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УДК 519.853.2

ЗАДАЧИ ЛИНЕЙНОГО ПОЛУОПРЕДЕЛЕННОГО  
ПРОГРАММИРОВАНИЯ: РЕГУЛЯРИЗАЦИЯ И ДВОЙСТВЕННЫЕ  

ФОРМУЛИРОВКИ В СТРОГОЙ ФОРМЕ

О. И. КОСТЮКОВА1), Т. В. ЧЕМИСОВА2)

1)Институт математики НАН Беларуси, ул. Сурганова, 11, г. Минск, 220072, Беларусь 
2)Авейрусский университет, кампус Университета Сантьяго, 3810-193, г. Авейру, Португалия

Регуляризация задачи оптимизации состоит в ее сведении к эквивалентной задаче, удовлетворяющей условиям 
регулярности, которые гарантируют выполнение соотношений двойственности в строгой форме. В настоящей 
статье для линейных задач полуопределенного программирования предлагается процедура регуляризации, осно-
ванная на понятии неподвижных индексов и их свойствах. Эта процедура описана в виде алгоритма, который за 
конечное число шагов преобразует любую задачу линейного полубесконечного программирования в эквивалент-
ную задачу, удовлетворяющую условию Слейтера. В результате использования свойств неподвижных индексов 
и предложенной процедуры регуляризации получены новые двойственные задачи полубесконечного программи-
рования в явной и неявной формах. Доказано, что для этих двойственных задач и исходной задачи соотношения 
двойственности выполняются в строгой форме.
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LINEAR SEMIDEFINITE PROGRAMMING PROBLEMS:  
REGULARISATION AND STRONG DUAL FORMULATIONS
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Regularisation consists in reducing a given optimisation problem to an equivalent form where certain regularity con-
ditions, which guarantee the strong duality, are fulfilled. In this paper, for linear problems of semidefinite program-
ming (SDP), we propose a regularisation procedure which is based on the concept of an immobile index set and its 
properties. This procedure is described in the form of a finite algorithm which converts any linear semidefinite problem 
to a form that satisfies the Slater condition. Using the properties of the immobile indices and the described regularisation 
procedure, we obtained new dual SDP problems in implicit and explicit forms. It is proven that for the constructed dual 
problems and the original problem the strong duality property holds true.

Keywords: linear semidefinite programming; strong duality; normalised immobile index set; regularisation; constraint 
qualifications.
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Introduction
In this paper, we consider semidefinite programming (SDP) problems which are particular case of semi- 

infinite programming (SIP) and conic optimisation. The interest to SDP problems stems from their numerous 
applications [1; 2].

In conic optimisation, optimality conditions and duality results are usually formulated under some regula-
rity conditions, so-called constraint qualifications (CQ) (see e. g. [2–5]). Such conditions should guarantee the 
fulfillment of the Karush – Kuhn – Tucker (KKT) type optimality conditions and the strong duality property 
consisting in the fact that the optimal values of the objective function in the primal problem and its Lagrangian 
dual problem are equal and the objective function in the dual problem attains its maximum.

If a given SDP problem does not satisfy CQs then, in general, the optimality conditions in the KKT form de-
generate (i. e. are satisfied for all feasible solutions and, hence, are not helpful for the search for optimal solu-
tions) and the strong duality relations are violated. This makes it difficult to solve such problems nume rically. 
To avoid these obstacles, regularisation procedures are applied to the original irregular problems. The purpose 
of such procedures is to obtain equivalent formulations satisfying some CQs.

One of the most commonly used CQ is the Slater condition that consists in non-emptiness of the interior 
of the feasible set. For SDP problems that do not satisfy this CQ, several regularisation procedures based on 
a so-called  facial reduction approach (FRA) were proposed in [6–9]. Being very general (they are designed 
for a wider class of problems than SDP), these procedures are not detailed.

In [6; 10], the authors used the FRA to construct an explicit dual SDP problem which satisfies the strong 
duality property without any CQ.

For the study of SIP problems not satisfying CQ, we proposed (see [11; 12]) other approach which is based 
on the concept of immobile indices, i. e. indices of the constraints that are active for all feasible solutions. 
In this paper, we will apply this approach to SDP problems.
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The main aim of this paper is to show that the concept of immobile indices is an efficient tool that can be 
used in SDP:

1) to design and justify a new regularisation procedure;
2) formulate explicitly dual SDP problems satisfying the strong duality relations.

