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resumo 
 

 

O presente trabalho teve como principal objetivo comparar os níveis de células 

endoteliais progenitoras (CEPs), células endoteliais circulantes (CECs) e células 

estaminais hematopoiéticas (CEHs) em circulação entre doentes com 

insuficiência cardíaca com fração de ejeção reduzida (ICFEr) e um grupo de 

adultos com fatores de risco cardiovasculares. Adicionalmente, os níveis das 

CEPs, CECs e CEHs foram comparados entre subgrupos em função da 

presença de fatores de risco (ex. diabetes) e da etiologia da insuficiência 

cardíaca. Inicialmente foram recolhidas amostras de sangue periférico de 

doentes com ICFEr (n = 42) e indivíduos da mesma faixa etária com fatores de 

risco cardiovasculares, mas sem qualquer doença cardiovascular estabelecida 

(n = 42). Em seguida, foi utilizada uma combinação de anticorpos nas amostras 

de sangue periférico para quantificação do número de CEPs, CECs e CEHs por 

citometria de fluxo. Doentes com ICFEr apresentaram níveis de CEPs (5.28 x 

10-3 ± 6.83 x 10-4 % vs 7.76 x 10-3 ± 4.91 x 10-4 %, P ≤ 0.001) e CECs (5.11 x 10-

3 ± 7.87 x 10-4 % vs 6.51 x 10-3 ± 5.21 x 10-4 %, P = 0.005) significativamente 

inferiores aos indivíduos com fatores de risco cardiovasculares. Contudo, não 

foram encontradas diferenças significativas nos níveis de CEHs entre os dois 

grupos (P = 0.590). Adicionalmente, observou-se que as CECs (6.69 x 10-3 ± 

6.38 x 10-3 % vs 3.61 x 10-3 ± 2.71 x 10-3 %, P = 0.057) tendem a circular em 

maior número em doentes com ICFEr com etiologia isquémica 

comparativamente a doentes com ICFEr não isquémica. Doentes com ICFEr e 

com sobrepeso/obesidade apresentaram níveis de CEPs (6.10 x 10-3 ± 4.78 x 

10-3 % vs 4.13 x 10-3 ± 3.55 x 10-3 %, P = 0.043) e CECs (6.27 x 10-3 ± 5.66 x 10-

3 % vs 3.47 x 10-3 ± 3.54 x 10-3 %, P = 0.019) significativamente superiores 

comparativamente a doentes com ICFEr e com peso normal. Por último, dentro 

do grupo de indivíduos com fatores de risco cardiovasculares, indivíduos com 

dislipidemia apresentaram níveis de CECs (7.74 x 10-3 ± 3.64 x 10-3 % vs 5.34 x 

10-3 ± 2.59 x 10-3 %, P = 0.042) significativamente superiores em comparação a 

indivíduos sem dislipidemia. Em conclusão, os principais resultados deste 

estudo indicam que o número de CECs e CEPs em circulação encontra-se 

significativamente reduzido em doentes com ICFEr comparativamente a 

indivíduos com fatores de risco para doenças cardiovasculares. As observações 

atuais em relação aos fatores de risco para doenças cardiovasculares sugerem 

que CEPs, CECs e CEHs desempenham um papel fundamental na sinalização 

e reparação do dano vascular e disfunção endotelial.  
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abstract 

 

The objective of the present thesis was to compare the levels of circulating 

endothelial progenitor cells (EPCs), circulating endothelial cells (CECs), and 

hematopoietic stem cells (HSCs) between patients with heart failure with reduced 

ejection fraction (HFrEF) and a group of subjects with cardiovascular risk factors. 

We also compared the levels of circulating EPCs, CECs, and HSCs between 

subgroups regarding the presence of cardiovascular risk factors (e.g. diabetes 

mellitus) and the etiology of heart failure (HF). To achieved this, whole peripheral 

blood was drawn from patients previously diagnosed with HFrEF (n = 42) and 

age-matched subjects presenting similar cardiovascular risk factors but without 

established cardiovascular disease (n = 42). Then, a combination of markers was 

used in peripheral blood samples in order to assess the number of circulating 

EPCs, CECs, and HSCs via flow cytometry analysis. Patients with HFrEF had 

significantly decreased levels of circulating EPCs (5.28 x 10-3 ± 6.83 x 10-4 % vs 

7.76 x 10-3 ± 4.91 x 10-4 %, P ≤ 0.001) and CECs (5.11 x 10-3 ± 7.87 x 10-4 % vs 

6.51 x 10-3 ± 5.21 x 10-4 %, P = 0.005) compared to subjects with cardiovascular 

risk factors. However, levels of HSCs were not significantly different between the 

two groups (P = 0.590). Additionally, CECs (6.69 x 10-3 ± 6.38 x 10-3 % vs 3.61 x 

10-3 ± 2.71 x 10-3 %, P = 0.057) tended to circulate in higher number in patients 

with ischemic HF compared to patients with non-ischemic HF. Patients with 

HFrEF and diagnosed as overweight/obese had significantly higher levels of 

circulating EPCs (6.10 x 10-3 ± 4.78 x 10-3 % vs 4.13 x 10-3 ± 3.55 x 10-3 %, P = 

0.043)  and CECs (6.27 x 10-3 ± 5.66 x 10-3 % vs 3.47 x 10-3 ± 3.54 x 10-3 %, P = 

0.019) when compared to patients with HFrEF presenting a normal weight. 

Lastly, when comparing subjects from the age-matched group, subjects with 

dyslipidemia had significantly higher levels of CECs (7.74 x 10-3 ± 3.64 x 10-3 % 

vs 5.34 x 10-3 ± 2.59 x 10-3 %, P = 0.042) compared to subjects without 

dyslipidemia. In conclusion, the main result of this study is that the circulating 

levels of EPCs and CECs were significantly decreased in patients with HFrEF in 

comparison to subjects with cardiovascular risk factors. The current observations 

regarding cardiovascular risk factors suggest that EPCs, CECs, and HSCs play 

an important role in the detection and repair of vascular damage and endothelial 

dysfunction.  
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1.1 Heart Failure 

1.1.1 Heart Failure in numbers 

According to the World Health Organization (WHO), cardiovascular diseases 

represent the leading cause of global mortality, taking an estimated 17.9 million lives each 

year, representing 31% of all deaths worldwide1. One in nine deaths includes heart failure 

(HF) as a contributing cause, affecting 26 million people across the globe, with more than 

half of these patients dying within 5 years of admission2,3. Over the past few years, the 

survival rate in patients with HF has improved in many parts of the world, nevertheless, in 

low-and middle-income countries, the one-year death rate remains high, reaching 34% in 

Africa, 23% in India, 15% in South East Asia, 9% in South America, and 7% in China4,5. 

Due to its high and increasing prevalence rate, HF constitutes an enormous economic burden 

for the healthcare system in developed countries, estimated at 108 billion dollars annually, 

representing about 2% of the total budget for health6,7. In 2014, the average annual cost per 

patient with HF in Portugal was estimated to be 1159 euros, making the overall expenses for 

the Portuguese health care system reach 289.4 million euros8. The prevalence of HF in the 

adult Portuguese population was estimated at 4.36%, reaching 12.67% in the 70-79-year age 

group and 16.14% over 80 years old9. A study performed by the Faculty of Medicine, 

University of Lisbon, anticipates that the deaths caused by HF in Portugal are estimated to 

increase by 73% in the next 20 years, which equivalates to 8112 deaths by 203610. 

In recent years, the prevalence of cardiovascular risk factors among the Portuguese 

population has been rapidly increasing11. According to a report published by the Dr. Ricardo 

Jorge National Health Institute, 68% of the Portuguese population has at least two 

cardiovascular risk factors, such as hypertension (43.1%), diabetes mellitus (8.9%), low 

levels of physical activity (29.2%), alcohol abuse (18.8%), and smoking habits (25.4%)12. 

Furthermore, Portugal is one of the European countries that has registered a faster increase 

in the prevalence of overweight/obesity, affecting 53% of the population in the 18-64-year 

age group11.

 CHAPTER I: BACKGROUND 
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1.1.2 Definition and etiology of Heart Failure 

HF is a complex clinical syndrome defined as the inability of the heart to supply the 

required amount of blood and oxygen to meet the body’s metabolic needs and accommodate 

the systemic venous return, at rest or during exercise13–15. The ventricles, which are the main 

pumping chambers of the heart, become weaken and/or stiff leading to abnormalities in the 

systolic and/or diastolic function, culminating in a reduction of cardiac output (CO) and/or 

elevation of intracardiac pressures16,17. The CO is defined as the volume of blood pumped 

by the heart per unit of time, or in other words, “the amount of work performed by the heart 

in response to the body’s need for oxygen”18. Pathophysiologically, patients with HF often 

display a normal CO until later stages of the disease, when the product of stroke volume and 

heart rate (HR) becomes insufficient to support the execution of simple activities of daily 

living nor can it increase sufficiently to meet the high metabolic demands from moderate 

exercise19. 

According to the American Heart Association (AHA), the development of HF often 

originates as the result of an underlying myocardial disease, leading to downstream 

deleterious effects at the myocardial, neurohormonal, and endothelial levels (Figure 1)20,21. 

The impairment of cardiac function can arise through a variety of cardiac disorders, such as 

myocardial infarction (MI), coronary artery disease (CAD), cardiomyopathy (including 

dilated, hypertrophic, and restrictive), myocarditis, endocardial or pericardial disorders, and 

congenital heart defects22,23. However, valvular disorders, severe lung disease (e.g. 

emphysema), and abnormalities in the heart rate/rhythm can also result in cardiac 

malfunction15. The current definition of HF restricts itself to stages at which clinical 

symptoms are apparent, excluding asymptomatic patients that may have structural or 

functional cardiac abnormalities, which are established precursors of HF24. Nevertheless, the 

current HF guidelines emphasize the importance of these precursors, as they signalize the 

earlier stages in the progression to clinically evident HF and initiation of the treatment at the 

precursor stage, which is a valuable tool to reduce the mortality rate in patients with 

asymptomatic left ventricular systolic dysfunction (LVSD)25.  

HF is a clinical syndrome characterized by the manifestation of a spectrum of 

symptoms and signs, such as dyspnea, fatigue, elevated jugular venous pressure (JVP), 

pulmonary congestion, peripheral edema, tachycardia, and limitations in exercise 
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tolerance26,27. According to the severity of the symptoms, HF patients can be placed into one 

of four categories based on their limitations during physical exercise. The most commonly 

used classification system is the New York Heart Association (NYHA) Functional 

Classification. For instance,  a patient with minimal or no symptoms but a severe obstruction 

of the left main coronary artery can be classified with a function capacity I) and objective 

assessment D)28. 

HF is the final common pathway of numerous cardiovascular risk factors and most 

forms of heart disease29. There are several risk factors associated with HF, some of them 

cannot be controlled and/or changed, such as family history, age, gender, and ethnicity30. 

However, others are modifiable, meaning that actions can be taken to changed them, such as 

high blood pressure, unhealthy blood cholesterol levels, diabetes mellitus, obesity, tobacco 

use, physical inactivity, drug abuse, and excessive alcohol consumption31,32.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Pathophysiology of HF. Initial myocardial injury leads to downstream effects at the myocardial, 

neurohormonal, and endothelial levels; resulting in a decline of the ventricle function, worsening of HF 

symptoms, and ultimately sudden cardiac death. Myocardial injury causes a compensatory upregulation of the 

SNS and the RAAS. Initially, these responses can be helpful to maintain CO and myocardial contractility, 

however, the chronic activation of these systems becomes part of the disease process itself, leading to LV 

remodeling, myocardial fibrosis, and apoptosis. Additionally, pathological endothelin and cytokine 

upregulation can also ensue, leading to further complications, such as vasoconstriction and production of NOS 

and ROS. ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; CHF, congestive heart failure; HF, 

heart failure; LV, left ventricle; NOS, nitric oxide synthase; RAAS, renin-angiotensin-aldosterone system; 
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ROS, reactive oxygen species; SNS, sympathetic nervous system. The figure was produced using Biorender. 

Adapted from Bloom et al.33.  

