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Abstract

In this paper we address the problem of list decoding of linear codes over
an integer residue ring Zq, where q is a power of a prime p. The proposed
procedure exploits a particular matrix representation of the linear code over
Zpr , called the standard form, and the p-adic expansion of the to-be-decoded
vector. In particular, we focus on the erasure channel in which the location
of the errors is known. This problem then boils down to solving a system
of linear equations with coefficients in Zpr . From the parity-check matrix
representations of the code we recursively select certain equations that a
codeword must satisfy and have coefficients only in the field pr−1Zpr . This
yields a step by step procedure obtaining a list of the closest codewords to
a given received vector with some of its coordinates erased. We show that
such an algorithm actually computes all possible erased coordinates, that is,
the provided list is minimal.

Keywords:
Finite rings, linear codes over finite rings, erasure channel, decoding
algorithms, matrix representations, parity-check matrix.

1. Introduction

This paper is concerned with linear codes over Zpr , i.e., finitely generated
Zpr -modules in Znpr . The local ring Zpr is of particular importance in coding
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theory, especially after the seminal paper by Hammons et al. [9] where it
was shown that important classes of binary nonlinear codes, such as the
Preparata or Goethals codes, can be viewed as linear codes over the ring Z4

via a Gray mapping. This stimulated research in algebraic coding theory
by motivating the study of linear codes over finite rings. Since then, a large
body of literature on this topic has been produced, and many successful code
constructions and other applications have been derived ([6, 10, 12, 18, 22]).

In this paper, we address the problem of decoding linear block codes over
the finite ring Zpr over the erasure channel, [2, 5, 14, 15] that is, when the
location of the errors in the received corrupted codeword is known. When it
is not possible to uniquely determine the codeword that was sent from the
received one (unique decoding), the decoder searches for the set of closest
codewords, which is called list decoding. For this problem there exist several
well-known algorithms that exploit the structure of the code, such as Reed-
Solomon codes [8, 11]. In this work, we will not make use of the structure of
the particular codes in use, but rather exploit the algebraic structure of codes
over the ring Zpr . To this end, we will utilize the parity-check matrix H in
standard form of a linear code. In this setting, the number of independent
columns of specific submatrices of H will determine the size of the list of
possible codewords in our algorithm in Section 3. The decoding problem
treated in Section 3 amounts to solving a system of linear equations over
Zpr . Our approach in this work is to multiply a certain set of these equations
by a power of p in such a way that we obtain a subset of equations with
coefficients in pr−1Zpr . Since pr−1Zpr is a field isomorphic to Zp, we can
easily solve the new system. Once we compute certain of the coefficients
that are involved in the equations, we can apply similar ideas to a different
set of equations to recover another set of erased symbols. We develop in
this way a systematic procedure to recover all possible errors, obtaining a
minimal set with all possible codewords.

Efficient decoding algorithms for codes over rings have been studied for errors
(not necessarily erasures) for classes of codes with particular structure, such
as Alternant and BCH codes [1, 10, 19]. Typically, the first steps of these
decoding algorithms are devoted to determine the location of the errors. In
this paper, we consider the erasure channel, i.e., the location of the errors
is known. Thus, the matrix approach we propose in this work can be used
for the last steps of these more general decoding algorithms. Also, related
to this work is the list decoding problem: the decoding radius for unique
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decoding (which is bd−1
2
c, where d the distance of the code) is increased to

allow the decoder to output a list of codewords rather than a single solution
[2, 15]. In this context, minimal decoding lists are sought after for a given
decoding radius.

The outline of this paper is as follows. In Section 2 we collect fundamental
results on the structure of codes over the finite ring Zpr . We also present
preliminary results that will be essential for our algorithm. Section 3 is
devoted to establishing the framework of the problem to be addressed, and
to compute the number of possible codewords that our algorithm will yield.
We give a basic constructive decoding algorithm in terms of the parity check
matrix for building a minimal list of possible codewords. We show that
this algorithm computes all possible codewords. In Section 4 we present our
conclusions and also address possible future research.

