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Abstract

Reactive oxygen and nitrogen species (ROS and RNS)a crucial role in biotic and
abiotic processes. In the atmosphere, ROS/RNS atmlly associated with air
pollution. The ability of certain air particulateatter constituents to influence the
formation and cycling of ROS/RNS at the atmosphmosphere-hydrosphere interfaces
is important for the observed linkages between aprheric aerosols and adverse health
and climate effects. Atmosphere-hydrosphere ROS/RN&ange fluxes affect the
chemical composition of the atmosphere and sunfaters compartments, acting both
as a source and sink for ROS/RNS. Therefore, deteaind measuring ROS/RNS in
this interface is of utmost importance. This aetigresents a critical review on the
analytical challenges and limitations of the exigtimethodologies to measure

ROS/RNS in air particles and surface waters. b alddresses the suitability of novel



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

methodologies based on carbon nanoparticles asit@dteools for the detection of

ROS/RNS in atmospheric aerosols and aquatic compats.

Keywords. Reactive Oxygen Species, Reactive Nitrogen SpeSedace Waters, Air
Particulate Matter, Anthropogenic Stressors, Oxi@aPotential, Carbon Nanoparticles

Sensors, Online Methods, Offline Methods

1. Introduction

Reactive oxygen and nitrogen species (ROS and RéEpectively) are of common
occurrence in both biotic and abiotic compartmerts.the atmosphere-biosphere-
hydrosphere interfaces, ROS/RNS are an importamipgiof short-lived health- and
climate-relevant air pollutants [1]. In the atmos@) ROS/RNS are present in both
gaseous and particulate phases [2,3], with atmosplifetimes spanning from less than
a second to more than a day [1]. The growth of fadfmn and the consequent increase
of industrial activity and intensive agriculturesh&d to an increased emission of
pollutants to the atmosphere. Under these conditithe occurrence of photochemical
and gas-phase, heterogeneous and multiphase reastimlving atmospheric oxidants
and aerosol particles can enhance the generatid®O8/RNS in both gaseous and
particulate phases [4] (Figure 1). The atmosphe@S/RNS are also implicated in the
aging of biogenic and carbonaceous aerosols, thogilouting to the formation and
growth of secondary organic aerosols (SOA). Funtteee, a multiplicity of reactions
involving atmospheric ROS/RNS exchange can alsoiroccvarious biosurfaces (e.g.,

skin, respiratory tract, and plant leaves), indganxidative stress and damaging cells
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and tissues, thus triggering a diverse suite opira®ry-related diseases from the
clinical side or it may diminish ecosystem diveysitom an environmental point of
view (e.g., see references [1,5,6] and referenkerein). For example, reactions of
ROS/RNS with volatile organic compounds (VOCs) lre tatmosphere may lead to
modifications both in the leaf surface and instie leaves [6]. The activity of oxidative
pathways in the plant leaves can be strongly erdthooder oxidative stress conditions
induced by exposure to pollutants, such as thosR@8S/RNS. On the other hand,
several stress pathways associated to ROS formediomlso lead to emission of VOCs
[6].
<FIGURE 1 here>

Atmospheric ROS/RNS can also interact with abistidfaces (e.g., lakes, rivers, ocean
surfaces, and soil surfaces), upon being removedrypynd/or wet deposition, leading
to modifications within these environmental compeatts. The sea-surface microlayer
is a large sink of atmospheric ROS/RNS, which sty with the surface constituents,
leading to the formation and emission into the aphere of VOCs [1] (Figure 1).
Notwithstanding the huge differences in the comppmsi physical properties, and
multiphase chemical processes between the atma@spiner those abiotic surfaces, the
underlying chemistry involving atmospheric ROS/RN8teraction has many
similarities. In aquatic environments, the mainrseuof ROS/RNS has usually been
assumed to be abiotic photochemical processesgewherabsorption of solar radiation
by dissolved organic matter (DOM) in sea-surfacecratayer can lead to the
photochemical production of diverse reactive trants, including ROS/RNS [7]. These
ROS/RNS may have damaging effects on bacteria hyplankton, by affecting cell
membranes or inhibiting photosynthesis. Since th&-ssirface microlayer is also a

source of both marine organic aerosols and VO@sathsea exchange of ROS/RNS is
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likely to exert a significant influence on the géblclimate and, ultimately, it could
determine the global distribution and fate of thoessctive chemical trace species.
Despite extensive knowledge implicating ROS/RNShealth- and climate-relevant
players, there are still methodological challengdsted to the accurate measurement of
ROS/RNS in complex environmental matrices. Althoughmyriad of analytical
technigues and assays have been developed to metwuroxidative potential of
ROS/RNS from a human health perspective [8], thesgect of applying these
technigues to measure ROS/RNS in complex atmospaed aquatic matrices a truly
exciting challenge. Here, we review a number ofhsaoalytical techniques with
potential to meet this challenge. This review &tloegins by setting the scene on ROS
and RNS identity that are climate-relevant air y@lhts interacting at the
atmosphere—hydrosphere interface, followed bytacatioverview of the relative merits
and weaknesses of the existing analytical toolsROS/RNS analysis in atmospheric
and aquatic matrices. A distinction is made betwa@ime and real-time methods, with
the latter stemming from the need to analyze sasnmheshort timescales. A complete
survey on the molecular structures and mechani$mstion of these chemical assays is
well beyond the scope of this review. Readers aoe@aged to consult references [9—
11] and references therein to obtain a more complatierstanding of the mechanisms
of action of the described molecular assays. Fin#iis review highlights the potential
and suitability of novel methodologies based orbcarnanoparticles (CNPs) for direct
measurement of ROS/RNS in air particles, freshwaded seawater. Overall, this
review article aims to provide the atmospheric cisém research community with a
new perspective on the benefits of using NPs-basedors for gaining new insights

into those reactive gaseous pollutants at the ggtheye—hydrosphere interface.
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2. Setting the scene on ROS and RNS identity

