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Boson stars are often described as macroscopic Bose-Einstein condensates. By accommodating large 
numbers of bosons in the same quantum state, they materialize macroscopically the intangible 
probability density cloud of a single particle in the quantum world. We take this interpretation of 
boson stars one step further. We show, by explicitly constructing the fully non-linear solutions, that 
static (in terms of their spacetime metric, gμν ) boson stars, composed of a single complex scalar field, 
�, can have a non-trivial multipolar structure, yielding the same morphologies for their energy density 
as those that elementary hydrogen atomic orbitals have for their probability density. This provides a 
close analogy between the elementary solutions of the non-linear Einstein–Klein-Gordon theory, denoted 
�(N,�,m), which could be realized in the macrocosmos, and those of the linear Schrödinger equation in 
a Coulomb potential, denoted �(N,�,m) , that describe the microcosmos. In both cases, the solutions are 
classified by a triplet of quantum numbers (N, �, m). In the gravitational theory, multipolar boson stars 
can be interpreted as individual bosonic lumps in equilibrium; remarkably, the (generic) solutions with 
m �= 0 describe gravitating solitons [gμν, �(N,�,m)] without any continuous symmetries. Multipolar boson 
stars analogue to hybrid orbitals is also constructed.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Atomic orbitals are solutions of the linear, non-relativistic 
Schrödinger equation in an appropriate electromagnetic potential. 
Their morphologies have become iconic images shaping scientific 
insight and popular visualization about the microscopic world, see 
e.g. [1,2]. Yet, they are intangible probability clouds. The hydrogen 
atom, in particular, provides the cornerstone orbitals, �(N,�,m) . The 
properties of �(N,�,m) are closely connected to the separability of 
the wave function into a spherical harmonic and a radial function, 
where the nodal structure is defined by the standard quantum 
numbers (N, �, m) [3]. At a deeper level, the �(N,�,m) properties 
result from the explicit and hidden symmetries (yielding an S O (4)

group) provided by the Coulomb potential [4].
In the macroscopic realm, on the other hand, the relativistic 

generalization of the Schrödinger equation, i.e. the Klein-Gordon 
equation, when minimally coupled to Einstein’s gravity has pro-
duced the most paradigmatic example of a self-gravitating soliton: 
boson stars (BSs) [5–8]. Suggested as dark matter lumps, if ultra-
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light bosons exist [9–11], their bosonic character allows the in-
dividual quanta to inhabite the same state. BSs are envisaged as 
macroscopic Bose-Einstein condensates, materializing as a macro-
scopic energy distribution the intangible concept of a quantum 
probability density.

In this letter we lay down a foundational construction to cor-
roborate the interpretation that BSs are macroscopic atoms. In the 
Einstein–Klein-Gordon model, with a single, complex, massive, free 
scalar field �, the only static BSs [12]. known so far are spher-
ically symmetric. Thus, they are macroscopic Ns-orbitals, where 
N − 1 describes the number of radial nodes [13]. We shall show, 
by explicit construction, that BSs corresponding to all (N, �, m)

hydrogen-orbitals exist, with identical morphologies to their mi-
croscopic counterparts, in spite of the very different mathematical 
structure of both models. These multipolar BSs shall be denoted as 
�(N,�,m) .

2. The framework

The simplest BSs, often called mini-BSs [5,6], are solutions of 
the Einstein–(complex, massive) Klein-Gordon model, described by 
the action S = ∫

d4x
√−gL. The Lagrangian density is:
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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L = R

16πG
− 1

2
gαβ

(
∂α�∗∂β� + ∂β�∗∂α�

) − μ2�∗� , (1)

where R is the Ricci scalar of gαβ , G is Newton’s constant, μ is 
the scalar field mass and ∗ denotes complex conjugation.