2. Preliminaries

In this section we present the setting and the necessary results to address
the problems in the next section. Let Zpr the ring of integers modulo pr.
Any element a ∈ Zpr can be written uniquely as a linear combination of
1, p, p2, . . . . . . , pr−1, with coefficients in Ap = {0, 1, . . . , p− 1} ⊂ Zpr , i.e.,

a = α0 + α1p+ · · ·+ αr−1p
r−1, αi ∈ Ap, i = 0, 1, . . . , r − 1,

called the p-adic expansion of the element [4]. Note that all elements in
Ap\{0} are units. We use [a]p = α0 to denote the (modulo) canonical pro-
jection of a ∈ Zpr over Zp. We say that an element, vector o matrix v has
order j ∈ {1, 2, . . . , r} if pjv = 0 and pj−1v 6= 0.

Definition 1. A (linear) block code C of length n over Zpr is a Zpr-
submodule of Znpr and the elements of C are called codewords. A generator

matrix G ∈ Zk×npr of C is a matrix whose rows form a minimal set of gene-
rators of C over Zpr and therefore

C = Im Zpr
G = {vvv = uuuG ∈ Znpr : uuu ∈ Zkpr}.

A matrix H ∈ Z(n−κ)×n
pr is a parity-check matrix of a block code C if

vvv ∈ C ⇔ HvvvT = 0, for every vvv ∈ Znpr ,
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or equivalently,
C = Ker Zpr

H,

where κ is the rank of [G]p, the (componentwise) projection of an encoder G
of C ⊂ Znpr over Zp, see [20].

Definition 2. The free distance d(C) of a linear block code C over Zpr is
given by

d(C) = min{wt(vvv), vvv ∈ C, vvv 6= 0},

where wt(vvv) is the Hamming weight of vvv, i.e., that counts the nonzero entries
of vvv.

Let C be a block code of length n and H be a parity-check matrix of C.
Suppose that we receive a corrupted codeword vvv ∈ Znpr where some of its
coordinates, say e, have been erased. Let www ∈ Zepr be the subvector of vvv that
corresponds to the positions of the erasures. Then, if we consider www as the
vector of unknowns, it follows that

H̃wwwT = b, (1)

where the matrix H̃ ∈ Z(n−κ)×e
pr consists of the columns of H whose indices

are the indices of the erased components of vvv and b = −ĤŵwwT where ŵww is
the vector constituted by the components of vvv that were received correctly,
and Ĥ is the matrix with the columns of H with the same indices of the
(correctly) received symbols of vvv. Obviously, if we regard www as a vector of to-
be-determined variables, the problem of decoding vvv is equivalent to solving
(uniquely) the system of linear equations described in (1). This system has

a unique solution if the columns of H̃ are linearly independent (over Zpr),
and these columns are determined by linearly independent columns of [H̃]p,

the projection of H̃ over Zp ([17]).

Lemma 1. (Lemma II.10 in [17] ) Let H ∈ Zl×npr . Then the columns of H
are linearly independent if and only if the columns of the projection of H
over Zp, that is [H]p, are linearly independent.
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Note that H can be written as

H =


H0

pH1
...

pr−1Hr−1

 , (2)

with Hi ∈ Zki×npr , i = 0, 1, . . . , r − 1 and


H0

H1
...

Hr−1

 is full row rank (see [7,

20, 21]). When H is in such a form, we say that H is in standard form.
If we consider the system of equations HvvvT = 0 with H as in (2) and the

corresponding system H̃wwwT = b as in (1), then H̃ and b can also be written
accordingly as

H̃ =


H̃0

pH̃1
...

pr−1H̃r−1

 , (3)

with H̃i ∈ Zki×epr , and

b =


b0
pb1
...

pr−1br−1

 , (4)

with column vectors bi of length ki, for i = 0, 1, . . . , r−1. Note that H̃ is not
necessarily full row rank anymore.

The following result characterizes the erasure-correction capability of a code
C in terms of its parity-check matrices.

Theorem 1. Let C = Ker Zpr
H, be a block code of length n and free distance

d(C) = d where the parity-check matrix can be written as in (2) Then, the
following are equivalent
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1. d(C) = d;

2. we can correct up to d− 1 erasures;

3. Any d − 1 columns of H are linearly independent and there exists d
columns of H that are linearly dependent over Zpr ;

4. Any d − 1 columns of [H]p are linearly independent and there exists d
columns of H0 that are linearly dependent over Zp.