Linear semidefinite programming problem:  
problem statement and basic definitions

Given an integer p > 1, denote by R+
p  the set of all p vectors with non-negative components, by S p and S+

p  
the space of real symmetric p × p matrices and the cone of symmetric positive semidefinite p × p matrices, 
respectively. The space S p is considered here as a vector space with the trace inner product A B trace AB• = ( ): .

Consider a linear SDP problem in the form

 min , ,
x

pc x x� A Ss. t. ( ) ∈ +  (1)

where x x xn= …( )1, ,
 is the vector of decision variables and the constraints matrix function  x( ) is defined as 

  x A x A
j

n

j j( ) = +
=

∑: ,

1

0  (2)

matrices Aj
p∈S ,  j = 0, 1, …, n, and vector c ∈ Rn are given. Here and below, for a given vector or matrix n, 

we denote by n its transpose.
It is well known that the SDP problem in the form (1) is equivalent to the following convex SIP problem: 

 min , ,
x
c x t x t t T� �As. t. ( ) ≥ ∀ ∈0  (3)

with a p – dimensional compact index set 
 T t tp

: := ∈ ={ }+ 1 .  (4)

Denote by X the feasible set of the equivalent problems (1) and (3): 

X x x S x t x t t Tn p n
: : := ∈ ( ) ∈{ } = ∈ ( ) ≥ ∀ ∈{ }+ A A� 0 .

Evidently, the set X is convex. 
Remark 1. In what follows, we will suppose that X ≠ ∅. Then there exists a feasible solution y ∈ X and, without 

lost of generality, we can consider that A S p
0

.∈ +  In fact, having substituted x by a new variable z := x – y, we can 
replace the original problem (1) by the following one in terms of z:

min , ,
z

pc z z S� As. t. ( ) ∈ +

with  z A z Ai i
i

n

( ) = +
=
∑: 0

1

, A y S p
0

.= ( ) ∈ +

According to the commonly used definition, the constraints of the SDP problem (1) satisfy the Slater con-
dition if ∃ ∈x n

 such that

 A S �x S D p t Dt t tp p( ) ∈ = ∈ ( ) > ∀ ∈ ≠{ }+int : ,0 0 .  (5)

Here int B stays for the interior of a set B.
Following [11; 12], let’s define the set of immobile indices Rim and the set of normalised immobile indi-

ces Tim in problem (1): 
R t t x t x Xim

p
: : ,= ∈ ( ) = ∀ ∈{ }

�A 0

T t T t x t x X t R tim im: : : .= ∈ ( ) = ∀ ∈{ } = ∈ ={ }�A 0 1

The following proposition is a consequence of the well know fact: if A p∈ ( )+S ,  then tAt = 0 if and only 
if At = 0.

Proposition 1. If t ∈ Rim then  x t( ) = 0 for all x ∈ X.
The lemma below can be proved following the scheme of the proof of lemma 1 and proposition 1 in [13]. 
Lemma 1. Given the linear SDP problem (1), the following statements are true: 
1) the Slater condition (5) is satisfied if and only if Rim = { }0 ;
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2) the set of immobile indices Rim either contains a single zero vector or is a subspace in Rp.
Here in what follows, 0 denotes a null vector of a given finite dimensional vector space.
It follows from lemma 1 that if Tim = ∅, then the constraints of problem (1) satisfy the Slater condition. This 

case is well studied in literature. In this paper, we will consider a general case, where we do not suppose that 
Tim = ∅ and concentrate our main attention on the case Tim ≠ ∅.

Let us consider any finite non-empty set of indices 

 V i T i I Iim= ( ) ∈ ∈{ } ≤ < ∞τ , , 1 .  (6)

Lemma 2. Given any set V in the form (6), the  feasible set X of problem (1) coincides with the set 

X V x x i i I t x t t T Vn( ) = ∈ ( ) ( ) = ∈ ( ) ≥ ∀ ∈ ( ){ }: : , , , A A�τ 0 0

where T V t T t i i I( ) = ∈ ( ) = ∈{ }: : ,
τ 0 .