This action is invariant under the global U (1) transformation 
� → eiχ�, where χ is constant, yielding a conserved 4-current, 
Dα jα = 0, where jα ≡ −i(�∗∂α� − �∂α�∗). The associated con-
served quantity, obtained by integrating the timelike component 
of this 4-current in a spacelike slice � is the Noether charge, 
Q = ∫

�
jt . At a microscopic level, this Noether charge counts the 

number of scalar particles, a relation that can be made explicit by 
quantizing the scalar field.

The key feature of BSs is the existence of a harmonic time 
dependence for �, analogue to that of stationary states in quan-
tum mechanics (QM). Consider a background geometry written in 
spherical-like coordinates (t, r, θ, ϕ) with their usual meanings. For 
BSs the scalar field has the form

� = e−iωt f (r, θ,ϕ) , (2)

where ω is the oscillation frequency of the star and f (r, θ, ϕ) a 
real spatial profile function. The oscillation, however, occurs only 
for the field, in the same way the probability amplitude of sta-
tionary states oscillates in QM. The physical quantities of the BSs, 
such as its energy-momentum tensor, are time-independent, like 
the probability density in QM. The oscillating �-amplitude is cru-
cial to circumvent Derrick-type [14] virial identities; it allows the 
existence of stationary solitons of (1).

3. The spherical sector: �(N,0,0)

The known static BSs are spherically symmetric. There is a 
countable infinite number of families of such BSs, labeled by the 
number of radial nodes n ∈ N0. For sharpening the parallelism 
with QM we introduce an integer N ∈ N , which for spherical BSs 
is N = n +1. The fundamental family has N = 1 (no nodes); excited 
families have N > 1. For each family, solutions exist for an inter-
val of frequencies ω ∈ [ω(N,0,0)

min , μ]. For instance, the fundamental 
family has ω(1,0,0)

min = 0.768μ [15]. The upper limit is universal: 
ω �μ is a bound state condition, as it is clear from the asymptotic 
decay of the field: � ∼ e−r

√
μ2−ω2

/r. The �(N,0,0) BS family corre-
sponds to the Ns-orbital in hydrogen. Observe that for the latter, 
however, the frequency is a unique number, determined by N . By 
contrast, the �(N,0,0) BSs are, for each N , a continuous family, ex-
isting for an interval of frequencies. This is likely a consequence of 
the non-linear structure of the BS model. This distinction between 
the single frequency �(N,0,0) and the multi-frequency �(N,0,0) will 
remain when introducing non-trivial (�, m).

4. The non-spherical sector: introducing (�, m)

Scalar multipoles are typically described by spherical harmon-
ics. The real spherical harmonics Y�m(θ, ϕ) are proportional to 
Pm

� (cos θ) cos mϕ , where Pm
� are the associated Legendre polyno-

mials and θ, ϕ are the usual angles on the S2; �, m are integers 
with � � m and we take m � 0 without any loss of generality.

For odd-�, Y�m are parity-odd and vanish at θ = π/2; for 
even-� Y�m are parity-even and Z2 symmetric under a reflection 
along the equatorial plane. For any �, m, Y�m has 2m ϕ-zeros, each 
describing a nodal longitude line and � − m θ -zeros, each yield-
ing a nodal latitude line. These nodal distributions define an (�, m)

mode in the non-linear theory, where � is, in general, no longer 
described by a single Y�m .
2

5. Gravity-regularization

Consider, for the moment, the Klein-Gordon equation derived 
from (1), �� = μ2�, on Minkowski spacetime in spherical coor-
dinates, taking � as a test field. The Y�m are a complete basis on 
S2. Thus, for any given ω, the general solution of this linear equa-
tion is of the form (2) with f = ∑