Proof. The equivalence of parts 1 and 2 is a classical result of coding the-
ory. Moreover, the equivalence of parts 1 and 3 is obvious and it follows a
similar reasoning as linear codes over a finite field, [16]. Lemma 1 proves the
equivalence of 3 and 4. �

It immediately follows from the previous theorem that when at most d − 1
erasures occur, we can fully recover all the erasures and the decoder provides
a unique most-likely codeword. When the number of erasures is larger than
d−1, this is not always possible and there exits a set of possible (most likely)
codewords. In the next section we treat this case.

3. A decoding algorithm

In this section, we present the main results of the paper, namely an efficient
list decoding algorithm to recover erasures of linear codes over the ring Zpr
via the standard form of its parity-check matrix. We first present the algo-
rithm and then show that it produces a minimal list of possible codewords,
that is, if we receive a codeword with some of its coordinates erased, say vvv,
then the algorithm produces the set of closest codewords to vvv.

If exact decoding is not possible, one may want to obtain all the possible
codewords. Next, we will show how to do so when dealing with block codes
over Zpr . In contrast with unique decoding, this procedure will depend not

only on H̃0 but also on the remaining H̃i, for i = 1, . . . , r − 1. To this end
we need to consider the system of linear equation (1), H̃wwwT = b, with H̃ and
b defined as in (3) and (4), respectively.

Algorithm 2. Input data: The matrix H̃ and the column vector b that
are defined as in (3) and (4) respectively.
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Initialization: Write the p-adic expansion of www as wwwT = www(0) + pwww(1) +
· · ·+pr−1www(r−1), where www(i)’s are column vectors of length e with entries from
the group of units Ap = {0, 1, . . . , p− 1} , for all i.

Step 1: Find the solutions of
H̃0

H̃1
...

H̃r−1


p

ŵww(0) =


b0
b1
...

br−1


p

, (5)

over Zp, and let S0 = {www(0) ∈ Aep : [www(0)]p = ŵww(0) with ŵww(0) solution of (5)}.

Step 2: Let b
(0)
l = bl, l = 0, 1, . . . , r− 1. For each i = 1, 2, . . . , r− 1, step by

step we do the following.

Let 
b̃
(i)
0

b̃
(i)
1
...

b̃
(i)
r−i−1

 =


pi−1b

(i−1)
0

pib
(i−1)
1
...

pr−2b
(i−1)
r−i−1

−


pi−1H̃0

piH̃1
...

pr−2H̃r−i−1

www(i−1), (6)

write

b̃
(i)
l = pi+lb

(i)
l , (7)

with b
(i)
l ∈ Zkipr , for l = 0, 1, . . . , r − i − 1 and with each www(i−1) ∈ Si−1,

where

Si−1 = {www(i−1) : [www(i−1)]p = ŵww(i−1), ŵww(i−1) is a solution of (8) for some


b
(i−1)
0

b
(i−1)
1

...

b
(i−1)
r−1−(i−1)

},
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by solving the system of linear equations in the projection
H̃0

H̃1
...

H̃r−i−1


p

ŵww(i−1) =


b
(i−1)
0

b
(i−1)
1

...

b
(i−1)
r−1−(i−1)


p

, (8)

over Zp. Then only it remains to solve the equation


H̃0

H̃1
...

H̃r−i−1


p

ŵww(i) =


b
(i)
0

b
(i)
1
...

b
(i)
r−1−i


p

, (9)

by consider the following set

Si = {www(i) : [www(i)]p = ŵww(i), ŵww(i) is a solution of (9) for some


b
(i)
0

b
(i)
1
...

b
(i)
r−1−i

}.
Output data: {www(0)+pwww(1)+ · · ·+pr−1www(r−1) : www(i) ∈ Si, i = 0, 1, . . . , r−1}.

Next we show that the algorithm actually produces all desired solutions. This
will be a corollary of the following result.

Theorem 3. Let H̃ be in the form of

H̃ =


H̃0

pH̃1
...

pr−1H̃r−1

 , (10)

where the rows of H̃i ∈ Zki×epr having order r− i, i = 0, 1, . . . , r− 1, and let b
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be given accordingly as

b =


b0
pb1

...
pr−1br−1

 . (11)

Consider the system of equations

H̃wwwT = b, (12)

and the p-adic expansion of wwwT ,

wwwT = www(0) + pwww(1) + · · ·+ pr−1www(r−1).

