BRIEF COMMUNICATION

Water-use efficiency in *Flaveria* species under drought-stress conditions

M.C. DIAS*,+ and W. BRÜGGEMANN**,***

Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal*

Department of Ecology, Evolution and Diversity, J.W. Goethe University, POB 111932,

D-60054 Frankfurt am Main, Germany

Biodiversity and Climate Research Centre, Senckenberganlage 25,

D-60325 Frankfurt am Main, Germany

Abstract

Environmental conditions that promote photorespiration are considered to be a major driving force for the evolution of C_4 species from C_3 ancestors. The genus *Flaveria* contains C_3 and C_4 species as well as a variety of intermediate species. In this study, we compare the water-use efficiency of intermediate *Flaveria* species to that of C_3 and C_4 species. The results indicate that under both well-watered and a drought-stress condition, C_3 – C_4 and C_4 -like intermediacy in *Flaveria* species improve water-use efficiency as compared to C_3 species.

Additional key words: drought stress; Flaveria; intermediate species; water-use efficiency.

The genus *Flaveria* (Asteraceae) includes both C₃ and C₄ species (NADP-malic enzyme type) as well as a number of intermediate species (C₃–C₄ and C₄-like) that represent stages in the evolutionary transition from C₃ to C₄ photosynthesis (Monson and Rawsthorne 2002, McKown *et al.* 2005). C₃ photosynthesis is the ancestral condition, and multiple origins of intermediate and C₄ photosynthesis are present in the genus (Kocacinar *et al.* 2008). Therefore, this genus has been widely used as a model for studying the physiology and molecular biology of the C₄ plant evolution (Sage 2004, Westhoff and Gowik 2004, McKown *et al.* 2005).

In *Flaveria*, intermediate species have been subdivided into C_3 – C_4 and C_4 -like species. Compared to C_3 plants, all intermediate species exhibit a reduced level of photorespiration and a more differentiated Kranz-like leaf anatomy. In the C_3 – C_4 intermediates, C_4 biochemistry is present in some species with an assimilation of CO_2 through the C_4 cycle ranging from 20% to 60% (Monson 1999). However, the CO_2 assimilation in these intermediates occurs mainly in the mesophyll cells and the

reduction of photorespiration is primarily due to the recycling of the photorespired CO₂ by glycine decarboxylase (Monson and Rawsthorne 2002). In the so-called C₄-like *Flaveria* species, the C₄-like biochemistry results in 70–90% CO₂ assimilation through PEPCase, with a concomitant enhancement of the CO₂ level in the bundle sheath cells (Monson and Rawsthorne 2002). The reduction of O₂ sensitivity of photosynthesis and the increase of photosynthetic rates in the C₄-like species are mainly due to the high degree of development of the C₄ syndrome (Monson and Rawsthorne 2002). Unlike C₄ species, the differential distribution of Rubisco and PEPCase between mesophyll and bundle sheath cells is not complete in the C₄-like *Flaveria* species (Reed and Chollet 1985).

Environmental conditions that enhance photorespiration, such as low atmospheric CO₂ concentrations, high temperatures, and aridity, are considered to be a major driving force to promote the evolution of the C₄ metabolic pathway (Sage 2004). The adaptation to constant and temporary drought conditions through a more

Received 3 March 2010, accepted 11 June 2010.

^{*}Corresponding author; tel.: +351 234 370 200, fax: +351 234 370 985; e-mail: celeste.dias@ua.pt

Abbreviations: DS – drought stress; PEPCase – phosphoenolpyruvate carboxylase; Rubisco – ribulose-1,5-bisphosphate carboxylase/oxygenase; WUE – water-use efficiency.

Acknowledgement: This work was supported by Portuguese Foundation for Science and Technology (FCT): grant reference SFRH/BPD/41700/2007.

economical use of available water is appointed to be an important impulse for the evolution of C_4 species from the C_3 ancestors (Apel *et al.* 1994). In the genus *Flaveria*, data from biogeographic distribution and ecological preferences of the species supports the hypothesis that the multiple origins of the C_4 photosynthesis were the result of selection pressures for survival in hot, arid, or saline conditions (McKown *et al.* 2005, Kutschera and Niklas 2007). Additional knowledge of the water-use efficiency (WUE) in intermediate *Flaveria* species under non-optimal environmental conditions is needed to better understand how environmental conditions drive the evolution of the C_4 photosynthetic cycle.