P r o o f. It follows from proposition 1 that X X V⊂ ( ). Let us show that X V X( ) ⊂ . Suppose that x X V∈ ( ) 
whereform
  x i i I( ) ( ) = ∈τ 0, ,  (7)

 t x t t T V�A ( ) ≥ ∀ ∈ ( )0 .  (8)
It is evident that any vector t ∈ Rp can be presented in the form 

t l l i i I i i I= + ∈ ( ) ∈{ } ∈ ( ) ∈{ }( )^
m τ m τ, , , , .where span span

Here for S ⊂ Rp, we denote by S ^ the orthogonal complement to S in Rp. Then, it follows from (7) that 
 x l( ) = 0 and hence 
 t x t x� �A A( ) = ( )m m.  (9)

If m = 0, then it follows from (9) that t x t�A ( ) = 0.
Suppose that m ≠ 0. Then, by construction, for m m m= /  it holds m ∈ ( )T V . Taking into account this in-

clusion and relations (8), (9) we conclude that t x t�A ( ) ≥ 0. Thus we have shown that, for any x X V∈ ( ) and 
any t ∈ Rp, the inequality t x t�A ( ) ≥ 0 holds true. This implies that x X∈ , and hence X V X( ) ⊂ . The lemma 
is proved.

Notice that, by construction, we have span V T V{ } ∩ ( ) = ∅.

A regularisation procedure based on immobile indices
In this section, we will describe a regularisation procedure which constructs an SDP problem that is equiva-

lent to the original problem (1) and satisfies the Slater condition. At the beginning of the procedure we suppose 
that the matrix function  x x n( ) ∈, ,  defined in (2) is known. Remind that A S p

0
∈ + .

Let us describe and justify the regularisation procedure in steps.
Step #0. Given the SDP problem in the form (1), consider the following SIP problem: 

SIP s. t.0 0: min , , ,
,x

t x t t T
m

m m
( )

( ) + ≥ ∈�A

with the index set T defined in (4).
If there exists a feasible solution x , m( ) of this problem with m < 0, then set m* := 0 and go to the  final step. 

Otherwise the vector (x = 0, m = 0) is an optimal solution of the problem SIP0.
It should be noticed that the problem SIP0 is regular since the index set T is a compact set, and the con-

straints satisfy the Slater condition. Hence, (see e. g. [14]), it follows from the optimality conditions for the 
vector (x = 0, m = 0) in problem SIP0 that there exist indices and numbers τ γi T i i I I n( ) ∈ ( ) > ∈ ≤ +, , , ,0 11 1  
such that 

γ τ τ γi i A i j n ij
i I i I

( ) ( )( ) ( ) = = … ( ) =
∈ ∈
∑ ∑

0 0 1 1

1 1

, , , , ; .

It follows from the relations above that I1 ≠ ∅ and τ i T T i Iim( ) ∈ ⊂ ∈, 1.

Go to the next step with the data γ τi i T i Iim( ) > ( ) ∈ ∈0 1, , , and I0 = ∅.
Step #m, m ≥≥ 1. By the beginning of the iteration, we have numbers, indices and vectors 
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 γ τ λi i T i I i i Iim m
m p

m( ) > ( ) ∈ ∈ ( ) ∈ ∈-
-0

1

1, , , , ,  (10)
which satisfy the relations 

 γ τ τ λ τi i A i i A i j nj
i Im

m
j

i Im

( ) ( )( ) ( ) + ( )( ) ( ) = = …
∈

-

∈
∑ ∑

-

 
1

0 0 1

1

, , , , ..  (11)

Notice that if m = 1, then Im – 1 = I0 = ∅. Hence … =
∈ -

∑
i Im 1

0  and we do not need vectors λm mi i I-
-( ) ∈1

1, .

Consider a SIP problem: 

SIP s. t.m x m mx i i I t x t t T: min , , , , ,
, m

m τ m
( )

( ) ( ) = ∈ ( ) + ≥ ∈A A�0 0

with the index set T t T t i i Im m: : , .= ∈ ( ) = ∈{ }τ 0

By construction, in this problem the index set Tm is a compact set, there is a finite number of linear equa-
lity constraints, and there exists a feasible solution (x* = 0, m* = 1) such that t x t�A ∗ ∗( ) + >m 0  for all t ∈ Tm. 
Hence, problem SIPm is regular.

Notice that it follows from lemma 2 that for m = 0, the set of feasible solutions in the problem SIPm coincides 
with the set of feasible solutions X in the original problem (1).