Then, wwwT is a solution of the system (12) if and only if, for i = 0, 1, . . . , r−1,
www(i) is a solution of the system of equations

H̃0

H̃1
...

H̃r−i−1


p

[
www(i)

]
p

=


b
(i)
0

b
(i)
1
...

b
(i)
r−i−1


p

, (13)

over Zp, where b
(0)
l = bl, l = 0, 1, . . . , r − 1, and

b0
pb1

...
pr−i−1br−i−1

−


H̃0

pH̃1
...

pr−i−1H̃r−i−1

 (www(0) + pwww(1) + · · ·+ pi−1www(i−1)) =


b̃
(i)
0

b̃
(i)
1
...

b̃
(i)
r−i−1

 ,
(14)
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where b̃
(i)
j is given by

b̃
(i)
0

b̃
(i)
1
...

b̃
(i)
r−i−1

 =


pi−1b

(i−1)
0

pib
(i−1)
1
...

pr−2b
(i−1)
r−i−1

−


pi−1H̃0

piH̃1
...

pr−2H̃r−i−1

www(i−1) (15)

and

b̃
(i)
` = pi+`b

(i)
` ,

for ` = 0, 1, . . . , r − i− 1.

Proof. Consider the p-adic expansion of wwwT ,

wwwT = www(0) + pwww(1) + · · ·+ pr−1www(r−1),

with www(i)’s are column vectors with e entries from Ap, i = 0, 1, . . . , r − 1.

To show the necessary condition, we assume thatwwwT is a solution of H̃wwwT = b.
By induction on i, i = 0, 1, . . . , r − 1, we prove that the followings are hold:

(a) 
H̃0

H̃1
...

H̃r−i−1


p

[
www(i)

]
p

=


b
(i)
0

b
(i)
1
...

b
(i)
r−i−1


p

,

over Zp,

(b) 
b0
pb1
...

pr−i−1br−i−1

−


H̃0

pH̃1
...

pr−i−1H̃r−i−1

 (www(0) + pwww(1) + · · ·+ pi−1www(i−1)) =


b̃
(i)
0

b̃
(i)
1
...

b̃
(i)
r−i−1

 ,
10



with b̃
(i)
j obtained in equation (15) such that b̃

(i)
l = pi+lb

(i)
l , for some b

(i)
l ∈ Zklpr ,

and for all l = 0, 1, . . . , r − i− 1.

Let i = 0.
(a) Since

H̃0

pH̃1
...

pr−1H̃r−1

 [www(0) + pwww(1) + · · ·+ pr−1www(r−1)] =


b0
pb1
...

pr−1br−1

 , (16)

then by multiplying each block piH̃i and pibi by pr−i−1, we consider the
following equality

pr−1


H̃0

H̃1
...

H̃r−1

www(0) = pr−1


b0
b1
...

br−1

 . (17)

Because of the isomorphism pr−1Zpr ∼= Zp, www(0) is the solution of (17) if and
only if www(0) is the solution of

H̃0

H̃1
...

H̃r−1


p

[
www(0)

]
p

=


b0
b1
...

br−1


p

, (18)

over Zp (considering the entries of www(0) as an element of Zpr).

(b)


b̃
(0)
0

b̃
(0)
1
...

b̃
(0)
r−1

 =


b0
pb1
...

pr−1br−1

 by definition (see Step 2 of Algorithm 2).

Now we assume that (a) and (b) are satisfied for j = 0, 1, . . . , i. We prove
that (a) and (b) are also true for i+ 1. Let us consider first part (b). In this
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case, we rewrite


b0
pb1
...

pr−(i+1)−1br−(i+1)−1

−


H̃0

pH̃1
...

pr−(i+1)−1H̃r−(i+1)−1

 (www(0) + pwww(1) + · · ·+ pi−1www(i−1) + piwww(i))

=


b0
pb1
...

pr−(i+1)−1br−(i+1)−1

−


H̃0

pH̃1
...

pr−(i+1)−1H̃r−(i+1)−1

 (www(0) + pwww(1) + · · ·+ pi−1www(i−1))

−


H̃0

pH̃1
...

pr−(i+1)−1H̃r−(i+1)−1

 piwww(i).