�,m R�(r)Y�m(θ, ϕ). The regular 
at r → ∞ (real) radial amplitude is

R�(r) = c√
r

K 1
2 +�(r

√
μ2 − ω2) , (3)

where c is an arbitrary constant and K�+ 1
2
(r) is the modified 

Bessel function of the first kind of order �. This amplitude diverges 
at the origin r = 0; however, the backreaction in Einstein’s grav-
ity regularizes the origin singularity. As such, the spherical BSs can 
be viewed as the non-linear (regular) realization of the linear (ir-
regular) K1/2 with � = 0 = m. As it turns out, the gravitational 
backreaction can regularize the origin singularity for any (�, m)-
harmonic. This leads to multipolar BSs. Considering the backre-
action, however, the scalar model becomes non-linear. Thus, the 
angular dependence of the resulting scalar field is no longer that 
of a pure Y�m harmonic; it becomes a superposition of harmonics. 
The construction reveals, nonetheless, that the gravitating solutions 
preserve the discrete symmetries and nodal structure of the origi-
nal Y�m . For m = 0, these configurations are axially symmetric. In 
the generic m �= 0 case, only discrete symmetries remain.

6. Constructing multipolar BSs: ansatz and approach

Allowing an angular dependence for the BSs requires consid-
ering a metric ansatz with sufficient generality. In particular we 
do not assume any spatial isometries. In the absence of analytic 
methods to tackle the fully non-linear Einstein-Klein-Gordon solu-
tions in the absence of symmetries, we shall resort to numerical 
methods [16] - see also the construction in [17].

We consider a metric ansatz with seven (r, θ, ϕ)-dependent 
functions, F1, F2, F3, F0, S1, S2, S3 [18]:

ds2 = −F0(r, θ,ϕ)dt2 (4)

+F1(r, θ,ϕ)dr2 + F2(r, θ,ϕ) [rdθ + S1(r, θ,ϕ)dr]2

+F3(r, θ,ϕ)
[
r sin θdϕ + S2(r, θ,ϕ)dr + S3(r, θ,ϕ)rdθ

]2
,

together with the scalar field ansatz (2). The resulting intricate set 
of partial differential equations (PDEs) is tackled by employing the 
Einstein-De Turck approach [19,20], in which the Einstein equa-
tions obtained from (1) are replaced by

Rμν − ∇(μξν) = 8πG

(
Tμν − 1

2
T gμν

)
. (5)

ξμ is defined as ξμ ≡ gνρ(�
μ
νρ − �̄

μ
νρ), where �

μ
νρ is the Levi-

Civita connection associated to the spacetime metric g that one 
wants to determine. Also, ḡ is a reference metric (with connection 
�̄

μ
νρ ), which, for the solutions in this work is the Minkowski line 

element. Solutions to (5) solve the Einstein equations iff ξμ ≡ 0
everywhere on the manifold.

Multipolar BSs with m = 0 will be axi-symmetric. They can be 
studied within this framework by setting S2 = S3 = 0 and taking 
all other functions to depend on (r, θ) only.

7. Boundary conditions (BCs) and numerics

With the described setup, the problem reduces to solving a set 
of eight PDEs with suitable BCs. The latter are found from an ap-
proximate solution on the boundary of the domain of integration 
compatible with ξμ = 0, regularity and asymptotic flatness.
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We consider solutions with m � 0, a scalar field with (−1)�

parity under reflections along the equatorial plane (θ = π/2) and 
two Z2-symmetries w.r.t. the ϕ-coordinate. Then the domain of 
integration for the (θ, ϕ)-coordinates is [0, π/2] × [0, π/2], while 
0 � r < ∞. The BCs are as follows: (i) at r = ∞, F1 = F2 = F3 =
F0 = 1, S1 = S2 = S3 = 0 and φ = 0; (ii) at r = 0, ∂r F1 = ∂r F2 =
∂r F3 = ∂r F0 = 0, ∂r S1 = ∂r S2 = ∂r S3 = 0 and φ = 0, except for axi-
ally symmetric odd-chains (as described below), for which ∂rφ = 0; 
(iii) at θ = 0, ∂θ F1 = ∂θ F2 = ∂θ F3 = ∂θ F0 = 0, S1 = S2 = ∂θ S3 = 0
and φ = 0, except if � + m is an even number, in which case we 
impose ∂θφ = 0; (iv) at θ = π/2, ∂θ F1 = ∂θ F2 = ∂θ F3 = ∂θ F0 = 0, 
S1 = ∂θ S2 = S3 = 0 and ∂θφ = 0; (v) at ϕ = 0, ∂ϕ F1 = ∂ϕ F2 =
∂ϕ F3 = ∂ϕ F0 = 0, ∂ϕ S1 = S2 = S3 = 0 and ∂ϕφ = 0; (vi) at ϕ =
π/2, ∂ϕ F1 = ∂ϕ F2 = ∂ϕ F3 = ∂ϕ F0 = 0, ∂ϕ S1 = S2 = S3 = 0 and ei-
ther φ = 0 for odd m, or ∂ϕφ = 0 for even m.