  

  

1.1.3 The terminology of Heart Failure 

1.1.3.1 Left/right-sided or left/right ventricular Heart Failure 

The left ventricle (LV) is responsible for supporting most of the heart’s pumping 

power and, for that reason,  plays a key role in the preservation of the normal function of the 

heart34. Left-sided or left ventricular HF occurs when the heart no longer pumps enough 

blood through the body and, as a result, blood “backs up” in the pulmonary veins35. Chronic 

or poorly controlled hypertension, CAD, and arrhythmias are part of a broad spectrum of 

pathologies implied in the development of left-sided HF by increasing cardiac workload, 

compromising the ventricular contractility, and decreasing the CO36.  

The right ventricle (RV) is responsible for pumping the “used” blood that returns to 

the heart back into the lungs to be replenished with oxygen37. Right-sided or right ventricle 

HF occurs when the right side of the heart is too weak to pump blood efficiently to the lungs. 

It is also known as congestive heart failure (CHF) because blood slows as it flows out of the 

heart, returning through the veins. This backlog of blood causes congestion in the body's 

tissues, often resulting in a build-up of fluid35. 

  

  

1.1.3.2 Heart Failure with preserved, mid-range, and reduced ejection fraction 

The main terminology used to describe HF is based on the percentage of blood 

pumped from the LV in each contraction (systole), defined as left ventricular ejection 

fraction (LVEF) 33,38. Historically, patients with HF were divided into two clinically distinct 

syndromes: HF with reduced ejection fraction (HFrEF) and HF with preserved ejection 

fraction (HFpEF)39. HFrEF occurs as the LV losses the ability to normally contract, not 

generating enough force to circulate blood through the body40. On the other hand, in HFpEF 

the LV loses its ability to relax normally41. As a result, the heart cannot properly fill with 

blood during the resting period between each beat (diastole)35. In general clinical practice, 

normal LVEF is typically considered as ≥ 50% (HFpEF) and HFrEF with LVEF < 40%40. 

More recently, the 2016 European Society of Cardiology (ESC) Guidelines for the diagnosis 
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and treatment of acute and chronic HF acknowledged the existence of a “grey area” between 

HFrEF and HFpEF, in which patients with LVEF in the range 40-49% were included, hence 

the term HF with mid-range ejection fraction (HFmrEF)41.  

Over the years, the majority of studies have focused their attention understanding the 

burden of comorbidities among patients with HFrEF versus HFpEF, leaving the impact of 

comorbidities among patients with HFmrEF poorly understood42. The occurrence of HFrEF 

is generally preceded by acute or chronic loss of cardiomyocytes due to ischemia, genetic 

cardiomyopathies, myocarditis, or valvular disease. However, HFpEF is more closely 

associated with chronic inflammation and a higher prevalence of noncardiac comorbidities, 

which represents important cardiovascular risk factors (Figure 2)43. 

 

 

  

 

 

 

 

 

 

  

 

 

Figure 2. Risk factors and comorbidities involved in the development of each type of HF. HFrEF is more 

common in men and is preceded by volume overload, myocarditis, MI, and diabetes mellitus. However, HFpEF 

is more frequent in women and is often preceded by chronic comorbidities, such as obesity, hypertension, 

hyperlipidemia, diabetes mellitus, and aging. In patients with HFrEF, specific medication, such as β-blockers, 

ACEi/ARB agents, ARNI, ivabradine, and MRAs have been proven to reduce mortality.  On the other hand 

and to be the best of our knowledge, there are currently no effective validated therapies for the reduction of 

morbidity and mortality in patients with HFpEF. ACEi, angiotensin-converting enzyme inhibitor; ARB, 

angiotensin II type 1 receptor blocker; ARNI, angiotensin receptor neprilysin inhibitor; HFrEF, heart failure 

with reduced ejection fraction; HFpEF, heart failure with preserved ejection fraction; MI, myocardial 

infarction; MRA, mineralocorticoid receptor antagonist. The figure was produced using Biorender. Adapted 

from Zakeri et al.44. 
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1.1.4 Compensatory mechanisms  

Several natural compensatory mechanisms are "called into action" in failing hearts 

in order to ensure adequate blood pressure and volume to maintain the functional capacity 

of the heart preserved or minimally depressed45. The main neurohormonal mechanisms 

activated in response to reduced systemic perfusion are the sympathetic nervous system 

(SNS), the renin-angiotensin-aldosterone system (RAAS), and the antidiuretic hormone 

(ADH)46. Activation of the sympathetic system in HF occurs via low- and high-pressure 

baroreceptors, which maintain the CO levels by increasing HR, myocardial contractility, and 

peripheral vasoconstriction47. Sustained sympathetic stimulation activates the RAAS and 

other neurohormones, leading to an increase in the concentrations of angiotensin II, renin, 

and aldosterone48. Angiotensin II is a potent vasoconstrictor of the renal and systemic 

circulation, responsible for promoting the release of aldosterone, leading to an increase in 

the retention of sodium and water by the kidneys, as well as a rise in the excretion of 

potassium49. The retention of salt and water increases the volume of blood in the bloodstream 

and helps to maintain blood pressure50. To offset the excessive activation of RAAS, which 

may lead to constriction of the peripheral blood vessels, the activation of vasodilatory 

molecules is increased, such as nitric oxide (NO), prostaglandins (PGE2 and PGI2), and 

atrial/brain natriuretic peptides (ANP, BNP)51. However, the excessive sympathetic activity 

can lead to cardiac myocyte apoptosis, hypertrophy, and focal myocardial necrosis52. 

The natriuretic peptides (NPs) are a group of peptide hormones with a vital role in 

the physiological control of cardiovascular functions53. The release of these peptides by the 

heart occurs in response to atrial and ventricular distension, as well as by neurohumoral 

stimuli, generally increased in response to HF54. The main physiological role of NPs is to 

oppose the effects of angiotensin II on systemic vascular resistance, sympathetic tone, 

aldosterone activity, and cardiac remodeling. Activation of this system aims to act as a 

counter-regulatory system for the RAAS (Figure 3)55. 

Compensatory mechanisms help the body adjust to the outcomes of HF in the earlier 

stages, making it more difficult for an early diagnose since the patient does not reveal any 

symptoms56. However, chronic stimulation of these mechanisms can have detrimental 

effects on the heart, leading to progressive cardiac dilation, alteration in cardiac structure, 
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and development and subsequent progression into chronic HF. It can also affect the kidneys 

and peripheral vasculature57. 

 

  

  

  

 

 

 

 

 

 

 

 

Figure 3. Counter-regulatory neurohormonal systems in HF. The NP system is comprised of three 

homologous peptides: ANP, BNP, and CNP, which can bind to two different biologically active receptors 

(NPR-A and NPR-B). Both ANP and BNP bind to the NPR-A and CPN binds to the NPR-B. NPR-A coupled 

with guanylate cyclase, which catalyzes the synthesis of cGMP, results in a decrease in systemic vascular 

resistance and central venous pressure, and an increase in natriuresis. In the RASS, the precursor polypeptide 

angiotensinogen is produced in the liver. Renin catalyzes the synthesis of Ang I by angiotensinogen, and Ang 

I is further converted into Ang II. At the kidney, Ang II binds to AT1, leading to an increase in systemic vascular 

resistance and central venous pressure, a decrease in natriuresis, as well as a stimulus of the synthesis of 

aldosterone. ANG I, angiotensin I; ANG II, angiotensin II; ANP, atrial natriuretic peptide; AT1, angiotensin 

type 1; BNP, brain natriuretic peptide; cGMP, cyclic guanosine monophosphate; CNP, C-type natriuretic 

peptide; GTP, guanosine-5’-triphosphate; NP, natriuretic peptide; NPR-A, natriuretic receptor-A; NPR-B, 

natriuretic receptor-B; RAAS, renin-angiotensin-aldosterone system. The figure was produced using 

Biorender. Adapted from Langenickel et al.55. 
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1.1.5 Diagnostic 

Timely diagnosis has become increasingly important as new drug treatment 

opportunities for HF have emerged with the potential to decrease symptoms, delay disease 

progression, enhance survival rate, and improve the quality of life58. However, in the early 

stages of HF, symptoms are often non-specific, making it difficult to discriminate between 

HF and other conditions59. In addition, patients often display several coexisting conditions, 

treated with several different medications, which can complicate the evaluation of the patient 

clinical status60. According to the ESC guidelines, the procedure to diagnose HF in a non-

acute setting is presented as follows: first is estimated the probability of HF based on the 

patient’s prior clinical history, the presenting symptoms, physical examination, and resting 

echocardiography (ECG). If all elements are normal, HF is most unlikely. If at least one 

element is abnormal, plasma NPs should be measured38. A proper detailed clinical history 

should not only include a careful assessment of the symptoms but also attempt to identify 

the etiology and common triggering factors of HF61. The assessment of clinical symptoms 

and signs of HF can be attained through a physical examination, being the major physical 

findings:  bilateral ankle edema, laterally displaced left ventricular impulse, systolic murmur, 

jugular venous dilation, and crackles during inhalation62. The assessment of HF can also be 

achieved through lab work, which may include complete blood count, urinalysis test, liver 

function test, and complete metabolic profile for levels of serum electrolytes (including 

calcium and magnesium), blood urea nitrogen, serum creatinine, glucose, fasting lipid 

profile, and thyroid-stimulating hormone63.  

The NPs are the most widely studied and used biomarkers in HF64. BNP is a cardiac-

derived hormone produced in the ventricular myocardium and released into the circulatory 

system in response to increased cardiac wall stress65. ProBNP, a 108-amino acid polypeptide, 

is segregated into the ventricles in response to volume expansion and pressure overload66. 

After his release, proBNP breaks down into two cleaved forms,  the 76-peptide, biologically-

inert N-terminal fragment, NT-proBNP, and the 32-peptide, biologically-active hormone, 

BNP67. The plasma concentration of BNP and its N-terminal fragment can be used as an 

initial diagnostic and prognostic biomarker in the management of HF, holding a 70/99% 

sensitivity and a specificity of 99/85%, respectively68. However, noncardiac conditions can 
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be responsible for elevated BNP in the bloodstream, such as kidney failure, acute large 

pulmonary embolism, high blood pressure, and chronic hypoxia65.  

BNP and NT-proBNP are described as the benchmarks against which other 

biomarkers are compared69. HF biomarkers can be organized into different categories: 

myocardial stress/injury, neurohormonal activation, remodeling, and comorbidities70. For 

instance, cardiac troponins are often elevated in patients with HF, as a result of myocardial 

injury71. However, they are not useful for the diagnosis of HF as they are not specific for 

these patients and are increased in other conditions that cause increased stress on the heart 

muscle72. Similarly, cardiac biomarkers, such as galectin-3, soluble suppression of 

tumourigenicity-2, and pro-adrenomedullin are also increased in patients with HF, as well 

as in other conditions73. Other diagnostic procedures for HF include chest X-rays, exercise 

stress test, magnetic resonance imaging (MRI), cardiac catheterization, and multiple-gated 

acquisition scanning (MUGA)74. 

  

  

  

1.1.6 Treatments 

The current standard therapeutic approach for HF firmly focuses on improving 

patient’s clinical status, functional capacity, and quality of life; reducing the frequency of 

hospitalizations, as well as decreasing associated mortality75. However, despite these efforts, 

the HF one-year mortality rate has only slightly declined and the five-year mortality rate has 

not declined in the last 10 years76. The treatment of HF can be divided into two categories: 

healthy lifestyle changes and pharmacological therapy. Promoting healthy lifestyle changes 

is crucial for reducing the burden on the heart muscle. Some of these changes may include 

restriction of sodium and fluid intake, monitoring of blood pressure, tracking symptoms, 

managing stress, losing or maintaining weight, cessation of smoking or alcohol, avoiding or 

limiting caffeine consumption, eating a heart-healthy diet, and being physically active77. 

Pharmacological therapy for HF patients is based on the administration of β-blockers, 

angiotensin-converting enzyme (ACE) inhibitors (ACEi)/angiotensin II receptor blockers, 

angiotensin-receptor neprilysin inhibitors (ARNIs), If channel blocker or inhibitor, 

aldosterone antagonists, and diuretics78.  