If there exists a feasible solution x , m( ) of SIPm with m < 0, then set m* := m and go to the  final step.
Otherwise the vector (x = 0, m = 0) is an optimal solution of the problem SIPm. Since this problem is regu lar, 

it follows from the optimality of (x = 0, m = 0) (see [14]) that there exist indices, numbers and vectors 

τ γ λi T i i I I n i i Im m m
p

m( ) ∈ ( ) > ∈ ≤ + ( ) ∈ ∈, , , , , ,0 1D D 

such that 

 γ τ τ λ τ γi i A i i A i j n ij
i Im

j
i Im

( ) ( )( ) ( ) + ( )( ) ( ) = = … (
∈D ∈
∑ ∑ 

0 0 1, , , , ; )) =
∈D
∑
i Im

1.  (12)

It follows from the relations above that D Im ≠ ∅, τ i T T i Iim m m( ) ∈ ∩ ∈, ,D  and

 rank rankτ τi i I i i I I I Im m m m m( ) ∈( ) ≥ ( ) ∈( ) + = ∪+ +, , , : .1 11 D  (13)

From (11) and (12), we have 

 γ τ τ λ τi i A i i A i j nj
i Im

m
j

i Im

( ) ( )( ) ( ) + ( )( ) ( ) = = …
∈ + ∈
∑ ∑ 

1

0 0 1, , , , ,  (14)

where λ λm
m mi i i I I( ) = ( ) ∈ -, ;\ 1  λ λ λm m

mi i i i I( ) = ( ) + ( ) ∈-
-

1

1.,

Go to the next iteration # m +( )1  with the new data 

 γ τ λi i T i I i i Iim m
m p

m( ) > ( ) ∈ ∈ ( ) ∈ ∈+0 1, , ; , ,  (15)
which satisfies (13) and (14).

Final step. It follows from (13) that the algorithm consists of a finite number m* of steps and m* ≤  p. Hence, 
for some 0 ≤ m* ≤ p, the problem SIPm∗

 has a feasible solution x , m( ) with m < 0.
If m* = 0, then the constraints of the original SDP problem (1) satisfy the Slater condition. Hence, this 

problem is regular.
Suppose that m* > 0. By the beginning of the final step, the immobile indices τ i( ), i Im∈

∗
, have been con-

structed. Consider a problem 

 min , , , , ,
x

m mn
c x x i i I t x t t T

∈
( ) ( ) = ∈ ( ) ≥ ∈

∗ ∗


� �A As. t. τ 0 0  (16)

where T t T t i i Im m∗ ∗
= ∈ ( ) = ∈{ }: , .

τ 0  Since τ i Tim( ) ∈ , i Im∈
∗
, it follows from lemma 2 that the problem above 

is equivalent to problem (1) and can be considered as its regularisation since, by construction, 

A A�x i i I t x t t Tm m( ) ( ) = ∈ ( ) ≥ - > ∈
∗ ∗

τ m0 0, , , ,

and the index set Tm∗
 is a compact set. The regularisation procedure is described. 
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The described in this section regularisation procedure has the form of the algorithm whose iterations are 
described in all details and, therefore, it is more constructive than other regularisation procedures proposed for 
SDP problems in [6; 8]. It should be noted also that unlike the procedures from [6; 8] which are based on the 
FRA, the presented here procedure is based on the properties of the set of immobile indices that proves once 
again the important role that the immobile indices play in the study of optimisation problems.

Dual SDP formulations based on the immobile indices
In this section, for the linear SDP problem (1), we formulate several types of dual problems and discuss 

their properties.
The standard Lagrangian dual problem (SLD). For the SDP problem (1), the SLD has the form (see [10]) 

SLD s. t.: max , , , , , ; .- • • = = … ∈ +U A U A c j n Uj j
p

0 1 2 S

Given a pair of mutually dual optimisation problems, the deference between the optimal values of the pri-
mal and dual objective functions is called the duality gap.

For the pair of dual problems (1) and SLD, the following results are known: 
 • weak duality (the duality gap is not negative);
 • strong duality (if the constraints of problem (1) satisfy the Slater condition, then the duality gap vanishes);
 • if the Slater condition is not satisfied, then the duality gap may be positive.

Let us now formulate for problem (1), two new dual problems (one in an implicit and another in an explicit 
form), for which the duality gap vanishes without any additional assumptions.

An implicit dual problem (IDP). Suppose that for problem (1), the set of immobile indices Rim is known. 
By lemma 1, the set Rim either consists of a unique zero element: Rim = { }0 , or it is a subspace in Rp. Denote by 
ξ i i Ib( ) ∈{ }, , where 0 ≤ ≤I pb , any basis of the subspace Rim. In the case Rim = { }0 , we consider that Ib := ∅.