Although referring to different chemical specief&Rand ROS usually appear in the
literature under the same umbrella of “short-livieealth- and climate-relevant air
contaminants”, since they are tightly connectedugh multiphase reactions in both the
atmosphere and biosphere [1]. The most common R@Bide superoxide (),
peroxide hydrogen (#D,), hydroxyl radical (HO), singlet oxygen'©.), and ozone
(O3) [1,12]. Some of these ROS are not of concern iewegions of the planet,
although they might be highly toxic at very higmveonmentally unrealistic levels.
Other species, such as,@onstitute the primary threat to terrestrial gstsms and
biodiversity at their current ambient levels [5[dditional ROS include organic peroxy
radicals (ROQ), alkoxy and phenoxy radicals (RQozonides, organic hydroperoxides
(ROOH), organic peroxides (ROOR), and chlorite i¢@<I) [1]. In natural waters,
including seawater, HQadicals can be formed by the photolysis of DOMrate, and
nitrite [13]. In the atmosphere, the primary soun€¢1O' comes from the photolysis of
O3 [14] even though it has been reported that the global e®lution is highly
dependent on anthropogenic N®missions [15], with the HOradicals playing an
essential role in the oxidizing capacity of the asphere. The HQadicals are involved
in the oxidation of volatile and semi-volatile onja compounds [16], resulting in
water-soluble species that are easily removed blyd&position into earth’s surface
[17]. H.O, is the most stable ROS, being ubiquitous in natwaters [18] and in the
atmosphere (e.g., reference [1] and referencesithein the aquatic compartments, the
dominant pathway for ¥D, formation entails the photochemical oxidation of
chromophoric DOM by solar irradiance [18]. Atmospbevet deposition has been also
identified as an important source of®3 into surface waters, which could influence the

redox chemistry of the receiving watersheds [1®]thle atmosphere, the most common
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RNS includes nitric oxide (NO) and peroxynitriteNOO). NO can be converted into
peroxynitrous acid (ONOOH), and ultimately into H@dical and nitrite anion (NO).
As reviewed by Pdschl and Shiraiwa [1], anthropagdO emissions are a major
source of RNS in the atmosphere, with NO being y $gecie in catalytic radical
reaction cycles leading to photochemical productiodestruction of @ In this regard,
the importance of anthropogenic NO emissions has becently addressed during the
lockdown due to coronavirus disease (COVID-19) pamd. The lockdown caused a
substantial reduction in NO in four Southern Euanpeities, whereas thes@roduction
increased during this period [20]. This study ferthighlights the challenge of reducing
the formation of @ in the atmosphere despite the strict measuresntrat primary
pollutant emissions [20]. NO, nitrous acid (HN®), nitric acid (HNQ), and NQ
radicals are also key species in atmospheric aydinRNS, playing also an important
role in the interaction of RNS with ROS [1]. Addmally well-known forms of RNS in
the atmosphere include NOx, which are dominate@rissions of NO and NCthat
react relatively rapidly (hours to days) to form @N21]. NOx is produced by the
reaction of nitrogen and oxygen gases in the airindgu combustion at high
temperatures. In urban locations, NOx is typicpllgduced from fossil fuel combustion
processes, although it can also originate from rahtde.g., forest fires and
thunderstorms) and biogenic (e.qg., fertilizationaigricultural activities, or the use of
nitrogen fixing plants) sources [22].

Due to the transient nature of ROS/RNS, encompgdsgh reactivity, short half-life,
low ambient concentrations, rapid diffusion, andeptial interferences, their detection
and/or quantification at the air-water interface nst a straightforward process.
Therefore, fast, and more efficient analytical noeh are preferred over more

traditional ones, since usually the later onesikeatéengthy time gap between sample
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collection and ROS/RNS analysis. Nonetheless, ateuneasurement of ROS/RNS is
a very challenging task, due to the instability s#ihsor probes and the potential
interferences from other gaseous species. Moretherpreparation and manipulation
of standard solutions and environmental samplesoisstraightforward, due to the

reactivity and low ambient concentrations of ROSHIN those matrices. Hence, at this
point, one question arises: “Among the currenthaitable analytical methods, which

one appears to hold the greatest potential forsinyating ROS/RNS at the atmosphere-
hydrosphere interface?”. The following sectiondl wie devoted to the answer to this

question considering the level of information degir

3. Analytical toolsfor assessing ROS/RNS in atmospheric and aquatic matrices

3.1. Analytical methods for quantifying ROS/RNS in aquatic matrices

The formation of ROS has been recognized as an riano process in aquatic
environments (i.e., in surface waters and seawaiege these reactive species are
important to balance the chemical redox state obhag systems, where they can have
variable impacts on aquatic organisms and ecosystegn, by affect DOM cycling,
trace metal speciation, and biological process23). [n aquatic environments, abiotic
photochemical processes induced by sunlight irtemticare considered to be the main
source of ROS [23]. The &, is one of the most common reactive species intagua
environments, playing a key role in contaminantodegosition in both fresh waters
(rivers [24], and lakes [25-27]) and seawater [28]tact, most of the existing studies
have been focused mainly on the assessment,0b H aqueous samples, mostly
because of its stability and higher concentratimhen compared to other ROS/RNS,
such as HOradical, NO and @ . H,O, are intermediate molecules generated during the