Endothelial progenitor cells and circulating endothelial cells in heart failure: a cross-sectional study 

José Lopes 

 

University of Aveiro – Master in Molecular Biomedicine | 18 
 

Some of the effects of the administration of this medication include reduction of 

blood pressure, slow HR, a decrease of symptoms, improvement of blood flow and heart 

function, reduction of workload on the heart, a decline of HF hospitalization, and reduction 

of mortality79.  However, some of these medications have potential side effects, such as 

bradycardias, severe hypotension or renal insufficiency, and reduction of forced expiratory 

volume80. In addition to pharmacological therapy, novel surgical techniques to alleviate the 

underlying problem that led to HF have been introduced, such as coronary revascularization, 

ventricular restoration, heart valve repair for ischemic mitral incompetence, left ventricular 

aneurysmectomy, mechanical circulatory assist devices (ventricular assist devices (VADs)), 

implantable cardioverter-defibrillators (ICDs), cardiac resynchronization therapy (CRT) or 

biventricular pacing81. In more severe cases of HF, the main alternatives are heart 

transplantation or permanent mechanical circulatory support82.  

Physical activity is acknowledged as a fundamental adjutant therapy in cases of 

chronic HF83. In the scientific community, data related to the protective benefits of exercise 

in HF patients have become a hot topic, with the number of reports on PubMed rapidly 

increasing in the last few years84. Countless studies have shown numerous benefits of regular 

physical activity in patients with HF, such as a decrease in morbidity and mortality, an 

increase in life expectancy, reduction of symptoms, and risk of developing cardiovascular 

and respiratory diseases85. Physically active individuals demonstrate lower systolic and 

diastolic blood pressure, more favorable plasma lipoprotein profile, higher insulin 

sensitivity, an increase of myocardial oxygen supply, improved myocardial contraction and 

electrical stability, an increase of coronary collateral circulation and myocardial capillary 

density, favorable hemostatic mechanisms, lower concentration of inflammatory markers, 

stabilization of atheromatous plaques, improvements in endothelial function, an increase of 

vagal tone, and a decrease of sympathetic nervous system activity86–88. According to the 

AHA, 30 minutes of walking for at least 5 days/week at moderate-intensity, weekly 75 

minutes of vigorous-intensity aerobic physical activity, or a combination of both, are the 

general physical activity recommended for optimal cardiovascular health89,90. 
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1.2 The vascular endothelium 

1.2.1 The role of the vascular endothelium  

The vascular endothelium, once considered to be a simple passive barrier, is now 

recognized as a complex, highly selective, and metabolically active tissue91,92. It is 

comprised of a monolayer of endothelial cells lining the lumen of all blood vessels, 

separating the vascular wall from the circulation and the blood components93.  

The healthy endothelium responds to several humoral, neural, and hemodynamic 

stimuli; becoming a major player in the modulation of plasma permeability, vascular 

signaling and angiogenesis, blood flow regulation, and inflammatory response94. Indeed, the 

endothelium has a tightly regulated balance between pro- and antioxidants, pro- and anti-

inflammatory molecules, pro- and antiproliferative factor, and pro- and antithrombotic 

signals95. In addition, endothelial cells play a key role in the maintenance of vascular 

homeostasis by synthesizing and releasing vasoactive substances, and by doing so, the 

endothelium has a profound effect on the overall function of the cardiovascular system96,97. 

The vasodilation is mainly mediated by factors, such as NO, endothelium-derived 

hyperpolarizing factor (EDHF), and prostacyclin (PGI2), while a vasoconstrictor state is 

mediated by factors, such as endothelin-1 (ET-1), angiotensin II, thromboxane A2, and 

prostaglandin H2 (PGH2)
98. Among these endothelial-derived factors, NO is considered to 

be the most important and the most well-characterized vasodilator molecule produced by the 

endothelium99. NO has a spectrum of biological properties that play a pivotal role in 

preserving the homeostasis of the vascular wall by inhibiting platelet adhesion and 

aggregation, leukocyte adhesion, inflammation, vascular smooth muscle cell migration and 

proliferation, and oxidative stress100. Essentially, NO is synthesized and released from the 

amino acid L-arginine through the activity of the calmodulin-dependent enzyme NO 

synthase (eNOS), which is continuously produced and released by endothelial cells under 

the influence of chemical agonists acting on specific endothelial chemoreceptors or by 

mechanical forces, such as shear stress, ischemia, and changes in temperature (Figure 

4)98,101. Hemodynamic shear stress, generated by blood flow, triggers vasodilation mediated 

for the most part by increased endothelial eNOS activity, leading to a rapid rise in NO 

production102. Chemical stimuli include acetylcholine, bradykinin, thrombin, and 

serotonin103. Under normal, basal conditions in blood vessels, NO diffuses into the smooth 
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muscle cell promoting the activation of soluble guanylyl cyclase (sGC) and the production 

of cyclic guanosine monophosphate (cGMP). The increase in cGMP activates cGMP-

dependent protein kinases (PKGs), which leads to smooth muscle cell relaxation via several 

mechanisms, such as alteration of membrane potential and intracellular calcium levels, 

activation of myosin light chain phosphatases, and regulation of smooth muscle cell 

contraction104. NO also has antiplatelet effects and can downregulate inflammatory pathways 

and the generation of ET-1, a powerful vasoconstrictor, which also holds pro-inflammatory, 

pro-oxidant, and pro-proliferative properties105. 

 

  

   

 

 

  

 

 

  

  

 

 

 

 

Figure 4. Synthesis of NO. The production of NO is stimulated by several stimulus. In endothelial cells, eNOS 

catalyzes the oxidation of L-Arginine to NO and L-Citrulline. NO diffuses into vascular smooth muscle cells 

promoting vasodilation by activating sGC, thereby increasing intracellular cGMP. cGMP, cyclic guanosine 

monophosphate; eNOS, endothelial nitric oxide synthase; GTP, guanosine triphosphate; NO, nitric oxide; 

sGC, soluble guanylate cyclase. The figure was produced using Biorender. Adapted from Ferreira et al.106. 
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1.2.2 Endothelial cells  

1.2.2.1 Endothelial progenitor cells  

More than two decades ago, Asahara and colleagues published a landmark paper 

identifying a hematopoietic population of cells isolated from adult peripheral blood and 

capable of differencing in vitro into endothelial progenitor cells (EPCs)107,108. Furthermore, 

the same study observed that EPCs contributed to neovascularization and ischemic rescue 

when incorporated into an animal model of peripheral limb ischemia109. Since their 

discovery, the precise cellular definition and characterization of EPC remains unclear and 

the subject of considerable debate110. Human EPCs have been defined as bone marrow-

derived cells, expressing a variety of cell surface markers similar to those expressed by 

vascular endothelial cells and with the capacity to adhere to the endothelium at sites of 

hypoxia/ischemia, contributing to the formation of new blood vessels111,112. 

In the last decade, circulating EPCs have taken center stage in the expanding field of 

vascular biology, as more and more studies have highlighted the importance of EPCs as a 

major contributor to vasculogenesis, angiogenesis, preservation of the normal vascular 

homeostasis, and repair (Table 1)113–115. In healthy individuals, EPCs have been shown to 

represent between 0.01% and 0.0001% of the total fraction of monocytes in circulation, with 

the majority of these cells located in the bone marrow116. However, under the stimulus of 

physiological or pathological factors, bone marrow-derived EPCs can be mobilized into the 

bloodstream where they participate in the repair of damaged tissue and ischemia by 

angiogenesis117. The process of EPCs mobilization and migration from the bone marrow is 

regulated by a variety of growth factors, enzymes, ligands, and surface receptors118.  

Endothelial damage, following ischemia-reperfusion injury or heart infarction, 

promotes the mobilization of several mediators, such as cytokines of granulocyte colony‐

stimulating factor (GCSF), matrix metalloproteinases‐9 (MMP‐9), vascular endothelial 

growth factor (VEGF), stromal cell-derived factor 1 (SDF-1), and eNOS119. The increased 

production of EPC-mobilizing factors, in particular, activated MMP-9, leads to EPCs release 

and mobilization from the bone marrow into the peripheral circulation120. Circulating EPCs 

can migrate towards injured endothelium or inflamed tissue, proliferate, and differentiate 

into mature endothelial cells, thus improving blood flow and regulating vascular repair via 

paracrine mechanisms121.  
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1.2.2.2 Circulating endothelial cells 

Circulating endothelial cells (CECs) are mature endothelial cells that have been shed 

from the lining of the vessel walls into the bloodstream in response to endothelial 

damage122,123. Although CECs were first described over 30 years ago by Bouvier and 

Hladovec, only recently have received in-depth attention from clinical researchers as an 

additional marker for the assessment of vascular integrity124,125. A few years later, an 

increased number of CECs was observed in different models of endothelial damage, both in 

animals, such as shock by E. Coli endotoxin and in humans with cardiovascular risk factors 

(e.g. hypertension) after acute MI, and with immunosuppression126. However, contradictory 

results were reported by these groups, due to the variety of cell fractions studied,  differences 

in cell identification, and distinct methods for measurement of cell concentration, based on 

physical properties, such as size or density124.  

Endothelial cells provide the physical interface between the bloodstream and the 

surrounding tissue, regulating nutrient and blood component traffic, and participating in 

many physiologic events such as hemostasis, inflammation, and angiogenesis127. Under 

normal physiological conditions, these cells would be expected to remain in the endothelium, 

with perhaps a very low level of cell loss into the blood, with consequent clearance by the 

reticuloendothelial system128. The increased number of CECs, disconnected from the vessel 

wall in response to tissue ischemia, is thought to be due to a variety of factors such as 

oxidative stress, infectious agents, cytokines, proteases, anti-endothelial cell antibodies, 

disturbed flow-induced p53, and ERK5 SUMOylation129. Over the years, multiple studies 

have investigated different methods to more accurately identify CECs in order to use them 

as therapeutic biomarkers to confirm a diagnosis, predict the course of the disease, or support 

treatment decisions (Table 1)130. 
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1.2.2.3 Hematopoietic stem cells 

 Blood is one of the most highly regenerative tissues, generating roughly one trillion 

(1012) cells per day in the adult human bone marrow131. Hematopoiesis is the process by 

which the cellular components of the blood are formed during embryonic development and 

through the lifetime of an organism to produce and replenish the blood system132. The 

hematopoietic system is made of various populations of highly specialized cells carrying out 

different roles, such as oxygen transport, immune defense, and blood clotting inhibition133. 

Within the mammalian hematopoietic organization, hematopoietic stem cells (HSCs) are 

arguably the most well-characterized and rare cell population, sitting at the top of the 

hematopoietic hierarchy134. In adults, HSCs are described as multipotent precursors, found 

primarily in the bone marrow, characterized by their ability to self-renew as well as to 

regenerate all the different cell types that proliferate and differentiate into mature blood cells 

comprising the blood-forming system135. Although HSCs were the first adult stem cells to 

be described, their existence has been confirmed in other tissues, such as the heart, lungs, 

brain, skeletal muscle, kidney, and others136. HSCs were the first class of stem cells to be 

prospectively isolated and have become a clinical standard in the treatment of a variety of 

blood cell diseases, such as leukemias and autoimmune disorders137.  

The hematopoietic processes have been confirmed to be considerably altered by 

common cardiovascular risk factors, such as hypertension, diabetes mellitus, and 

hyperlipoproteinemia. Similarly, atherosclerosis, MI, and HF also induce a strong effect on 

hematopoiesis, which has been reported by multiple studies over the years (Table 1)138. 

Throughout the life of the stem cell, endothelial cells are closely associated with 

HSCs, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche 

of endothelial cells that regulate HSC homeostasis139. In the HSC niche, HSCs are regulated 

by a variety of chemokines, cytokines, adhesion molecules, and other signals, promoting the 

colonization of HSCs, and in the steady-state of self-renewal, enhancing the proliferation, 

and differentiation. At the same time, endothelial cells can promote HSCs proliferation and 

differentiation through a paracrine mechanism, where endothelial cells maintain the survival 

and self-renewal of HSCs by secreting SDF-1 and binding to the hematopoietic stem cell 

surface receptor CXCR-4140.  
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Table 1. Overview of human studies that quantified circulating levels of EPCs, CECs, and HSCs in the context 

of cardiovascular diseases. 

 

 

  

Study  Subjects  Principal findings 

Farinacci et al. 

(2019)130 

HFpEF* 

HFrEF* 

DN* 

arterial hypertension* 

age-matched healthy 

controls* 

EPCs levels were similar between healthy 

subjects, patients with HFrEF, and HFpEF. 