Define a matrix V i i Ib b
p p

: , ,= ( ) ∈( ) ∈ × ∗ξ   p Ib* : ,=  and consider a problem 

IDP: max , , , , ; , .- • +( ) • = = … ∈ ∈+
× ∗U A U V A c j n Ub j j

p p p
0 1s. t. Λ ΛS 

Note that in the case Rim = { }0 , the problem IDP coincides with the problem SLD.
Based on lemma 2, we can prove the following theorem. 
Theorem 1. The problem IDP is dual to problem (1) and the strong duality relations hold true. 
To formulate the dual problem IDP, we have to know a basis of the subspace Rim. Hence this dual formula-

tion can be considered as an implicit one.
A dual problem in the explicit form (EDP). Evidently, we are interested to have a dual SDP problem in 

an explicit form, where only data of the original primal problem (1) is used.
For a given finite integer k* ≥ 0, let us consider the following problem: 

max ,- +( ) •
∗

U W Ak 0

s. t . , , , , ; , ;U W A c j n U Wm j j
p

p+( ) • = = … ∈ =
∗ +1 2 0S O

 EDP k U W A j nm m j∗ -( ) +( ) • = = …: , , , , ,1 0 0 1  (17)

 
U W

W D
m km m

m m

p
� S







∈ = …+ ∗

2
1, , , ,  (18)

where U S D Sm
p

m
p∈ ∈, , Wm

p p∈ ×
 , m = 1, …, k*, and Op stays for the p × p null matrix.

Notice that in the case k* = 0, the index set 1, ,…{ }∗k  is supposed to be empty and then constraints (17) 
and (18) are missing in the problem EDP k∗( ). Hence, the problem EDP 0( ) coincides with the problem SLD.

Lemma 3 [weak duality]. Let x ∈ X be a feasible solution of the primal linear SDP problem (1) and 
Um , Wm , Dm , m = 1, …, k*; U be a feasible solution of the problem EDP k∗( ). Then the following inequality 
holds
 c x U W Ak

 ≥ - +( ) •
∗ 0

.  (19)
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P r o o f. Given m = 1, …, k*, it follows from the condition (18) that there exists a matrix Bm in the form 

B
V
L

U W

W D
B B

V
Lm

m

m

p k m m m

m m
m m

m

m
=







∈






= =




× ( )


2
such that 





 ( )V Lm m

 
.

The matrix Bm above is composed by the blocks containing matrices 

 V i i I L i i Im
m

m m
m

m= ( ) ∈( ) = ( ) ∈( )τ λ, , ,and  (20)

where τ λm p m p
m mi i i I k m I( ) ∈ ( ) ∈ ∈ ( ) = , , , : .

Hence, for m = 1, …, k*, the matrices Um, Wm, Dm in EDP k∗( ) admit representation 

 U V V W V L D L Lm m m m m m m m m= = =  
, , .  (21)

Let us prove, first that for all m = 1, …, k*, it holds 

  x i i I x Xm
m( ) ( ) = ∈ ∀ ∈τ 0, , .  (22)

Consider the following constraints of the problem EDP k∗( ):
U A j nj1 0 0 1• = = …, , , , .

Due to (20) and (21), these constraints can be rewritten in the form 

τ τ1 1

1

0 0 1i A i j nj
i I

( )( ) ( ) = = …
∈
∑


, , , , .

It follows from these equalities that for any x ∈ Rn, we have 

 τ τ1 1

1

0i x i
i I

( )( ) ( ) ( ) =
∈
∑

�
A .  (23)

Taking into account that the inequalities 

 t x t t x Xp�A ( ) ≥ ∀ ∈ ∀ ∈0 , ,  (24)

should be fulfilled, equality (23) implies τ τ1 1
0i x i( )( ) ( ) ( ) =

�
A , i I x X∈ ∀ ∈1, .

Thus, one can conclude that τ1 i Tim( ) ∈ , i ∈ I1, and, consequently (see proposition 1), it holds  x i( ) ( ) =τ1 0, 
i ∈ I1, ∀x ∈ X. Hence, equalities (22) are valid for m = 1.

Suppose that for some m ≥ 1, equalities (22) are proved. Due to (20) and (21), the constraints U W Am m j+ +( ) • =1 0,

U W Am m j+ +( ) • =1 0,  j = 0, 1, …, n, of the problem EDP k∗( ) can be rewritten in the form 

τ τ λ τm
j
m

i Im

m
j
m

i Im

i A i i A i j+ +

∈ + ∈
( )( ) ( ) + ( )( ) ( ) = = …∑ ∑1 1

1

0 0 1
 

, , , , nn.