one-electron reduction of oxygen to water througbtpchemical oxidation [28,29] or
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through “dark” (biological or chemical) process&9][ In surface waters, the,B; is
mainly produced by means of the interaction ofawvirlet radiation with natural
dissolved organic carbon [27]. Nonetheless, atmasplwet deposition has been also
identified as a source of,B, to surface waters [31]. The concentration gDkin rain

is higher than those measured at fresh water avadea surfaces, which means that
upon deposition, the rain will contribute to anrease of the concentration of®4 in
the water column [32]. Recently, it has been alesmahstrated that 40, is not only
widespread in oceanic and atmospheric systemsalbatin the groundwater domain.
Yuan and co-workers [33] provided evidence for ligat-independent generation of
H,O.in groundwater. These authors further suggestddhbadark formation of D, is
likely to occur in transitional redox environmemisere reduced elements (e.g., reduced
metals and natural organic matter) meet oxygerh) agoxic—anoxic interfaces [33].
Most of the analytical methodologies for the detectof H,O, in aquatic matrices,
including seawater and lake waters, are baseduordscence and chemiluminescence
methodologies. In this regard, Table 1 summaribesost important features and
drawbacks of the methodologies available for RO8lyais in both atmospheric and
aquatic matrices. The fluorescence methods typicafiply a peroxidase-mediated
oxidation procedure of a reagent molecule, sucth@s-hydroxy-6-methoxychromen-
2-one (scopoletin) and the p-hydroxyphenyl acetid @2 OHPAA), by HO, or organic
peroxides [27,34-37]. However, the applicationlobfescent methods in many coastal
waters show that these methodologies are pronetéoferences from the absorbance
and/or fluorescence of DOM at high concentratiddemiluminescence methods for
H.O, determination are usually based on metal-catalgsethtion of luminol [38]. For
example, a flow injection-chemiluminescence metlvodpled with Co(ll)-catalysed

oxidation of luminol was successfully applied fos@4 detection in the harsh conditions



200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

of seawater samples, showing excellent repeatal§i%) and reproducibility (1.8—
2.5%) [39]. On the other hand, an alternative chaminescent method involving the
reaction of HO, with acridinium ester 10-methyl-9-(p-formylphenggridinium
carboxylate trifluoromethanesulfonate was used dterthine HO, in natural waters
[40]. This method did not require a catalyst or ah&n complexes, and an analytical
precision of 4% (relative standard deviation) hasrbreported at typical natural water
concentrations. The method provided a linear respawver the LD, concentration
range of 5x10 to 60x10° M, with a detection limit of 5x18 M. Nevertheless, it has
been also reported that this chemiluminescenceadathprone to interference in high
ferrous ion (F&) containing samples due to the formation e®kvia reduction of @
by F&*, especially at pH 9 and above [40]. An intercorgmar study has been also
performed between the fluorescent scopoletin methad the chemiluminescent
method involving reaction with acridinium ester m@thyl-9-(p-formylphenyl)-
acridinium carboxylate trifluoromethanesulfonate the determination of D, in
oligotrophic seawater samples [41]. It has beerclooled that the disparity between
results obtained by the two methods is well witlimalytical uncertainty with no
statistical difference between analytical resultsiggesting that neither analytical
method is superior in the determination efZHin complex aquatic samples [41].
Non-enzymatic fluorescent methods have been algel@ged for the determination of
H,O, in aquatic samples. These methods are based oroxidation of a probe
compound by HOradical formed in the reaction of,&, with F&* (Fenton reaction).
One of these methods was applied for the determmatf HO, in coastal seawater
samples and it involves the hydroxylation reactafnterephthalate (TP) by the HO
radical, resulting in the formation of a stronglydrescent 2-hydroxyterephthalate

(HTP) [42]. The authors reported a detection liofi8 nM and 1.0% precision at 200
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nM, with the fluorescent intensity being unaffectag coexisting sea salts. However,
the presence of NO at concentrations higher than 101 may interfere with the
formation of HTP. The Fenton reaction is also & lbiase of a method involving the
reaction of the HO radical with benzene to produce phenol for theonawiar
determination of KO, in seawater [43]. The phenol was separated fragnrélaction
mixture by reversed phase high-performance lighmmatography and detected with a
fluorescence detector. The authors reported a titmtelamit for H,O, in the seawater
samples of 4 nM, whereas the presence oy NfD a concentration of 50M can also
interfere by promoting a decrease of the fluoreseentensity signals of phenol by
almost 40% [43]. An intercomparison assessmentisf method with the enzymatic
fluorescent POHPAA method also showed excelleneegent between the two

methods [43].