CEC levels were not elevated in patients with 

HFrEF compared to healthy subjects 

↑ CEC levels in patients with HFpEF compared 

to healthy subjects. 

Vali Shaik et al. 
(2018)141 

CAD, n = 50 

age-matched healthy 

controls, n = 50 

↓ EPCs levels in patients with CAD compared 

to healthy subjects. 

Regueiro et al. 

(2015)142 

AMI or atherothrombotic 

stroke, n =150 

healthy controls, 

n = 145 

↑ EPCs and CECs levels in patients with AMI 

compared to healthy subjects. 

EPCs and CECs levels were not higher in 

stroke patients compared to healthy subjects. 

Damani et al. 

(2013)143 

STEMI, n = 50 

healthy controls, n = 44 

↑ CECs levels in patients with MI compared to 

healthy subjects. 

Fortini et al. 

(2011)144 

HF, n = 97 

gender and age-matched 

healthy controls, n = 23 

↑ EPCs and HSCs levels in patients with HF 

compared to healthy subjects. 

Liguori et al. 

(2008)145 

CHD, n = 40 

healthy controls, n =15 

↓ EPCs levels in patients with CHD and 

migratory capacity was significantly impaired 

compared to healthy subjects. 

↓ HSCs levels in patients with CHD compared 

to healthy subjects. 

AMI, acute myocardial disease; CAD, coronary artery disease; CECs, circulating endothelial cells; CHD, 

coronary heart disease; DN, diabetic nephropathy; EPCs, endothelial progenitor cells; HF, heart failure; 

HFpEF, heart failure with reduced ejection fraction; HFrEF, heart failure with preserved ejection fraction; 

HSCs, hematopoietic stem cells; MI, myocardial infarction; STEMI, ST-elevation myocardial infarction. 

* The number of participants was not disclosed. 
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1.2.3 Endothelial dysfunction - a hallmark of cardiovascular diseases 

Endothelial dysfunction is characterized by a shift in the actions of the endothelium 

toward reduced vasodilatation, a proinflammatory state, and prothrombic properties146. It is 

a well-established response to major cardiovascular risk factors, such as diabetes mellitus, 

hypertension, dyslipidemia, aging, hypercholesterolemia, and tobacco toxins147. As the 

endothelial function deteriorates,  the vascular homeostasis becomes impaired resulting in a 

decline of the antioxidant and anti-inflammatory effects, as well as an increase of the 

vascular permeability to lipoproteins,  an enhancement of the expression of inflammatory 

cytokines, and an upregulation of leukocyte adhesion molecules98,148. Among various 

complex mechanisms, oxidative stress has been shown to play a pivotal role in the 

pathogenesis of vascular failure, particularly vascular endothelial dysfunction mainly by a 

loss of local bioavailability of NO (Figure 5)149.  

In healthy endothelial cells, NO is considered to be the central mechanism 

responsible for the preservation of vascular homeostasis150. The impairment of NO 

bioavailability can be due to decreased synthesis of NO and increased oxidative degradation 

by reactive oxygen species (ROS)151,152. In this context, an increase of ROS production plays 

a critical role in the initiation and progression of endothelial dysfunction by promoting the 

upregulation of several mechanisms, such as the activation of nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, NO inactivation, the formation of peroxynitrite 

(ONOO-), uncoupling of eNOS, and stimulation of endothelin expression153.   

The impaired endothelium-dependent vasodilatation is a well-established hallmark 

of endothelial dysfunction, which is a key mediator in the pathogenesis and progression of 

multiple cardiovascular disorders including atherosclerosis, hypercholesterolemia, stroke, 

CAD, and HF105. Altered redox state with overproduction of ROS are major features in the 

characterization of HF. In failing hearts, the presence of abnormal cardiac and vascular 

phenotypes are thought to be caused partly by imbalances between NO bioavailability and 

oxidative stress103. In the early stages of HF, inflammatory mediators from the myocardium 

and altered local shear forces modify gene expression, leukocyte infiltration, increased 

cytokine and ROS generation, and reduced NO bioavailability154. Nevertheless, it is difficult 

to determine the relationship between HF and endothelial dysfunction – which one of them 

is the victim, and which is the culprit98. 
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Vascular oxidative stress is also responsible for promoting systemic inflammation 

via immune activation. Activated immune cells migrate into the vasculature and release 

several factors including ROS, metalloproteinases, cytokines, and chemokines promoting 

disruption of the endothelium and causing vascular damage by enhancing vasoconstriction 

and remodeling of blood vessels155.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Pathophysiology of endothelial dysfunction. The healthy endothelium keeps a crucial balance 

between vasodilating, anti-inflammatory, and antithrombotic factors on one side and vasoconstricting, 

inflammatory, and thrombotic factors on the other. In endothelial dysfunction, increased oxidative stress 

triggered by comorbidities leads to a decline of the NO bioavailability through the reduction of NO to ONOO−. 

In addition, an increase of vasoconstriction, vascular remodeling, and inflammation results in systemic 

inflammation, impaired angiogenesis, and reduced vasculogenesis contributing to the progression of 

cardiovascular disease and HF.  AT2, angiotensin 2; COX, cyclooxygenase; ET, endothelin; HF, heart failure; 

NO, nitric oxide, NOX, nicotinamide adenine dinucleotide phosphate oxidase; ONOO-, peroxynitrite; Ortho, 

orthosympathetic nerve activity; PGI2, prostacyclin; ROS, reactive oxygen species. The figure was produced 

using Biorender. Adapted from Panth et al.154 and Gevaert et al.156. 
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HF has been recognized as a major and growing medical and economic burden on 

the healthcare system due to its increasing prevalence, considerable morbidity, high 

mortality, and rapidly expanding health care cost80,157. Over the years, HF incidence has 

steadily increased worldwide, as traditional cardiovascular risk factors, such as diabetes, 

hypertension, obesity, dyslipidemia, and tobacco toxins remain a persistent problem158. 

Several of these risk factors are associated with endothelial dysfunction, which plays a key 

role in the pathophysiology of several cardiovascular diseases, including HF159.  

CECs are mature cells that have been shed from the lining of the vascular wall into 

the blood stream128. CECs are often present in very low numbers but are increased in a 

variety of cardiovascular diseases, in which they appear to be a marker of vascular 

dysfunction and damage160. In contrast, circulating EPCs arise from the bone marrow in 

response to tissue damage. EPCs are thought to be originated from HSCs, which gives rise 

to immune cells in a process called hematopoiesis. While the hematopoietic supply of 

inflammatory immune cells plays an important role in the development of cardiovascular 

diseases, cardiovascular diseases in turn strongly affects hematopoiesis161. Circulating levels 

of EPCs and CECs have been recognized as useful markers of vascular damage and 

endothelial repair in response to tissue injury, such as myocardia ischemia97. Additionally, 

the presence of cardiovascular risk factors can impair the number and function of CECs, 

EPCs, and HSCs, which may contribute to the perpetuation of the disease, the development 

of acute complications, and worsening of cardiac function121,162. 

 Due to the factors mentioned above, the main goal of this study was to assess whether 

levels of circulating EPCs, CECs, and HSCs are markers of the cellular response to vascular 

injury in patients with HFrEF. We hypothesized that an increased number of CECs and a 

decreased number of EPCs would be observed in patients with HFrEF per comparison to a 

group of subjects presenting similar cardiovascular risk factors but without established 

cardiovascular disease. To achieve this goal, a combination of markers was used in 

peripheral blood samples in order to assess the number of circulating EPCs, CECs, and HSCs 

via flow cytometry analysis. We also compared the levels of circulating EPCs, CECs, and 

HSCs between subgroups regarding the presence of cardiovascular risk factors (e.g. diabetes 

mellitus) and the etiology of HF.     

 CHAPTER II: OBJECTIVES 



Endothelial progenitor cells and circulating endothelial cells in heart failure: a cross-sectional study 

José Lopes 

 

University of Aveiro – Master in Molecular Biomedicine | 28 
 

 

  

 

3.1 Study design  

A total of 82 participants, between the ages of 30 and 80 years old – 41 in each group 

– were enrolled in this cross-sectional study. In addition to demographic and clinical data, 

this study included venous blood collection for further detection of circulating EPCs, CECs, 

and HSCs levels by flow cytometry (Figure 6). All participants underwent the same 

assessment protocol. 

 

  

  

   

  

 

  

 

 

 

Figure 6. Study design schematization.  

  

  

3.2 Participants  

Eighty-two participants, between the ages of 30 and 80 years old, were recruited for 

this study. Participants were divided into two groups (41 in each group): patients previously 

diagnosed with HFrEF, followed at a central hospital located in the Porto region, Portugal; 

and age-matched subjects presenting similar cardiovascular risk factors but without 

established cardiovascular disease, followed at a primary health center located in the Aveiro 

region, Portugal.  

The inclusion criteria for patients with HFrEF were as follows: participants were 

recruited according to the guidelines established by ESC38, i.e. reduced LVEF (≤ 40%) and 

a NYHA functional capacity class II and III63. In addition, patients had to be clinically stable 

and receiving an optimal and stable medication regimen for the last six months prior to 

 CHAPTER III: METHODS 
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inclusion in this study. Exclusion criteria included: i) unstable angina pectoris; ii) abnormal 

hemodynamic response; iii) uncontrolled metabolic disorders; iv) uncompensated HF; v) 

NYHA class IV symptoms; vi) significant valvular heart disease; vii) complex ventricular 

arrhythmias (at rest or during maximal exercise test); viii) severe aortic stenosis; ix) 

pulmonary and renal co-morbidities; x) acute myocarditis; xi) uncontrolled hypertension or 

orthopedic limitations that prevent physical exercise. 

The inclusion criteria for the age-matched group were as follows: i) 30-80 years old; 

ii) free of established cardiovascular diseases (e.g., heart failure, previous myocardial 

infarction, stroke, coronary artery disease, among others), but presenting at least one 

modifiable cardiovascular risk factor (e.g. idiopathic hypertension, dyslipidemia, smoking 

habits, type II diabetes mellitus, and obesity). The exclusion criteria were the same as for the 

HFrEF group. 

  

  

3.3 Ethical statement 

This study was approved by the local ethics committee and all the procedures were 

conducted according to the principles expressed in the Declaration of Helsinki163. Written 

and oral information was given and written informed consent was obtained from all 

participants prior to inclusion. 

  

  

3.4 Demographical and clinical characteristics 

Demographic and clinical data (age, gender, and cardiovascular risk factors), as well 

as medication, were retrieved from clinical records and validated through a personal 

interview with the participants.  

Anthropometric measurements, such as height and weight were determined using a 

stadiometer and a scale (InnerScan BC-522, Tanita, Tokyo, Japan), respectively. Body mass 

index (BMI) (kg/m2) was calculated by weight (kg) divided by the square of height (meters). 

Regarding cardiorespiratory fitness in patients with HFrEF, maximal oxygen uptake 

was measured during a maximal or symptom-limited treadmill cardiopulmonary exercise 

test using the modified Bruce protocol164,165. As for the age-matched group, maximal oxygen 

uptake was estimated using the Chester Step Test (CST) which was performed according to 
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test manual recommendations166. In brief, the CST can be divided into five stages, with each 

stage having a duration of two minutes. The step cadence was set by a tape and started at 15 

steps per minute and increased by 5 steps per minute every two minutes. The test ends when 

80% of the age-estimated maximal heart rate was exceeded, a value above 14 on the 

perceived exertion scale was reached or the participant was unable to maintain the 

metronome-set pace. The CST is a valid tool to assess cardiorespiratory fitness in adults 

presenting cardiovascular risk factors, namely hypertension167. 

Resting systolic and diastolic blood pressure and HR were assessed with the 

participants in a sitting position with the right arm supported and relaxed on a table in order 

to place the brachial artery at heart level. After a ten-minute rest, at least two blood pressure 

measurements were made at intervals of one minute. The average of these two measurements 

was recorded. Additional measurements were made only if the first two readings differed by 

more than 10 mmHg, which in that case, the blood pressure was recorded as the average of 

the last two blood pressure readings168.  

The participants were asked to avoid strenuous exercise, caffeinated products, 

alcohol consumption for at least 24 hours prior, and not to smoke or eat 3 hours before the 

evaluation.  