It follows from the latter equalities that for any x ∈ Rn, we have 

 τ τ λ τm m

i Im

m m

i Im

i x i i x i+ +

∈ + ∈
( )( ) ( ) ( ) + ( )( ) ( ) ( ) =∑ ∑1 1

1

0
� �
A A .  (25)

By the hypothesis above, equalities (22) are satisfied. Then, taking into account inequalities (24), we con-
clude from (25) that 

τ τm m
m mi x i i I i I x X+ +

+( )( ) ( ) ( ) = ∈ ∈ ∀ ∈1 1

10
�
A , , , .

Hence, τm im mi T i I+
+( ) ∈ ∈1

1, , and, according to proposition 1, it holds 

 x i i I x Xm
m( ) ( ) = ∈ ∀ ∈+

+τ 1

10, , .

Replace m by m + 1 and repeat the considerations for all 1 < m < k*.
Let m = k*. In this case, relations (22) have the form 
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  x i i I x Xk
k( ) ( ) = ∈ ∀ ∈∗

∗
τ 0, , ,  (26)

and for U i i i i I
i I

p= ( ) ( )( ) ( ) ∈ ∈
∈
∑τ τ τ

, , ,  the constraints U W A ck j j+( ) • =
∗

,  j = 1, …, n, of the problem 

EDP k∗( )  can be presented in the form 

τ τ λ τi A i i A i c j nj
i I

k
j
k

i Ik
j( )( ) ( ) + ( )( ) ( ) = = …

∈ ∈
∑ ∑ ∗ ∗

∗

 
, , , .1

Then, it follows from the equalities above and relations (24), (26) that 

c x i x i U W A U W Aj j
j

n

i I
k k

= ∈
∑ ∑= ( )( ) ( ) ( ) - +( ) • ≥ - +( ) •

∗ ∗
1

0 0
τ τ

�
A .

The lemma is proved.
Theorem 2 [strong duality]. Suppose that the linear SDP problem (1) admits an optimal solution x0. Then 

there exists a finite integer k*, 0 ≤ ≤ { }k p n* min , , such that the problem EDP k∗( ) is dual to problem (1) and 
the strong duality relations are satisfied, i. e. the dual problem has an optimal solution 

 U W D m k Um m m
0 0 0 0

1, , , , , ;*= …( )  (27)

and the following (the strong duality) equality holds

 c x U W Ak
 0 0 0

0
= - +( ) •

∗
.  (28)

P r o o f. To prove the theorem, we will construct the number k* and matrices (27) using the regularisation 
procedure described in section 3. This procedure consists of the steps numbered from 0 to m*, where m* ≤ p. 
At the beginning of each step #m, we have indices τ i i Im( ) ∈, . Denote 

r m
A i j n

i I
n m rj

m
( ) =

( ) = …

∈







≤ ≥ ( ) =:

, , ,
,rank for

τ 1
1 0 0.

By construction, r m r m m m+( ) ≥ ( ) = … -∗1 0 1, , , .

Let m k k k( ) = … ∗, , , , ,0 1  be the numbers of the steps on which the following relations are satisfied: 

m k m k s k s k k k( ) = -( ) + ( ) ( ) ≥ = … ∗1 1 0 1, , , , , ;where

m m k m p-( ) = - ( ) = ≤∗ ∗1 1, ,

 r m k r m k r m k s k k k-( ) +( ) = -( ) +( ) = … = -( ) + ( )( ) = … ∗1 1 1 2 1 0 1, , , , ;  (29)

r m k r m k k k+( )( ) > ( )( ) = … -∗1 0 1 1, , , , .

These relations and the conditions r m n( ) ≤ , m k m p∗ ∗( ) = ≤ , imply k p n∗ ≤ { }min , .

Let us group together the steps of the procedure described in section 3, into iterations that have the numbers 
k = 0, 1, …, k*, as follows: the iteration #k consists of the steps with the numbers m k m k m k s k m k-( ) + -( ) + … -( ) + ( ) = ( )1 1 1 2 1, , , : .

m k m k m k s k m k-( ) + -( ) + … -( ) + ( ) = ( )1 1 1 2 1, , , : .