3.2. Offline analytical methods for quantifying ROS/RNS in atmospheric matrices

The first available methodologies for assessing ROIS in atmospheric matrices were
offline. In the case of air particles, the offligeantification of ROS/RNS relies on

laborious intensive procedures involving sampldection on filters. In this regard,

Yang et al. [44] assessed how the extraction sblaed filter type might affect the

measurement of the oxidative potential (OP) ofpairticles, where OP is considered to
be a measure of the presence and formation of RCHr iparticles. Although quartz

fiber filters are traditionally employed for assegsair particles composition, Teflon

filters are the substrate of choice to measure RCH particles [44]. Aerosol samples
collection using filter media is an offline samglirmethodology with exceptional

collection efficiency, practicality, and low costowever, this sampling methodology

also exhibits some disadvantages, including ther pecovery of particles from the
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filters substrates, long sample collection timead achemical aging of particles
deposited onto the filter surfaces, all contribgtio an underestimation of ROS/RNS in
air particles [3]. Previous studies using filtetlection media have also reported a high
and variable blank concentrations for ROS/RNS ¥2ng et al. [44] also concluded
that the extraction solvents dichloromethane anthamol had a higher effect on the OP
assessed by means of dithiothreitol (DTT) than dhaiscorbic acid (AA). Recently, the
presence of ROS/RNS in air particles has been ssses the corresponding aqueous
aerosol extracts [45-47]. Although water is a ratgolvent with relevance in a series
of atmospheric processes, the role of the water$®l organic fraction from air
particles in the production of ROS/RNS is only nbeginning to be studied [45—-47].
Nevertheless, the use of ultrapure water as eurasblvent is favored over the use of
organic solvents, as some of the offline methodsyt@ntifying ROS/RNS require the
elimination of the organic solvents prior to an&)46].

The most common offline measurement assays fossisgeradical generation capacity
consists either in mimicking the consumption ofi@atants (e.g., AA [45] and reduced
glutathione, GSH) or using a surrogate for biolagieducing agents (e.g., DTT) [48—
50]. The DTT assay has been widely used to determtie OP of atmospheric aerosols
[48-51]. The DTT activity have been shown to exthébpositive correlation with ¥D
formation, but not with OH formation [52]. DTT agsmeasures the presence of O
anion radicals via formation of the DTT-disulfidaeedto the transfer of electrons from
DTT to oxygen by oxidized species, such as quin¢dEls Cho et al. were the first to
present the DTT assay to quantitatively measureQReof atmospheric particulate
matter (PM) [51]. After that, the DTT assay hasrbased to assess the OP of different
aerosol samples, including primary particles antbsdary aerosols [53]. It has been

reported that the DTT activity is dependent on ipitsize [51,54] and particle
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chemical composition [46]. For example, biomassing aerosols, vehicle-generated
emissions, and soil dusts showed high DTT actiMg]. Besides reacting with highly
oxidized species (e.g. quinones), transition metals also oxidize DTT [55,56]. Lin
and Yu found DTT loss in solutions of Cu(ll) and(H)y but not with Fe [55]. A study
measured DTT losses mediated by metals, quinoned, @olycyclic aromatic
hydrocarbons (PAHS) to identify which species cbuate most to DTT loss induced by
ambient PM, concluding that metals play a majoerol OP [57]. Another study
conducted by Li et al. [58] showed that aged-diesdlaust PM showed higher DTT
activity than the fresh diesel exhaust PM. Nevéedee DTT method poses some
drawbacks, of which the long period of incubatiap to 90 min), and its reactivity
towards a limited number of species are the mogiormant shortcomings of the
method. However, a more efficient ROS semi-autothaistem using the DTT assay
was developed for quantifying the ability of aefdoagueous extracts to generate ROS.
The instrument was further validated for accuragy domparing with the manual
procedure using ambient PM samples, being capdldaeoDTT activity measurement
per hour [49].

The AA assay has been also used to determine thef @&nsition metals present in
atmospheric PM [54]. Similar to the DTT assay, ## assay involves the incubation
of the antioxidant (AA) with the PM aqueous extsaat a controlled temperature and
pH, followed by the measurement of the rate of eigmh of the antioxidant over time
(typically detected as a decrease in light absonpdt the 265 nm) [54]. The antioxidant
loss rate is interpreted as a measure of the yalmfitaerosol redox active species to
catalytically transfer electrons from AA t6,O

Due to a high sensitivity and fast response, flsoeat-based probes have been also

used to quantify atmospheric PM-related ROS, ugd®" and HO,. This fluorescent
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method is based on the principle that a fluoresgeotluct is generated when the
nonfluorescent probe molecule reacts with ROS. mbet used probe for sensing PM-
related ROS is 2,7-dichlorofluorescein (DCFH) [2®860]. In this assay, the non-
fluorescent reagent DCFH is oxidized to dichlorofescein (DCF) by ROS in the
presence of horseradish peroxidase (HRP), withR®& concentration calculated in
terms of HO, equivalent. The 2’,7’-dichlorofluorescin diaceta(BCFH-DA) is
hydrolyzed to form the non-fluorescent DCFH, whiatihe presence of ROS is rapidly
oxidized to DCF. A major drawback of the DCFH prad¢hat it is unselective towards
a specific reactive species because it reacts mithiple ROS, including HO H,0,,
ROO radicals, and ONQOOD This is largely due to the easy removal of thdrbgen
atom located at the’ position of the DCFH molecule [61]. The DCFH-DAope has
been also integrated into several online instrum@it—67] for the analysis of ROS in
ambient air particles. These online methodologigksbs addressed in detail in section
3.2.

Dihydrorhodamine 6G (DHR-6G), a reduced form ofd&imine 6G, is an alternative
ROS indicator that can be oxidized to cationic,hhygfluorescent rhodamine upon
reaction with carbon-centered RO@nd RO as well as HO radicals [68] .
Quantification is based on the concentration ofidmine formed during the reaction of
the free radicals with DHR-6G. This ROS indica®mair- and photo-sensitive, yielding
substantial background fluorescence, which is tagonweakness of this approach.

