . . . , n.

Clearly, det (A]1−αB) = det (AαB1−α) and the equality of the determinants of the matrices in
both hand sides of (16) occurs. Thus, the log-majorization is obtained. �

Under the hypothesis of Corollary 5.1, after interchanging A and B in (16), recalling (9) and
observing that B ]1+α−βA = A]β−αB, we also have∣∣(A]αB)

1
2 C∗(A]1−β

2
B)∼C (A]β−αB)

1
2

∣∣ ≺log AC
∗B∼C.

Corollary 5.2. If A,B ≥ 0, C ∈ H∼n and σ is a nonzero operator connection, then

(A]B)C∗(A]B)∼C ≺log

∣∣(Aσ⊥B)
1
2 C∗(A]B)∼C (AσB)

1
2

∣∣ ≺log (Aσ⊥B)C∗(AσB)∼C.

Proof. Apply Weyl’s trick to (13) when σ = ], replacing A,B,C by their kth compounds and
using properties P1-P4. Then we obtain

(17) (A]B)C∗(A]B)∼C ≺log

∣∣A 1
2 C∗(A]B)∼CB

1
2

∣∣ ≺log AC
∗B∼C,

having also in mind the equality of the determinants for the three matrices in (17). Finally,
replace A by Aσ⊥B, B by AσB in (17) and use the following identity (Aσ⊥B) ] (AσB) =
A]B. �

Remark 5.3. The last log-majorization in (17) with ∼ omitted and (15) yield∣∣A 1
2 (A]B)C B

1
2

∣∣ ≺log |ABC |, A,B ≥ 0, C ∈ Hn.

If C = I, this is [8, Corollary 3.4], which also includes [14, Theorem 2.10] to be extended in
another direction in the last section.

Let A,B ≥ 0, C ∈ H∼n and α ∈ [0, 1]. If σ = ]α in Corollary 5.2 and β = 1 in (16), then∣∣(A]1−αB)
1
2 C∗(A]B)∼C (A]αB)

1
2

∣∣
is log-majorized by (A]1−αB)C∗(A]αB)∼C and AC∗B∼C, respectively, being these two last
matrices related as follows.

Corollary 5.4. Let A,B ≥ 0, C ∈ H∼n and α ∈ [0, 1]. Then

(A]1−αB)C∗(A]αB)∼C ≺log AC
∗B∼C.

Proof. Apply Weyl’s trick to (12) when σ = τ = ]α. �

If ∼ is deleted and C ≥ 0 in Corollary 5.4, then [8, Corollary 3.1] is recovered.
Further, log-majorization implies weak majorization and, in particular, trace inequalities.

Thus, under the hypothesis of Corollary 5.4, we find

Tr
(
(A]1−αB)C∗(A]αB)∼C

)
≤ Tr

(
AC∗B∼C

)
.

This trace inequality with ∼ deleted and C = I was observed in [4].
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The following question naturally arises: for A,B ≥ 0 and C ∈ H∼n , does the log-majorization

(Aσ⊥B)C∗(AσB)∼C ≺log AC
∗B∼C

remains true for other operator connections σ, apart from the weighted geometric means?

6. On Ando and Visick’s inequalities for the Hadamard product

A weighted interpolation of Ando and Visick’s result (2) inspired by [5] can now be derived.
The last two corollaries of the previous section provide the link.

Let A,B ≥ 0, C ∈ H∼n , σ be a nonzero operator connection and α ∈ [0, 1]. Ignoring the
matrix in the middle of the double log-majorization, Corollary 5.2 can be reformulated as

(18)
n∏
i=k

λi((A]B)C∗(A]B)∼C) ≥
n∏
i=k

λi
(
(Aσ⊥B)C∗(AσB)∼C

)
, k = 1, . . . , n,

with equality for k = 1. Corollary 5.4 can be written as

(19)
n∏
i=k

λi((A]1−αB)C∗(A]αB)∼C ) ≥
n∏
i=k

λi(AC
∗B∼C) , k = 1, . . . , n,

with equality for k = 1. On the other hand, if D ∈Mn is a diagonal matrix, we have

(20) D(A oB)D ≥ D
(
(A]B) o (A]B)

)
D =

(
D(A]B)D

)
o (A]B)

and corresponding eigenvalue inequalities involving such matrices hold. Consider Ando and
Visick’s result (2) and its parallel one without transpose [1, 12], written in the condensed form

n∏
i=k

λi(A ◦B) ≥
n∏
i=k

λi
(
AB∼

)
, k = 1, . . . , n,

where ∼ is T or has no effect; then replace A,B by D(A]B)D, A]B, respectively, and find

n∏
i=k

λi
(
(D(A]B)D) o (A]B)

)
≥

n∏
i=k

λi
(
(A]B)D(A]B)∼D

)
, k = 1, . . . , n.