For 0 1,≤ ≤ -∗k k  let us consider iteration #k and its endmost step, i. e. the step with the number m m k= ( ). 
This step starts having the initial data (10) and ends having new data (15) that satisfies the relations (14). It can 
be shown, taking into account the equalities (29), that relations (14) with m m k= ( ) can be rewritten in the form 

 
i I

j
k

j
i Im k m k

i i A i i A i
∈ ∈( ) + -( ) +

∑ ∑( ) ( )( ) ( ) + ( )( ) ( ) =
1 1 1

0γ τ τ λ τ
 ^

, jj n= …0 1 ,, , ,

i I
j

k
j

i Im k m k

i i A i i A i
∈ ∈( ) + -( ) +

∑ ∑( ) ( )( ) ( ) + ( )( ) ( ) =
1 1 1

0γ τ τ λ τ
 ^

, jj n= …0 1 ,, , ,  (30)

where ^λk pi( ) ∈ , i Im k∈ -( ) +1 1
, are some vectors which can differ from the vectors λm mi i I( ) ∈ -, ,1  in (14) 

with m m k= ( ). Denote  I I I Ik m k k m k+ ( ) + -( ) += =1 1 1 1
: , :  and set 

V i i i I i i i Ik k k
k

k+ += ( ) ( ) ∈( ) = ( ) ( ) ∈( )1 1: , , : , ,γ τ λ γ Λ ^
/V i i i I i i i Ik k k

k
k+ += ( ) ( ) ∈( ) = ( ) ( ) ∈( )1 1: , , : , ,γ τ λ γ Λ ^

/
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 W V U V V Dk k k k k k k k k
0

1

0

1 1

0
.: , : , := = =+ + +Λ Λ Λ    (31)

By construction, 
V

V
U W

W D
Sk

k
k k

k k

k k

p

Λ
Λ





 ( ) =









 ∈ +

 


0 0

0 0

2
,

where Vk was constructed at the previous iteration # .k -( )1  Relations (30) take the form 

 U A W A j nk j k j+ • + • = = …1

0 0
0 0 1, , , , .  (32)

Notice that for k = 0, the set I I Ik m k= =-( ) +1 1 0
 is empty, by construction. Hence at the step with the number 

#m 0( )  of the iteration #0, we construct only a matrix U
1

0  by the rule 

 U VV V i i i I1
0

1 1 1 1: , : , .= = ( ) ( ) ∈( )
where γ τ   (33)

Then relations (30) with k = 0 can be rewritten in the form 

 U A j n U Sj
p

1

0

1

0
0 0 1• = = … ∈ +, , , , ; .  

Consider the (last) iteration #k*. According to the regularisation procedure, this iteration ends on the step 
#m k m∗ ∗( ) =  after which we pass to the final step. Notice that, by construction, 0 ≤ k* ≤ m*.

Let us consider the final step of the regularisation procedure.
If m* = 0 and, consequently k* = 0, then the constraints of the original SDP problem (1) satisfy the Slater 

condition. In this case, according to the well-known optimality conditions (see e. g. [1; 2]), if x0 is an optimal 
solution of problem (1), then there exists a matrix U p0 ∈ +S  such that 

U A c j n U xj j
0 0 0

1 2 0• = = … • ( ) =, , , , ; .

It follows from the relations above that U  0 is a feasible solution of the dual problem EDP 0( ) and equality (28) 
holds.

Suppose that m* > 0. By the beginning of the final step, the immobile indices and numbers τ i( ), γ i( ) > 0,  
i Im∈

∗
,  are found and it was shown at the final step that problem (16) is regular and equivalent to the original 

problem (1).
Let x0 be an optimal solution of the problem (1). Then vector x0 is optimal in problem (16) as well. Hence, 

taking into account the regularity of this problem, we concluder that there exist indices, numbers and vectors 
τ i Tm( ) ∈

∗
, γ i( ) > 0, i ∈ I; λm p

mi i I∗
∗

( ) ∈ ∈ , , such that 

 
γ τ τ λ τ

τ

i i A i i A i c j n

i

j
i I

m
j

i I
j

m

( ) ( )( ) ( ) + ( )( ) ( ) = = …

(
∈ ∈
∑ ∑ ∗

∗

� �
, , , ,1

))( ) ( ) ( ) = ∈ ( )( ) ( ) ( ) = ∈∗
∗

� �
A Ax i i I i x i i Im

m
0 0

0 0τ λ τ, ; , .