To quantify aerosol-borne ROS in urban air, an s@rphase ROOH sampling
collection method has been also employed [69]. HR® enzyme was used to catalyze
the reaction between ROOH with para-hydroxyphengétia acid (POHPAA) to
produce a dimer that fluoresces strongly, under al@& conditions at

excitation/emission wavelengths of 320/400 nm.
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Profluorescent nitroxidePFN)-based fluorescence methods have been alsotosed
guantify ROS in air particles, namely in combustgenerated particles such as
cigarette smoke [70], diesel and biodiesel exhalfsts For additional details on the
reaction between ROS and PFN, readers should ¢adghsulork of Fairfull-Smith et al.
[72]. Different PFN-based methods have been deeela@t the Queensland University
of Technology, one of which is the 9,10-bis-(phetiyynyl) anthracene-nitroxide
(BPEAnIt) fluorophore [70]. The excitation/emissia@velength (430/~500 nm) of the
BPEAnIit are long enough to avoid overlapping witte tbackground fluorescence
coming from other optically active compounds présanatmospheric PM (e.g. PAH
and their derivatives).

The offline methods currently in use for quantifyiROS/RNS in air particles typically
involves the implementation of an aerosol sampfirgcedure (in sampling intervals of
hours to days). Under this scenario, the assessth&®S/RNS in the atmospheric PM
samples becomes prone to significant sampling aatsf that contribute to an
underestimation of the real particle-bound ROS/RB&centrations due to the
reactivity of these species, where some ROS/RNSstitoents might rapidly
decompose during PM sampling and samples proceshiegshort ROS lifetime is one
of the main limitations of those offline particlednd ROS measurements, thus
suggesting the need to develop and implement owlitefield-deployable approaches
for ROS/RNS analysis. These automated methodologokdressed in section 3.2, are
considered better options than the traditional wadthof PM collection in filter
substrates for assessing ROS/RNS in atmospherigleam

<TABLE 1 here>

3.3. Online analytical methods for quantifying ROS/RNS in atmospheric matrices
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The development of an automated system involvesdéfection of the best available
analytical approach to quantify ROS/RNS, and itissequent integration in a suitable
sampling system. The choice of a suitable sampiipgroach that allows real-time
measurements of atmospheric ROS/RNS must avoid Hathpotential sampling
artifacts and the long turn-around time for ROS/Ra@lysis when using the PM filter
sampling methodology. One of the online samplingho@ologies that have been
applied for atmospheric ROS/RNS analysis is a steamerosol collector (SJAC) [73],
where air particles are mixed with water steamclmmdensational growth, after which
the grown droplets are collected by cyclones fdrssequent ROS/RNS analysis in real-
time. Besides SJAC, particle-into-liquid samplell@® has been also used for real-time
atmospheric ROS/RNS analysis [61,67]. In PILS, tbarticles are grown in
supersaturated water vapor, thereby creating dsogléficiently large to be collected
by a single-nozzle impactor. The liquid sampleexitd on the impactor surface is then
removed by a small, constant flow of purified wgd&8,74,75] for subsequent real-time
chemical analysis (e.g., water-soluble organic @ayland water-soluble inorganic ions
[75]), including also ROS.

Recently, a particle sampler for aerosol suspesqBSAS) has been also developed to
collect fine ambient air particles (BN directly as liquid suspensions. The collection
impactor employs the use of several configuratiomspared to conventional inertial
impactors, including a Teflon gasket for restrajnimpacted droplets from bouncing
back to the air stream, and a mesh surroundingintipaction surface to wick the
collected droplets into sample outlet [76].

When it comes to ROS analysis in these real-time Salhpling approaches, several
probes used in offline methodologies have beentadapto these online strategies. For

example, the BPEAnNIt assay has been combined witB B> measure ambient fine
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particulate ROS [77]. The BPEAnNIt assay has beethdéu modified to allow real time
detection of ROS. The air particles are bubbledugh an impinger with fritted nozzle
tip containing a fluorescent BPEAnit solution [7Tp skip the extraction procedure, the
air particles were collected directly into a liqumedium (e.g., water-DCFH or dimethyl
sulfoxide (DMSQO) — BPEAnIt). The use of a contingpautomated particle-bound
ROS system, combining PILS with chemical assays, leen described in several
works [61,66,67,78,79]. Online systems for OP eatdun based on PILS and DTT
assay were also developed to provide real time wmneaents (3 min to 3 hours) of
oxidative capacity [78,79]. One of these online meblogies combines a PILS with
microfluidic-electrochemical detection of reduced TID using a cobalt(ll)
phthalocyanine electrode [79], while another usedigaid spot sampler [78].
Venkatachari and Hopke [61] developed an automBte& DCHF-based systems for
the continuous sampling of ambient aerosols andsurement of ROS concentrations
on the collected samples. This automated DCFH ndetvas found to be the best non-
specific method, being a general indicator of tg@ilticle-bound oxidants in real time
[61]. Wang et al. [67] and King and Weber [66] eaydd the PILS approach to collect
PM. s into a aqueous slurry that contained a DCFH/HRBtism at room temperature
[66,67]. Figure 2 shows a schematic representatfahis continuous automated flow
system [66], which includes a mist chamber coltettnodule coupled to a fluorescent
system, employing DCFH/HPR as a probe. The, PBBmples are collected 5 min
before ROS analysis, which is a drawback of thighime since it could lead to losses of
reactive components [66]. One additional disadvgata the PILS system relates to the
high temperature steam used to promote particletroThese high temperatures can
affect the analysis of ROS in the air particles gi@s due to the unstable nature of some