  

  

3.5 Assessment of risk factors 

Risk factors were evaluated in all participants based on their medical records. Type 

II diabetes mellitus (T2DM) was characterized by high blood glucose (300 – 350 mg/dL) 

and hemoglobin A1c (HbA1c) levels (> 10%); requiring the initiation of pharmacologic 

therapy, such as metformin or insulin, prescribed by a physician169. Hypertension was 

diagnosed as either a systolic or a diastolic increase in blood pressure (> 140/90 mmHg, 

respectively) or the use of antihypertensive therapy, such as ACE-I, angiotensin II receptor 

blockers (ARBs), mineralocorticoid receptor antagonists (MRAs), or a combination168. 

Dyslipidemia was defined as the co-existence of high levels of low-density lipoproteins 

(LDL) (≥ 100 mg/dL), low levels of high-density lipoproteins (HDL) (< 40 mg/dL in men; 

< 45 mg/dL in women), high levels of triglycerides (> 40 mg/dL), and elevated total serum 

cholesterol levels (> 190 mg/dL), or the use of lipid-lowering agents170,171. Obesity was 

defined according to the BMI cut-points, established by the WHO as follows: underweight 
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(BMI < 18.5 kg/m2), normal weight (BMI between 18.5 and 24.9 kg/m2), overweight (BMI 

between 25.0 and 29.9 kg/m2), and obesity (BMI ≥30 kg/m2)172. Smoking habits were 

assessed by two categories: active smoker or not.   

  

 

3.6 Blood sample collection 

Whole peripheral blood was drawn by venipuncture in the antecubital vein, collected 

into ethylenediaminetetraacetic acid (EDTA) coated tubes and treated with TransFix® 

(Cytomark, Caltag Medsystems Ltd, Buckingham, UK), according to manufacturer’s 

instructions at a 1:5 ratio immediately after collection. Blood samples were then transported 

at room temperature and proceeded within 7 days. The addition of TransFix® cellular 

antigen stabilizing reagent was proven to stabilize blood cells, allowing to delay the analyses 

up to 7 days after blood collection173.  

  

  

3.7 Quantification of circulating EPCs, CECs, and HSCs by flow cytometry 

Staining and analysis were performed using a protocol adapted from Ahmed et al174. 

For the quantitative assessment of circulating EPCs, CECs, and HSCs by flow cytometry, 

whole blood samples were incubated for 10 minutes with an FcR-blocking reagent in order 

to block unwanted binding of antibodies to human Fc receptor-expressing cells. All staining 

procedures were executed at room temperature. For the evaluation of circulating EPCs, 

CECs, and HSCs in the peripheral blood, samples were incubated with BV410 CD34 (BD 

Horizon), PE CD309 (VEGFR-2/KDR; BD Pharmingen), FITC CD144 (BD Pharmingen), 

BV510 CD45 (BD Horizon), and APC CD133/1 (Miltenyi Biotec), according to 

manufacturer’s instructions. After erythrocyte lysis, at least 500.000 CD45+ and a minimum 

of 100 CD34+ cells were acquired on a BD FACS Canto II™ system using BD FACSDiva™ 

software. All samples were analyzed in duplicate. Data was analyzed using InfinicytTM 

(Cytognos). 

The EPCs were defined as CD45low/CD34+/CD309+/CD133+/CD144- cells, the CECs 

as CD45low/CD34+/CD309+/CD133-/CD144+, and HSCs as CD45+/CD34+/CD309-

/CD133+/CD144-. EPCs, CECs, and HSCs count were expressed as percentage of leukocytes 

(CD45+ cells). The intra-assay variation ranged from 1.7 to 7.9%. Flow cytometry gating 
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strategy for quantitative assessment of EPCs, CECs, and HSCs started by removing doublets 

using forward scatter (FSC)-Height (FSC-H) by FSC-Area (FSC-A) (R0 plot 1). Then, red 

blood cells, platelets, and other debris were removed from the analyses based on their FCS/ 

side scatter (SSC) dot-plot (R1 plot 2). Next, a gate was set on CD45+, including CD45dim 

and CD45bright and excluding CD45- (R2 plot 3). Next, the events in gate R1 were displayed 

on a CD34 versus SSC dot plot (plot 4) and a third gate (R3) was defined in a sequential 

strategy in order to include the cluster of CD34+ events (R3 plot 4). The fifth plot was 

obtained by plotting CD34+ cells presenting low SSC and low CD45 fluorescence 

(SSClow/CD45dim cells) were gated (R4 plot 5). Then, on a CD34 versus CD309 

(VEGFR2/KDR) dot-plot the EPCs/CECs (R6) and HSCs (R7) were gated. Finally, on a 

CD144 versus CD133 dot-plot (plot 6), EPCs were identified as CD309+, CD133+, and 

CD144- (R8) and CECs as CD309+, CD133-, and CD144+ (R9). The HSCs were identified 

on a CD144 versus CD133 dot-plot (plot 8) as CD309-, CD144- and CD133+ (R10).  

For illustrative purposes, figure 7 represents the flow cytometry gating strategy for 

the quantification of EPCs. 
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Figure 7. Flow cytometry gating strategy for the identification of EPCs. The gating strategy for quantitative 

assessment of EPCs, CECs, and HSCs started by removing doublets using forward scatter FSC-H by FSC-A. 

Then, red blood cells, platelets, and other debris were removed from the analyses based on their FCS/SSC dot-

plot. Next, a gate was set on CD45+, including CD45dim and CD45bright and excluding CD45-. Next, the events 

in the first gate were displayed on a CD34 versus SSC dot plot and a third gate was defined in a sequential 

strategy in order to include the cluster of CD34+ events. The fifth plot was obtained by plotting CD34+ cells 

presenting low SSC and low CD45 fluorescence (SSClow/CD45dim cells) were gated. Then, on a CD34 versus 

CD309 (VEGFR2/KDR) dot-plot the EPCs/CECs and HSCs were gated. Finally, on a CD144 versus CD133 

dot-plot, EPCs were identified as CD309+, CD133+, and CD144-. EPCs, endothelial progenitor cells; FSC-A, 

Forward Scatter-Area; FSC-H, Forward Scatter-Height; SSC, Side Scatter. 
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3.8 Statistical analyses 

Statistical analysis was conducted using IBM SPSS Statistics Software 26 (IBM 

Corporation, Chicago, IL, USA). 

Continuous variables were tested for normal distribution by the Shapiro-Wilk test 

and expressed as mean ± standard deviation or median with interquartile range for parametric 

and nonparametric data, respectively. Circulating EPCs, CECs, and HSCs were normally 

distributed after log-transformation; their means were back-transformed, and the values are 

presented in the original scale for clarity reasons.  

For comparison of continuous variables between groups (HFrEF and age-matched 

group) and subgroups (e.g. HFrEF with ischemic versus non-ischemic etiology), an 

Independent t-test was used when variables were normally distributed (weight, BMI, 

diastolic blood pressure, VO2 peak, CECs, EPCs, and HSCs), while the Mann-Whitney U 

test was used for nonparametric continuous variables (age, height, and systolic blood 

pressure). Comparison of categorical variables (gender, etiology, T2DM, hypertension, 

dyslipidemia, smoking status, BMI category, and medication) between groups was assessed 

by Pearson Chi-Square test or with Fisher’s exact test, as appropriate. Categorical data was 

expressed as absolute numbers with their respective percentages. 

For all analyses, a two-sided value of P < 0.05 was considered statistically 

significant. 
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4.1 Participants clinical characteristics 

The clinical characteristics, biochemical parameters, and participant’s medication are 

summarized in Table 2. A total of 82 subjects (mean age, 62.4 ± 1.3 years; male subjects, 

74.4%) were enrolled in this study. The majority (65.9%, n = 54) of the 82 participants 

presented dyslipidemia and slightly more than half (51.2%, n = 42) had hypertension. 

Approximately one third (32.9%, n = 27) were diagnosed with T2DM and 21 (25.6%) were 

classified as obese. Regarding smoking habits, 8 (11.1%) were active smokers. The age-

matched group included 41 subjects (median age, 66.0 [17.0] years; male subjects, 78.0%) 

with cardiovascular risk factors. Among the 41 patients with HFrEF (median age, 63.0 [15.0] 

years; male subjects, 70.7%), 20 patients (48.8%) had an ischemic and 21 (51.2%) a non-

ischemic etiology.  

With respect to medication, 37 patients were under ACE-I (45.1%), 24 under ARBs 

(29.3%), 24 under antidepressants (29.3%), 39 under β-blockers (47.6%), 9 under calcium 

channel blockers (10.9%), 38 under diuretics (46.3%), 22 under oral antidiabetic (26.8%), 

and 53 under statins (64.6%). In relation to the specific treatment of patients with HFrEF, 28 

were under anticoagulants (63.4%), 12 under antiaggregants (29.3%), 4 under 

antiarrhythmics (9.8%), 5 under antianginals (12.2%), and 3 under digoxin (7.3%). 

No significant differences in risk factor profiles were found when comparing the two 

groups in relation to hypertension and smoking status (P > 0.05). HFrEF group had 

significantly more patients diagnosed with T2DM and dyslipidemia when compared with 

the age-matched group (X2 (1) = 12.424; P ≤ 0.001 and X2 (1) = 10.630; P = 0.001, 

respectively). The peak of oxygen uptake (VO2 peak) was significantly lower in patients 

with HFrEF (17.5 ± 4.5 ml/kg-1/min-1 versus 31.1 ± 6.9 ml/kg-1/min-1, respectively) 

compared to age-matched subjects (t (68) = - 9.866; P ≤ 0.001). Moreover, the systolic and 

diastolic blood pressure  were significantly higher in age-matched subjects (126.0 [19.0] 

versus 119.0 [24.0] mmHg and 78.1 ± 1.4 versus 71.3 ± 1.7 mmHg, respectively) compared 

to patients with HFrEF ((U = 1140; P = 0.005) and (t (80) = - 3.032; P = 0.003), respectively) 

(Table 2).

 CHAPTER IV: RESULTS 
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Table 2. Comparison of the clinical characteristics between HFrEF patients and subjects with cardiovascular 

risk factors (age-matched group). 

Variables HFrEF Group Age-matched Group P-value 

N 41 41 - 

Age (years)  63.0 [15.0]  66.0 [17.0] 0.597 

Gender, male, n (%)  29 (70.7) 32 (78.0) 0.448 

Height (m) 1.7 [0.1] 1.6 [0.1] ≤ 0.001 

Weight (kg) a)  72.0 ± 2.3 67.4 ± 1.8 0.127 

BMI (Kg/m2) a)  26.6 ± 0.8 27.3 ± 0.6 0.487 

LVEF (%)  38.3 ± 1.8 - - 

VO2 peak (ml/kg-1/min-1) a) 17.5 ± 0.8 31.1 ± 1.2 ≤ 0.001 

Blood pressure (mmHg)    

      Systolic  119.0 [24.0] 126.0 [19.0] 0.005 

      Diastolic a) 71.3 ± 1.7 78.1 ± 1.4 0.003 

Etiology, n (%)    

      Ischemic  20 (48.8) - - 

      Non - ischemic  21 (51.2) - - 

Cardiovascular risk factors, n (%)    

     Type II diabetes mellitus  21 (51.2) 6 (14.6) ≤ 0.001 

     Hypertension  23 (56.1) 19 (46.3) 0.377 

     Dyslipidemia  34 (82.9) 20 (48.8) 0.001 

     Smoking status, n (%)    0.071 

          Yes  7 (17.5) 2 (4.9)  

          No  33 (82.5) 39 (95.1)  

     BMI category, n (%)   0.410 

          Underweight  2 (4.8) 0  

          Normal range  15 (35.7) 12 (29.3)  

          Overweight (pre-obese)  14 (34.2) 18 (43.9)  

          Obese  10 (24.4) 11 (26.8)  
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Variables HFrEF Group Age-matched Group P-value 

Medication, n (%)    

     ACEIs  26 (63.4) 11 (26.8) ≤ 0.001 

     ARBs  19 (41.3) 5 (12.2) ≤ 0.001 

     Anticoagulants  28 (63.3) 0 ≤ 0.001 

     Antiaggregants  12 (29.3) 0 ≤ 0.001 

     Antiarrhythmics  4 (9.8) 0 0.116 

     Antianginals  5 (12.2) 0 0.055 

     Antidepressants  15 (36.6) 9 (22.0) 0.145 

     β-blockers  33 (80.5) 6 (14.6) ≤ 0.001 

     CCBs  3 (7.3) 6 (14.6) 0.289 

     Digoxin  3 (7.3) 0 0.241 

     Diuretics  32 (78.0) 6 (14.6) ≤ 0.001 

     Oral antidiabetic  16 (39.0) 6 (14.6) 0.013 

     Statins  34 (82.9) 19 (41.3) ≤ 0.001 

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BMI, 

body mass index; CCB, calcium channel blocker; LVEF, left ventricular ejection fraction; VO2 

peak, peak of oxygen uptake. 