In this study, we compare WUE in two intermediate species that have different degrees of C_4 -syndrome (C_3 – C_4 and a C_4 -like *Flaveria* species) with the C_3 and C_4 *Flaveria* species under well-watered growth conditions (control) as well as under water-limiting conditions. Our results give more information on the advantages of the intermediate species under stress environmental conditions and bring more insight on the role of the WUE in the evolution of the C_4 pathway in this genus.

Flaveria species used in this experiment were kindly provided by Prof. Dr. Westhoff, University of Düsseldorf, Germany. All genotypes were propagated and cultivated in glasshouses of the Botanical Garden from the University of Frankfurt. Plants of F. trinervia (NADP-malic enzyme type C₄) were grown from seeds and F. pringlei (C₃), F. floridana (C₃–C₄), and F. brownii (C₄-like) from cuttings in a mixture of 50% sand and 50% peat. After 2–3 weeks, when the cuttings presented roots,

the plants were transferred to 1-kg plastic trays (11 \times 11 \times 12 cm³) containing a soil mixture of 25% sand, 25% organic matter, and 50% peat. Plants were grown in a climate chamber at 23°C, 40-60% relative humidity, 14/10 h day/night rhythm with a photosynthetic photon flux density (PPFD) of 400 µmol m⁻² s⁻¹ provided by Osram 1,000 W lamps and received water daily. Threeto four-week-old plants were exposed to drought stress (DS) by receiving only so much water every evening to ensure a water content corresponding to 30% field capacity overnight, corresponding to water potential of approx. -1.6 MPa (Scheffer and Schachtschnabel 2002, Beyel and Brüggemann 2005). After 3-4 days, plants reached a water potential between -1.0 and -1.8 MPa during the DS treatment, which persisted for three days further. For comparison reasons, other plants with the same age were maintained under control conditions at a field water capacity.

Whole-plant water potentials were measured with a *SKPM 1400* pressure chamber (*SKYE Instruments*, Powys, Wales, UK) on abscised stems just above the soil surface, according to Scholander (1965). Osmotic potential of leaf pressure saps were determined by freezing point depression with an *Osmomat 030* (*Gonotec*, Berlin, Germany) according to Walter and Kreeb (1970). Turgor (pressure potential) was estimated by the difference between water potential and osmotic potential.

In situ determinations of photosynthetic rate and transpiration rate at saturating PPFD [1,000 μmol(photon) m⁻² s⁻¹ for *F. pringlei* or 2,000 μmol(photon) m⁻² s⁻¹ for

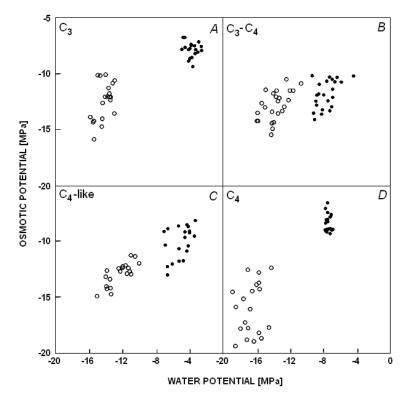


Fig. 1. Response of osmotic potential to decreasing plant water potential in control (*filled circles*) and drought stressed plants (*open circles*) of *F. pringlei* (*A*), *F. floridana* (*B*), *F. brownii* (*C*) and *F. trinervia* (*D*) (n = 20-24).