of the ROS constituents.
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<FIGURE 2 here>
Another methodology, known as Particle Into NitaeiQuencher (PINQ), has been
suggested by Brown et al. [80] for measuring PMfmtblROS using the BPEAnit
chemical probe. In this online method, an insolulderosol collector (IAC)
continuously collects air particles, regardlesgheir size or composition, directly into a
liquid medium with a collection efficiency of > 97&nd a cut-off size of <20 nm. The
PM-bound ROS quantification is performed by measuiihe fluorescence increase
using a flow-through fluorimeter aimed to obtairstfaand accurate measurements.
Figure 3 shows a schematic representation of thigirmuous automated flow system
[80]. When using DMSO as liquid medium, BPEAnit sleal to be sensitive to HO
radical and other ROS, such as RQ&1].

<FIGURE 3 here>
Other online techniques aiming to quantify thepairticle-bound ROS with DCFH/HRP
have been also developed with the purpose of redutime between air samples
collection and ROS analysis [61,66,67]. These enliachniques employed distinct
particle collection procedures. One of the proceduconsists in a gentle particle
extraction that collects PM in an agueous HRP sotutn a paper filter that then flows
through Teflon tubing immersed in a water bathlfemmin [64]. This particle extraction
is crucial considering the reactive and short-livedure of ROS [64]. This instrument
was further developed to a portable field deplogadgparatus (Online Particle-bound
ROS Instrument, OPROSI) for automated continuouastn@ments, covering hours to

days [63].

3.4. CNPs sensors as potential tools to detect ROS/RNS in environmental matrices

Sensors based on nanoparticles (NPs) have attracteth attention due their own
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specific characteristics. Particularly, CNPs digpldeatures such as tunable
fluorescence, water solubility, photo- and physiemical stability, biocompatibility,
and low toxicity. CNPs can also be functionalizead aconjugated with various
compounds and, therefore, could be used in sewamalytical and bioanalytical
applications [82]. This makes CNPs also very afitraanaterials for the construction of
fluorescent sensors [83]. The CNPs sensors hagailbeen successfully used for the
sensitive and selective detection of ROS/RNS inlogical samples [84]. In the
presence of the very oxidant ROS/RNS constituethis, chemical structures at the
surface of the CNPs are oxidized. The outcome meerease in the fluorescence
intensity of the sensors, whose magnitude is ptap@l to the amount of ROS/RNS
present in the samples. A few examples of thosedial applications include the
quantification of NO at pH 4 and ONOGt pH 7 and 10 using CNPs doped with
ethylenediamine in standard and in fortified serswtutions [85]. The CNPs sensors
have showed also sensibility towards the detedfddlO at pH 4 and ONOOat pH 9

in serum samples, with minimum detection limits®% and 1.5uM for CIO" and
ONOQO, respectively [86]. CNPs doped with tryptophan evaiso designed for the
detection of ONOQ showing a linear response between 5 touR5 and limits of
detection and quantification of 1.8/ and 4.9uM, respectively [87]. CNPs synthetized
with glutathione also showed sensibility fos®4 detection, exhibiting a linear response
in the range of 20 to 200 uM [88]. CNPs doped witinon tribromide (BBg) were also
developed for the detection ob®h. In this case, the developed sensor exhibitedeati
response in the range of 0.1 to 1.0 mM [89], whsch less sensitive system than those
of functionalized CNPs (e.g., reference [87]).

In environmental matrices, however, CNPs have gebé applied into ROS/RNS

detection; instead, CNPs have been employed idétection of H§ in mineral water
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450  [90], tap and drinking water [91], and river ancsater [92] samples. Additionally, the
451  CNPs have been used to detect sulfide in tap andidg water samples [91], €lin
452 seawater [93], Cf in river water samples [94], Eein river [94], lake [95] and tap
453  water [95] samples, as well as an herbicide (@ehior) in soil samples [96].
454  Nevertheless, due to their own characteristics, aianselectivity and sensitivity
455 towards ROS/RNS, CNPs sensors are a simple, effjdi@st, and low-cost alternative
456  to be implemented in the environmental field. Ferthore, CNPs exhibit low toxicity,
457  which make them exceptional candidates for envimemial applications. Moreover,
458 some of these CNPs sensors allow the simultaneetestton of at least two different
459 ROS/RNS present in the same media (e.g., the digatibn of NO at pH 4 and
460 ONOO at pH 7 and 10 [85]), which is an advantage far #elective analysis of
461  different reactive species in the same run andhbatsamples. Indeed, CNPs sensors
462  could be applied for the determination of ROS/RN&tmospheric air particles but also
463  for the determination of ROS/RNS in aquatic saméeg., ocean surface), as well as
464  other environmental matrices. In order to assesstime variations in ROS/RNS
465 emissions and fate at the air-sea interface, theeldement of a CNP-based field-
466  deployable tool becomes also of utmost importance.