 

Results are expressed as mean ± SD, median [interquartile range], or as number (%). 

a) Independent sample t-test. Equal variances assumed: 

(Levene’s test for equality of variables: P > 0.05). 

b) Independent sample t-test. Equal variances not assumed: 

(Levene’s test for equality of variables: P < 0.05). 
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4.2 Circulating EPCs, CECs, and HSCs levels between patients with HFrEF 

and age-matched subjects 

Regarding levels of circulating EPCs and CECs, a significant difference between 

patients with HFrEF (n = 41) and age-matched subjects (n = 41) was observed (P < 0.05). 

Patients with HFrEF presented lower levels of circulating EPCs (5.28 x 10-3 ± 6.83 x 10-4 % 

versus 7.76 x 10-3 ± 4.91 x 10-4 %) compared to subjects with cardiovascular risk factors (t 

(62.2) = - 4.630; P ≤ 0.001) (Figure 8A). Furthermore, patients with HFrEF had CECs levels 

reduced by 22% (5.11 x 10-3 ± 7.87 x 10-4 % versus 6.51 x 10-3 ± 5.21 x 10-4 %) when 

compared to subjects with cardiovascular risk factors (t (70.4) = - 2.937; P = 0.005) (Figure 

8B). Lastly, levels of HSCs were not significantly different between patients with HFrEF 

and subjects with cardiovascular risk factors (1.72 x 10-2 ± 1.22 x 10-3 % versus 1.68 x 10-2 

± 7.84 x 10-4 %; P = 0.590) (Figure 8C). 

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of the circulating levels 

of A) EPCs, B) CECs, and C) HSCs between 

the two groups (values are presented as means 

± standard deviation). 
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4.3 Impact of clinical factors on EPCs, CECs, and HSCs levels in patients 

with HFrEF 

4.3.1 Circulating EPCs, CECs, and HSCs levels in patients with ischemic and 

non-ischemic etiology 

There were no statistically significant differences in levels of circulating EPCs, 

CECs, and HSCs between patients with ischemic (n = 20) and non-ischemic HF (n = 21) (P 

> 0.05) (Figure 9). Nevertheless, CECs tended to circulate in lower number in patients with 

non-ischemic etiology (3.61 x 10-3 ± 2.71 x 10-3 % versus 6.69 x 10-3 ± 6.38 x 10-3 %) 

compared to patients with ischemic HF (P = 0.057) (Figure 9B).  

    

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between patients with 

ischemic and non-ischemic HF (values are presented as means ± standard deviation). 
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4.3.2 Circulating EPCs, CECs, and HSCs levels in patients with and without 

T2DM  

There were no statistically significant differences in circulating levels of EPCs, 

CECs, and HSCs between patients with T2DM (n = 21) and without T2DM (n = 20) (P > 

0.05) (Figure 10). However, HFrEF patients with T2DM showed a tendency to have lower 

levels of CECs (4.75 x 10-3 ± 5.38 x 10-3 % versus 5.49 x 10-3 ± 4.76 x 10-3 %) when 

compared to patients without T2DM (P = 0.096) (Figure 10B). 

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between patients 

with and without T2DM (values are presented as means ± standard deviation). 
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4.3.3 Circulating EPCs, CECs, and HSCs levels in patients diagnosed as 

overweight/obese and patients with a normal weight  

As shown in Figure 11A, the number of circulating EPCs was significantly higher 

in patients diagnosed as overweight/obese (n = 24) (6.10 x 10-3 ± 4.78 x 10-3 % versus 4.13 

x 10-3 ± 3.55 x 10-3 %) compared to patients with a normal weight (n = 17) (t (39) = - 2.093; 

P = 0.043). Additionally, CECs levels were significantly higher in patients diagnosed as 

overweight/obese (6.27 x 10-3 ± 5.66 x 10-3 % versus 3.47 x 10-3 ± 3.54 x 10-3 %) compared 

to patients with a normal weight (t (39) = - 2.447; P = 0.019) (Figure 11B). Lastly, there 

were no statistically significant differences in levels of HSCs between patients diagnosed as 

overweight/obese and patients with a normal weight (1.82 x 10-2 ± 8.28 x 10-3 % versus 1.61 

x 10-2 ± 7.15 x 10-3 %; P = 0.538) (Figure 11C). 
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Figure 11. Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between patients 

with a normal weight and patients diagnosed as overweight/obese (values are presented as means ± 

standard deviation). 
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4.3.4 Circulating EPCs, CECs, and HSCs levels in patients with and without 

hypertension  

There were no statistically significant differences in circulating EPCs, CECs, and 

HSCs levels between patients diagnosed with hypertension (n = 23) and without 

hypertension (n = 18) (P > 0.05) (Figure 12).  
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Figure 12. Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between patients 

with and without hypertension (values are presented as means ± standard deviation). 
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4.4 Circulating EPCs, CECs, and HSCs levels in age-matched subjects 

4.4.1 Circulating EPCs, CECs, and HSCs levels in subjects with and without 

dyslipidemia 

Circulating EPCs and HSCs levels were not statistically different between subjects 

with (n = 20) and without dyslipidemia (n = 21) (P > 0.05) (Figure 13A, 13C). However, 

the number of CECs was significantly higher in subjects with dyslipidemia (7.74 x 10-3 ± 

3.64 x 10-3 % versus 5.34 x 10-3 ± 2.59 x 10-3 %) compared to subjects without dyslipidemia 

(t (39) = - 2.105; P = 0.042) (Figure 13B).  
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Figure 13. Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between subjects 

with and without dyslipidemia (values are presented as means ± standard deviation). 
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4.4.2 Circulating EPCs, CECs, and HSCs levels in subjects with and without 

hypertension 

As shown in Figure 14A, the number of circulating EPCs was significantly higher 

in subjects without hypertension (n = 22) (8.74 x 10-3 ± 3.62 x 10-3 versus 6.61 x 10-3 ± 2.02 

x 10-3 %) compared to subjects with hypertension (n = 19) (t (39) = 2.377; P = 0.023). 

However, CECs and HSCs levels were not statistically different between subjects with and 

without hypertension (P < 0.05) (Figure 14B, 14C). 
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Figure 14. Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between subjects 

with and without hypertension (values are presented as means ± standard deviation). 
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4.5 Subgroup comparisons between patients with HFrEF and age-matched 

subjects  

4.5.1 Comparison of EPCs, CECs, and HSCs levels between patients and age-

matched subjects with hypertension  

Circulating EPCs levels were significantly higher in age-matched subjects with 

hypertension (n = 19) (6.61 x 10-3 ± 2.02 x 10-3 % versus 5.18 x 10-3 ± 3.91 x 10-3 %) 

compared to HFrEF patients with hypertension (n = 23) (t (33.1) = - 2.848; P = 0.008) 

(Figure 15A). Moreover, there were no statistically significant differences in levels of CECs 

and HSCs between patients with HFrEF and age-matched subjects with hypertension (P > 

0.05) (Figure 15B, 15C). 
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Figure 15.  Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between patients 

with HFrEF and hypertension and age-matched subjects with hypertension (values are presented as means 

± standard deviation). 
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4.5.2 Comparison of EPCs, CECs, and HSCs levels between patients and age-

matched subjects diagnosed as overweight/obese 

Circulating EPCs levels were significantly higher in age-matched subjects diagnosed 

as overweight/obese (n = 29) (7.77 x 10-3 ± 3.33 x 10-3 % versus 6.10 x 10-3 ± 4.78 x 10-3 %) 

compared to patients with HFrEF diagnosed as overweight/obese (n = 24) (t (51) = - 2.650; 

P = 0.011) (Figure 16A). However, there were no statistically significant differences in 

levels of CECs and HSCs between patients with HFrEF diagnosed as overweight/obese and 

age-matched subjects also diagnosed as overweight/obese (P > 0.05) (Figure 16B, 16C). 
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Figure 16.  Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between patients 

with HFrEF diagnosed as overweight/obese and age-matched subjects diagnosed as overweight/obese 

(values are presented as means ± standard deviation). 
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4.5.3 Comparison of EPCs, CECs, and HSCs levels between patients and age-

matched subjects diagnosed with dyslipidemia  

Circulating EPCs levels were significantly higher in age-matched subjects diagnosed 

with dyslipidemia (n = 20) (8.03 x 10-3 ± 3.44 x 10-3 % versus 4.98 x 10-3 ± 4.02 x 10-3 %) 

compared to patients with HFrEF diagnosed with dyslipidemia (n = 34) (t (52) = - 4.414; P 

≤ 0.001) (Figure 17A). Moreover, CECs were significantly higher in age-matched subjects 

diagnosed with dyslipidemia (7.74 x 10-3 ± 3.64 x 10-3 % versus 5.19 x 10-3 ± 5.43 x 10-3 %) 

compared to patients with HFrEF diagnosed with dyslipidemia (t (51) = - 3.360; P = 0.001) 

(Figure 17B). No statistically significant differences were observed in HSCs levels (P > 

0.05) (Figure 17C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A summary of all the results obtained in this study is shown in Table 3. 
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Figure 17.  Comparison of the circulating levels of A) EPCs, B) CECs, and C) HSCs between patients 

with HFrEF and dyslipidemia and age-matched subjects with dyslipidemia (values are presented as means 

± standard deviation). 
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Table 3. Overview of the results obtained in this study   

EPCs levels CECs levels HSCs levels 

Patients with HFrEF vs subjects with cardiovascular risk factors 

↓ in patients with HFrEF 

(5.28 x 10-3 ± 6.83 x 10-4 % vs 

7.76 x 10-3 ± 4.91 x 10-4 %) 

(P ≤ 0.001) 

↓ in patients with HFrEF 

(5.11 x 10-3 ± 7.87 x 10-4 % vs 

6.51 x 10-3 ± 5.21 x 10-4 %) 

(P = 0.005) 

Not significantly different 

Patients with HFrEF: ischemic vs non-ischemic etiology 

Not significantly different 

Tended to be ↓ in patients with 

non-ischemic etiology 

(3.61 x 10-3 ± 2.71 x 10-3 % vs 

6.69 x 10-3 ± 6.38 x 10-3 %) 

(P = 0.057) 

Not significantly different 

Patients with HFrEF: T2DM vs without T2DM 

Not significantly different 

Tended to be ↓ in patients with 

T2DM 

(4.75 x 10-3 ± 5.38 x 10-3 % vs 

5.49 x 10-3 ± 4.76 x 10-3 %) 

(P = 0.096) 

Not significantly different 

Patients with HFrEF: overweight/obese vs normal weight 

↑ in patients diagnosed as 

overweight/obese 

(6.10 x 10-3 ± 4.78 x 10-3 % vs 

4.13 x 10-3 ± 3.55 x 10-3 %) 

(P = 0.043) 

↑ in patients diagnosed as 

overweight/obese 

(6.27 x 10-3 ± 5.66 x 10-3 % vs 

3.47 x 10-3 ± 3.54 x 10-3 %) 

(P = 0.019) 

Not significantly different 

Patients with HFrEF: hypertension vs without hypertension 

No statistically significant differences 

Age-matched subjects: dyslipidemia vs without dyslipidemia 

Not significantly different 

↑ in subjects with 

dyslipidemia (7.74 x 10-3 ± 

3.64 x 10-3 % vs 5.34 x 10-3 ± 

2.59 x 10-3 %) 

(P = 0.042) 

Not significantly different 
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EPCs levels CECs levels HSCs levels 

Age-matched subjects: hypertension vs without hypertension 

↑ in subjects without 

hypertension 

(8.74 x 10-3 ± 3.62 x 10-3 vs 

6.61 x 10-3 ± 2.02 x 10-3 %) 

(P = 0.023) 