By induction hypothesis, this is equivalent to
pib

(i)
0

pi+1b
(i)
1

...

pr−2b
(i)
r−(i+1)−1

−


H̃0

pH̃1
...

pr−(i+1)−1H̃r−(i+1)−1

 piwww(i).

By (15), the last statement is presicely


b̃
(i)
0

b̃
(i)
1
...

b̃
(i)
r−(i+1)−1

 where b̃
(i+1)
l ∈ pi+1+lZklpr ,

l = 0, 1, . . . , r − (i + 1) − 1. Therefore, b̃
(i+1)
l = pi+1+lb

(i+1)
l , for some

b
(i+1)
l ∈ Zklpr , l = 0, 1, . . . , r − (i+ 1)− 1.
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To prove (a), we rewrite the equality H̃wwwT = b as
H̃0

pH̃1
...

pr−1H̃r−1

 (www(0) + pwww(1) + · · ·+ pr−1www(r−1)) =


b0
pb1
...

pr−1br−1

 .
By removing the first i-term from the left hand side to the right hand side,
we write the following equality



H̃0

pH̃1
...

pr−(i+1)−1H̃r−(i+1)−1

pr−(i+1)H̃r−(i+1)
...

pr−1H̃r−1


(pi+1www(i+1) + · · ·+ pr−1www(r−1))

=


b0
pb1
...

pr−1br−1

−


H̃0

pH̃1
...

pr−1H̃r−1

 (www(0)pwww(1) + · · ·+ piwww(i)).

From (b), for the first (i+ 1)-th terms of the above equality, we can consider
H̃0

pH̃1
...

pr−1−(i+1)H̃r−1−(i+1)

 (pi+1www(i+1) + · · ·+ pr−1www(r−1)) =


pi+1b

(i+1)
0

pi+2b
(i+1)
1

...

pr−2b
(i+1)
r−1−(i+1)

 ,
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or equivalently
pi+1H̃0

pi+2H̃1
...

pr−1H̃r−1−(i+1)

 (www(i+1) + pwww(i+2) + · · ·+ pr−1−(i+1)www(r−1)) =


pi+1b

(i+1)
0

pi+2b
(i+1)
1

...

pr−1b
(i+1)
r−1−(i+1)

 .
For t = i+1, . . . , r−1, to multiply each corresponding blocks by pr−1−t gives
pr−1−(i+1)pi+1H̃0

pr−1−(i+2)pi+2H̃1
...

pr−1H̃r−1−(i+1)

 (www(i+1) + pwww(i+2) + · · ·+ pr−(i+1)−1www(r−1)) =


pr−1−(i+1)pi+1b

(i+1)
0

pr−1−(i+1)pi+2b
(i+1)
1

...

pr−1b
(i+1)
r−1−(i+1)

 ,
which is equivalent to

pr−1


H̃0

H̃1
...

H̃r−(i+1)−1

www(i+1) = pr−1


b
(i+1)
0

b
(i+1)
1
...

b
(i+1)
r−(i+1)−1

 .
Once we use the projection and use the isomorhism pr−1Zpr ' Zp, it follows
the desired that www(i+1) is solution of

H̃0

H̃1
...

H̃r−(i+1)−1


p

[
www(i+1)

]
p

=


b
(i+1)
0

b
(i+1)
1
...

b
(i+1)
r−(i+1)−1


p

.

Conversely, we now consider www(i) ∈ Akip satisfying (13) and (14), for i =
0, 1, . . . , r − 1. From equation (13), we have that

14



pr−1


H̃0

H̃1
...

H̃r−i

www(i) = pr−1


b
(i)
0

b
(i)
1
...

b
(i)
r−i

 ,

for i = 0, . . . , r − 1. In particular, pr−1H̃0www
(r−1) = pr−1b

(r−1)
0 .