467

468 4. Conclusions

469  Anthropogenic activities have disturbed the cyabésseveral important atmospheric
470  constituents, including ROS/RNS. Since the chemictdractions at the interface of
471 ocean surface and lower atmosphere are a two-wagegs, ocean emissions of
472 ROS/RNS and marine aerosols can also impact atreaspthemistry and air quality.
473  Finding the most adequate methodology for an ateureeasurement of ROS/RNS at

474  the air-sea interface is an important requiremerdetter understand the environmental
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impact of the OP and consequent generation of ROS/R here are a multiplicity of
methodologies and there is no consensus on whighlyas the most appropriate for
measuring OP related to ROS/RNS; even within eashya protocols can vary, making
results difficult to compare. In offline techniguesvolving the collection of air
particles in filters, the chemical aging of air foades deposited into the filter surface can
cause underestimation (due to the evaporation ahesoorganic species) or
overestimation (if the particles become oxidized) ROS/RNS concentrations.
Additional shortcomings of offline methods for R&BIS analysis include, the type of
filters used for PM collection (e.g. quartz filtecs Teflon filters), PM extraction
solvents (e.g., methanol extract both hydrophili éhydrophobic organic species,
resulting in higher OP than those of water-sol@xfacts), incubation times, and metal
chelators. Online aerosol sampling techniques,(@4.S, SJAC), on the other hand,
simplify the aerosol sampling procedure and theylmafully automated by coupling to
a specific chemical assay, resulting in a morecieffit and reliable approach for
ROS/RNS analysis (e.g., reducing time of analysigerimental errors, and labor
costs). Nonetheless, to ensure the acquisitioelafle data on ROS/RNS, these online
methods should follow optimization procedures thi@ee a high analytical sensitivity,
repeatability, and reproducibility, while simultanesly reducing the cost of a single
analysis. CNPs sensors are capable of meeting tbetsgia in the detection of
ROS/RNS at the air-water interface. These senstosv aselective detection of
ROS/RNS, they can be easily synthetized using lost methods, and their application
iIs based in a simple fluorescent method. Moreotrex, CNPs-based sensors can be
implemented in online flow systems, which makesrthsuitable for in-situ real-time

measurements.
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Figurel.

Figure 2.

Figure 3.

Sources, effects, and multiphase exchanges of ROUG/& the air-water
interface. Adapted with permission from [1]. Abbegions: DOM -
Dissolved Organic Matter, VOC - Volatile Organic r@pounds, SOA -
Secondary Organic Aerosols, OCGIHypochlorite, @~ - Superoxide, @-
Ozone,'O, - Singlet Oxygen, kD, - Hydrogen Peroxide, HO Hydroxyl
Radical, ONOO - Peroxynitrite, NO - Nitric Oxide, N©O - Nitrite, NG; -

Nitrate [1].

Online ROS methodology combining particle-intodid sampler (PILS)
and the fluorometric probe 2,7-dichlorofluorescearseradish peroxidase

(DCFH/HRP). Reprinted with permission from [66].

Online ROS methodology combining Particle Into rbkide Quencher

(PINQ) based on 9,10-bis-(phenylethynyl) anthraegtrexide (BPEAnit)

probe. Reprinted with permission from [80].
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Table 1. Summary of analytical methodologies availableR@S analysis in aquatic and atmospheric samples.

M ethodology Observations Drawbacks References
Aquatic matrices
« Allow quantification of HO, by the decrease in| « Prone to interferences due to the absorbance
scopoletin fluorescence and/or fluorescence of aquatic DOM at high
Scopoletin concentrations [27,35,36,41]
* Requires an enzyme, so it is unsuitable for ¢a-si
analysis due to enzyme’s instability
* Applied into HO, analysis in both seawater and Cannot differentiate between organic peroxides
air particles samples, based on the formation of and HO,
fluorescent dimer whose signal intensity is « Requires an enzyme, so it is unsuitable for ea-si
POHPAA proportional to HO, concentration analysis due to enzyme’s instability [34,37,69]
* POHPAA does not undergaitooxidation on |, possible underestimation of total air particle-
exposure tp light or air during the analysis of bound ROS concentrations
atmospheric aerosol samples
» Reaction with HO, originating a luminol radical « Some trace metal species (e.qg., Fe(ll), Fe(lll),
in the presence of carbon dioxide and metal iond/(1V)) originate an overestimation in the
Luminol or heme-containing enzymes determination of KO, in seawater samples using [38]
umino . o
« Not prone to interferences from the absorban¢dh® luminol-chemiluminescent method
and/or fluorescence of aquatic DOM at high
concentrations
* Provide good sensitivity and precision for « Prone to interference in high¥eontaining
determination of KO, in natural waters samples (especially at pH9)
Acridinium ester « Significantly less prone to interference from [36,40,41]

naturally occurring chromophores, fluorophores
and organic peroxides
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Table 1. Cont.

M ethodol ogy Observations Drawbacks References
* Based on hydroxylation reaction of TP by HO| « NO, concentrations higher than M may
radical, originating a strong fluorescent 2- interfere with the formation of HTP
Terephthalate (TP) hydroxyterephthalate (HTP) specie [42]
* Fluorescence intensity is unaffected by
coexisting sea salts
* Based on the reaction of Headical with * NO, at concentrations of 50M promotes a
Fenton reaction benzene to produce fluorescent phenol decrease in the fluorescence of phenol by almost [40]
40%, thus interfering with D, analysis
Atmospheric matrices
« Commonly used chemical assay in atmospherie Laborious and time-consuming protocol
samples analysis « Weak correlations between DTT consumption and
» Low-cost, easy-to-operate, with high ROS generation
repeatability « Reactive toward limited number of species
DTT-based systems * Strong reducing agent that measures the « Incubation time up to 90 min [48-53]
formation of ROS by quinones .
» No standardized protocols
* Remaining DTT reacts with Ellman Reagent
* Detection (at UV = 412 nm) based on TNB
production
AA- based systems * Sensitive to transition metals * Less effectivdicator of OP than DTT [45,54]
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Table 1. Cont.

