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Abstract. Recently the classification of all possible faithful transitive per-
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1. Introduction

By Cayley’s theorem, every group is isomorphic to some permutation group.
A finite group G has a faithful permutation representation of degree n if there
exists a monomorphism from G into the symmetric group Sn, or equivalently, if
G acts faithfully on a set of n points. In this paper, only transitive actions will
be considered. Faithful transitive permutation representations of a group G are
in correspondence with core-free subgroups of G, that is, subgroups containing
no nontrivial normal subgroups. The stabilizer of a point of a faithful transitive
permutation representation is core-free and conversely, the action on the cosets of
a core-free subgroup is faithful and transitive.

The minimal degree of a faithful permutation representation of G has been a
subject of extensive study. In [7] it was shown that a faithful permutation repre-
sentation of a simple group with minimal degree is primitive. The minimal degree
of a faithful (transitive) permutation representation is known for all simple groups
[8, Theorem 5.2.2].

We have particular interest on the study of the faithful transitive permutation
representations of the automorphism groups of abstract regular polytopes, which
are quotients of Coxeter groups with linear diagram [9], or more generally, of the
groups of regular hypertopes [2]. The minimal faithful permutation representations
of finite irreducible Coxeter groups, which include the automorphism groups of
spherical polytopes, was recently determined in [10].

This paper is a sequel to [3] in which faithful transitive permutation represen-
tations of the groups of symmetries of toroidal regular maps were determined and
rectified in [4]. In the present paper we complete the classification of toroidal regu-
lar hypermaps, answering a question made by Gareth Jones in the Bled Conference
in Graph Theory 2019, where the results accomplished in [3] were presented.

The results can be summarized as follows. Let s ≥ 2.

• for the hypermap (3, 3, 3)(s,0), the possible degrees are s2, 2ds, 3ds and 6ds
where d is a divisor of s. Moreover, the degree 2ds exists if and only if all
prime divisors of s/d are congruent to 1 modulo 6;
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Figure 1. Toroidal map of type {6, 3} with (s, t) = (4, 1)

• for the hypermap (3, 3, 3)(s,s), the possible degrees are those of the hyper-
map (3, 3, 3)(s,0) multiplied by 3.

Despite that (3, 3, 3)s is an index two subgroup of {6, 3}s for s ∈ {(s, 0), (s, s)},
it is not true in general that if n is a degree of {6, 3}s then n/2 is the degree of a
toroidal hypermap (3, 3, 3)s.

2. Toroidal hypermaps

Consider a regular tessellation of the plane by identical regular hexagons, whose
full symmetry group is the Coxeter group [6, 3], generated by three reflections τ0,
τ1 and τ2, as shown in Figure 1.

By identifying opposite sides of a parallelogram with vertices (0, 0), (s, t), (−t, s+
t) and (s− t, s+ 2t) of the tessellation, we obtain the toroidal map {6, 3}(s,t), with

F = s2 + st + t2 faces, 3F edges and 2F vertices. This map is said to be regular
when the group of symmetries acts regularly on the set of flags of the map (triples
of mutually incident vertex, edge and face) [9], which is the case if and only if
st(s− t) = 0. Therefore, two families of toroidal regular maps of type {6, 3} arise:
{6, 3}(s,0) and {6, 3}(s,s), which are factorizations of the infinite Coxeter group [6, 3]

by (τ0τ1τ2)2s and (τ0τ1τ0τ1τ2)2s, respectively. The number of flags of {6, 3}(s,0) is

12s2 while the number of flags of {6, 3}(s,s) is 36s2.
A hypermap can be defined as an embedding of a bipartite graph into a compact

surface. The bipartition of vertices determines two types of vertices. We call
hypervertices to the vertices of one type and hyperedges to the vertices of the other
type (see [5] for more detail). A toroidal hypermap is obtained from a map of
type {6, 3} by considering a bipartition on the set of its vertices (see Figure 2) and
the translation subgroup of the map {6, 3} respects this bipartition. The toroidal
hypermap constructed from {6, 3}(s,t) is denoted by (3, 3, 3)(s,t), which is regular if
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Figure 2. Toroidal map of type (3, 3, 3)

and only if st(s − t) = 0. All the proper toroidal regular hypermaps arise in this
way [1].

Analogously a bipartition on the set of vertices of a toroidal regular map of type
{4, 4} results in another map of type {4, 4} (where a face-rotation, preserving the
bipartition, has order 2).