Let us assume that
H̃0

pH̃1
...

pr−(j+1)H̃r−(j+1)

 (pjwww(j) + · · ·+ p(r−1)www(r−1)) =


pjb

(j)
0

pj+1b
(j)
1

...

pr−1b
(j)
r−(j+1)

 ,
for all j = 1, . . . , r − 1, and let us prove that it is also true for j + 1, i.e.,


H̃0

pH̃1
...

pr−jH̃r−j

pr−(j+1)H̃r−(j+1)

 (pj−1www(j−1)+pjwww(j)+· · ·+p(r−1)www(r−1)) =


pj−1b

(j−1)
0

pjb
(j−1)
1
...

pr−2b
(j−1)
r−(j+1)

pr−1b
(j−1)
r−j

 .
(19)

Note that by induction hypothesis, the left hand side of the equality can be
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written as
H̃0

pH̃1
...

pr−(j+1)H̃r−(j+1)

 pj−1www(j−1) +


H̃0

pH̃1
...

pr−(j+1)H̃r−(j+1)

 (pjwww(j) + · · ·+ p(r−1)www(r−1))

=


H̃0

pH̃1
...

pr−(j+1)H̃r−(j+1)

 pj−1www(j−1) +


pjb

(j)
0

pj+1b
(j)
1

...

pr−1b
(j)
r−(j+1)

 .
From (15), it follows that

H̃0

pH̃1
...

pr−(j+1)H̃r−(j+1)

 pj−1www(j−1) +


pjb

(j)
0

pj+1b
(j)
1

...

pr−1b
(j)
r−(j+1)

 =


pj−1b

(j−1)
0

pjb
(j−1)
1
...

pr−2b
(j−1)
r−(j+1)

 .
Moreover, by (19), for each corresponding blocks, we can consider

pr−jH̃r−jp
j−1www(j−1) = pr−1H̃r−jwww

(j−1) = pr−1b
(j−1)
r−j ,

. So, we conclude that (17) is true.
�

Note that the algorithm determines, at each iteration, the solutions of (13)
and computes the vectors (15). Therefore, we conclude that the output
of Algorithm 2 is the set of solutions of the system (12), as stated in the
following corollary.

Corollary 1. Let H̃ and b be defined as in (3) and (4), respectively. Then

the algorithm produces all possible solutions of the system H̃wwwT = b.

Remark 1. Algorithm 2 has complexity order O(r(k0+k1+· · ·+kr−1)
2(e+1))

operations in the finite field Zp. In fact, the main computational effort in
each step of the algorithm is to solve the systems of linear equations (5) (in
Step 1) and (9) in the other r − 1 steps. These r systems have at most
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k0 + k1 + · · ·+ kr−1 equations and e unknowns and the arithmetic complexity
order over Zp to solve each of these systems, using the Gaussian elimination
procedure, is O((k0 + k1 + · · · + kr−1)

2(e + 1)). In [3] an algorithm to deal
with finite rings was presented assuming that an algorithm exists which can
perform n × n matrix multiplication in v cnω ring operations, for some c
and some ω. But the memory cost of such algorithm is so high that it is
mostly of theoretical interest. Note that a näive matrix multiplication gives
c = 2 and ω = 3, Strassen’s Algorithm ω = log72 ≈ 2.807, and c varying by
implementation and an improved version given by the Coppersmith-Winograd
algorithm can do it in O(n2.375477) time.

The following result states the number of possible codewords in terms of the
parameters of H in the standard form.
In other words, consider H̃ as in (10) and define ci as the number of linearly
independent columns of 

H̃0

H̃1
...

H̃i

 ,
for i = 0, 1, . . . , r − 1.

We uniquely decompose the vector of unknowns www = (w1, . . . , we) as

wwwT =


w1

w2
...
we

 =


w01

w02
...
w0e

+ p


w11

w12
...
w1e

+ · · ·+ pr−1


w(r−1)1

w(r−1)2
...

w(r−1)e

 ,
with wij ∈ Ap, i = 0, 1, . . . , r− 1, j = 1, 2, . . . , e. The number of solutions of
HwwwT = b is equal to

∏r−1
i=0 |Si|, where |Si| is the number of solutions of (9),

and the next corollary follows immediately.

Corollary 2. Let C be a block code defined as above. Then, the number of
solutions of vvv is given by

s = per−
∑r−1

i=0 ci .
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The next example illustrates the application of Algorithm 2 in the determi-
nation of the solutions of a system of the form HwwwT = b.