The field equations are discretized on a (r, θ, ϕ) grid with Nr ×
Nθ × Nϕ points. The grid spacing in the r-direction is non-uniform, 
whilst the values of the grid points in the angular directions are 
uniform. For the 3D problem, typical grids have sizes ∼ 100 × 30 ×
30. The resulting system is solved iteratively using the Newton-
Raphson method until convergence is achieved. The professional 
PDE solver cadsol [21] and the Intel mkl pardiso [22] sparse direct 
solvers were both employed in this work. For the solutions herein, 
the typical numerical error is estimated to be � 10−3.

Natural units, set by μ and G , are used. Dimensionless vari-
ables, e.g., r → r/μ, φ → φ/

√
4πG, ω → ω/μ are employed in 

the numerics. As a result, all physical quantities of interest are ex-
pressed in units set by μ and G . The only input parameter is the 
(scaled) frequency, ω.

As for spherical BSs, the multipolar BSs possess two global 
“charges”: the ADM mass M and the Noether charge Q . The ADM 
mass is either read off from the far field asymptotics −gtt =
−F0 = 1 − 2M/r + . . . , or computed as the volume integral M =
− 

∫
�

dSα(2T α
β ξβ − T ξα), where ξ = ∂/∂t is the everywhere time-

like Killing vector field.

8. Multipolar BSs: domain of existence and morphology

We have studied in detail the families of solutions of �(N,�,m)

BSs for a variety of (N, �, m) values. (�, m) are defined from the 
single Y�m present in the (irregular) flat spacetime limit. N is 
defined by assigning the number of nodes along the half z-axis, 
z ∈]0, ∞[ to be N − � − 1 [23]. In all �(N,�,m) studied, the domain 
of existence spans a range of frequencies, yielding a spiraling curve 
in a M vs. ω diagram. In Fig. 1 this is illustrated for N = � + 1
(solutions without radial nodes), m = 1 and for � = 1, 2, 3. Qualita-
tively similar curves are found for all �(N,�,m) BSs, albeit secondary 
branches (obtained after each backbending of the curve, when an 
extremum of ω is reached) are more difficult to explore; so only 
up to the second branch is shown in Fig. 1. Plotting the Q (instead 
of M) also yields similar curves.

Fig. 1 shows that, as for �(N,0,0) BSs, the maximum frequency 
is universal, but the minimum frequency, ω(N,�,m)

min , is (N, �, m) de-
pendent. It also illustrates the general trend that increasing any of 
the quantum numbers, the maximal mass of the family increases.

Along any fixed �(N,�,m) family the BSs vary in size (in the scale 
fixed by μ), but their morphology remains unchanged. To analyze
this morphology we examine e.g. the surfaces of constant energy 
density ε ≡ −T t

t ; but the same result is found when considering 
instead the Noether charge density. In Fig. 2 we exhibit several 
surfaces of constant ε for �(3,2,0) . Increasing the energy density 
clearly distinguishes several individual lumps. This is a general fea-
ture: multipolar BSs have a well defined multicomponent structure 
in the regions of larger energy density.
3

Fig. 1. Domain of existence of �(�+1,�,1) multipolar BSs. The configurations with 
� = 1 have a U (1) isometry while those with � = 2, 3 possess discrete symmetries 
only.