The group G of symmetries of the hypermap (3, 3, 3)(s,t) is a subgroup of index
2 of the group of the map {6, 3}(s,t),

G := 〈ρ0, ρ1, ρ2〉, where ρ0 := τ0τ1τ0, ρ1 := τ1 and ρ2 := τ2.

If the toroidal hypermap is regular, then G is the infinite Coxeter group [3, 3, 3]
factorized by either (ρ0ρ1ρ2ρ1)s or (ρ0ρ1ρ2)2s, depending on whether it is (3, 3, 3)(s,0)
or (3, 3, 3)(s,s), respectively.

The automorphism group of the map {6, 3}(s,s) (resp. {6, 3}(3s,0)) has a sub-
group of index 3 isomorphic to the automorphism group of the map {6, 3}(s,0)
(resp. {6, 3}(s,s)). The same relations hold for the corresponding toroidal hy-
permaps. Particularly, the group of the (3, 3, 3)(s,0) is a quotient of the group of
(3, 3, 3)(s,s) by 〈(ρ0ρ1ρ2ρ1)s〉, and the latter is a quotient of the group of (3, 3, 3)(3s,0)
by 〈(ρ0ρ1ρ2)2s〉.

Let u and v be two translations of order s forming an oblique basis for the group
of translations of the hypermap (3, 3, 3)(s,0) (or {6, 3}(s,0)).

u := ρ0ρ1ρ2ρ1, v := uρ1 = ρ1ρ0ρ1ρ2 and t := u−1v.
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We have the equalities

(1) uρ0 = u−1, uρ2 = t−1, vρ2 = v−1, vρ0 = t and tρ1 = t−1.

For the hypermap (3, 3, 3)(s,s), consider the translations g := uv = (ρ0ρ1ρ2)2,
h := gρ0 and j := gh.
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In this case we have the following equalities

(2) gρ1 = g, gρ2 = j−1 and hρ1 = j−1.

3. Degrees of maps of type {6, 3} vs. degrees of toroidal hypermaps

The degrees of a faithful transitive permutation representation of the group of a
regular map of type {3, 6} (or equivalently {6, 3}) are given in [4] by the following
two theorems.

Theorem 3.1. [4, Theorem 5.1] Let s ≥ 2. The degrees of a faithful transitive
permutation representation of a toroidal regular map of type {3, 6}(s,0) are

(1) s2,
(2) 3ds, 6ds or 12ds for any divisor d of s,
(3) 2ds and 4ds if and only if d is a divisor of s and all prime divisors of s/d

are equal to 1 mod 6.

Theorem 3.2. [4, Theorem 5.1] Let s ≥ 2. The degrees of a faithful transitive
permutation representation of a toroidal regular map of type {3, 6}(s,s) are

(1) 3s2,
(2) 9ds, 18ds or 36ds for any divisor d of s,
(3) 6ds and 12ds if and only if d is a divisor of s and all prime divisors of s/d

are equal to 1 mod 6.
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The basis for the proof of the above theorem is the following result that is a
combination of both Lemma 3.4 of [3] and Lemma 2.1 of [4].

Lemma 3.3. Let G be the group of a toroidal regular map. If n 6= s2 then G is
embedded into Sk o Sm with n = km (m, k > 1) and

(1) k = ds where d is a divisor of s and,

(2) m is a divisor of |G|s2 .

The above lemma assumes T is intransitive. Indeed we also have the following
result.

Lemma 3.4. [3, Lemma 3.2] If T is transitive, then n = s2.

The number m on Lemma 3.3 is the number of T -orbits, where T is the trans-
lation group with the translations as defined in Section 2 of this paper and of [3].
For the map {3, 6}(s,0) and T = 〈u, v〉 we have proved the following.

Proposition 3.5. [4, Proposition 3.3] If m = 4, then k = sd where d is a divisor
of s and all prime divisors p of s/d are such that p ≡ 1 mod 6.

As seen in [3], there is a correspondence between core-free subgroups and faithful
transitive actions. Moreover, if G has a faithful transitive permutation representa-
tion of degree n and is a subgroup of index α of U , then U has a faithful transitive
permutation representation of degree αn. Similarly to Corollary 3.5 of [3], we have
the following.

Corollary 3.6. If n is a degree of (3, 3, 3)(s,0) (resp. (3, 3, 3)(s,s)) then 3n is a
degree of (3, 3, 3)(s,s) (resp. (3, 3, 3)(3s,0)).

Additionally, the group of symmetries of a toroidal hypermap (3, 3, 3)(s,t) is a
subgroup of index 2 of the group of the toroidal map {6, 3}(s,t) and, hence, we have
the following.