 (34)

Suppose that k* = 0. Then, from equalities (29) with k = 0, it follows A ijτ( ) = 0,  j = 1, …, n, i Im∈
∗
, and, 

consequently, relations (34) take the form 

γ τ τ τ τi i A i c j n i x i i Ij
i I

j( ) ( )( ) ( ) = = … ( )( ) ( ) ( ) = ∈
∈
∑ � �

A, , , , , .1 0
0

Let us set V i i i I0
: , ,= ( ) ( ) ∈( )τ γ  U V V S p0 0 0

: .= ( ) ∈ +


 Then it follows from the above relations that 

U A cj j
0 • = ,  j = 1, …, n, and - • =U A c x0

0

0
. These equalities and inequality (19) imply that the matrix U  0 

is an optimal solution of the problem EDP 0( ) and the strong duality relation holds.
Now suppose that k* > 0. Notice that in this case we have found the matrices 

U W D k k W U V Vk k k p k k k
0 0 0

0

0 0 0
1 1, , , , , ; , ,= … - = = ( )∗ ∗ ∗ ∗

O


where the matrix Vk∗

0  was constructed using the index set I Ik m k∗ ∗
= -( ) +: .

1 1
 Taking into account equalities (29) 

with k = k*, it is easy to show that the optimality relations (34) can be rewritten in the form 
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 γ τ τ λ τi i A i i A i c j nj
k

i Ii I
j j

k

( ) ( )( ) ( ) + ( )( ) ( ) = = …∗

∗∈∈
∑∑  ^



, , , ,1γ τ τ λ τi i A i i A i c j nj
k

i Ii I
j j

k

( ) ( )( ) ( ) + ( )( ) ( ) = = …∗

∗∈∈
∑∑  ^



, , , ,1  (35)

 τ τ λ τi x i i I i x i i I Ik
k m k( )( ) ( ) ( ) = ∈ ( )( ) ( ) ( ) = ∈ =∗

∗ ∗ -
� �
A A0 0

0 0, ; , :
^



11 1
.( ) +τ τ λ τi x i i I i x i i I Ik

k m k( )( ) ( ) ( ) = ∈ ( )( ) ( ) ( ) = ∈ =∗
∗ ∗ -

� �
A A0 0

0 0, ; , :
^



11 1
.( ) +  (36)

Let us set 

 
V i i i I L

i
i

i I

U V

k

k

k
0 0

0 0

: , , : , ,

:

= ( ) ( ) ∈( ) = ( )
( )

∈










=

∗

∗

∗
τ γ

λ

γ

^


VV W L V D L Lk k m m m m
0 0 0 0 0 0 0( ) = ( ) = ( )∗ ∗ ∗ ∗ ∗ ∗

  
, : , : .

 (37)

Then, equalities (35) take the form 

 U W A c j nk j j
0 0

1+( ) • = = …
∗

, , , ,  (38)
and relations (36) imply 

 U W xk
0 0 0

0+( ) • ( ) =
∗
 .  (39)

It follows from (32) and (38) that the constructed set of matrices (27) is a feasible solution of the problem 
EDP k∗( ), where 0 < ≤ { }∗k n pmin , . Taking into account (38) and (39), we obtain 

c x U W x U W A U W Aj j
j

n

k k k
0

1

0 0 0 0 0

0

0 0

0

=
∑ = +( ) • ( ) - +( ) • = - +( ) •

∗ ∗ ∗
 .

It follows from these relations and inequality (19) that the constructed set of matrices (27) is an optimal 
solution of the problem EDP k∗( ), and the strong duality relation holds. The theorem is proved.

The dual problem EDP k∗( ) is explicit and similar to the dual problem, which was obtained on the base of 
the FRA in [10]. There is only one difference in the formulations of these two problems, namely, in the dual 
problem in [10], all matrices Dm are equal to the identity matrix. Notice that the dual problem EDP k∗( ) is more 
general than the dual one in [10] since it is evident that any feasible solution of the dual problem from [10] is 
feasible for EDP k∗( ) as well.

In this paper, the dual problem EDP k∗( ) was obtained, using the concept of immobile indices and, as result, 
we have relations (31), (33), and (37), which provide us with additional information about matrices Um, Wm, 
Dm, m = 1, …, k*; U that form a feasible solution of this dual problem and illustrate how these matrices can be 
expressed via immobile indices. This information can be used for constructing new and possibly less complex 
forms of dual SDP problems.

Conclusion
The main contribution of the paper consists of derivation of new theoretical results and algorithmic pro-

cedure for regularisation of the linear SDP problems, which permits to obtain new explicit dual formulations 
satisfying the strong duality property. This regularisation is based on the properties of immobile indices and is 
more constructive than the previously suggested in [6 – 8] procedures based on the FRA.

The results of the paper justify the fact that the concept of immobile indices plays an important role in the 
study of optimisation problems not satisfying regularity conditions and can be used for other classes of opti-
misation problems.
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