Not significantly different Not significantly different 

Subgroup: patients with HFrEF/hypertension vs subjects with hypertension 

↑ in age-matched subjects 

with hypertension 

(6.61 x 10-3 ± 2.02 x 10-3 % vs 

5.18 x 10-3 ± 3.91 x 10-3 %) 

(P = 0.008) 

Not significantly different Not significantly different 

Subgroup: patients with HFrEF/obesity/overweight vs subjects diagnosed with 

overweight/obesity 

↑ in age-matched subjects 

diagnosed as 

overweight/obese 

(7.77 x 10-3 ± 3.33 x 10-3 % vs 

6.10 x 10-3 ± 4.78 x 10-3 %) 

(P = 0.011) 

Not significantly different Not significantly different 

Subgroup: patients with HFrEF/dyslipidemia vs subjects with dyslipidemia 

↑ in age-matched subjects 

with dyslipidemia 

(8.03 x 10-3 ± 3.44 x 10-3 % vs 

4.98 x 10-3 ± 4.02 x 10-3 %) 

(P ≤ 0.001) 

↑ in age-matched subjects 

with dyslipidemia 

(7.74 x 10-3 ± 3.64 x 10-3 % vs 

5.19 x 10-3 ± 5.43 x 10-3 %) 

(P = 0.001) 

Not significantly different 

CECs, circulating endothelial cells; EPCs, endothelial progenitor cells; HFrEF, heart failure with preserved 

ejection fraction; HSCs, hematopoietic stem cells; T2DM, type two diabetes mellitus. 
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This study was designed to assess whether circulating levels of EPCs, CECs, and 

HSCs were markers of vascular damage in patients with HFrEF. We hypothesized that 

increased numbers of CECs and decreased numbers of EPCs would be observed in patients 

with HFrEF per comparison to a group of subjects presenting similar cardiovascular risk 

factors but without established cardiovascular disease (age-matched group). There were five 

major findings in the present study, which can be summarized as follows. First, we observed 

that patients with HFrEF had significantly decreased levels of circulating EPCs and CECs 

compared to subjects with cardiovascular risk factors. Second, levels of HSCs were not 

significantly different between patients with HFrEF and subjects from the age-matched 

group. Third, CECs tended to circulate in a higher number in patients with ischemic HF 

compared to patients with non-ischemic HF. Fourth, patients with HFrEF and diagnosed as 

overweight/obese had significantly higher levels of circulating EPCs and CECs when 

compared to patients with HFrEF presenting a normal weight. Fifth, when comparing 

subjects from the age-matched group, subjects with dyslipidemia had significantly higher 

levels of CECs compared to subjects without dyslipidemia. 

Over the last two decades, several researchers have focused their attention on the key 

role of endothelial dysfunction in the pathogenesis and progression of HF103,159,175,176. 

Regarding HFrEF, several underlying mechanisms have been pointed out as being 

responsible for inducing endothelial dysfunction, such as neurohormonal activation, altered 

shear stress, increased oxidative stress, and decline of NO production158. The imbalance of 

NO and oxidative stress can lead to impairment of the coronary endothelium-dependent 

vasodilator capacity, which decreases the myocardial perfusion, reduces coronary blood 

flow, and deteriorates ventricular function. Thus, triggering a decline of NO bioavailability 

and worsening of endothelial dysfunction, leading to progression of chronic HFrEF177. 

The reduced number of circulating EPCs and the simultaneous increase in CECs 

levels, among a large spectrum of cardiovascular diseases and risk factors, has been largely 

described in the current literature, suggesting their potential use as diagnostic biomarkers for 

endothelial dysfunction and vascular damage, as well as for the development of novel 

therapeutic strategies178,179.   

 CHAPTER V: DISCUSSION 
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In the present study, we observed that patients with HFrEF had a significantly lower 

number of circulating EPCs when compared to subjects with cardiovascular risk factors.  

This finding was consistent with previously published reports in patients with HF180. For 

instance, Valgimi et al. were the first group of researchers to evaluate the role of circulating 

EPCs in patients with HF. They observed that patients with more advanced stages of 

congestive HF, indicated by higher NYHA functional classes (NYHA III and IV) and 

increased NT-proBNP levels, presented a lower number of circulating EPCs when compared 

with healthy subjects181. Furthermore, Nonaka-Sarukawa and colleagues observed that the 

number of EPCs, measured by the number of cells expressing CD34+, was significantly 

lower in patients with severe congestive HF182. A similar study done by Huang et al. also 

found that patients diagnosed with congestive HF had a significantly lower number of 

circulating EPCs compared to healthy subjects183. In 2013, Chiang et al. observed that 

patients with HFrEF, as well as patients with HFpEF, had significantly lower levels of 

circulating EPCs, as well as enhanced systemic inflammation and higher NT-proBNP levels 

when compared with age-, gender-matched subjects with several cardiovascular risk factors, 

but without established HF113. Regarding the HF phenotype, a study by Berezin et al. further 

exhibited that EPCs levels, measured by the number of cells expressing CD14+ and CD309+, 

were significantly higher in patients with HFpEF compared to HFrEF. However, when 

comparing levels of CD14/CD309+ cells between healthy volunteers and patients with HF, 

healthy volunteers presented higher levels of CD14/CD309+ cells compared to patients with 

HF, independent of the etiology179. The decline of circulating EPCs levels in patients with 

HF can be justified by the excessive synthesis of ROS. In a state of oxidative stress, the 

production of ROS exceeds the ability of endogenous oxygen radicals scavenging enzyme 

systems, causing a reduction in NO, a substance produced by endothelial cells through eNOS 

activation. Reduced NO bioavailability affects both EPCs mobilization and migration from 

the bone marrow, disabling endothelial repair and regeneration, contributing to the 

progression of HF103,119,184. That being said, we could hypothesize that the decline of the 

circulating levels of EPCs observed in patients with HFrEF may be related to increased 

oxidative stress and endothelial dysfunction. 

Endothelial cells are crucial constituents of blood vessels and play a key role in 

cardiovascular homeostasis148. Mature endothelial cells contribute to the repair of 

endothelial injury, however, they possess a limited intrinsic capacity to do so185. CECs have 
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been established as a reliable marker of vascular injury and damage, as high cell counts have 

been observed in a variety of cardiovascular diseases with wide-spread vascular damage, 

such as acute MI and HF160.  

Contrary to our expectations, and in opposition to most studies found in the literature, 

patients with HFrEF showed a significantly lower percentage of CECs compared to subjects 

with cardiovascular risk factors. For instance, Chong et al. demonstrated that CECs levels 

were increased in patients with acute HF when compared to healthy controls, with no 

significant differences between acute and chronic HF. In addition, there was also a strong 

correlation between CECs levels and plasma markers of endothelial injury (von Willebrand 

factor (vWf) and soluble E-selectin)128,186. Similarly, Martínez-Sales and colleagues 

observed that levels of CECs, as well as vWF, VEGF, and soluble E-selectin were 

significantly higher in patients with HF compared to healthy subjects. Furthermore, in 

opposition to Chong et al. results, levels of CECs, vWf, and VEGF were significantly higher 

in patients in the acute phase than in the stable phase of HF187. It is important to note that 

more recently, Farinacci et al. quantified levels of CECs and EPCs in patients with HFrEF, 

HFpEF, and age-matched healthy subjects reporting similar results to those observed in our 

study. More specifically, in patients with HFrEF levels of CECs were not elevated compared 

to healthy subjects130. The discrepancies reported between our result regarding CECs levels 

and previous studies could be due to differences in the study design (sample size, 

inclusion/exclusion criteria, the methodology for detection and quantification of CECs, and 

monoclonal antibodies utilized). For instance, in the studies performed by Martínez-Sales et 

al. and Chong et al., the detection and enumeration of CECs was done by immunomagnetic 

isolation. However, Farinacci et al. used the same methodology for the quantification of 

CECs and the same panel of mononuclear antibodies applied in this study, obtaining similar 

results to ours.  

Subjects from the age-matched group presented higher levels of circulating EPCs and 

CECs when compared to patients from the HFrEF group, which may lead us to believe that 

these patients have lower endothelial activation. One possible explanation for this result is 

the fact that patients with HFrEF may benefit from a far more controlled medical treatment 

compared to subjects with cardiovascular risk factors. For example, according to the PHYSA 

study carried out by the Portuguese Society of Hypertension, only 42.5% of the patients 

receiving treatment for hypertension had controlled blood pressure (< 140/90 mmHg)188. 
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HSCs are responsible for the constant renewal of all blood cell types and are located 

in a specialized bone marrow microenvironment referred to as the HSC niche138. Endothelial 

cells are closely associated with HSCs throughout the life of the stem cell, from the 

specialized endothelial cells implicated in the development of HSCs, to the perivascular stem 

cell niche that regulates HSC homeostasis139. Additionally, preclinical studies have also 

revealed that HSCs and EPCs can enhance angiogenesis, induce vasculogenesis, improve 

endothelial function, and promote vascular repair189. 

Regarding HSC levels, patients with HFrEF presented similar numbers compared to 

age-matched subjects. A study done by Fortini et al. investigated the blood levels of different 

sub-classes of steam cells and tissue-committed stem cells in patients affected by different 

degrees of HF. As for levels of HSCs, patients with HF had a significantly increased number 

compared to healthy subjects, however, an association between higher HSCs levels and 

NYHA functional could not be demonstrated144. Furthermore, Sager et al. focused on 

exploring the number, origin, phenotype, and function of cardiac macrophages present in the 

non-ischemic myocardium of mice with HFrEF. They observed that HSCs recruitment and 

proliferation were much more accentuated during HFrEF than in steady-state. Mice with 

HFrEF had higher levels of bone marrow noradrenaline, which signals to hematopoietic 

niche cells through the β3 adrenergic receptor, leading to higher systemic numbers of innate 

immune cells190. Another study done by Wojciech and colleagues assessed the dynamics and 

scale of the mobilization of HSC-enriched populations into the peripheral blood in relation 

to inflammatory and hematopoietic cytokines in patients with ST-segment-elevation acute 

myocardial infarction (STEMI). Patients with STEMI had a significantly higher number of 

early stem/muscle progenitor cells (expressing surface antigens CD34, CD117, CXCR4) 

compared to patients with stable angina and healthy subjects; with maximum cell efflux 

within the first hours of admission and without further significant increase after 24 hours, as 

well as 7 days later191,192. After MI, the myocardium surrounding the scared myocardial 

tissue undergoes intense remodeling which is critical for the development of ischemic 

HFrEF. MI and post-MI HF are accompanied by the release of several inflammatory 

mediators, such as IL-1, IL-6, TNF, CCL2, and GM-CSF, that act on their corresponding 

receptors on hematopoietic and niche cells in the bone marrow, promoting hematopoiesis 

and leukocyte release161. The infarcted myocardium also releases DMAPs (damage-

associated molecular patterns) and ATP, responsible for the activation of toll-like receptors 



Endothelial progenitor cells and circulating endothelial cells in heart failure: a cross-sectional study 

José Lopes 

 

University of Aveiro – Master in Molecular Biomedicine | 54 
 

on hematopoietic stem/progenitor cells (HSPCs), thereby triggering the production of innate 

immune cells. Such external alarm signals activate intracellular signal cascades leading to 

the production of several transcription factors, including C/EBPα, Egr-1, lrf8, Klf4, Mafb, 

and PU.1 which stimulates HSC proliferation138.  

When comparing EPCs, CECs, and HSCs levels between patients with ischemic and 

non-ischemic HF our results shown that CECs tended to circulate in a higher number in 

patients with ischemic HF. These results are in agreement with those previously reported in 

the literature. Increased CECs number has been described in multiple diseases of 

inflammatory, infectious, or ischemic origin193. Nadar et al. observed that patients with an 

acute ischemic stroke had a significantly higher number of CECs and markers of endothelial 

perturbation (e.g. plasma vWf and soluble E-selectin) when compared to healthy subjects194. 

A similar study done by Lee and colleagues concluded that an increased number of CECs, 

as well as markers of inflammation (e.g. IL-6) and endothelial perturbation (e.g. vWf), could 

be an indicator of the severity of the ischemic episode in patients with acute coronary 

syndromes195. 

In numerous cardiovascular conditions, including the presence of common 

cardiovascular risk factors, the endothelium undergoes functional and structural 

modifications, compromising the functional integrity of the endothelium and ultimately 

leading to loss of its protective role196. 