Corollary 3.7. If n is a degree of (3, 3, 3)(s,0) (resp. (3, 3, 3)(s,s)) then 2n is a
degree of {6, 3}(s,0) (resp. {6, 3}(s,s)).

It must be pointed out that this property works only in one direction, meaning
that a degree n of the group of a map {6, 3}(s,t) does not determine the degrees of
(3, 3, 3)(s,t). However, by knowing the degrees of a map {6, 3}(s,t) we can restrict
the set of possible degrees for (3, 3, 3)(s,t).

4. The degrees of (3, 3, 3)(s,0)

In what follows let U := 〈τ0, τ1, τ2〉 be the group of {6, 3}(s,0), G := 〈ρ0, ρ1, ρ2〉
be the group of (3, 3, 3)(s,0) and T = 〈u, v〉 be the translation group of order s2

as defined in Section 2. We recall that the translation subgroups of {6, 3}(s,0) and
(3, 3, 3)(s,0) are the same.

Lemma 4.1. If n is a degree of (3, 3, 3)(s,0), then n ∈
{
s2, 2ds, 3ds, 6ds

}
for some

divisor d of s.

Proof. By Corollary 3.7 the set of possible degrees of (3, 3, 3)(s,0) is a subset of{
s2

2
, δs,

3δs

2
, 2δs, 3δs, 6δs

}
,
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where δ is a divisor of s. Moreover, the degrees δs and 2δs of this list must be
considered only if all prime factors of s/δ are equal to 1 modulo 6. To prove this

lemma we need to prove that each of the degrees n = s2

2 , n = 3δs
2 and n = δs,

either belongs to the list given in this lemma, or cannot be a degree of (3, 3, 3)(s,0).
These degrees are attained when a faithful transitive permutation representation

of G on n cosets corresponds to a faithful transitive permutation representation of
U on 2n cosets; while G acts on a set X of cosets of a core-free subgroup, U acts
on X ∪Xτ0.

Note that, for x ∈ X, x and xτ0 must be in different T -orbits. Thus, the number
of T -orbits for the action of U on X ∪Xτ0 is 2m where m is the number of T -orbits
on X. By Lemma 3.3, 2m ∈ {2, 4, 6, 12}. The size of a T -orbit, denoted by k, is
the same in both actions.

Let first n = s2

2 . By Lemma 3.4, T is not transitive on X, which imply that
m 6= 1. Hence 2m ∈ {4, 6, 12}. If 2m = 4 then by Proposition 3.5, 2n = 4ds with d
a divisor of s, where all prime factors of s/d are equal 1 modulo 6. But then one get
s2

2 = 4ds, hence s
d = 4, which is not 1 modulo 6, a contradiction. If 2m ∈ {6, 12}

then 2n ∈ {6ds, 12ds} for some divisor d of s. In any case n is one of the degrees
given in the statement of this lemma.

Now let n = 3δs
2 . First if δ is even then n = 3ds with d being a divisor of s

which is one degrees given in the statement of this lemma. Suppose that δ is odd.
As 2m ∈ {4, 6, 12}, hence 2n = 3δs ∈ {2ds, 4ds, 6ds, 12ds} for some divisor d of
s, which implies that δ is even, a contradiction.

Now suppose that n = δs with all prime factors of s/δ equal to 1 mod 6. Par-
ticularly s/δ must be odd. If 2m ∈ {4, 6, 12} then the degrees are among the ones
listed in this lemma. We may assume that 2m = 2. Then m = 1, which implies
that n = s2. �

The dihedral groups 〈ρi, ρj〉 of order 6 are core-free subgroups of G (for i, j ∈
{0, 1, 2} and i 6= j), hence there are faithful transitive permutation representations
of G of degree s2. Similarly to Proposition 5.1 (1) of [3], 〈ua, vb〉 is a core-free
subgroup of G. Hence G has a faithful transitive permutation representation of
degree n = 6ab for any integers a and b such that s = lcm(a, b), or equivalently,
of degree n = 6ds for any divisor d of s. In what follows we give other core-free
subgroups of G.

Proposition 4.2. Let G be the group of (3, 3, 3)(s,0) with s ≥ 2 and d be a divisor
of s.

(1) The group 〈ud〉o 〈ρ0〉 is a core-free subgroup of G of index 3ds.
(2) Suppose that there exists α, coprime with s/d, such that α2 − α + 1 ≡

0 mod (s/d). Then 〈(v−αu)d, ρ1ρ2〉 is a core-free subgroup of G with index
2sd.