Example 1. Let us consider the block code C = kerH, where

H =

 H0

3H1

9H2

 ∈ Z27,

with H0 =
[
1 3 0 2 10

]
, H1 =

[
0 4 1 5 7
0 0 0 0 3

]
, H2 =

[
1 0 0 0 2

]
and v =

[
v1 1 v2 v3 3

]
∈ C with erasures v1, v2, v3.

To compute the erasures of v, let us represent vi = vi0 + 3vi1 + 9vi2, with
vij ∈ {0, 1, 2}, i = 1, 2, 3, j = 0, 1, 2. Then, since HvT = 0, we obtain H̃0

3H̃1

9H̃2

wwwT =

 b03b1
9b2

 ,
where H̃0 =

[
1 0 2

]
, H̃1 =

[
0 1 5
0 0 0

]
, H̃2 =

[
1 0 0

]
, www =

[
v1 v2 v3

]
,

b0 = 21, b1 =

[
2
0

]
and b2 = 0.

In Step 1, the Algorithm 2 solves the system


1 0 2
0 1 5
0 0 0
1 0 0


p

ŵww(0) =


21
2
0
0


p

, (20)

over Z3. It can be written as


1 0 2
0 1 3
0 0 0
1 0 0


p

ŵww(0) =


0
2
0
0


p

,
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which has unique solution

0
2
0

. Then S0 = {

0
2
0

} ⊂ A3
p.

The next step computes

b̃
(1)
0

b̃
(1)
1

b̃
(1)
2

 =

 b03b1
9b2

−
cH̃0

3H̃1

9H̃2

www0. (21)

Note that the last rows of the matrices in equation (21) is equal to 0, and
when we plug in entries of these matrices we obtain the following

 21
6
0

−
 1 0 2

0 3 15
0 0 0

 0
2
0

 =

 21
0
0

 . (22)

Then,

b̃
(1)
0 = 3b

(1)
0 ⇐⇒ b

(1)
0 = 7,

b̃
(1)
1 = 9b

(1)
1 ⇐⇒ b

(1)
1 =

[
0
0

]
.

(23)

Next, in order to find ŵww(1), the algorithm solves the following equation

 1 0 2
0 1 5
0 0 0


p

ŵww(1) =

 7
0
0


p

, (24)

over Z3, which is equivalent to

 1 0 2
0 1 2
0 0 0


p

www(1) =

 1
0
0


p

. (25)
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The solutions of the system (25) are

 1 + c̃
c̃
c̃

, with a free parameter c̃ ∈ Z3.

Thus S1 = {

 1 + c
c
c

 ∈ A3
p : c ∈ Ap}. The next step computes

b̃
(2)
0 = 3b

(1)
0 − 3H̃0www

(1)

= 3× 7− 3
[
1 0 2

]  1 + c
c
c


= 21− 3 [1 + 3c]

= 21− 3 + 18c

= 18 + 18c,

and therefore

b̃(2) = 9b
(2)
0 ⇐⇒ b

(2)
0 = 2 + 2c.

Finally, the algorithm solves the system

[H̃0]pwww
(2) = [2 + 2c]p,

over Z3, where [H̃0]p =
[
1 0 2

]
. The solutions of this system are

2 + 2c̃+ 2c̃1
b̃1
c̃1


with b̃1, c̃1 ∈ Z3, and therefore we obtain

S2 = {

2 + 2c+ 2c1
b1
c1

 : b1, c1 ∈ Ap}.

Consequently, we obtain all solutions as
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wwwT =

 0
2
0

+ 3

 1 + c
c
c

+ 9

 2 + 2c+ 2c1
b1
c1

 ,
with b1, c1, and c ∈ Ap.

4. Conclusions and future work

In this work we have shown how one should proceed in order to determine
all the possible outputs of a list decoding algorithm. Not surprisingly, the
number of these possible codewords is determined by the matrices obtained
in the standard form of a parity-check matrix of the code. The provided
algorithm is simple but computes all possible coordinates of the corrupted
vector. An interesting avenue for future research is to extend these results
and consider different types of channels when also error may occur. Further,
we note that the algorithm presented here combined with the recent results
obtained in [13] could be used to develop new Berlekamp-Massey-type deco-
ding algorithms for codes over Zpr . This also requires further research.
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