Over the years, substantial experimental and clinical studies have linked endothelial 

dysfunction to human diabetes mellitus197. When talking about T2DM, the key mechanisms 

underlying the development of endothelial dysfunction include ROS production, 

inflammation, and chronic alterations of the hemodynamic balance155. 

Regarding the impact of diabetes mellitus on EPCs, CECs, and HSCs in patients with 

and without HFrEF, our sample size only allowed comparisons between patients with HFrEF 

with diabetes versus patients with HFrEF without diabetes. The small number of subjects 

with diabetes mellitus (n = 6) in the age-matched group precluded subgroup comparisons 

between groups and within this group. 

 Throughout the years, several authors have correlated endothelial damage with 

levels of circulating EPCs in patients with diabetes mellitus. Ultimately, concluding that 

EPCs found in patients with diabetes display several functional impairments, such as reduced 

proliferation, adhesion, and incorporation into tubular structures198. Worachat et al. reported 
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that the number of circulating EPCs was significantly decreased in patients with T2DM when 

compared to healthy subjects. Furthermore, they also observed that patients with adequate 

glycemic control had significantly higher levels of EPCs when compared to those with poor 

glycemic control199. Similarly, a study done by Fadini et al. assessed the mobilization of 

EPCs after ischemia-reperfusion injury in rats with streptozotocin-induced diabetes. They 

showed that bone marrow mobilization of EPCs, after ischemia-reperfusion injury, was 

defective in rats with diabetes. The defective mobilization of EPCs was associated with the 

downregulation of HIF-1α and the altered release of SDF-1 and VEGF, ultimately leading 

to insufficient compensatory angiogenesis198,200. Contrary to what was expected, we 

observed that patients from the HFrEF group with T2DM presented levels of EPCs similar 

to those of patients from the same group without T2DM. A possible explanation for this 

result may be due to the use of antidiabetic medications and good glycemic control, which 

have shown beneficial effects on EPC numbers and function201. Liang et al. cultured EPCs 

isolated from healthy individuals with various concentrations of advanced glycation end 

products with and without rosiglitazone treatment. They observed that rosiglitazone was able 

to reduce EPCs apoptosis, increase cell number, and enhance proliferation/migration 

capacity via upregulation of the Akt-eNOS signal pathways of EPCs202. 

Regarding CECs levels, our results showed that, when comparing subjects from the 

HFrEF group, CECs tended to circulate in a higher number in patients without T2DM 

compared to patients with T2DM203. However, CECs have been reported as emerging 

indicators of vascular injury and increased in T2DM. Indeed, a study performed by McClung 

et al. observed that levels of CECs were elevated in patients with T2DM compared to healthy 

controls. They concluded that the higher levels of CECs in patients with T2DM may reflect 

the existing vascular injury and is not directly dependent of the glucose control204.  

Lastly, when comparing HSCs levels between patients from the HFrEF group, 

similar levels were found between patients with and without T2DM. However, previous 

studies have shown a strong connection between mouse/mice models with diabetes mellitus 

and poor HSCs mobilization205. Oikawa et al. investigated the role of diabetes mellitus in 

microvascular remodeling and the consequences for bone marrow homeostasis. Subsequent 

detailed analysis of the bone marrow in streptozotocin-induced mice revealed microvascular 

rarefaction leading to decreased perfusion, endothelial barrier dysfunction, and reduced 

hematopoietic fraction with a decline in HSCs levels206. Another study performed by Spinetti 
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et al. showed that patients with T2DM, when compared with healthy controls, had lower 

levels of hematopoietic tissue, fat deposition, microvascular rarefaction, as well as a shortage 

of progenitor cells due to activation of proapoptotic pathways207. The different 

methodologies used to assess HSCs as well as the different models (animal versus human) 

may at least partially help to explain the discrepant results. 

Endothelial dysfunction is an early, key aspect in the development of vascular 

disease, and is pathophysiologically linked to posterior atherosclerosis progression and 

cardiovascular diseases208. In cases of obesity, the overexpression of pro-inflammatory 

cytokines followed by a decrease of anti-inflammatory markers is considered to be the link 

between obesity-induced inflammation and endothelial dysfunction209. Over the past two 

decades, impaired endothelial function has been established in the vast majority of studies 

focusing on vascular damage in patients with obesity210. Regarding the impact of 

overweight/obesity on EPCs, CECs, and HSCs in patients with and without HFrEF, our 

sample size only allowed comparisons between patients with HFrEF diagnosed as 

overweight/obese versus patients with HFrEF with a normal weight. The small number of 

subjects with normal weight (n = 12) in the age-matched group precluded subgroup 

comparisons within this group. Our results showed that patients with HFrEF and diagnosed 

as overweight/obesity had higher levels of circulating EPCs and CECs compared to patients 

with HFrEF presenting a normal weight. Over the years contradictory results regarding the 

level and functionality of EPCs in patients with obesity have been reported211. In 

metabolically healthy obese patients with HF, the number of circulating EPCs is commonly 

increased or close to normal. On the other hand, metabolically unhealthy obese patients 

presented circulating EPCs with impaired proliferation, differentiation, migration, and 

adhesion capacities212. Tsai et al. found that the increase in the circulating number of EPCs, 

in response to lipopolysaccharide-induced endothelial damage, was remarkably suppressed 

in C57BL/6J mice given a high-fat diet213. This finding indicates that obesity diminished the 

circulating levels as well as the function of EPCs, impaired the recovery of damaged 

endothelium, suppressed EPC angiogenesis ability, and increased LV remodeling214. A study 

conducted in humans by Peterson et al. determined that female subjects with morbid obesity 

had a higher inflammatory state, as indicated by increased levels of TNFα, IL-6, leptin, Ox-

HDL, EPCs, and CECs levels when compared to a group of subjects with no obesity215. The 

results from Peterson et al. are similar to ours, as we observed higher EPCs and CECs levels 
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in patients with HF diagnosed as overweight/obesity in comparison to patients with HF 

presenting a normal weight. 

The role of the vascular endothelium in the development of hypertension is not easy 

to specify216. Activation of an alternative pathway involving cyclooxygenase, which leads 

to a decline of NO availability through the production of oxidative stress, is thought to be 

the mechanism responsible for the impairment of endothelial function in patients with 

hypertension217. Regarding participants with hypertension, our results have shown that EPCs 

levels were significantly lower in subjects with hypertension when compared with subjects 

without hypertension in the age-matched group. Furthermore, circulating EPCs levels were 

also significantly higher in subjects with hypertension, from the age-matched group, than in 

patients with hypertension from the HFrEF group. Over the years, many authors have 

focused on the relationship between blood pressure and EPCs levels, but with conflicting 

results216. For instance, Marketou et al. did not found any significant difference in the 

number of circulating EPCs between patients with hypertension and healthy subjects. 

However, pulse wave velocity, which is a reliable indicator of the stiffness of the large 

arteries, was found to be strongly correlated with circulating EPCs in patients with 

hypertension. This positive correlation suggests that EPCs could be mobilized into the 

circulation in response to vascular damage, preserving endothelial integrity218. Oliveras et 

al. reported that circulating EPCs levels were reduced by 56% in patients with refractory 

hypertension compared to healthy subjects219. Similarly, a study performed by Imanishi et 

al. found that, in patients with hypertension, the degree of hypertension-induced organ 

damage was positively correlated with EPCs senescence and negatively correlated with 

telomerase activity, which may affect the process of vascular remodeling220.  

When discussing CECs and HSCs levels in cases of hypertension, our study did not 

show any significant differences between patients with HFrEF and subjects presenting 

similar cardiovascular risk factors. However, increased levels of CECs as well as HSCs are 

referred to in the literature. For example, Budzyń et al. observed that patients with mild and 

resistant hypertension, as well as without left ventricular hypertrophy, had higher levels of 

CECs compared to healthy subjects221. Karthikeyan et al. found that pregnant women with 

hypertension presented higher levels of CECs compared to pregnant women without 

hypertension and non-pregnant healthy controls222. Seungbum et al. observed that mice with 

angiotensin-II induced hypertension presented higher proliferation of HSCs as evidenced by 
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an increase in Sca‐1+, c‐Kit+, and Lin‐ (SKL cells)223. Hashimoto et al. found that HSCs were 

increased in the peripheral circulation of patients with pulmonary arterial hypertension 

compared with normal individuals. In the same study, HSCs were increased in the bone 

marrow and the peripheral blood of mice with hypoxia-induced pulmonary hypertension in 

a time-dependent manner that coincides with a sudden rise in the large artery and ventricle 

stiffness224.   

Excessive lipids in the bloodstream can lead to endothelial dysfunction and are 

commonly described as a major risk factor for the development of cardiovascular 

diseases225,226. Since the majority of patients in the HFrEF group presented dyslipidemia (n 

= 34), the comparisons between subjects with and without dyslipidemia were only possible 

in the age-matched group. Therefore, our results showed that subjects with dyslipidemia had 

significantly higher levels of CECs compared to subjects without dyslipidemia. In addition, 

circulating EPCs and CECs levels were also significantly higher in subjects with 

dyslipidemia than in patients with dyslipidemia from the HFrEF group. However, 

contradictory results have been previously described. Pirro et al. observed that patients with 

hypercholesterolemia had lower levels of EPCs compared to patients without 

hypercholesterolemia. Additionally, Cheng et al. reported that EPC proliferative, migratory, 

and adhesive capacities were impaired in patients with high cholesterol levels 227–229.  

Concerning CECs levels, a study done by Fabbri-Arrigoni et al. found that children’s 

with familial hypercholesterolemia had higher levels of CECs when compared with healthy 

children’s; with CECs levels similar to those found in healthy adults, implying that exposure 

to this vascular risk factor has an adverse impact on endothelial homeostasis, even at an early 

stage of life230. 

The present study has a number of limitations. First, this was a cross-sectional study 

in which we compared circulating EPCs, CECs, and HSCs levels between patients with 

HFrEF and age-matched apparently healthy subjects. However, we could not confirm 

whether the variation of EPCs, CECs, and HSCs number was the cause or the result of HFrEF 

and cardiovascular risk factors stated above. Second, the sample size was relatively small, 

which precludes us from drawing robust conclusions regarding the sub-comparisons 

between groups and within groups. A larger number of participants would allow us to 

explore other relationships, such as the possible association between obesity and levels of 

circulating EPCs. Third, 75% of the participants were men, future studies should include an 
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equal number of participants from both genders. Lastly, we were not able to assess EPCs, 

CECs, and HSCs functional capacities, such as adhesion, proliferation, and migratory ability. 
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The main conclusion of this study is that the levels of circulating EPCs and CECs 

were significantly decreased in patients with HFrEF in comparison to subjects with 

cardiovascular risk factors. We did not confirm our hypothesis that increased numbers of 

CECs and decreased numbers of EPCs would be observed in patients with HFrEF per 

comparison to a group of subjects presenting similar cardiovascular risk factors but without 

established cardiovascular disease. Nevertheless, the higher CECs number observed in 

subjects with cardiovascular risk factors could suggest that patients with HFrEF may present 

highly controlled medical treatment compared to subjects with cardiovascular risk factors. 

However, these observations obtained from a cross-sectional study should be confirmed in 

a cohort study.  

Future studies may explore novel methodologies for in vitro and in vivo evaluation 

of the functional characteristics of circulating EPCs, including their viability, adhesion, tube 

formation, and migration capacities231. Furthermore, recent advances in nanotechnology and 

tissue engineering for target delivery of cells, growth factors, or DNA may offer a great 

opportunity for successful EPCs delivery for therapeutic angiogenesis and tissue repair232. 

Upcoming studies should also evaluate the potential use of CECs for diagnosis and therapy 

monitoring by determining CECs levels during and after treatment in a wider range of 

cardiovascular diseases. However, several factors must be taken into consideration prior to 

integration into daily clinical practice, such as cost-effectiveness and appropriate serum level 

cut off233. Lastly, the enhancement of EPCs is considered a promising therapeutic approach 

for cardiovascular diseases. In recent years, several preliminary clinical trials have tested the 

safety and feasibility of transplantation of ex vivo EPCs for the treatment of patients with 

acute ischemic stroke234. Genetic modification of EPCs for targeted delivery of specific 

therapeutic agents or genes before transplantation may become a new research hot topic235.  
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