Proof. (1) Let H := 〈ud〉o 〈ρ0〉. Suppose that x ∈ H ∩Hρ1 = 〈ud〉o 〈ρ0〉 ∩ 〈vd〉o
〈ρρ10 〉. If x /∈ T then ρ0ρ

ρ1
0 ∈ T , a contradiction. Thus x ∈ T and therefore as in

(1) we conclude that x is trivial. The order of H is 2s
d thus |G : H| = 3ds.

(2) Let now H := 〈(v−αu)d, ρ1ρ2〉. First note that 〈(v−αu)d〉 is a normal sub-
group of H. Indeed we have (v−αu)ρ1ρ2 = tαv−1 = uαvα−1 = (v−αu)α. Suppose

that x ∈ H ∩ Hρ1 . Then x = (v−αu)id(ρ1ρ2)j = (u−αv)i
′d(ρ1ρ2)j

′
. This implies

that j = j′ and i = i′ = 0 mod (s/d). Thus H∩Hρ1 = 〈ρ1ρ2〉. Now the intersection
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of 〈ρ1ρ2〉 and Hρ0 is trivial, otherwise we get that either ρ1ρ2 ∈ T , (ρ1ρ2)ρ0 ∈ T ,
ρ0ρ2 ∈ T , tu−1 ∈ 〈t−αu−1〉 or uv ∈ 〈t−αu−1〉, which is never possible. �

Let us also recall the following proposition.

Proposition 4.3. [4, Proposition 3.1] Let q be an odd number. The modular equa-
tion

x2 − x+ 1 ≡ 0 mod q

has a solution if and only if all prime divisors p of q are such that p ≡ 1 mod 6.

Theorem 4.4. Let s ≥ 2. A faithful transitive permutation representation of the
group of symmetries of (3, 3, 3)(s,0) has degree n if and only if n ∈ {s2, 3ds, 6ds}
where d is a divisor of s or; n = 2ds where d is a divisor of s and all prime factors
of s/d are equal 1 mod 6.

Proof. This is a consequence of Lemma 4.1 and the core-free subgroups indexes
found in this section. �

A Schreier coset graph of a group G is a graph G associated with a subgroup
H ≤ G and a set of generators 〈ρi |i ∈ {0, . . . , r − 1}〉 of G, where the vertices
are the cosets G/H and there is an edge {Hx,Hy} labeled i whenever Hxρi = Hy
(for some x, y ∈ G). When H is core-free, a Schreier coset graph gives a faithful
transitive permutation representation of the group G, of degree n = |G : H|.

Proposition 4.5. Let s ≥ 2. The following graph is a faithful transitive permu-
tation representation graph of the automorphism group of (3, 3, 3)(s,0) with degree
3s.

• 0

2

• 1 x• 2 • 0 • 1 • 2 • • 0 • 1 • 2 •
0

•
1
•

0
•

2
•

1
•

0
•

2
•

1
•

0
•

2
•

1
•

Moreover, the stabilizer of a point is, up to conjugacy, 〈u〉o 〈ρ0〉.

Proof. Let G = 〈ρ0, ρ1, ρ2〉 be the group with the given permutation representation
graph. It is clear from the graph that ρ20 = ρ21 = ρ22 = (ρ0ρ1)3 = (ρ0ρ2)3 =
(ρ1ρ2)3 = (ρ0ρ1ρ2ρ1)s = 1. Hence G must be a subgroup of the automorphism
group of the regular hypermap (3, 3, 3)(s,0) and |G| ≤ 6s2.

Consider the vertex x of the permutation representation. Its stabilizer Gx con-
tains the subgroup 〈ρ0, u〉 of order 2s. Then, |Gx| ≥ 2s and, by the Orbit-Stabilizer
theorem, |G| ≥ 6s2. Consequently, the graph is a faithful transitive permutation
representation of the automorfism group of (3, 3, 3)(s,0). �

Remark. The faithful transitive permutation representation given on Proposition 4.5
is of minimal degree whenever s is not a prime number congruent with 1 mod 6.

Similarly to what was done in [3], it is possible to obtain permutation represen-
tation graphs for other degrees. As some of the graphs are very complicated to
draw we decide to include only the simplest one.
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5. The degrees of (3, 3, 3)(s,s)

In this section we determine the degrees of (3, 3, 3)(s,s) using the degrees of
(3, 3, 3)(s,0) and (3, 3, 3)(3s,0), given by Theorem 4.4. Let n be the degree of a
faithful transitive permutation representation of (3, 3, 3)(s,s) and T = 〈u, v〉 the

translation group of (3, 3, 3)(3s,0) of order (3s)2.