The previous inequalities can be complemented, using (18), (19) with σ = ]α and replacing C
by a diagonal matrix D, which is assumed real when ∼ is omitted, and (20) as follows:

n∏
i=k

λi
(
(A oB) |D|2

)
≥

n∏
i=k

λi
(
(A]B)D (A]B)∼D

)
≥

n∏
i=k

λi
(
(A]1−αB)D (A]αB)∼D

)
(21)

≥
n∏
i=k

λi
(
ADB∼D

)
for k = 1, . . . , n. If ∼ is deleted and D = I, we get a previous result by Hiai and Lin [5] and
the first inequality in (21) also gives [1, Theorem 2]. If ∼ is the transpose and D = I, we find
the next parallel weighted refinement of (2).

Proposition 6.1. If A,B ≥ 0 and α ∈ [0, 1], then

n∏
i=k

λi(A oB) ≥
n∏
i=k

λi
(
(A]B)(A]B)T

)
≥

n∏
i=k

λi
(
(A]1−αB)(A]αB)T

)
≥

n∏
i=k

λi
(
ABT

)
for k = 1, . . . , n, occurring equality for k = 1 in the last two inequalities.
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The first inequality in (21) holds for any D ∈Mn diagonal, but
n∏
i=k

λi
(
(A oB) |D|2

)
≥

n∏
i=k

λi
(
(A]B)D∗(A]B)∼D

)
, k = 1, . . . , n,(22)

does not remain true, in general, when D is replaced by any C ∈ H∼n .

Example 6.2. Consider

A =

[
1 0
0 1

]
, B =

[
2 1
1 1

]
≥ 0, C =

[
1 1 + i

1− i −3

]
∈ H2.

In this case, A]B = B
1
2 and (22) with ∼ deleted and C in the place of D does not hold, because

λ2
(
(A oB)C2

)
≈ 3, 783 ≤ λ2

(
B

1
2C
)2 ≈ 4, 095.

7. Another extension of singular value inequalities by Zou

Theorem 7.1. Let A,B ≥ 0, r ∈ N0 and σ be a nonzero operator connection. If σ ≤ ], then

(23) λ1(AσB)2(r+1) ≤ λ1
(
A (AσB)rB (AσB)r

)
≤ λ1(AB)r+1.

Proof. The first inequality in (23) follows from (13) with C = (AσB)r. Concerning the second
one, suppose A > 0 and λ1(AB)r+1 ≤ 1. Then B ≤ A−1, which implies

(24) (AσB)B (AσB) ≤ (AσB)A−1(AσB) = A
1
2

(
fσ(A−

1
2BA−

1
2 )
)2
A

1
2 ≤ B,

because f 2
σ(t) ≤ t, t > 0. By induction on r ∈ N0, we prove that (AσB)rB (AσB)r≤ B. This

holds trivially for r = 0. Suppose this is true for a given exponent r. Then

(AσB)r+1B (AσB)r+1 = (AσB)
(
(AσB)rB (AσB)r

)
(AσB) ≤ (AσB)B (AσB) ≤ B,

where the first inequality is a consequence of the inductive hypothesis and the second one
follows from (24). Therefore (AσB)rB (AσB)r ≤ A−1 and we conclude that

λ1
(
A (AσB)rB (AσB)r

)
≤ 1.

Thus, we find the last inequality in (23). If A ≥ 0 is not invertible, then use a continuity
argument, replacing A by A+ εI, ε > 0. �

Corollary 7.2. If A,B ≥ 0 and r ∈ N0, then

(A]B)r+1 ≺log |A
1
2 (A]B)rB

1
2 | ≺log (AB)

r+1
2 .

Proof. Let σ = ] in Theorem 7.1 and apply Weyl’s trick. The obtained log-majorization
implies the log-majorization between the square roots of the matrices of the previous one. �

For A,B ≥ 0 and r ∈ N0, the last log-majorization and (15) yield

k∏
i=1

si
(
A

1
2 (A]B)rB

1
2

)
≤

k∏
i=1

s
r+1
2

i (AB), k = 1, . . . , n.

For r = 1, these are the singular value inequalities proved by Zou in [14, Theorem 2.10].
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