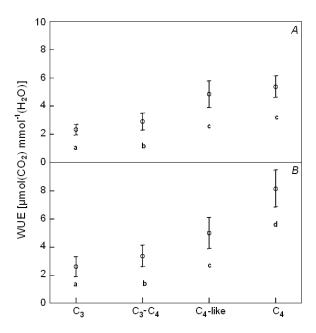


Fig. 2. Water-use efficiency (WUE) in control (A) and drought-stressed plants (B) of Flaveria pringlei (C_3), F. floridana (C_3 – C_4), F. brownii (C_4 -like) and F. trinervia (C_4). Values are means \pm SD (n = 18–21). Different letters indicate statistically significant differences.

the other species] were measured with a *LI-6200* infrared gas analyzer (*LiCor*, Lincoln, NE, USA) under growth-chamber conditions [370 µmol(CO₂) mol⁻¹]. The relative humidity of air entering the cuvette was set at 60% and the cuvette temperature was 23°C. The flow rate of air through the sample chamber was set at 200–300 µmol s⁻¹ Plants were illuminated during 15–20 min before the photosynthesis measurements. WUE was calculated as the ratio of the photosynthetic rate [µmol (CO₂) m⁻² s⁻¹] and transpiration rate [mmol(H₂O) m⁻² s⁻¹] for each species in control and DS conditions. Measurements were always performed in the youngest fully developed leaf. The gas analyzer was calibrated every day according to the manufacturer's recommendations.

The quantitative analysis is based on individual measurements of 20–24 plants for water potential and osmotic potential, and 18–21 plants for photosynthetic rate and transpiration rate.

For each group of control and DS plants, we analysed the results in terms of WUE with respect to different photosynthetic pathways by using one-way analysis of variance (ANOVA). Pairwise comparisons between means were evaluated by Tukey's Multiple Comparison Test at a significant level 0.05. The analysis was performed with SigmaStat for Windows, version 3.1.

In order to quantify the degree of DS in *F. pringlei*, *F. floridana*, *F. brownii*, and *F. trinervia*, water potential and osmotic potential were measured in control and DS plants. Fig. 1 shows the response of osmotic potential to decreasing plant water potential in *Flaveria* species exposed to DS. In the C₃ and C₄ species, the strong

decline of the water potential from control to DS was also followed by a high decrease of the osmotic potential (Fig. 1A,D). However, in both intermediate species, despite the high decrease in water potential, osmotic potential decreased only slightly from control to DS plants (Fig. 1B,C). Drought stress resulted in a decrease of turgor in the C_4 and intermediate species. In the C_3 plant, turgor potential was completely lost.

Fig. 2 reports the WUE in control and DS *Flaveria* species. According to our *ANOVA* analysis, the calculated WUE under control conditions increased significantly from the C_3 species to the intermediates and C_4 species (Fig. 2*A*). However, the mean values of WUE in the C_4 and C_4 -like species were not statistically different $[5.36 \pm 0.74$ and 4.84 ± 0.94 µmol(CO_2) mmol(H_2O)⁻¹, respectively]. The C_3 species presented the lowest WUE whereas the C_4 and C_4 -like species presented the highest WUE mean under well-watered conditions. Under DS conditions, the C_4 plant achieved the highest WUE $[8.15 \pm 1.30 \, \mu mol(CO_2) \, mmol(H_2O)^{-1}]$ and the C_3 plant presented the lowest WUE mean $[2.61 \pm 0.68 \, \mu mol(CO_2) \, mmol(H_2O)^{-1}]$. The WUE mean in intermediate species was significantly higher than that of the C_3 species under DS (Fig. 2*B*).

The results obtained in this study for the four *Flaveria* species varied markedly in their sensitivity towards DS. Under the same DS conditions, water potential declined in all species and turgor potential was completely lost in the C₃ species. Furthermore, the results show that C₃–C₄ and C₄-like intermediacy in *Flaveria* species brings advantages, namely higher WUE, as compared to the C₃ species under the same environmental conditions.