Fig. 2. Surfaces of constant energy density ε for a �(3,2,0) BS, with ω = 0.9. ε in-
creases, from left to right, top to bottom.

In Fig. 3 we provide an overview of a selection of multipolar 
BSs. The figure unveils an uncanny similarity with hydrogen orbits 
- see e.g. [2].

The multipolar BSs in the central triangle of Fig. 3 are of the 
form �(�+1,�,m) , with 0 � m � �. These have N − � − 1 = 0 and, 
in this sense, they do not have “radial” nodes. �(1,0,0) corresponds 
to the 1s-orbital, �(2,1,0) to the 2p-orbital. Alternatively, �(1,0,0)

is the monopolar BS, �(2,1,0) is a dipole BS, and so on. Generi-
cally, for m �= 0, only discrete symmetries exist (with some known 
exceptions, e.g. �(2,1,1) , which is a rotation of �(2,1,0) and thus 
possesses a U (1) isometry). In each case, non-linearity implies that 
the angular distribution is a superposition of harmonics; nonethe-
less, the corresponding (�, m)-mode shapes the morphology of the 
BS in the larger energy density regions.

The BSs on the left of Fig. 3 (delimited by the blue dashed line) 
have nodes along the half z-axis. They are �(N,�,0) with N > � + 1. 
Their domains - see Fig. 4 (inset) - are similar to those in Fig. 1. 
They correspond to the 3p and 4p hydrogen orbitals. From the 
gravitational side, these are (even) chains of bosonic lumps (see 
e.g. [24–27] for other solitonic chains).

9. Hybrid multipolar BSs

In QM hybrid orbitals are superpositions of stationary states 
with different quantum numbers but the same energy; such su-
perposition still yields a stationary state. In hydrogen, the energy 
spectrum depends solely on N and hybrid orbitals are of the type 
�(N,�,m)+�(N,�′,m′) . Remarkably, in spite of the non-linearity of the 
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Fig. 3. Surfaces of constant energy density for a selection of �(N,�,m) . The hydrogen orbitals-like morphology is unmistakable, see e.g. [2].
Fig. 4. Domain of existence of the even and odd-chains shown in Fig. 3. The latter 
are hybrid multipolar BSs.

model, multipolar BSs can also yield hybrid configurations, possi-
bly as a consequence of the extended range of frequencies (rather 
than a single one) of each �(N,�,m) .

Examples of hybrid multipolar BSs are exhibited on the right of 
Fig. 3 (delimited by the blue dashed line), corresponding to chains 
with an odd number of components. They can be interpreted as 
the superposition of radially excited Ns and Np orbitals. This su-
perposition of states endows the domain of existence of the hybrid 
solutions with a different structure - Fig. 4 (main panel). Instead 
of the paradigmatic spiraling curve one finds a lace with two ends 
approaching the maximal frequency, each branch corresponding to 
the dominance of either of the two states, and with a self-crossing. 
In particular, we have verified that along one of the branches a 
bifurcation with the corresponding excited spherical BSs is encoun-
tered.
4

10. Discussion

For all multipolar BSs studied, Q is strictly positive. Thus, they 
are not BS-anti BS configurations. The Noether charge, moreover, 
obeys Q > M , for some range of frequencies, ωc < ω < μ, where 
ωc > ω

(N,�,m)
min . Thus, some of the multipolar BSs are stable against 

fragmentation.
The simplest multipolar BS is the dipolar �(2,1,0) . This config-

uration can be considered a pair of oscillating bosonic lumps with 
opposite phases. The phase difference yields a repulsive force be-
tween them [28], balancing the gravitational attraction. The full 
dynamical status of this and all other multipolar BSs, however, is 
an open question.

Analogous multipolar configurations are expected in other mod-
els, including flat spacetime Q -balls [29] (see also [30]), Einstein-
Klein-Gordon models with self-interactions [31], gauged BSs [32], 
BSs in AdS spacetimes [33] and solitons in Einstein-Proca [34] or 
Einstein-Dirac models [35].
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