M ethodology

Observations

Drawbacks

References

DCFH-DA based system

» Simple responsive fluorescent method

» Becomes fluorescent after being oxidized by
HZOZ

"« Needs a catalyst, usually the HRP
* Sensitive towardROOH, organic peroxides,

alcohols, aldehydes and CIO

* Prone to autooxidation upon exposure to air an
sunlight

* HRP promote an increase in the fluorescence
intensity, lack of sensitivity, and relatively colap

chemistry set-up in terms of implementation

[61,62,64,65]

* DHR-6G can be oxidized by RO@adical
originating rhodamine 6G.

* Air- and photo-sensitive, yielding significant
background fluorescence

DHR-6G « Does not directly react with diluted,®, or lipid [68]
peroxides, which at low concentrations are not as
reactive as the other radical species
» Suppresses fluorescence emission in the « Contains relatively labile linkages, which are
presence of nitroxide moieties prone to hydrolysis, leading to the separatiorhef t
PFN based systems « React with radicals, leading either to reduction Nitroxide from the fluorophore [72]
of the nitroxides to hydroxylamines or oxidation
to oxoammonium cation
» Stable for long periods of time * Laborious protocol
BPEAnit based systems | « Detect carbon and sulfur-centered free radicals High reagent consumption [70,80,81]

as well as ROtand HOradicals
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Table 1. Summary of analytical methodologies availableR@S analysis in aquatic and atmospheric samples.

M ethodology Observations Drawbacks References
Aquatic matrices
« Allow quantification of HO, by the decrease in| « Prone to interferences due to the absorbance
scopoletin fluorescence and/or fluorescence of aquatic DOM at high
Scopoletin concentrations [24,32,33,38]
* Requires an enzyme, so it is unsuitable for ¢a-si
analysis due to enzyme’s instability
* Applied into HO, analysis in both seawater and Cannot differentiate between organic peroxides
air particles samples, based on the formation of and HO,
fluorescent dimer whose signal intensity is « Requires an enzyme, so it is unsuitable for ea-si
POHPAA proportional to HO, concentration analysis due to enzyme’s instability [31,34,66]
* POHPAA does not undergaitooxidation on |, possible underestimation of total air particle-
exposure tp light or air during the analysis of bound ROS concentrations
atmospheric aerosol samples
» Reaction with HO, originating a luminol radical « Some trace metal species (e.qg., Fe(ll), Fe(lll),
in the presence of carbon dioxide and metal iond/(1V)) originate an overestimation in the
Luminol or heme-containing enzymes determination of KO, in seawater samples using [35]
umino . o
« Not prone to interferences from the absorban¢dh® luminol-chemiluminescent method
and/or fluorescence of aquatic DOM at high
concentrations
* Provide good sensitivity and precision for « Prone to interference in high¥eontaining
determination of KO, in natural waters samples (especially at pH9)
Acridinium ester « Significantly less prone to interference from [33,37,38]

naturally occurring chromophores, fluorophores
and organic peroxides
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M ethodol ogy Observations Drawbacks References

* Based on hydroxylation reaction of TP by HO| « NO, concentrations higher than M may
radical, originating a strong fluorescent 2- interfere with the formation of HTP

Terephthalate (TP) hydroxyterephthalate (HTP) specie [39]
* Fluorescence intensity is unaffected by
coexisting sea salts
* Based on the reaction of Headical with * NO, at concentrations of 50M promotes a

Fenton reaction benzene to produce fluorescent phenol decrease in the fluorescence of phenol by almost [40]

40%, thus interfering with D, analysis
Atmospheric matrices

« Commonly used chemical assay in atmospherie Laborious and time-consuming protocol
samples analysis « Weak correlations between DTT consumption and
» Low-cost, easy-to-operate, with high ROS generation
repeatability « Reactive toward limited number of species

DTT-based systems * Strong reducing agent that measures the « Incubation time up to 90 min [45-50]

formation of ROS by quinones
* Remaining DTT reacts with Ellman Reagent

* Detection (at UV = 412 nm) based on TNB
production

» No standardized protocols

AA- based systems

» Sensitive to transition metals

« Less effectivdicator of OP than DTT

[42,51]
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M ethodology

Observations

Drawbacks

References

DCFH-DA based system

» Simple responsive fluorescent method

» Becomes fluorescent after being oxidized by
HZOZ

"« Needs a catalyst, usually the HRP
* Sensitive towardROOH, organic peroxides,

alcohols, aldehydes and CIO

* Prone to autooxidation upon exposure to air an
sunlight

* HRP promote an increase in the fluorescence
intensity, lack of sensitivity, and relatively colap

chemistry set-up in terms of implementation

[58,59,61,62]

* DHR-6G can be oxidized by RO@adical
originating rhodamine 6G.

* Air- and photo-sensitive, yielding significant
background fluorescence

DHR-6G « Does not directly react with diluted,®, or lipid [65]
peroxides, which at low concentrations are not as
reactive as the other radical species
» Suppresses fluorescence emission in the « Contains relatively labile linkages, which are
presence of nitroxide moieties prone to hydrolysis, leading to the separatiorhef t
PFN based systems « React with radicals, leading either to reduction Nitroxide from the fluorophore [69]
of the nitroxides to hydroxylamines or oxidation
to oxoammonium cation
» Stable for long periods of time * Laborious protocol
BPEAnit based systems | « Detect carbon and sulfur-centered free radicals High reagent consumption [67,77,78]

as well as ROtand HOradicals
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