In an earlier study (Dias and Brüggemann 2007), it has been shown that stomatal conductance decreased the most strongly in the C₃ species F. pringlei under DS, leading to complete closure of the stomata and also to complete loss of turgor. In the other three species, a moderate to strong decline of stomatal conductance had been observed. An increase in the stomatal response to light and CO₂ enhances the ability of the stomatal response to environmental variations at relative low stomatal conductances and the acquisition of this trait occurred at the end of the evolutionary C₄-cycle process (Sage 2004). F. floridana exhibits a stronger stomatal response to light and CO₂ than that of the C₃ Flaveria species (e.g. F. pringlei and F. robusta) and other C₃-C₄ Flaveria species (e.g. F. chloraefolia and F. sonorensis) (Huxman and Monson 2003), but this intermediate is strongly C3-like in many features, including its normal operating intercellular CO₂ concentration (C_i) value and its low C₄-cycle activity (Huxman and Monson 2003). Despite these strong physiological and biochemical C₃ characteristics, the C₃-C₄ intermediate, F. floridana, showed improved WUE under the environmental conditions tested in this study as compared to the C₃ species. This advantage could be related to the efficiency of CO₂ recapture by glycine decarboxylase and consequently reduction of photorespiration, improving photosynthetic performance, and WUE, as compared to C_3 plants (Monson and Rawsthorne 2002, Dias and Brüggemann 2007).

The C₄-like intermediate species, F. brownii, showed WUE similar to the C₄ plant under well-watered conditions. Under DS, WUE was lower than for the C₄ species. However, this species still presents an advantage over the other intermediate species (C_3-C_4) and C_3 plant. F. brownii is the most advanced intermediate species in terms of development of the C4 syndrome (Monson and Rawsthorne 2002). The high degree of development of the C₄-cycle in this intermediate (Monson and Rawsthorne 2002), associated with an efficient CO₂ concentration mechanism in the bundle sheath cells, resulted in high assimilation of CO₂, which allows this species to photosynthesize at lower stomatal conductance than in the C₃ and C₃-C₄ intermediate plants (Dias and Brüggemann 2007). The lower stomatal conductance and transpiration rates lead to higher WUE in the C₄-like intermediate *F. brownii*.

Field and laboratory studies in photosynthetically intermediate *Flaveria* species showed that the ability of several intermediate species to reduce photorespiration is advantageous under high temperature and DS conditions,

References

- Apel, P.: Water use efficiency in *Flaveria* and *Moricandia* species. Biol. Plant. **36**: 243-246, 1994.
- Beyel, V., Brüggemann, W.: Differential inhibition of photosynthesis during pre-flowering drought stress in *Sorghum bicolor* genotypes with different senescence traits. – Physiol. Plant. 124: 249-259, 2005.
- Brown, R.H., Simmons, R.E.: Photosynthesis of grass species differing in CO₂ fixation pathway. 1. Water use efficiency. Crop Sci. **19**: 375-379, 1979.
- Dias, M.C., Brüggemann, W.: Differential inhibition of photosynthesis under drought stress in *Flaveria* species with different degrees of development of the C₄ syndrome. Photosynthetica **45**: 75-84, 2007.
- Huxman, T.E., Monson, R.K.: Stomatal response of C₃, C₃-C₄ and C₄ *Flaveria* species to light and intercellular CO₂ concentration: implications for the evolution of stomatal behaviour. Plant Cell Environ. **26**: 313-322, 2003.
- Hylton, C.M., Rawsthorne, S., Smith, A.M., Jones, D.A.: Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C₃–C₄ intermediate species. Planta **175**: 452-459, 1988.
- Ku, M.S.B., Schmitt, M.R., Edwards, G.E.: Quantitative determination of RuBP carboxylase-oxygenase protein in leaves of several C₃ and C₄ plants. J. Exp. Bot. 30: 89-98, 1979.
- Ku, M.S.B., Monson, R.K., Littlejohn, R.O., Nakamoto, H., Fisher, D.B., Edwards, G.E.: Photosynthetic characteristics of C₃-C₄ intermediate *Flaveria* species. 1. Leaf anatomy, photosynthetic responses to O₂ and CO₂, and activities of key enzymes in the C₃ and C₄ pathways. Plant Physiol. **71**: 944-948, 1983.
- Kocacinar, F., McKown, A.D., Sage, T. L., Sage, R. F.: 2008. Photosynthetic pathway influences xylem structure and function in *Flaveria* (Asteraceae). – Plant Cell Environ. 31:

where stomatal closure may limit internal CO₂ concentrations (Ku *et al.* 1983, Monson 1989, Monson and Jaeger 1991, Sudderth *et al.* 2009). Improved WUE was also reported in other C₃–C₄ intermediate species from other genera, *i.e. Moricandia* and *Panicum*, under well-watered conditions (Hylton *et al.* 1988) and DS ones (Ku *et al.* 1979, Brown and Simmons 1979). In our study, we compared WUE in two intermediate *Flaveria* species with different degrees of C₄ development relative to the C₃ and C₄ species. From the results it can be concluded that under well-watered and DS conditions, C₃–C₄ and C₄-like CO₂ fixation type in *Flaveria* is connected with an improved WUE in comparison to a C₃ species.

Although this genus is physiologically, biochemically, and genetically well characterized (Sage 2004, Mckown et al. 2005), further research combining more Flaveria species and other stress factors should be carried out in order to improve our understanding of the environmental conditions that promote the evolution of the C₄ photosynthetic pathway. Additionally, field studies will improve and complete our knowledge on the physiological performance of these intermediate species under natural growing conditions.

- 1363-1376, 2008.
- Kutschera, U., Niklas, K.J.: Photosynthesis research on yellowtops: Macroevolution in progress. –Theory Biosci. **125**: 81-92, 2007.
- McKown, A.D., Moncalvo, J.-M., Dengler, N.G.: Phylogeny of *Flaveria* (Asteraceae) and inference of C₄ photosynthesis evolution. Amer. J. Bot. **92**: 1911-1928, 2005.
- Monson, R.K.: The relative contributions of reduced photorespiration, and improved water- use and nitrogen-use efficiencies, to the advantages of C₃-C₄ intermediate photosynthesis in *Flaveria*. – Oecologia **80**: 215-221, 1989.
- Monson, R.K.: The origins of the C_4 genes and evolutionary pattern in the C_4 metabolic phenotype. In: Sage, R.F., Monson, R.K. (ed.): C_4 Plant Biology. Pp. 377-410. Academic Press, San Diego 1999.
- Monson, R.K., Jaeger, C.H.: Photosynthetic characteristics of C₃-C₄ intermediate *Flaveria floridana* (Asteraceae) in natural habitats: evidence of advantages to C₃-C₄ photosynthesis at high leaf temperatures. Amer. J. Bot. **78**: 795-800, 1991.
- Monson, R.M., Rawsthorne, S.: CO₂ assimilation in C₃-C₄ intermediate plants. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S.C. (ed.): Photosynthesis: Physiology and Metabolism. Kluwer Academic Press, Dordrecht 2002.
- Reed, J.E., Chollet, R.: Immunofluorescent localization of phosphoenolpyruvate carboxylase and ribulose 1,5-bisphosphate carboxylase/oxygenase proteins in leaves of C₃, C₄ and C₃–C₄ intermediate *Flaveria* species. Planta **165**: 439-445, 1985.
- Sage, R.F.: The evolution of the C₄ photosynthesis. New Phytol. **161**: 341-370, 2004.
- Scheffer, F., Schachtschnabel, P. (ed.): [Lehrbuch der Bodenkunde.] 15th Ed. Spektrum A. Verlag, Heidelberg 2002. [In German.]

- Scholander, P.F., Hammel, H.T., Bradstred, E.D., Hemmings, E.A: Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Science **148**: 339-346, 1965
- Sudderth, E.A., Espinosa-García, F. J., Holbrook, N.M.: Geographic distributions and physiological characteristics of co-existing *Flaveria* species in south-central Mexico. Flora **204**: 89-98, 2009.
- Walter, H., Kreeb, K.-H.: [Die Hydratation und Hydratur des Protoplasmas der Pflanzen und ihre ökophysiologische Bedeutung.] Protoplasmatologia II C6. Springer-Verlag, Wien 1970. [In German.] Westhoff, P., Gowik, U.: Evolution of C_4 phosphoenolpyruvate
- Westhoff, P., Gowik, U.: Evolution of C₄ phosphoenolpyruvate carboxylase. Genes and proteins: a case study with the genus *Flaveria*. Ann. Bot. **93**: 13-23, 2004.