Theorem 5.1. Let s ≥ 2. A faithful transitive permutation representation of the
group of symmetries of (3, 3, 3)(s,s) has degree n if and only if n ∈ {3s2, 9ds, 18ds}
where d is a divisor of s or; n = 6ds where d is a divisor of s and all prime factors
of s/d are equal 1 mod 6.

Proof. Let G be the group of (3, 3, 3)(s,s). From Theorem 4.4 and Corollary 3.6
there are faithful transitive permutation representations with the degrees given in
the statement of this theorem. By Theorem 4.4, a degree of (3, 3, 3)(3s,0) is either

equal to (3s)2, 3δ(3s) and 6δ(3s), with δ being a divisor of 3s, or to 2δ(3s), with δ
being a divisor of 3s and all prime factors of 3s/δ equal 1 mod 6.

Dividing the possible degrees of (3, 3, 3)(3s,0) by 3, we get that

n ∈ {3s2, 2δs, 3δs, 6δs}

with δ dividing 3s.
The degree n = 3s2 is in set given in the statement of the theorem. If n = 2δs

then, as in this case δ is a divisor of 3s and all prime divisors of 3s/δ must be equal
1 mod 6, δ = 3d for some divisor d of s. Hence this degree is already included in the
set given in the statement of this theorem. Let us prove that also on the remaining
cases δ = 3d for some divisor d of s.

The hypermap (3, 3, 3)(3s,0) contains three copies of the hypermap (3, 3, 3)(s,s).
To be more precise the group of (3, 3, 3)(s,s) is the group of (3, 3, 3)(3s,0) factorized

by the translation (uv)s of order 3. Hence, the points x, x(uv)s and x(uv)2s of any
faithful transitive permutation representation of (3, 3, 3)(3s,0) are identified under
this factorization. Any faithful transitive permutation representation of an action
of (3, 3, 3)(3s,0) on a set X gives a permutation representation, of degree |X|/3, of
(3, 3, 3)(s,s) on triples of points of X of the form{

x, x(uv)s, x(uv)2s
}
.

with x ∈ X. Note that these points are in the same T -orbit. Hence the number m
of T -orbits is unchanged under this factorization.

To prove that the action on the triple of points is faithful only if δ = 3d, for
some divisor d, we can follow an identical proof as the one presented for Theorem
5.3 of [4]. We note that Lemma 2.1 of [4], that establishes the size of T -orbit, can
be used here. �

6. Open Problems

The study of faithful transitive permutation representations can be extended to
other regular polytopes, particularly to finite locally spherical regular polytopes,
including the cubic tessellations and to the finite locally toroidal regular polytopes.

Problem 6.1. Determine the degrees of faithful transitive permutation representa-
tions of the groups of spherical and euclidean type.
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Problem 6.2. Determine the degrees of faithful transitive permutation representa-
tions of the groups of the finite toroidal regular polytopes.

The problem of the classification locally toroidal regular polytopes dominated the
theory of abstract polytopes for a while and it was originally posed by Grünbaum
[6]. The meritoriously known as Grünbaum’s Problem, is not yet totally solved [9].

7. Acknowledgements

The authors would like to thank an anonymous referee whose comments improved
a preliminary version of this paper.

This work is supported by The Center for Research and Development in Math-
ematics and Applications (CIDMA) through the Portuguese Foundation for Sci-
ence and Technology (FCT - Fundação para a Ciência e a Tecnologia), references
UIDB/04106/2020 and UIDP/04106/2020.

References

[1] H. S. M. Coxeter. Configurations and maps. Rep. Math. Colloq. 8 (2), 11–38 , 1948.

[2] Fernandes, M. E., Leemans, D., and Weiss, A. I. Highly symmetric hypertopes. Aequa-
tiones mathematicae 90, 5 (2016), 1045–1067.

[3] Fernandes, M. E. and Piedade, C. A. Faithful permutation representations of toroidal

regular maps. Journal of Algebraic Combinatorics, 52 (2020), 317–337
[4] Fernandes, M. E. and Piedade, C. A. Correction to ”Faithful permutation rep-

resentations of toroidal regular maps”. Journal of Algebraic Combinatorics (2020).

https://doi.org/10.1007/s10801-020-00985-w
[5] Jones, G. A. and Singerman, D. Maps, hypermaps and triangle groups The Grothendieck

Theory of Dessins d’Enfants vol 2000 (L. Schneps ed.), London Math. Soc. Lecture Note Ser

(1994), 115–145
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